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AbdomenCT-1K: Is Abdominal Organ
Segmentation A Solved Problem?

Jun Ma, Yao Zhang, Song Gu, Cheng Zhu, Cheng Ge, Yichi Zhang, Xingle An, Congcong Wang, Qiyuan
Wang, Xin Liu, Shucheng Cao, Qi Zhang, Shangqing Liu, Yunpeng Wang, Yuhui Li, Jian He,

Xiaoping Yang

Abstract—With the unprecedented developments in deep learning, automatic segmentation of main abdominal organs seems to be a
solved problem as state-of-the-art (SOTA) methods have achieved comparable results with inter-rater variability on many benchmark
datasets. However, most of the existing abdominal datasets only contain single-center, single-phase, single-vendor, or single-disease
cases, and it is unclear whether the excellent performance can generalize on diverse datasets. This paper presents a large and diverse
abdominal CT organ segmentation dataset, termed AbdomenCT-1K, with more than 1000 (1K) CT scans from 12 medical centers,
including multi-phase, multi-vendor, and multi-disease cases. Furthermore, we conduct a large-scale study for liver, kidney, spleen, and
pancreas segmentation and reveal the unsolved segmentation problems of the SOTA methods, such as the limited generalization
ability on distinct medical centers, phases, and unseen diseases. To advance the unsolved problems, we further build four organ
segmentation benchmarks for fully supervised, semi-supervised, weakly supervised, and continual learning, which are currently
challenging and active research topics. Accordingly, we develop a simple and effective method for each benchmark, which can be used
as out-of-the-box methods and strong baselines. We believe the AbdomenCT-1K dataset will promote future in-depth research towards
clinical applicable abdominal organ segmentation methods.
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A BDOMINAL organ segmentation from medical images
is an essential step for computer-assisted diagnosis,

surgery navigation, visual augmentation, radiation therapy
and bio-marker measurement systems [1], [2], [3], [4]. In
particular, computed tomography (CT) scan is one of the
most commonly used modalities for the abdominal diag-
nosis. It can provide structural information of multiple
organs, such as liver, kidney, spleen, and pancreas, which
can be used for image interpretation, surgical planning,
clinical decisions, etc. However, the following reasons make
organ segmentation a difficult task. First, the contrast of soft
tissues is usually low. Second, organs may have complex
morphological structures and heterogeneous lesions. Last
but not least, different scanners and CT phases can lead to
significant variances in organ appearances. Figure 1 presents
some examples of these challenging situations.

Manual contour delineation of target organs is labor-
intensive and time-consuming, and also suffers from inter-
and intra- observer variability [5]. Therefore, automatic seg-
mentation methods are highly desired in clinical studies.
In the past two decades, many abdominal segmentation
methods have been proposed and massive progress has
been achieved continuously in the era of deep learning.
For instance, from a recently presented review work, liver
segmentation can reach an accuracy of 95% in terms of Dice
similarity coefficient (DSC) [6]. In a recent work for spleen
segmentation [7], 96.2% DSC score was reported. However,
most of the existing abdominal datasets only contain single-
center, single-phase, single-vendor, and single-disease cases,
which makes it unclear that if the performance obtained on
these datasets can generalize well on more diverse datasets.
Therefore, it is worth re-thinking that is abdominal organ
segmentation a solved problem?

To answer this question, in this paper, we first build

ar
X

iv
:2

01
0.

14
80

8v
2 

 [
cs

.C
V

] 
 2

1 
Ju

l 2
02

1



2

liver

kidney

kidney

spleen

pancreas

liver
liver

liverliver
liver

liver

kidney

spleen
spleen

liver

liver

kidney

pancreas

pancreas

pancreas

spleen

spleen

pancreas

touched boundary low contrast; lesion tumor touched boundary; tumor tumor

liver

spleen

artifacts lesion; touched boundary lesion; weak boundary noise; lesion lesion

spleen

(a) (b) (c) (d) (e)
Fig. 1: Examples of abdominal organs in CT scans, including multi-center, multi-phase, multi-vendor, and multi-disease
cases.

a large and diverse abdominal CT organ segmentation
dataset, namely AbdomenCT-1K. Then, we investigate the
current limitations of the existing solutions based on the
dataset. Finally, we provide four elaborately designed
benchmarks for the challenging and practical problems of
abdominal organ segmentation. In the following subsec-
tions, we will summarize the limitations of the existing
methods and benchmarks, and then we will briefly present
the contributions of our work.

1.1 Limitations of existing abdominal organ segmenta-
tion methods and benchmark datasets

A clinically feasible segmentation algorithm should not
only reach high accuracy, but also can generalize well on
data from different sources [8], [9]. However, despite the
encouraging progress of deep learning-based approaches
and benchmarks, the methods and benchmarks still have
some limitations that are briefly summarized as follows.

1) Lack of a large-scale and diverse dataset. Evalu-
ating the generalization ability on a large-scale and
diverse dataset is highly demanded, but there exist
no such kind of public dataset. As shown in Table 1,
most of the existing benchmark datasets either have
a small number of cases or are collected from a
single medical center or both.

2) Lack of comprehensive evaluation for the SOTA
methods. Most of the existing methods focus on
fully supervised learning, and many of them are
trained and evaluated on small publicly available
datasets. It is unclear whether the proposed meth-
ods can generalize well on other testing cases, espe-
cially when the testing set is from a different medical
center.

