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Monocular Depth Estimation using Multi-Scale
Continuous CRFs as Sequential Deep Networks
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Abstract—Depth cues have been proved very useful in various computer vision and robotic tasks. This paper addresses the problem
of monocular depth estimation from a single still image. Inspired by the effectiveness of recent works on multi-scale convolutional
neural networks (CNN), we propose a deep model which fuses complementary information derived from multiple CNN side outputs.
Different from previous methods using concatenation or weighted average schemes, the integration is obtained by means of
continuous Conditional Random Fields (CRFs). In particular, we propose two different variations, one based on a cascade of multiple
CRFs, the other on a unified graphical model. By designing a novel CNN implementation of mean-field updates for continuous CRFs,
we show that both proposed models can be regarded as sequential deep networks and that training can be performed end-to-end.
Through an extensive experimental evaluation, we demonstrate the effectiveness of the proposed approach and establish new state of
the art results for the monocular depth estimation task on three publicly available datasets, i.e. NYUD-V2, Make3D and KITTI.

Index Terms—Monocular Depth Estimation, Convolutional Neural Networks (CNN), Deep Multi-Scale Fusion, Conditional Random
Fields (CRFs).
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1 INTRODUCTION

WHILE estimating the depth of a scene from a single im-
age is a natural ability for humans, devising compu-

tational models for accurately predicting depth information
from RGB data is a challenging task. Many attempts have
been made to address this problem in the past. In particular,
recent works have achieved remarkable performance thanks
to powerful deep learning models [11], [12], [30], [36]. As-
suming the availability of a large training set of RGB-depth
pairs, monocular depth prediction from single images can
be regarded as a pixel-level continuous regression problem
and Convolutional Neural Network (CNN) architectures are
typically employed.

In the last few years significant efforts have been made
in the research community to improve the performance of
CNN models for pixel-level prediction tasks (e.g. seman-
tic segmentation, contour detection). Previous works have
shown that, for depth estimation as well as for other pixel-
level classification or regression problems, more accurate
estimates can be obtained by combining information from
multiple scales [9], [11], [46], [48]. This can be achieved
in different ways, e.g. fusing feature maps corresponding
to different network layers or designing an architecture
with multiple inputs corresponding to images at differ-
ent resolutions. Other works have demonstrated that, by
adding a Conditional Random Field (CRF) in cascade to
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Fig. 1. Monocular depth estimation results on three different benchmark
datasets, i.e. NYUD-V2 (the 1st row), Make3D (the 2nd row) and Kitti
(the 3rd row), using the proposed multi-scale CRF model with a pre-
trained CNN (e.g. VGG Convolution-Deconvolution [34]). From left to
right, each column is original RGB images, the recovered depth maps
and the groundtruth, respectively.

a convolutional neural architecture, the performance can
be greatly enhanced and the CRF can be fully integrated
within the deep model enabling end-to-end training with
back-propagation [51]. However, these works mainly focus
on pixel-level prediction problems in the discrete domain
(e.g. semantic segmentation). While complementary, so far
these strategies have been only considered in isolation and
no previous works have exploited multi-scale information
within a CRF inference framework.

In this paper we argue that, benefiting from the flexibility
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and the representational power of graphical models, we
can optimally fuse representations derived from multiple
CNN side-output layers using structured constraints, im-
proving performance over traditional multi-scale strategies.
By exploiting this idea, we introduce a novel framework
to estimate depth maps from single still images. Opposite to
previous work fusing multi-scale features by weighted aver-
aging or concatenation, we propose to integrate multi-layer
side-output information by designing a novel approach
based on continuous CRFs. Specifically, we present two
different methods. The first approach is based on a single
multi-scale unified CRF model, while the other considers
a cascade of scale-specific CRFs. We also show that, by in-
troducing a common CNN implementation for mean-fields
updates in continuous CRFs, both models are equivalent
to sequential deep networks and an end-to-end approach
can be devised for training. Through extensive experimental
evaluation we demonstrate that the proposed CRF-based
approach produces more accurate depth maps than tra-
ditional multi-scale approaches for pixel-level prediction
tasks [16], [46]. Moreover, by performing experiments on
the publicly available NYU Depth V2 [43], Make3D [41] and
KITTI [14] datasets, we show that our approach is able to
robustly reconstruct depth with good visual quality (Fig.1)
and outperforms state of the art methods for the monocular
depth estimation task.

This paper extends our earlier work [50] through propos-
ing and investigating different multi-scale connection struc-
tures for message passing, further enriching the related
works, providing more approach details, and significantly
expanding experimental results and analysis. To summarize,
the contribution of this paper is threefold:

• Firstly, we propose a novel approach for predicting depth
maps from RGB inputs which exploits multi-scale estima-
tions derived from CNN inner semantic layers by struc-
turally fusing them within a unified CNN-CRF frame-
work.

• Secondly, as the task of pixel-level depth prediction
implies inferring a set of continuous values, we show
how mean field (MF) updates can be implemented
as sequential deep models, enabling end-to-end train-
ing of the whole network. We believe that our MF
implementation will be useful not only to researchers
working on depth prediction, but also to those in-
terested in other problems involving continuous vari-
ables. Therefore, our code is made publicly available at
https://github.com/danxuhk/ContinuousCRF-CNN.git.

• Thirdly, our experiments demonstrate that the proposed
multi-scale CRF framework is superior to previous meth-
ods integrating information from different semantic net-
work layers by combining multiple losses [46] or by
adopting feature concatenations [16]. We also show that
our approach outperforms state of the state of the art
monocular depth estimation methods on public bench-
marks and that the proposed CRF-based models can be
employed in combination with different pre-trained CNN
architectures, consistently enhancing their performance.

The remainder of this paper is organised as follows.
We first introduce related work in Section 2, and then
the proposed multi-scale CRF models for monocular depth

estimation is presented in Section 3. We further elaborate
how the proposed models can be implemented as sequential
neural network for end-to-end joint optimization in Sec-
tion 4. The experimental results and analysis are elaborated
in Section 5, and we conclude the paper in Section 6.

2 RELATED WORK

Our approach is built upon recent successes of deep CNN
architectures for image classification [17], [23], [44] and fully
convolutional networks for dense semantic image segmen-
tation [33], [34]. We briefly introduce the most related works
by organizing them into three main aspects, i.e. monocular
depth estimation, multi-scale CNN and dense pixel-level
prediction via combination of CNN and CRFs.

Monocular depth estimation. Previous approaches for
depth estimation from single images can be grouped into
three main categories: (i) methods operating on hand crafted
features, (ii) methods based on graphical models and (iii)
methods adopting deep convolutional neural networks.