3) Lack of benchmarks for recently emerging
annotation-efficient segmentation tasks. In ad-
dition to fully supervised learning, annotation-
efficient methods, such as learning with unlabelled
data and weakly labelled data, have drawn many
researchers’ attention in both computer vision and
medical image analysis communities [10], [11],

[12], [13], because it is labor-intensive and time-
consuming to obtain manual annotations. The avail-
ability of benchmarks plays an important role in
the progress of methodology developments. For
example, the SOTA performance of video segmenta-
tion has been considerably improved by the DAVIS
video object segmentation benchmarks [14], includ-
ing semi-supervised, interactive and unsupervised
tasks [15]. However, no such kind of benchmark
exists for medical image segmentation. Therefore,
there is an urgent need to standardize the evalua-
tion in those research fields and further boost the
development of the research methodologies.

4) Lack of attention on organ boundary-based
evaluation metrics. Many of the existing bench-
marks [16], [17] only use the region-based mea-
surement (i.e., DSC) to rank segmentation methods.
Boundary accuracy is also important in clinical prac-
tice [18], [19], but it is insufficient to measure the
boundary accuracy by DSC as demonstrated and
analyzed in Figure 5.

1.2 Contributions
To address the above limitations, in this work, we firstly
create a large-scale abdominal multi-organ CT dataset by
extending the existing benchmark datasets with more organ
annotations, including LiTS [16], MSD [20], KiTS [17],NIH-
Pancreas [21], [22], [23]. Specifically, our dataset, termed
AbdomenCT-1K, includes 1112 CT scans from 12 medical
centers with multi-center, multi-phase, multi-vendor, and
multi-disease cases. We annotate the liver, kidney, spleen,
and pancreas for all cases. Figure 3 and Table 1 illustrate
the proposed AbdomenCT-1K dataset and list the main dif-
ferent points between our dataset and the existing abdom-
inal organ datasets. Then, in order to answer the question
’Is abdominal organ segmentation a solved problem?’, we con-
duct a comprehensive study of the SOTA abdominal organ
segmentation method (nnU-Net [24]) on the AbdomenCT-
1K dataset for single organ and multi-organ segmentation
tasks. In addition to the widely used DSC, we add the
normalized surface Dice (NSD) [25] as a boundary-based
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evaluation metric because the segmentation accuracy in
organ boundaries is also very important in clinical prac-
tice [18], [19]. Based on the results, we find that the answer
is Yes for some ideal or easy situations, but abdominal organ
segmentation is still an unsolved problem in the challeng-
ing situations, especially in the authentic clinical practice,
e.g., the testing set is from a new medical center and/or
contains some unseen abdominal cancer cases. As a result,
we conclude that the existing benchmarks cannot reflect the
challenging cases as revealed by our large-scale study in
Section 4. Therefore, four elaborately designed benchmarks
are proposed based on AbdomenCT-1K, aiming to provide
comprehensive benchmarks for fully supervised learning
methods, and three annotation-efficient learning methods:
semi-supervised learning, weakly supervised learning, and
continual learning, which are increasingly drawing atten-
tion in the medical image analysis community. Figure 2
presents an overview of our new abdominal organ bench-
marks.

The main contributions of our work are summarized as
follows:

1) We construct, to the best of our knowledge, the
up-to-date largest abdominal CT organ segmenta-
tion dataset, named AbdomenCT-1K. It contains
1112 CT scans from 12 medical centers including
multi-phase, multi-vendor, and multi-disease cases.
The annotations include 4446 organs (liver, kid-
ney, spleen, and pancreas) that are significantly
larger than existing abdominal organ segmentation
datasets. More importantly, our dataset provides a
platform for researchers to pay more attention to
the generalization ability of the algorithms when de-
veloping new segmentation methodologies, which
is critical for the methods to be applied in clinical
practice.

2) We conduct a large-scale study for liver, kidney,
spleen, and pancreas segmentation based on the
AbdomenCT-1K dataset and the SOTA method
nnU-Net [24]. The extensive experiments identify
some solved problems and, more importantly, re-
veal the unsolved problems in abdominal organ
segmentation.

3) We establish, for the first time, four new abdomi-
nal multi-organ segmentation benchmarks for fully
supervised1, semi-supervised2, weakly supervised3,
and continual learning4. These benchmarks can
provide a standardized and fair evaluation of ab-
dominal organ segmentation methods. Moreover,
we also develop and provide out-of-the-box base-
line solutions with the SOTA method for each
task. Our dataset, code, and trained models are
publicly available at https://github.com/JunMa11/
AbdomenCT-1K.

1. https://abdomenct-1k-fully-supervised-learning.grand-
challenge.org/

2. https://abdomenct-1k-semi-supervised-learning.grand-
challenge.org/

3. https://abdomenct-1k-weaklysupervisedlearning.grand-
challenge.org/

4. https://abdomenct-1k-continual-learning.grand-challenge.org/
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Fig. 2: Task overview and the associated features.

Abdominal organ segmentation in CT scans is one of the
most popular segmentation tasks and there are more than
4000 teams5 working on existing benchmarks. We believe
that our AbdomenCT-1K and carefully designed bench-
marks can again attract the attention of the community to
focus on the more challenging and practical problems in
abdominal organ segmentation.