Earlier works addressing the depth prediction task be-
long to the first category. Hoiem et al. [18], [19] proposed
photo pop-up, a fully automatic method for creating a basic
3D model from a single photograph by introducing an
assumption of ‘ground-vertical’ geometric structure. Karsch
et al. [20] developed Depth Transfer, a non parametric ap-
proach based on SIFT Flow, where the depth of an input
image is reconstructed by transferring the depth of multiple
similar images and then applying some warping and op-
timizing procedures. Instead of directly recovering depth
from appearance features, Liu et al. [29] explored using
semantic scene segmentation results to guide the 3-D depth
reconstruction. Similarly, Ladicky et al. [25] also demon-
strated the benefit of combining semantic object labels with
depth features. However, the hand-crafted representations
are not robust enough for this challenging problem.

In the second category, some works exploited the flex-
ibility of graphical models to reconstruct depth informa-
tion. For instance, Delage et al. [10] proposed a dynamic
Bayesian framework for recovering 3D information from in-
door scenes. A discriminatively-trained multiscale Markov
Random Fields (MRFs) were introduced in [39], [40], in
order to optimally fuse local and global features. Depth
estimation was treated as an inference problem in a discrete-
continuous CRF model in [32]. However, these works did
not employ deep networks.

More recent approaches for depth estimation are based
on CNNs [11], [27], [30], [38], [45]. For instance, Eigen et
al. [12] proposed a multi-scale approach for depth predic-
tion, considering two deep networks, one performing a
coarse global prediction based on the entire image, and
the other refining predictions locally. This approach was
extended in [11] to handle multiple tasks (e.g. semantic
segmentation, surface normal estimation). Wang et al. [45]
introduced a CNN for joint depth estimation and semantic
segmentation. The obtained estimates were further refined
with Hierarchical CRFs. The most similar work to ours is
[30], where the representational power of deep CNN and
continuous CRFs is jointly exploited for depth prediction.
However, the method proposed in [30] is based on super-
pixels and the information associated to multiple scales is
not exploited in their graphical model.
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Fig. 2. Overview of the proposed deep architecture. Our model is composed of two main components: a front-end CNN and a fusion module.
The fusion module uses continuous CRFs to integrate multiple side output maps of the front-end CNN. We consider two different CRFs-based
multi-scale models and implement them as sequential deep networks by stacking several elementary blocks, the C-MF blocks.
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Fig. 3. Illustration of different multi-scale message passing structures for the integration of the multi-scale predictions s1 to s5 produced from the
front-end convolutional network. The arrows represent the direction of the message passing, and the numbers in circles represent the order. The
dashed line box in Fig. 2 shows a bottom-up passing structure.

Multi-Scale CNNs. The problem of combining informa-
tion from multiple scales has recently received considerable
interest in various computer vision tasks. In [46] a deeply su-
pervised fully convolutional neural network was proposed
for edge detection by weighted combination of multiple
side outputs. Skip-layer networks, where the feature maps
derived from different semantic layers of a primary front-
end network are jointly considered in an output layer, have
also become very popular [3], [6], [33]. Other works con-
sidered multi-stream architectures, where multiple parallel
networks receiving inputs at different scale are fused [4].
Cai et al. [5] proposed a multi-scale method via combining
the predictions obtained from feature maps with different
resolution for object detection. Dilated convolutions (e.g. di-
lation or à trous) have been also employed in different deep
network models in order to aggregate multi-scale contextual
information [7]. However, in these works, the multi-scale
representations or estimations are typically combined by us-
ing simple concatenation or weighted averaging operation.
We are not aware of previous works exploring fusing deep
multi-scale information within a CRF framework.

Dense pixel-level prediction via combination of CNN
and CRFs. The combination of CNN and CRFs has shown
great usefulness for dense pixel-level structured predic-
tion [21], [42]. Some existing works utilize CRFs as a post
processing module for further refining the predictions from
the CNN [8], [35]. To benefit from end-to-end learning,

Zhang et al. [51] proposed a CRF-RNN model which jointly
optimizes a front-end deep network with a discrete CRF
for semantic image segmentation. Xu et al. [47] proposed an
attention-gated deep CRF framework for pixel-level contour
prediction. However, as far as we know, this work is a first
attempt to combine multi-scale continuous CRFs with deep
convolutional neural network for constructing a unified
model for end-to-end monocular depth estimation.

3 MULTI-SCALE CRF MODELS FOR MONOCULAR
DEPTH ESTIMATION

In this section we introduce our deep model with the
designed multi-scale continuous CRFs for monocular depth
estimation from RGB images. We first formalize the problem
of depth prediction and give a brief overview of the pro-
posed approach. Then, we describe two different variants of
the proposed multi-scale model, one based on a cascade of
CRFs and the other on a single multi-scale unified CRFs.

3.1 Problem Formulation and Overview

Following previous works we formulate the task of depth
prediction from monocular RGB input as the problem of
learning a non-linear mapping F : I → D from the image
space I to the output depth space D. More formally, let
Q = {(ri, d̄i)}Qi=1 be a training set of Q pairs, where ri ∈ I
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denotes an input RGB image with N pixels and d̄i ∈ D
represents its corresponding real-valued depth map.

For learning F we consider a deep model made of two
main building blocks (Fig. 2). The first component is a
CNN architecture with a set of intermediate side outputs
S = {sl}Ll=1, sl ∈ RN , produced from L different layers
with a mapping function fs(r; Θ,θl) → sl. For simplic-
ity, we denote with Θ the set of front-end network layer
parameters and with θl the parameters of the network
branch producing the side output associated to the l-th layer
(see Section 5.1 for details of our implementation). In the
following we denote this network as the front-end CNN.

The second component of our model is a fusion block. As
shown in previous works [3], [33], [46], features generated
from different CNN layers capture complementary informa-
tion. The main idea behind the proposed fusion block is to
use CRFs to effectively integrate the side output maps of our
front-end CNN for robust depth prediction. Our approach
develops from the intuition that these representations can
be combined within a sequential framework, i.e. performing
depth estimation at a certain scale and then refining the
obtained estimates in the subsequent level. Specifically, we
introduce and compare two different multi-scale models,
both based on CRFs, and corresponding to two different
versions of the fusion block. The first model is based on a
single multi-scale unified CRFs, which integrates informa-
tion available from different scales and simultaneously en-
forces smoothness constraints between the estimated depth
values of neighboring pixels and neighboring scales. The
second model implements a cascade of scale-specific CRFs:
at each scale l a CRF is employed to recover the depth
information from side output maps sl and the outputs of
each CRF model are used as additional observations for
the subsequent model. In Section 3.2.1 we describe the two
models in details, while in Section 4 we show how they can
be implemented as sequential deep networks by stacking
several elementary blocks. We call these blocks C-MF blocks,
as they implement Mean Field updates for Continuous CRFs
(Fig. 2).

3.2 Multi-scale Fusion with Continuous CRFs

We now elaborate the proposed CRF-based models for fus-
ing multi-scale side-outputs derived from different semantic
layers of the front-end deep convolutional neural networks.