The rest of the paper is organized as follows. First,
in Section 2, the related work, including a review of ab-
dominal organ segmentation methods and existing datasets,
is presented. Then, in Section 3, we describe the created
AbdomenCT-1K dataset. Afterwards, we conduct a com-
prehensive study for abdominal organ segmentation with
the SOTA method nnU-Net [24] in Section 4, where the
solved and unsolved problems for abdominal organ seg-
mentation are also presented. Next, in order to address
these unsolved problems, we set up four new benchmarks
in Section 5, including fully supervised, semi-supervised,
weakly supervised, and continual learning of abdominal
organ segmentation, respectively. Finally, in Section 6, the
conclusions are drawn.

2 RELATED WORK

2.1 Abdominal organ segmentation methods

From the perspective of methodology, abdominal organ
segmentation methods can be classified into classical model-
based approaches and modern learning-based approaches.

Model-based methods usually formulate the image seg-
mentation as an energy functional minimization problem or
explicitly match a shape template or atlas to a new image,
such as variational models [26], statistical shape models [27],
and atlas-based methods [28]. Level set methods or active
contour models are one of the most popular variational
models. They provide a natural way to drive the curves to
delineate the structure of interest [29], [30], [31]. Different
from the level set methods, statistical shape models, such as
the well-known active shape model, represent the shape of
an object by a set of boundary points that are constrained
by the point distribution model. Then, the model iteratively
deforms the points to fit to the object in a new image [1],
[32]. Atlas-based methods usually construct one or multiple
organ atlas with annotated cases. Then, label fusion is used
to propagate the atlas annotations to a target image via

5. https://grand-challenge.org/challenges/

https://github.com/JunMa11/AbdomenCT-1K
https://github.com/JunMa11/AbdomenCT-1K
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Fig. 3: Overview of the existing abdominal CT datasets and our augmented (plus) abdominal datasets. Red, green, blue,
and yellow regions denote liver, kidney, spleen, and pancreas, respectively.

registration between the atlas image and the target im-
age [33], [34], [35]. Although these model-based methods
have transparent principles and well-defined formulations,
they usually fail to segment the organs with weak bound-
aries and low contrasts. Besides, the computational cost is
usually high, especially for 3D CT scans.

Learning-based methods usually extract discriminative
features from annotated CT scans to distinguish target or-
gans and other tissues. Since 2015, deep convolutional neu-
ral network (CNN)-based methods [36], which neither rely
on hand crafted features nor rely on anatomical correspon-
dences, have been successfully introduced into abdominal
organ segmentation and reach SOTA performances [37],
[38]. These approaches can be briefly classified into well-
known supervised learning methods and recently emerging
annotation-efficient deep learning approaches. In the fol-
lowing paragraphs, we will introduce the two categories
respectively.

One group of the supervised organ segmentation meth-
ods is single organ segmentation. For example, Seo et al.
proposed a modified U-Net [39] to segment liver and liver
tumors. In [40], a shape-aware method, which incorporated
prior knowledge of the target organ shape into a CNN back-
bone, was proposed and achieved encouraging performance
on liver segmentation task. While U-Net is a welcomed net-
work structure, other backbone designs are also proposed
for abdominal organ segmentation, such as progressive
holistically-nested network (PHNN) [41], [42] and progres-
sive semantically-nested networks (PSNNs) [43]. In [44],
CNNs were employed to segment the pancreas. Pancreas
segmentation was treated as a more challenging task com-
pared to the liver and the kidney segmentation. Therefore,
two-stage cascaded approaches were proposed [45], [46],
[47], where pancreas was located first, then a new net-

work was employed to refine the segmentation. Moreover,
in [48], a level set regression network was developed to
obtain more accurate segmentation in pancreas boundaries.
Instead of designing network structures empirically, Neural
Architecture Search (NAS) technique was also introduced
into organ segmentation [49], [50], [51] by designing efficient
differentiable neural architecture search strategies.

The other group of the supervised organ segmentation
methods is multi-organ segmentation [4], [12], [52], [53],
where multiple organs are segmented simultaneously. Fully
convolutional networks (FCN)-based methods have been
widely applied to multi-organ segmentation. Early works
include applying FCN alone [53], [54] and the combinations
of FCN with pre- or/and post-processing [55], [56]. How-
ever, compared to the single organ segmentation task, multi-
organ segmentation is more challenging. As shown in Fig-
ure 1, the weak boundaries between organs on CT scans and
the variations of the size of different organs, make the multi-
organ segmentation task harder [4]. In order to address
the difficulties, cascaded networks were employed to organ
segmentation. In [4], a two-stage segmentation method was
proposed. An organ segmentation probability map was first
computed in the first stage and was combined with the orig-
inal input images for the second stage. The segmentation
probability map can provide spatial attention to the second
stage, thus can enhance the target organs’ discriminative
information in the second stage. Other similar strategies
were proposed [52], [57], where the first stage networks
played different roles. For example, in [52], a candidate re-
gion was generated and sent to the second stage. In [57], low
resolution segmentation maps were extracted from the first
stage. Moreover, in [58], Zhang et al. argued that the features
from each intermediate layer of the first stage network can
provide useful information for the second stage. Therefore,
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a block level skip connections (BLSC) across cascaded V-
Net [59] was proposed and showed improved performance.
In order to reduce the choices of the number of architecture
layers, kernel sizes, etc., in [60], trainable 3D convolutional
kernel with learnable filter coefficients and spatial offsets
was presented and show its benefits to capture large spatial
context as well as the design of networks. Noticeably, in [24],
nnU-Net, a U-Net [36]-based segmentation framework, was
proposed and achieved state-of-the-art performances on
both single organ and multi-organ segmentation tasks, in-
cluding liver, kidney, pancreas, and spleen.

Recently, annotation-efficient methods, such as semi-
supervised learning, weakly supervised learning, and con-
tinual learning, have received great attention in both com-
puter vision and medical image analysis communities [6],
[10], [11]. This is because fully annotated multi-organ
datasets require great efforts of abdominal experts and are
very expensive to obtain. Therefore, beyond fully super-
vised abdominal organ segmentation, some recent studies
focus on learning with partially labelled organs.

Semi-supervised learning aims to combine a small amount
of labelled data with a large amount of unlabelled data,
which is an effective way to explore knowledge from the
unlabelled data. It is a promising and active research di-
rection in machine learning [61] as well as medical im-
age analysis [10]. Among the semi-supervised approaches,
pseudo label-based methods are regarded as simple and
efficient solutions [62], [63]. In [64], a pseudo label-based
semi-supervised multi-organ segmentation method was
presented. A teacher model was first trained in a fully su-
pervised way on the source dataset. Then pseudo labels on
the unlabelled dataset were computed by the trained model.
Finally, a student model was trained on the combination
of both the labelled and unlabelled data. Besides, other
strategies are also explored. For example, in [65], in addition
to the Dice loss computed from labelled data, a quality
assurance-based discriminator module was proposed to su-
pervise the learning on the unlabelled data. In [66], a co-
training strategy was proposed to explore unlabelled data.
The proposed framework, trained on a small single phase
dataset, can adapt to unlabelled multi-center and multi-
phase clinical data. Moreover, an uncertainty-aware multi-
view co-training (UMCT) approach was proposed in [67],
which achieves superior performance on multi-organ and
pancreas datasets.

Weakly supervised learning is to explore the use of weak
annotations, such as slice-level annotations, sparse annota-
tions, and noisy annotations [11]. For organ segmentation,
in [68], a classification forest-based weakly supervised or-
gan segmentation method was proposed for livers, spleens
and kidneys, where the labels are scribbles on organs.
Besides, image-level labels-based pancreas segmentation
was explored in [69]. Although there are limited studies
related to weakly supervised learning for abdomen organ
segmentation, considerable research has been done in the
computer vision community for image segmentation for
different weak annotations, such as bounding boxes [70],
points [71], [72], scribbles [73], [74], image-level labels [75],
[76], [77].

Continual learning is to learn new tasks without for-
getting the learned tasks, which is also named as life

long learning, incremental learning or sequential learning.
Though deep learning methods obtain SOTA performance
in many applications, neural networks suffer from catas-
trophic forgetting or interference [78], [79], [80]. The learned
knowledge of a model can be interfered with the new
information which we train the model with. As a result,
the performance of the old task could decrease. Therefore,
continual learning has attracted growing attention in the
past years [81], such as object recognition [82], [83] and
classification [84]. Besides, tailored datasets and benchmarks
for continual learning have been also proposed in the com-
puter vision community, e.g. the object recognition dataset
and benchmark CORe50 [82], iCubWorld datasets6, and the
CVPR2020 CLVision challange7. However, to the best of
our knowledge, there is no continual learning work for
abdominal organ segmentation. Therefore, applying this
new emerging technique to tackle organ segmentation tasks
is still in demand.

2.2 Existing abdominal CT organ segmentation bench-
mark datasets
In addition to the promising progress in abdominal or-
gan segmentation methodologies, segmentation benchmark
datasets are also evolved, where the datasets contain more
and more annotated cases for developing and evaluating
segmentation methods. Table 1 summarizes the popular ab-
dominal organ CT segmentation benchmark datasets since
2010, which will be briefly presented in the following para-
graphs.

BTCV (Beyond The Cranial Vault) [85] benchmark
dataset consists of 50 abdominal CT scans acquired at the
Vanderbilt University Medical Center from metastatic liver
cancer patients or post-operative ventral hernia patients.
This benchmark aims to segment 13 organs, including
spleen, right kidney, left kidney, gallbladder, esophagus,
liver, stomach, aorta, inferior vena cava, portal vein and
splenic vein, pancreas, right adrenal gland, and left adrenal
gland. The organs were manually labelled by two experi-
enced undergraduate students, and verified by a radiologist.