3.2.1 Multi-Scale Unified CRF Model

Given a vector ŝ with a dimension of L × N obtained by
concatenating the side output score maps {s1, . . . , sL} and
a vector d with a dimension of L×N expressing real-valued
output variables, we define a CRF modeling the following
conditional distribution:

P (d|ŝ) =
1

Z(ŝ)
exp{−E(d, ŝ)}, (1)

where Z(ŝ) =
∫
d exp{−E(d, ŝ)}dd is the partition func-

tion [26] acting as a normalization factor for probabilities.
The energy function is defined as:

E(d, ŝ) =
N∑
i=1

L∑
l=1

φ(dli, ŝ) +
∑
i,j

∑
l,k

ψ(dli, d
k
j ), (2)

and dli indicates the hidden variable associated to scale l and
pixel i. The first term is the sum of quadratic unary terms
defined as:

φ(dli, ŝ) =
(
dli − sli

)2
, (3)

where sli is the regressed depth value at pixel i and scale
l obtained with fs(r; Θ,θl). The second term is the sum
of pairwise potentials describing the relationship between
pairs of hidden variables dli and dkj and is defined as follows:

ψ(dli, d
k
j ) =

M∑
m=1

βmwm(i, j, l, k, r)(dli − dkj )2, (4)

where wm(i, j, l, k, r) is a weight which specifies the rela-
tionship between the estimated depth of the pixels i and j
at scale l and k, respectively; M is the number of kernels.

To perform inference we rely on the mean-field theory
to approximate P (d|ŝ) with another distribution Q(d|ŝ),
where Q(d|ŝ) =

∏N
i=1

∏L
l=1Qi,l(d

l
i|ŝ), expressing a product

of independent marginals. By minimizing the Kullback-
Leibler divergence between the distribution of P and
Q, we obtain the solution of Q. As the log distribution
logQi,l(d

l
i|ŝ) has a quadratic form w.r.t. dli and can be

represented as Gaussian distribution, the following mean-
field updates can be derived:

γi,l = 2
(
1 + 2

M∑
m=1

βm
∑
k

∑
j,i

wm(i, j, l, k, r)
)
, (5)

µi,l =
2

γi,l

(
sli + 2

M∑
m=1

βm
∑
k

∑
j,i

wm(i, j, l, k, r)µj,k
)
. (6)

Here γi,l and µi,l are the variance and mean of the distribu-
tion Qi,l, respectively.

To define the weights wm(i, j, l, k, r) we introduce the
following assumptions. First, we assume that the estimated
depth at scale l only depends on the depth estimated at
previous scale. Second, for relating pixels at the same and
at previous scale, we set weights depending on m kernel
functions Kij

m, which consists of Gaussian kernels with form

of exp
(
− ‖hm

i −hm
j ‖22

2θ2m

)
. Here, hmi and hmj indicate some

features derived from the input image r for pixels i and j.
θm are user-defined bandwidth parameters [22]. Following
previous works [22], [51], we use pixel positions and color
values as features, leading to two kernel functions, i.e. a
bilateral appearance kernel using both the pixel positions
and the color value features and a spatial smoothness kernel
using only the pixel positions features, for modeling depen-
dencies of pixels at scale l and other two for relating pixels
at neighboring scales. Under these assumptions, the mean-
field updates (5) and (6) can be rewritten as:

γi,l = 2
(
1 + 2

2∑
m=1

βm
∑
j 6=i

Kij
m + 2

4∑
m=3

βm
∑
j,i

Kij
m

)
, (7)

µi,l =
2

γi,l

(
sli + 2

2∑
m=1

βm
∑
j 6=i

Kij
mµj,l,

+2
4∑

m=3

βm
∑
j,i

Kij
mµj,l−1

)
.

(8)

The parameters βm need to be learned during training. We
will present the details of the parameter optimization in
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Fig. 4. Detailed computing flow graph of the proposed C-MF block. J represents a W ×H matrix with all elements equal to one. The symbols ⊕,
	, � and ⊗ indicate element-wise addition, subtraction, division and Gaussian convolution operation, respectively. G1 and G2 represent two gate
functions for controlling the computing flow.

Section 4. Given a new test image, the optimal d̃ can be com-
puted via maximizing the log conditional probability [37],
i.e. d̃ = arg maxd log(Q(d|S)), where d̃ = [µ1,1, ..., µN,L] is
a vector of the L × N mean values associated to Q(d|ŝ).
We take the estimated variables at the finest scale L
(i.e. µ1,L, ..., µN,L) as our predicted depth map d?.

3.2.2 Multi-Scale Cascade CRF Model
The cascade model is based on a set of L CRF models, each
one associated to a specific scale l, which are progressively
stacked such that the estimated depth at previous scale can
be used as observations of the CRF model in the follow-
ing scale level. Each CRF is used to compute the output
vector dl and it is constructed considering the side output
representations sl and the estimated depth at the previous
step d̃l−1 as observed variables, i.e. ol = [sl, d̃l−1]. The
associated energy function of the CRF model is defined as:

E(dl,ol) =
N∑
i=1

φ(dli,o
l) +

∑
i6=j

ψ(dli, d
l
j). (9)

The unary and pairwise terms can be defined analogously
to the above-introduced unified multi-scale model. In par-
ticular the unary term, reflecting the similarity between the
observation oil and the hidden depth value dli, is:

φ(yli,o
l) =

(
dli − oli

)2
, (10)

where oli is obtained via combining the regressed depth
from the side output sl and the map dl−1 estimated by the
CRF at previous scale. In our implementation we simply
consider oli = sli + d̃l−1i , but other alternative strategies can
be also considered. The pairwise potentials, used to force
neighboring pixels with similar appearance to have close
depth values, are:

ψ(dli, d
l
j) =

M∑
m=1

βmK
ij
m(dli − dlj)2, (11)

where we considerM = 2 Gaussian kernels, one for appear-
ance features, and the other accounting for pixel positions.

Similar to the multi-scale CRF model, under mean-field
approximation, the following updates can be derived:

γi,l = 2
(
1 + 2

M∑
m=1

βm
∑
j 6=i

Kij
m

)
, (12)

µi,l =
2

γi,l

(
oli + 2

M∑
m=1

βm
∑
j 6=i

Kij
mµj,l

)
. (13)

At the test time, we use the estimated depth variables
corresponding to the cascade CRF model of the finest scale
L as our final predicted depth map d?.

4 MULTI-SCALE MODELS AS SEQUENTIAL DEEP
NETWORKS

In this section, we describe how the two proposed CRFs-
based models can be implemented as sequential deep net-
works, enabling end-to-end training of our whole deep
network model (the front-end CNN and the fusion module).
We first show how the mean-field iterations derived for the
multi-scale and the cascade models can be implemented by
designing a common structure, the continuous mean-field
updating (C-MF) block, consisting into stack of a series of
CNN operations. Then, we present the resulting sequential
network structures and details of the training phase for
optimizing the whole deep network.

4.1 C-MF: a Common CNN Implementation of Continu-
ous Mean-Field Updating

By analyzing the two proposed CRF models, we can observe
that the mean-field updates derived for the cascade and
for the multi-scale models share common terms. As stated
above, the main difference between the two is the way the
estimated depth at previous scale is handled at the current
scale. In the multi-scale CRFs, the relationship among neigh-
boring scales is modeled in the hidden variable space, while
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l
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in the cascade CRFs the depth estimated at previous scale
acts as an observed variable.

Starting from this observation, in this section we show
how the computation of Eq. (8) and Eq. (13) can be im-
plemented with a common structure. Figure 4 describes in
details these computations. In the following, for the sake of
clarity, we introduce matrix representation. Let Sl ∈ RW×H
be the matrix obtained by rearranging theN = W×H pixels
corresponding to the side output vector sl and µtl ∈ RW×H
the matrix of the estimated output depth variables asso-
ciated to scale l and mean-field iteration t. To implement
the multi-scale model at each iteration t, µt−1l and µtl−1 are
convolved by two Gaussian kernels. Following [22], we use
a spatial and a bilateral kernel. As Gaussian convolutions
represent the computational bottleneck (requiring a com-
plexity of O(N2)) in the mean-field iterations, we adopt the
permutohedral lattice implementation [1] to approximate
the filter response calculation reducing the computational
cost from quadratic to linear [37]. The weighing of the
parameters βm is performed as a convolution with a 1 × 1
kernel. Then, the outputs are combined and are added to the
side-output maps Sl. Finally, a normalization step follows,

corresponding to the calculation of Eq. (7). The normaliza-
tion matrix γ ∈ RW×H is also computed by considering
convolutions with Gaussian kernels and weighting with
parameters βm. It is worth noting that the normalization
step in our mean-field updates for continuous CRFs is
substantially different from that of discrete CRFs in CRF-
RNN [51] based on a softmax function.

In the cascade CRF model, differently from the multi-
scale unified CRF model, µtl−1 acts as an observed variable.
To design a common C-MF block among the two models, we
introduce two gate functions G1 and G2 (Fig. 4) controlling
the computing flow and allowing to easily switch between
the two approaches. Both gate functions accept a user-
defined boolean parameter. In our setting, the value 1 corre-
sponds to the multi-scale CRF and the value 0 corresponds
to the cascade model. Specifically, if G1 is equal to 1, the
gate function G1 passes µtl−1 to the Gaussian filtering block,
otherwise passes it to the element-wise addition block with
the computed message. Similarly, G2 controls the compu-
tation of the normalization terms and switches between
the computation of Eq. (7) and Eq. (12). In other words, if
G2 equals to 0, then the Gaussian filtering and weighting
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operations for γ3 and γ4 are disabled. Importantly, for each
step in the C-MF block we implement the calculation of
error differentials for the back-propogation as in [51].

There are two different types of CRF parameters to be
learned, i.e. the bandwidth parameters θm and the Gaussian-
kernel weights βm. For optimizing these CRF parameters,
similar to [22], the bandwidth values θm are pre-defined
for simplifying the calculation, and we implement the back-
ward differential computation for the weights of Gaussian
kernels βm. In this way βm are learned automatically with
back-propagation.

4.2 From Mean-Field Updates to Sequential Deep Net-
works

Fig. 4 illustrates the implementation of the proposed two
CRF-based models using the designed C-MF block de-
scribed above. In the figure, each blue-dashed box is as-
sociated to a mean-field iteration. The cascade model as
shown in Fig. 5(b) consists of L single-scale CRFs. At the
l-th scale, tl mean-field iterations are performed and then
the estimated depth outputs are passed to another CRF
model of the subsequent scale after a Rectified Linear Unit
(ReLU) operation. The ReLU used here has two aspects of
consideration: first the depth predictions should be always
positive, and second we want to increase the nonlinearity of
the sequential network for better mapping. To implement a
single-scale CRF, we stack tl C-MF blocks and make them
share the parameters, while we learn different parameters
for different CRFs. For the multi-scale model, one full mean-
field update involves L scales simultaneously, obtained by
combining L C-MF blocks. We further stack T iterations
for learning and inference. The parameters corresponding
to different scales and different mean-field iterations are
shared. In this way, by using the common C-MF layer, we
implement the two proposed multi-scale continuous CRFs
models as deep sequential networks enabling end-to-end
training with the front-end network.

4.3 Multi-Scale Message Passing Structures

The proposed work aims at multi-scale structured fusion
and prediction, the connection structure between the dif-
ferent multi-scale predictions for message passing plays
an important role in the performance. In this section, we
thus propose and investigate different message passing
structures. Fig. 3 illustrates several structures include top
down structure, skip-connection structure and all to one
structure. The top down structure is similar to the bottom
up structure depicted in Fig. 2, which gradually refines
the score maps from coarse to fine. The skip connection
structure aims at utilizing more complementary information
via skipping scales. The all to one structure uses all the other
scales to refine the finest scale. Since all the message passing
structures involve two scales at each time, we are able to
build all these proposed connection structures by using the
proposed aforementioned neural-network implemented C-
MF block. The experimental investigation of these structures
is illustrated in the experimental part.

TABLE 1
The parameter details of the sub-network for generating the side output

from the last-scale convolutional block of ResNet-50.

Name conv s5 1 deconv s5 1 deconv s5 2
Type conv deconv deconv
Kernel 3× 3× 1024 4× 4× 512 4× 4× 256
Stride, Padding 1, 1 2, 1 2, 1
Activation ReLU ReLU ReLU
Name deconv s5 3 deconv s5 4 pred
Type deconv deconv deconv & crop
Kernel 4× 4× 128 4× 4× 64 4× 4× 1
Stride, Padding 2, 1 2, 1 2, 1
Activation ReLU ReLU -

4.4 Optimization of The Whole Network
We train the whole network using a two phase scheme.
In the first phase (pretraining), the parameters of the base
front-end network Θ and the parameters of the side-output
generation sub-branch networks ϑ = {θl}Ll=1 are learned
by minimizing the sum of L distinct side losses as in [46],
corresponding to L side outputs. We define the optimization
objective using a square loss over Q training samples as
follows:

{Θ∗,ϑ∗} = arg min
Θ,θl

L∑
l=1

Q∑
i=1

‖fs(ri; Θ,θl)− d̃i‖22, (14)

where d̃i denotes the i-th ground-truth sample. In the sec-
ond phase (fine tuning), we initialize the front-end network
with the learned parameters {Θ∗,ϑ∗} in the first phase, and
jointly fine-tune with the proposed multi-scale CRF models
to compute the optimal value of the parameters Θ, ϑ and
β, with β = {βm}Mm=1. The entire network is learned with
Stochastic Gradient Descent (SGD) by minimizing a square
loss

{Θ∗,ϑ∗,β∗} = arg min
Θ,ϑ,β

Q∑
i=1

‖F (ri; Θ,ϑ,β)− d̃i‖22. (15)

When the whole network optimization is finished, the test
can be performed end-to-end, i.e. given a test RGB image as
input the network directly outputs an estimated depth map.