NIH Pancreas dataset [21], [22], [23], from US National
Institutes of Health (NIH) Clinical Center, consists of 80
abdominal contrast enhanced 3D CT images. The CT scans
have resolutions of 512×512 pixels with varying pixel sizes
and slice thickness between 1.5−2.5 mm. Among these
cases, seventeen subjects are healthy kidney donors scanned
prior to nephrectomy. The remaining 65 patients were se-
lected by a radiologist from patients who neither had major
abdominal pathologies nor pancreatic cancer lesions. The

6. https://robotology.github.io/iCubWorld/#publications
7. https://sites.google.com/view/clvision2020/challenge
8. https://www.synapse.org/#!Synapse:syn3193805/wiki/89480
9. https://wiki.cancerimagingarchive.net/display/Public/Pancreas-

CT
10. http://www.visceral.eu/benchmarks/
11. https://competitions.codalab.org/competitions/15595
12. http://medicaldecathlon.com/
13. http://medicaldecathlon.com/
14. https://zenodo.org/record/1169361#.YMRb9NUza70
15. https://chaos.grand-challenge.org/
16. https://kits19.grand-challenge.org/
17. https://wiki.cancerimagingarchive.net/display/Public/CT-

ORG%3A+CT+volumes+with+multiple+organ+segmentations
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TABLE 1: Overview of the popular abdominal CT benchmark datasets. “Tr/Ts” denotes training/testing set.

Dataset Name (abbr.) Target # of Tr/Ts # of Centers Source and Year
Multi-atlas Labelling
Beyond the Cranial Vault (BTCV) 8 [85] 13 organs 30/20 1 MICCAI 2015

NIH Pancreas 9 [21], [22], [23] Pancreas 80 1 The Cancer Imaging
Archive 2015

VISCERAL Anatomy Benchmark 10 [86] 20 anatomical structures 80/40 1 ISBI and ECIR 2015
Liver Tumor Segmentation
Benchmark (LiTS) 11 [16] Liver and tumor 131/70 7 ISBI and MICCAI 2017

Medical Segmentation Decathlon
(MSD) Pancreas 12 [20] Pancreas and tumor 281/139 1 MICCAI 2018

Medical Segmentation Decathlon
(MSD) Spleen 13 [20] Spleen 41/20 1 MICCAI 2018

Multi-organ Abdominal CT
Reference Standard Segmentation 14 [53] 8 organs 90 2 Zenodo 2018

Combined Healthy Abdominal
Organ Segmentation (CHAOS) 15 [87] Liver 20/20 1 ISBI 2019

Kidney Tumor Segmentation
Benchmark (KiTS) 16 [88] Kidney and tumor 210/90 1 MICCAI 2019

CT-ORG 17 [89] liver, lungs, bladder, kidney, bones and brain 119/21 8 The Cancer Imaging
Archive 2020

AbdomenCT-1K (ours) Liver, kidney, spleen, and pancreas 1112 12 2021

pancreas was manually labelled slice-by-slice by a medical
student and then verified/modified by an experienced radi-
ologist.

VISCERAL Anatomy Benchmark [86] consists of 120 CT
and MR patient volumes.Volumes from 4 different imaging
modalities and field-of-views compose the training set. Each
group contains 20 volumes, which adds up to 80 volumes
in the training set. In each volume, 20 abdominal structures
were manually annotated to build a standard Gold Corpus
containing a total of 1295 structures and 1760 landmarks.

LiTS (Liver Tumor Segmentation) dataset [16] includes
131 training CT cases with liver and liver tumor annotations
and 70 testing cases with hidden annotations. The images
are provided with an in-plane resolution of 0.5 to 1.0 mm,
and slice thickness of 0.45 to 6.0 mm. The cases are collected
from 7 medical centers and the corresponding patients
have a variety of primary cancers, including hepatocellular
carcinoma, as well as metastatic liver disease derived from
colorectal, breast, and lung primary cancers. Annotations of
the liver and tumors were performed by radiologists.

MSD (Medical Segmentation Decathlon) pancreas
dataset [20] consists of 281 training cases with pancreas
and tumor annotations and 139 testing cases with hidden
annotations. The dataset is provided by Memorial Sloan
Kettering Cancer Center (New York, USA). The patients
in this dataset underwent resection of pancreatic masses,
including intraductal mucinous neoplasms, pancreatic neu-
roendocrine tumors, or pancreatic ductal adenocarcinoma.
The pancreatic parenchyma and pancreatic mass (cyst or
tumor) were manually annotated in each slice by an expert
abdominal radiologist.

MSD Spleen dataset [20] includes 41 training cases with
spleen annotations and 20 testing cases without annotations,
which are also provided by Memorial Sloan Kettering Can-
cer Center (New York, USA). The patients in this dataset
underwent chemotherapy treatment for liver metastases.
The spleen was semi-automatically segmented using a level-
set-based method and then manually adjusted by an expert
abdominal radiologist.

Multi-organ Abdominal CT Reference Standard Segmen-

tations [53] is composed of 90 abdominal CT images and
corresponding reference standard segmentations of 8 or-
gans. The CT images are from the Cancer Imaging Archive
(TCIA) Pancreas-CT dataset with pancreas segmentations
and the Beyond the Cranial Vault (BTCV) challenge with
segmentations of all organs except duodenum. The un-
segmented organs were manually labelled by an imaging
research fellow under the supervision of a board-certified
radiologist.

CHAOS (Combined Healthy Abdominal Organ Segmen-
tation) dataset [87] consists of 20 training cases with liver
annotations and 20 testing cases with hidden annotations,
which are provided by Dokuz Eylul University (DEU) hos-
pital (İzmir, Turkey). Different from the other datasets, all
the 40 liver CT cases are from the healthy population.

KiTS (Kidney Tumor Segmentation) dataset [88] includes
210 training cases with kidney and kidney tumor annota-
tions and 90 testing cases with hidden annotations, which
are provided by the University of Minnesota Medical Center
(Minnesota, USA). The patients in this dataset underwent
partial or radical nephrectomy for one or more kidney
tumors. The kidney and tumor annotations were provided
by medical students under the supervision of a clinical chair.

CT-ORG [89] is a diverse dataset of 140 CT images
containing 6 organ classes, where 131 are dedicated CT and
9 are the CT component from PET-CT exams. These CT
images are from 8 different medical centers. Patients were
included based on the presence of lesions in one or more of
the labelled organs. Most of the images exhibit liver lesions,
both benign and malignant.

3 ABDOMENCT-1K DATASET

3.1 Dataset motivation and details

Most existing abdominal organ segmentation datasets have
limitations in diversity and scale. In this paper, we present
a large-scale dataset that is closer to real-world applications
and has more diverse abdominal CT cases. In particular, we
focus on multi-organ segmentation, including liver, kidney,
spleen, and pancreas. To include more diverse cases, our
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dataset, namely AbdomenCT-1K, consists of 1112 3D CT
scans from five existing datasets: LiTS (201 cases) [16],
KiTS (300 cases) [17], MSD Spleen (61 cases) and Pancreas
(420 cases) [20], NIH Pancreas (80 cases) [21], [22], [23],
and a new dataset from Nanjing University (50 cases). The
50 CT scans in the Nanjing University dataset are from
20 patients with pancreas cancer, 20 patients with colon
cancer, and 10 patients with liver cancer. The number of
plain phase, artery phase, and portal phase scans are 18,
18, and 14 respectively. The CT scans have resolutions of
512×512 pixels with varying pixel sizes and slice thicknesses
between 1.25-5 mm, acquired on GE multi-detector spiral
CT. The licenses of NIH Pancreas and KiTS dataset are
Creative Commons license CC-BY and CC-BY-NC-SA 4.0,
respectively. LiTS, MSD Pancreas, and MSD Spleen datasets
are Creative Commons license CC-BY-SA 4.0. Under these
licenses, we are allowed to modify the datasets and share or
redistribute them in any format.

The original datasets only provide annotations of one
single organ, while our dataset contains annotations of four
organs for all cases in each dataset as shown in Figure 3.
In order to distinguish from the original datasets, we term
our multi-organ annotations as plus datasets (e.g., the multi-
organ LiTS dataset is termed as LiTS Plus dataset in this
paper). Figure 4 presents the organ volume and contrast
phase distributions in AbdomenCT-1K. The other informa-
tion (e.g., CT scanners, the distribution of the Hounsfield
unit (HU) value, image size, and image spacing.) is pre-
sented in the supplementary (Supplementary Table 1).

LiTS Plus

KiTS Plus

Spleen Plus

NIH-Pan Plus

MSD-Pan Plus

NJU
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69

Portal phase Arterial phase Others

Fig. 4: Organ volume and contrast phase distributions in
AbdomenCT-1K.

3.2 Annotation
Annotations from the existing datasets are used if avail-
able, and we further annotate the absent organs in these
datasets. Specifically, we first use the trained single-organ
models to infer each case. Then, 15 junior annotators (one
to five years of experience) use ITK-SNAP 3.6 to manually
refine the segmentation results under the supervision of two
board-certified radiologists. Finally, one senior radiologist
with more than 10-years experience verifies and refines the
annotations. All the annotations are applied to axial images.
To reduce inter-rater annotation variability, we introduce
three hierarchical strategies to improve the label consistency.
Specifically,

• before annotation, all raters are required to learn the
existing organ annotation protocols, aiming to ensure
that the annotation protocols are consistent in raters
and the existing datasets;

• during annotation, the obvious label errors in exist-
ing datasets are fixed and all annotations are finally
checked and revised by an experienced senior radi-
ologist (10+ years specialized in the abdomen);

• after annotation, we train five-fold cross-validation
U-Net models to find the possible segmentation er-
rors. The cases with low DSC or NSD scores are
double-checked by the senior radiologist.

In addition, we invite two radiologists to annotate the
50 cases in the Nanjing University dataset and present their
inter-rater variability in Table 2.

TABLE 2: Quantitative analysis of inter-rater variability
between two radiologists.

Organ Liver Kidney Spleen Pancreas
DSC (%) 98.4 ± 0.52 98.7 ± 0.53 98.6 ± 0.84 93.8 ± 7.78
NSD (%) 95.7 ± 3.04 98.7 ± 2.05 98.2 ± 4.18 92.5 ± 9.40

3.3 Backbone network
The legendary U-Net ( [36], [90]) has been widely used
in various medical image segmentation tasks, and many
variants have been proposed to improve it. However, recent
studies [17], [24] demonstrate that it is still hard to surpass
a basic U-Net if the corresponding pipeline is designed
adequately. In particular, nnU-Net (no-new-U-Net) [24] has
been proposed to automatically adapt preprocessing strate-
gies and network architectures (i.e., the number of pooling,
convolutional kernel size, and stride size) to a given 3D
medical dataset. Without manually tuning, nnU-Net can
achieve better performances than most specialized deep
learning pipelines in 19 public international segmentation
competitions and set a new SOTA in 49 tasks. Currently,
nnU-Net is still the SOTA method in many segmentation
tasks [91]. Thus, we employ nnU-Net as our backbone
network8. Specifically, the network input is configured with
a batch size of 2. The optimizer is stochastic gradient descent
with an initial learning rate (0.01) and a nesterov momen-
tum (0.99). To avoid overfitting, standard data augmenta-
tion techniques are used during training, such as rotation,