5 EXPERIMENTS

To demonstrate the effectiveness of the proposed multi-scale
CRF models for monocular depth prediction, we performed
experiments on three publicly available datasets: the NYU
Depth V2 [43], the Make3D [39] and the KITTI [14] datasets.
In the following we first describe the experimental setup
and the implementation details, and then present the exper-
imental results and analysis.

5.1 Experimental Setup
5.1.1 Datasets
The NYU Depth V2 dataset [43] contains 120K unique
pairs of RGB and depth images captured with a Microsoft
Kinect. The datasets consists of 249 scenes for training
and 215 scenes for testing. The images have a resolution
of 640 × 480. To speed up the training phase, following
previous works [30], [53] we consider only a small subset
of images. This subset has 1449 aligned RGB-depth pairs:
795 pairs are used for training, 654 for testing. Follow-
ing [12], we perform data augmentation for the training
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Fig. 6. Examples of qualitative depth prediction results of different methods on the NYU v2 test dataset. Different front-end deep network
architectures are investigated. VGG-CD-MSCRF and ResNet-MSCRF represent our approach with the proposed multi-scale continuous CRF
model plugged on VGG-CD and ResNet-50 network respectively.

samples. The RGB and depth images are scaled with a ratio
ρ ∈ {1, 1.2, 1.5} and the depths are divided by ρ. Addi-
tionally, we horizontally flip all the samples and randomly
crop them to 320×240 pixels. The data augmentation phase
produces 4770 training pairs in total.

The Make3D dataset [39] contains 534 RGB-depth pairs,
split into 400 pairs for training and 134 for testing. We resize
all the images to a resolution of 460× 345 as done in [32] to
preserve the aspect ratio of the original images. We adopted
the same data augmentation scheme used for NYU Depth
V2 dataset but, for ρ = {1.2, 1.5}we randomly generate two
samples each via cropping, obtaining 4K training samples.

The KITTI dataset [14] is built for various computer
vision tasks within the context of autonomous driving,
which contains depth videos captured through a LiDAR
sensor deployed on a driving vehicle. For the training and
testing split, we follow the protocol made by Eigen et al. [12]
for a better comparison with existing works. Specifically, 61
scenes are selected from the raw data. Total 22,600 images
from 32 scenes are used for training, and 697 images from
the other 29 scenes are used for testing. Following [13], the
ground-truth depth maps are generated by reprojecting the
3D points collected from velodyne laser into the left monoc-
ular camera. The resolution of RGB images are reduced half
from original 1224× 368 for training and testing.

5.1.2 Evaluation Metrics

Following previous works [11], [12], [45], we adopt the
following evaluation metrics to quantitatively assess the
performance of our depth prediction model. Specifically, we
consider:

• mean relative error (rel): 1
P

∑P
i=1

|d̃i−d?i |
d?i

;

• root mean squared error (rms):
√

1
P

∑P
i=1(d̃i − d?i )2;

• mean log10 error (log10):
1
P

∑P
i=1 ‖ log10(d̃i)− log10(d?i )‖;

• scale invariant rms log error as used in [12], rms(sc-
inv.);

• accuracy with threshold t: percentage (%) of d?i ,
subject to max(

d?i
d̃i
, d̃id?i

) = δ < t (t ∈ [1.25, 1.252, 1.253]).

Where d̃i and d?i is the ground-truth depth and the esti-
mated depth at pixel i respectively; P is the total number of
pixels of the test images.

5.2 Implementation Details
We implemented the proposed deep model using the popu-
lar Caffe framework [15] on a single Nvidia Tesla K80 GPU
with 12 GB memory. More details on the front-end CNN
architectures, the generation of multi-scale side outputs and
the parameter settings are elaborated as follows.

5.2.1 Front-end CNN Architectures
To study the influence of the frond-end CNN, we consider
several network architectures including: (i) AlexNet [23],
(ii) VGG-16 [44], (iii) a fully convolutional encoder-decoder
network derived from VGG-16, referred as VGG-ED [2],
(iv) a Convolution-Deconvolution network based on VGG-
16, referred as VGG-CD [34], and (v) ResNet-50 [17]. For
AlexNet, VGG-16 and ResNet-50, we obtain the side out-
puts from the last semantic convolutional layer of different
convolutional blocks, in which each the layer produces
feature maps with the same shape. The scheme utilized for
the generation will be introduced in the next section. The
number of side outputs considered in our experiments is 5,
5 and 4 for AlexNet, VGG-16 and ResNet-50, respectively.
As VGG-ED and VGG-CD have been widely used for dense
pixel-level prediction tasks, we also investigate them in the
experimental analysis. Both VGG-ED and VGG-CD have a
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TABLE 2
Quantitative performance comparison of different front-end deep network architectures and the proposed two multi-scale CRF models associated

with the pretrained front-end networks on the NYU Depth V2 dataset.

Network Architecture
Error

(lower is better)
Accuracy

(higher is better)
rel log10 rms δ < 1.25 δ < 1.252 δ < 1.253

AlexNet (pretrain) 0.265 0.120 0.945 0.544 0.835 0.948
VGG-16 (pretrain) 0.228 0.104 0.836 0.596 0.863 0.954
VGG-ED (pretrain) 0.208 0.089 0.788 0.645 0.906 0.978
VGG-CD (pretrain) 0.203 0.087 0.774 0.652 0.909 0.979
ResNet-50 (pretrain) 0.168 0.072 0.701 0.741 0.932 0.981

AlexNet + cascade-CRFs 0.231 0.105 0.868 0.591 0.859 0.952
VGG-16 + cascade-CRFs 0.193 0.092 0.792 0.636 0.896 0.972
VGG-ED + cascade-CRFs 0.173 0.073 0.685 0.693 0.921 0.981
VGG-CD + cascade-CRFs 0.169 0.071 0.673 0.698 0.923 0.981
ResNet-50 + cascade-CRFs 0.143 0.065 0.613 0.789 0.946 0.984

symmetric network structure, and five side outputs are then
generated from the different blocks of the decoder or the
deconvolutional network part.