8. The source code is publicly available at https://github.com/
MIC-DKFZ/nnUNet.

https://github.com/MIC-DKFZ/nnUNet
https://github.com/MIC-DKFZ/nnUNet
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scaling, adding Gaussian Noise, gamma correction. The
loss function is a combination of Dice loss [92] and cross-
entropy loss because compound loss functions have been
proved to be robust in many segmentation tasks [93]. All the
models are trained for 1000 epochs with the above hyper-
parameters on NVIDIA TITAN V100 or 2080Ti GPUs.

3.4 Evaluation metrics

Motivated by the evaluation methods of the well-known
medical image segmentation decathlon9, we employ two
complementary metrics to evaluate the segmentation per-
formance. Specifically, Dice similarity coefficient (DSC), a
region-based measure, is used to evaluate the region over-
lap. Normalized surface Dice (NSD) [25], a boundary-based
measure, is used to evaluate how close the segmentation
and ground truth surfaces are to each other at a specified
tolerance τ . Both metrics take the scores in [0, 1] and higher
scores indicate better segmentation performance. Let G,S
denote the ground truth and the segmentation result, re-
spectively. |∂G| and |∂S| are the number of voxels of the
ground truth and the segmentation results, respectively. We
formulate the definitions of the two measures as follows:

• Region-based measure: DSC

DSC(G,S) =
2|G ∩ S|
|G|+ |S|

,

• Boundary-based measure: NSD

NSD(G,S) =
|∂G ∩B(τ)

∂S |+ |∂S ∩B
(τ)
∂G|

|∂G|+ |∂S|
,

where B(τ)
∂G = {x ∈ R3 | ∃x̃ ∈ ∂G, ||x − x̃|| ≤ τ}, B(τ)

∂S =
{x ∈ R3 | ∃x̃ ∈ ∂S, ||x−x̃|| ≤ τ} denote the border region of
the ground truth and the segmentation surface at tolerance
τ , respectively. In this paper, we set the tolerance τ as 1mm.

(a) Ground truth (b) Segmentation

DSC: 0.95
NSD: 0.81

Fig. 5: Comparison of Dice similarity coefficient (DSC) and
normalized surface Dice (NSD).

DSC is a commonly used segmentation metric and has
been used in many segmentation benchmarks [16], [17],
while NSD can provide additional complementary informa-
tion to the segmentation quality. Figure 5 presents a liver
segmentation example to illustrate the features of NSD. An
obvious segmentation error can be found on the right side
boundary of the liver. However, the DSC score is still very
high that cannot well reflect the boundary error, while NSD
is sensitive to this boundary error and thus a low score is

9. http://medicaldecathlon.com/

obtained. In many clinical tasks, such as preoperative plan-
ning and organ transplant, boundary errors are critical [18],
[19] and thus should be eliminated. Another benefit of in-
troducing NSD is that it ignores small boundary deviations
because small inter-observer errors are also unavoidable and
often not clinically relevant when segmenting the organs
by radiologists. In all the experiments, we employ the
official implementation at http://medicaldecathlon.com/
files/Surface distance based measures.ipynb to compute
the metrics.

4 A LARGE-SCALE STUDY ON FULLY SUPERVISED
ORGAN SEGMENTATION

Abdominal organ segmentation is one of the most popular
segmentation tasks. Most of the existing benchmarks mainly
focus on fully supervised segmentation tasks and are built
on single-center datasets where training cases and testing
cases are from the same medical centers, and the state-of-
the-art (SOTA) method (nnU-Net [24]) has achieved very
high accuracy. In this section, we evaluate the SOTA method
on our plus datasets to show whether the performance can
generalize to multi-center datasets.

4.1 Single organ segmentation
Existing abdominal organ segmentation benchmarks mainly
focus on single organ segmentation, such as KiTS, MSD-
Spleen, and NIH Pancreas only focus on kidney segmen-
tation, spleen segmentation, and pancreas segmentation,
respectively. The training and testing sets in these bench-
marks are from the same medical center, and the current
SOTA method has achieved human-level accuracy (in terms
of DSC) in some tasks (i.e., liver segmentation, kidney
segmentation, and spleen segmentation). However, it is un-
clear whether the great performance can generalize to new
datasets from third-party medical centers. In this subsection,
we randomly select 80% of cases for training in the original
training set and the remaining 20% of cases and three
new datasets as testing set, which can allow quantitative
comparisons within-dataset and across-dataset.

TABLE 3: Quantitative results of single organ segmentation.
Each segmentation task has one testing set from the same
data source as the training set and three testing sets from
new medical centers. The bold and underlined numbers
denote the best and worst results, respectively.