5.2.2 Generation of multi-scale CNN side-outputs
Our approach can be applied with any multi-scale front-
end CNN models including those with skip-connections.
We here briefly describe the scheme we adopt to build
CNN side outputs from the front-end CNN for the multi-
scale fusion with CRFs. In [46] a convolutional layer is
first used to generate a score map from the feature map
and then a deconvolutional (deconv) layer is adopted as a
bilateral upsampling operator to enlarge the score map such
as to obtain the same size of the input image. However, we
noticed that by adopting the approach in [46] the generated
side outputs associated to the feature maps with smaller
size are very coarse, causing a lot scene details missing. To
address this problem, after the convolutional layer, we stack
several deconv layers, each of them enlarging the output map
by two times. A Rectified Linear Unit (ReLU) is applied
after each deconv layer. After the last deconv layer we use
a crop layer to cut the extra margin and obtain a side output
with the same resolution of the ground-truth image. We
employ this scheme to obtain side outputs for AlexNet,
VGG-16 and ResNet-50, while for VGG-CD and VGG-ED,
we use the same setting as in [46], as their decoder or
deconvolutional part is able to obtain more fine-grained side
outputs. Table 1 shows detailed network parameters used to
obtain the side output from the last convolutional block of
ResNet-50 (i.e. from the layer res5c).

5.2.3 Parameters settings
As described in Section 4.4, training consists of a pretraining
and a fine tuning phase. In the first phase, we train the
front-end CNN with parameters initialized with the corre-
sponding ImageNet pretrained models. For AlexNet, VGG-
16, VGG-ED and VGG-CD, the batch size is set to 12 and for
ResNet-50 to 8. The learning rate is initialized at 10−11 and
decreases by 10 times around every 50 epochs. 80 epochs
are performed for pretraining in total. The momentum and
the weight decay are set to 0.9 and 0.0005, respectively.
When the pretraining is finished, we connect all the side

outputs of the front-end CNN to our CRFs-based multi-scale
deep models for end-to-end training of the whole network.
In this phase, the batch size is reduced to 6 and a fixed
learning rate of 10−12 is used. The same parameters of
the pre-training phase are used for momentum and weight
decay. The bandwidth weights for the Gaussian kernels are
obtained through cross validation. The number of mean-
field iterations is set to 5 for efficient training for both the
cascade CRFs and multi-scale CRFs. We do not observe sig-
nificant improvement using more than 5 iterations. Training
the whole network takes around ∼ 25 hours on the Make3D
dataset, ∼ 28 hours on the KITTI dataset and ∼ 31 hours on
the NYU v2 dataset.

5.3 Experimental Results

To present the experimental results, we start from an abla-
tion study for investigating the performance impact of dif-
ferent front-end network architectures, the effectiveness of
the proposed CRF-based multi-scale fusion models and the
influence of the stacking orders for making the sequential
neural network. Then we compare the overall performance
with the state of the art methods, and finally the qualitative
results and running time are analyzed.

5.3.1 Evaluation of different front-end CNN architectures
As discussed above, the proposed multi-scale CRF-based
fusion models are general and different deep architectures
can be used for the front-end network. In this section we
evaluate the impact of this choice on the depth estimation
performance. We consider both the case of the pretrained
front-end models (i.e. only side losses are employed but the
multi-scale CRF models are not plugged), indicated with
‘pretrain’, and the case of the fine-tuned models, including
the front-end network with the multi-scale cascade CRFs
(cascade-CRFs). The results of the experiments are shown
in Table 2. As expected, in both cases deeper CNN archi-
tectures produced more accurate predictions, and ResNet-
50 achieves the best performance among all the front-end
networks. Moreover, VGG-CD is slightly better than VGG-
ED, and both these models outperforms VGG-16, showing
that the symmetric network structure is beneficial for the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 3
Quantitative baseline comparison with different multi-scale fusion schemes, and with the continuous CRF as a post-processing module on the

NYU Depth V2 dataset. The number of scales is investigated for both multi-scale models with a bottom up message passing structure.

Method
Error

(lower is better)
Accuracy

(higher is better)
rel log10 rms δ < 1.25 δ < 1.252 δ < 1.253

HED [46] 0.185 0.077 0.723 0.678 0.918 0.980
Hypercolumn [16] 0.189 0.080 0.730 0.667 0.911 0.978
C-CRF 0.193 0.082 0.742 0.662 0.909 0.976

Ours (single-scale) 0.187 0.079 0.727 0.674 0.916 0.980
Ours - cascade (3-scale) 0.176 0.074 0.695 0.689 0.920 0.980
Ours - cascade (5-scale) 0.169 0.071 0.673 0.698 0.923 0.981
Ours - unified (3-scale) 0.172 0.072 0.683 0.691 0.922 0.981
Ours - unified (5-scale) 0.163 0.069 0.655 0.706 0.925 0.981

TABLE 4
Quantitative performance evaluation of different message passing structures for the cascade CRF model via building the sequential deep network

with the proposed C-MF block on the NYU Depth V2 dataset.

Method Error (lower is better) Accuracy (higher is better)
rel log10 rms δ < 1.25 δ < 1.252 δ < 1.253

Top down structure 0.175 0.072 0.688 0.689 0.919 0.979
Bottom up structure 0.169 0.071 0.673 0.698 0.923 0.981
Skip connection structure 0.161 0.070 0.664 0.709 0.923 0.981
All to one structure 0.154 0.068 0.648 0.725 0.927 0.981

TABLE 5
Overall performance comparison with state of the art methods on the NYU Depth V2 dataset. Our approach achieves the best on most of the

metrics, while the runners-up Eigen and Fergus [11] and Laina et al. [27] employ more training data than ours. ResNet-50-unified means using
ResNet-50 front-end network with the proposed multi-scale unified CRF model.

Method
Error

(lower is better)
Accuracy

(higher is better)
rel log10 rms rms (sc-inv.) δ < 1.25 δ < 1.252 δ < 1.253

Karsch et al. [41] 0.349 - 1.214 0.325 0.447 0.745 0.897
Ladicky et al. [20] 0.35 0.131 1.20 - - - -
Liu et al. [32] 0.335 0.127 1.06 - - - -
Ladicky et al. [25] - - - - 0.542 0.829 0.941
Zhuo et al. [53] 0.305 0.122 1.04 - 0.525 0.838 0.962
Liu et al. [30] 0.230 0.095 0.824 - 0.614 0.883 0.975
Wang et al. [45] 0.220 0.094 0.745 - 0.605 0.890 0.970
Eigen et al. [12] 0.215 - 0.907 0.219 0.611 0.887 0.971
Roi and Todorovic [38] 0.187 0.078 0.744 - - - -
Eigen and Fergus [11] 0.158 - 0.641 0.171 0.769 0.950 0.988
Laina et al. [27] 0.129 0.056 0.583 - 0.801 0.950 0.986

Ours (ResNet-50-unified-4.7K-bottom up) 0.139 0.063 0.609 0.163 0.793 0.948 0.984
Ours (ResNet-50-unified-95K-bottom up) 0.121 0.052 0.586 0.149 0.811 0.954 0.987
Ours (ResNet-50-unified-95K-all to one) 0.108 0.045 0.579 0.142 0.823 0.957 0.987

TABLE 6
Overall performance comparison with state of the art methods on the Make3D dataset. Our approach outperforms all the competitors w.r.t. the C2
Error, and performs only slightly worse on the rel metric of the C1 Error than Laina et al. [27] using Huber loss and significantly larger training data.

Method C1 Error C2 Error
rel log10 rms rms (sc-inv.) rel log10 rms

Karsch et al. [20] 0.355 0.127 9.20 - 0.361 0.148 15.10
Liu et al. [32] 0.335 0.137 9.49 - 0.338 0.134 12.60
Liu et al. [30] 0.314 0.119 8.60 - 0.307 0.125 12.89
Li et al. [28] 0.278 0.092 7.19 - 0.279 0.102 10.27
Laina et al. [27] (`2 loss) 0.223 0.089 4.89 - - - -
Laina et al. [27] (Huber loss) 0.176 0.072 4.46 - - - -

Ours (ResNet-50-cascade-bottom up) 0.213 0.082 4.67 0.245 0.221 4.79 8.81
Ours (ResNet-50-unified-bottom up) 0.206 0.076 4.51 0.237 0.212 4.71 8.73
Ours (ResNet-50-unified-10K-bottom up) 0.184 0.065 4.38 0.219 0.198 4.53 8.56
Ours (ResNet-50-unified-10K-all to one) 0.174 0.059 4.27 0.211 0.185 4.41 8.43
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Fig. 7. Examples of depth prediction results on the Make3D dataset. The four rows from up to bottom are the input test RGB images, the results
produced from Laina et al. [27], the results of our ResNet50-MSCRF model and the groundtruth depth maps, respectively.

dense pixel-level prediction problems. Importantly, for all
considered front-end networks there is a significant increase
in performance when applying the proposed CRF-based
models.

Figure 6 depicts some examples of predicted depth maps
using different front-end networks on the NYU Depth V2
test dataset. As we can see from the figure, the qualitative
results confirm that the deeper architecture leads to better
depth recovery. By comparing the reconstructed depth maps
obtained with pretrained models (e.g. using only the front-
end networks VGG-CD and ResNet-50) with those gener-
ated with our multi-scale models, it is clear that our ap-
proach remarkably improves prediction accuracy and visual
quality.

5.3.2 Evaluation of different multi-scale CRF fusion models
To evaluate the effectiveness of the proposed CRF-based
multi-scale fusion models, we conduct experiments on the
NYU Depth V2 dataset and consider the following baselines:

(i) the ‘HED’ method in [46], where multiple side outputs
are fused with a weighted averaging scheme and the sum
of multiple side output losses is jointly minimized as deep
supervision with a cross-entropy loss, while we use the
square loss as our problem involves continuous variables;

(ii) the ‘Hypercolumn’ method [16], where multi-scale
feature maps generated from different semantic network
layers are concatenated and fused;

(iii) a continuous CRF (‘C-CRF’) applied on the predic-
tion of the front-end network, i.e. plugging after the last
output layer as a post-processing module without end-to-
end training.

For the first two baselines, we want to compare our
models with other popular methods for fusing multi-scale
CNN information, while the third one aims at demonstrat-
ing the effectiveness of the continous CRF itself. In these
experiments we consider VGG-CD as the front-end CNN
architecture. The results of the comparison are shown in
Table 3. It is evident that with our CRF-based fusion models
(both the cascade CRFs and the unified CRFs) more accurate
depth maps can be obtained, demonstrating that our idea of
integrating complementary information derived from CNN
side output maps within a graphical model framework is
more effective than traditional fusion schemes. Table 3 also
compares the proposed cascade and unified models. As
expected, the unified model produces more accurate depth
maps, at the price of an increased computational cost. This
can also be observed from Table 2. The C-CRF (in Table 3)
improves the depth estimation at all metrics over the VGG-
CD (pretrain) (in Table 2) with a clear gap, showing the
CRF model is very useful for refining the deeply predicted
map. By jointly learning with the front-end (i.e. end-to-end
training), ours (single-scale) further boosts the performance.
Finally, we analyze the impact of adopting multiple scales
and compare our complete models (5 scales) with their
version when only a single and three side output layers are
used. It is evident that the performance can be improved by
increasing the number of scales.

5.3.3 Evaluation of multi-scale message passing structures
We evaluate the influence of different multi-scale message
passing structures using the cascade CRF model. Four con-
nection structures as depicted in Fig. 3 are compared. Table 4



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

RGB Image GT Depth Map Eigen et al. [12] Zhou et al. [52] Garg et al. [13] Godard et al. [15] Ours

Fig. 8. Examples of depth prediction results on the KITTI raw dataset. Qualitative comparison with other depth estimation methods on this dataset
is presented. The sparse ground-truth depth maps are interpolated for better visualization.

TABLE 7
Overall performance comparison with state of the art methods on the KITTI raw dataset. Our approach obtains very competitive performance over
all the competitors w.r.t. all the evaluation metrics on the testing set given by Eigen et al. [12]. For the setting, caps means different gt/predicted

depth range and stereo means using left and right images captured from two monocular cameras in the training phase. Ours uses a unified model
considering both the bottom up and the all to one network structure.

Method Setting Error (lower is better) Accuracy (higher is better)
range stereo rel sq rel rms rms (sc-inv.) δ < 1.25 δ < 1.252 δ < 1.253

Saxena et al. [41] 0-80m No 0.280 - 8.734 0.327 0.601 0.820 0.926
Eigen et al. [12] 0-80m No 0.190 - 7.156 0.246 0.692 0.899 0.967
Liu et al. [30] 0-80m No 0.217 0.092 7.046 - 0.656 0.881 0.958
Zhou et al. [52] 0-80m No 0.208 1.768 6.858 - 0.678 0.885 0.957
Kuznietsov et al. [24] (only supervised) 0-80m No - - 4.815 - 0.845 0.957 0.987

Garg et al. [13] 0-80m Yes 0.177 1.169 5.285 - 0.727 0.896 0.962
Garg et al. [13] L12 + Aug 8x 1-50m Yes 0.169 1.080 5.104 - 0.740 0.904 0.958
Godard et al. [15] 0-80m Yes 0.148 1.344 5.927 - 0.803 0.922 0.964
Kuznietsov et al. [24] 0-80m Yes - - 4.621 - 0.852 0.960 0.986

Ours (ResNet-50 Pretrain) 0-80m No 0.152 0.973 4.902 0.176 0.782 0.931 0.975
Ours (ResNet-50 Fine-tune-bottom up) 0-80m No 0.132 0.911 4.791 0.162 0.804 0.945 0.981
Ours (ResNet-50 Fine-tune-all to one) 0-80m No 0.125 0.899 4.685 0.154 0.816 0.951 0.983

shows the monocular depth estimation results on NYUD-v2
dataset. The comparison results confirm that the message
passing structure indeed has an impact on the final perfor-
mance. The bottom up and top down structures have similar
performance, while the skip-connection structure slightly
outperform these two. The all to one structure performs the
best, producing around 2.0% gain in terms of the rel metric
than the top down structure, which means that directly
passing message to the finest prediction scale from the rest
scales can absorb more complementary information than the
gradual passing fashions used in the first three structures.
5.3.4 Comparison with state of the art
We also compare our approach with state of the art methods
on all the datasets. For previous works we directly report
results taken from the original papers. Table 5 shows the
results of the comparison on the NYU Depth V2 dataset.
For our approach we consider the cascade model and use
two different training sets for pretraining: the small set of
4.7K pairs employed in all our experiments and a larger
set of 95K images as in [27]. Note that for fine tuning we
only use the small set. As shown in the table, our approach
outperforms all competing methods and it is the second best
model when we use only 4.7K images. This is remarkable

considering that, for instance, in [11] 120K image pairs are
used for training. Our model achieves the best results on all
the metrics via using 95K pretraining samples and using the
proposed all to one message passing structure.

We also perform a comparison with several state of
the art methods on the Make3D dataset (Table 6). Follow-
ing [32], the error metrics are computed in two different
settings, i.e. considering (C1) only the regions with ground-
truth depth less than 70 and (C2) the entire image. It is clear
that the proposed approach is significantly better than previ-
ous methods. In particular, comparing with Laina et al. [27],
the best performing method in the literature, it is evident
that our approach, both in case of the cascade and the multi-
scale models, outperforms [27] by a significant margin when
Laina et al. also adopt a square loss. It is worth noting that in
[27] a training set of 15K image pairs is considered, while we
employ much less training samples. By increasing our train-
ing data (i.e.∼ 10K in the pretraining phase), our multi-scale
CRF model also outperforms [27] with Huber loss (log10
and rms metrics). The final performance is further boosted
by considering the all to one structure similar to NYUD
v2 dataset. Finally, it is very interesting to compare the
proposed method with the approach in Liu et al. [30], since
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Fig. 9. Examples of depth prediction results on the KITTI raw dataset.
The middle column and the right column show the pretrained and the
fine-tuned estimation results respectively.

in [30] a CRF model is also employed within a deep network
trained end-to-end. Our method significantly outperforms
[30] in terms of accuracy. Moreover, in [30] a time of 1.1sec
is reported for performing inference on a test image but the
time required by superpixels calculations is not taken into
account. Oppositely, with our method computing the depth
map for a single image takes about 1 sec in total.

The state of the art comparison on KITTI dataset is
shown in Table 7. The competitors include Saxena et al. [39],
Eigen et al. [12], Liu et al. [31], Zhou et al. [52], Garg et
al. [13], Godard et al. [15] and Kuznietsov et al. [24]. As
the same setting of ours, the first four methods use single
monocular images in the training phase, while the last two
considered two monocular images with a stereo setting for
training. Among the first four competitors, Eigen et al. [12]
significantly outperforms the others in terms of the metric
of the mean relative error (rel), due to the usage of large-
scale training data (more than 1 million samples). While
our model achieves much better performance than Eigen et
al. [12] in all metrics with much less data (22.6K samples).
Although the training of the last two methods (requiring
two monocular images) is not equal to our setting, the
proposed approach with both the bottom-up and the all to
one structures still produces better results than them with
clear performance gap in all metrics. Kuznietsov et al. [24]
reports results for both the stereo training and the monoc-
ular supervised training. It is not directly comparable with
the stereo training setting, which is significantly different
as it requires both left and right images from a binocular
camera. Ours focuses on monocular depth estimation and
achieves lower error performance comparing with theirs
using the same monocular setting. Fig. 8 also shows some
qualitative comparison results with these methods, further
demonstrating the advantageous performance of our ap-
proach.

5.3.5 Qualitative depth estimation results
Fig. 6, 7 and 9 show some examples of the qualitative depth
estimation results and the comparison with the competing
methods on the NYUD-V2, Make3D and KITTI dataset
respectively. It is clear that the proposed approach is able
to produce sharper depth estimation with better visual
quality compared with the classic CNN structures, which
demonstrates the importance of the prediction aided by the
CRFs with appearance and smoothness constraints. Fig. 9

also shows a qualitative comparison between the pretrained
front-end CNN and the fine-tuned whole model. It can be
observed that our approach can recover more scene struc-
tures and details. We believe that this is probably because
the effective structured fusion of the coarse-to-fine multi-
scale predictions of the deep network with the proposed
CRF models. For the influence of the variance in the CRF
model on the prediction errors, as the variance term is
actually acted as a normalization factor after the message
passing. It may have influence but the main influence is
dominated by the predictions of deep front-end CNN based
on our observation from the experimental results.

5.3.6 Empirical run-time analysis
Computational run-time complexity is an important aspect
for deep structured prediction models. In this paragraph we
provide a short discussion about the computational cost of
the proposed CRFs-based models. As shown in the paper,
the multi-scale CRF model achieves better accuracy and
lower error than the cascade model for both the NYU Depth
V2 and the Make3D experiments. However, as expected, the
cascade model is more advantageous in terms of the running
time. For instance, considering ResNet-50 as the front-end
CNN, the time required at test phase for one image is 1.02
seconds w.r.t. the cascade model and 1.45 seconds w.r.t. the
multi-scale model, and the image resolution is 320×240 pix-
els. Higher resolution of the network input usually brings
more computational overhead. We also test the running time
given the input resolution of 640 × 480 and it costs around
2.25 seconds for processing one image. We believe that if
we reduce the receptive field of the CRF model from fully
connected to partially connected, the computing time could
be significantly reduced.

6 CONCLUSION

In this paper, we introduced a novel approach for pre-
dicting depth maps from a single RGB image. The core
of the method is a novel framework based on continuous
CRFs for fusing multi-scale score-level side-outputs derived
from different semantic CNN layers. We demonstrated that
this framework can be used in combination with several
common CNN architectures and can be implemented for
end-to-end training. The extensive experiments confirmed
the validity of the proposed multi-scale fusion approach.
While this paper specifically addresses the problem of depth
prediction, we believe that other tasks in computer vision
involving pixel-level predictions of continuous variables,
can also benefit from our implementation of the mean-field
updating within the CNN framework.

Currently, the multi-scale fusion is performed on the
score level. Further research direction will investigate the in-
tegration of both the feature- and the score-level multi-scale
information within a unified graphical model. Moreover,
the study of strategies for further improving the training
and testing efficiency of the CNN-CRF models will also be
an interesting aspect in the future work. The monocular
depth estimation is particularly useful for various cross-
modal recognition and detection tasks. A straightforward
follow-up of this work would be designing a joint multi-
task deep model to transfer the learned depth model for
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aiding other similar dense prediction problems [49] such as
contour detection and semantic segmentation.
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