Task Training Testing DSC (%) NSD (%)

Liver LiTS (104)

LiTS (27)
KiTS (210)
Spleen (41)
Pancreas (361)

97.4±0.63
94.9±7.59
96.5±3.31
96.4±3.07

83.2±5.89
83.2±12.2
86.6±7.54
85.4±8.46

Kidney KiTS (168)

KiTS (42)
LiTS (131)
Pancreas (361)
Spleen (41)

97.1±3.81
87.5±17.9
82.0±28.9
93.7±6.52

94.0±6.91
75.0±16.5
75.0±27.1
82.5±9.97

Spleen Spleen (33)

Spleen Ts (8)
LiTS (131)
KiTS (210)
Pancreas (361)

97.2±0.81
91.0±15.5
86.6±23.3
94.6±8.32

94.6±4.41
79.6±16.4
76.7±23.7
86.9±10.4

Pancreas MSD Pan. (225)

MSD Pan. (56)
LiTS (131)
KiTS (210)
Spleen (41)

86.1±6.59
86.6±12.2
80.9±10.5
86.6±8.80

66.1±15.4
75.4±14.2
61.5±12.2
77.7±11.6

http://medicaldecathlon.com/files/Surface_distance_based_measures.ipynb
http://medicaldecathlon.com/files/Surface_distance_based_measures.ipynb
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TABLE 4: Quantitative results of fully supervised multi-organ segmentation in terms of average DSC and NSD. The bold
and underlined numbers denote the best and worst results, respectively.

Training Testing Liver Kidney Spleen Pancreas
DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%)

LiTS Plus (131)
KiTS Plus (210)
Spleen Plus (41)
Pancreas Plus (361)

97.1±3.42
96.9±4.66
98.2±1.39

88.6±10.3
89.1±11.2
91.9±5.77

89.1±14.5
85.6±26.7
96.0±5.04

81.9±13.5
78.9±26.0
92.4±7.06

92.6±13.6
95.0±11.5
97.5±5.88

86.0±16.3
91.6±12.3
96.0±7.22

84.7±8.63
86.1±15.6
81.1±10.7

70.4±10.7
78.8±16.2
61.4±13.3

KiTS Plus (210)
LiTS Plus (131)
Spleen Plus (41)
Pancreas Plus (361)

95.5±3.93
97.1±4.26
98.0±2.67

77.4±8.97
90.4±6.20
91.3±6.55

91.4±13.2
84.9±25.4
94.4±5.61

79.3±14.0
79.2±23.6
84.3±9.22

95.0±10.6
96.6±1.92
96.8±6.24

91.6±11.3
93.8±4.28
94.9±7.96

87.4±10.9
85.6±14.8
80.5±11.5

74.9±12.9
76.7±15.5
61.5±16.9

MSD Pan. Plus (281)
LiTS Plus (131)
KiTS Plus (210)
Spleen Plus (41)

96.2±2.58
98.0±3.19
98.1±1.68

77.8±7.09
92.1±10.3
91.4±6.04

94.7±9.22
90.8±11.2
94.8±3.71

89.7±11.7
82.7±12.4
87.8±5.47

96.3±9.19
94.6±12.3
98.5±0.86

93.0±10.5
88.5±15.3
97.0±3.38

90.1±10.5
80.0±14.1
88.2±8.44

82.3±13.2
63.1±12.9
80.9±12.7

Spleen Plus (41)
LiTS Plus (131) 96.0±3.35 78.2±7.50 95.2±5.88 85.9±7.19 95.3±9.85 90.6±11.6 88.8±9.61 79.9±11.8
Pancreas Plus (361) 97.9±2.43 91.2±6.21 95.4±5.45 87.5±6.69 97.7±3.63 96.1±5.75 80.2±12.5 60.7±14.0
KiTS Plus (210) 96.8±4.80 89.7±9.77 89.7±16.5 85.0±15.0 93.7±13.1 86.4±15.9 83.3±10.7 68.9±12.1

LiTS (27) KiTS (210) Pancreas (361) Spleen (41)

0

0.2

0.4

0.6

0.8

1

DSC NSDLiver Segmentation

KiTS (42) LiTS (131) Pancreas (361) Spleen (41)
−0.2
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0.6

0.8

1

DSC NSDKidney Segmentation

Spleen Ts (8) LiTS (131) KiTS (210) Pancreas (361)
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1

DSC NSDSpleen Segmentation

MSD Pan. (56) LiTS (131) KiTS (210) Spleen (41)
0
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Fig. 6: Violin plots of the segmentation performances (DSC
and NSD) of different organs in single organ segmentation
tasks.

Table 3 shows the quantitative segmentation results for
each organ and Figure 6 shows the corresponding violin
plots. It can be found that

• for liver segmentation, the SOTA method achieves
high DSC scores ranging from 94.9% to 96.5% on the
three new testing datasets, demonstrating its good
generalization ability. Compared to the DSC scores
on LiTS (27) testing set, the DSC scores drop 2.5% on
the KiTS (210). The main reason is that the CT scans
in KiTS (210) were acquired on the arterial phase
while most of the CT scans in LiTS were acquired on
the portal phase. Both Pancreas (361) and Spleen (41)
obtain relatively close DSC scores compared with
the LiTS (27), but the NSD scores are much better,
indicating that the segmentation results in LiTS (27)
have more errors near the boundary. This is because
most cases in LiTS have liver cancers while most
cases in Pancreas (361) and Spleen (41) are normal
in liver.

• for kidney segmentation, compared with the high
DSC and NSD scores on KiTS (42), the performance
drops remarkably on the other three datasets with
up to 15% in DSC and 19% in NSD, especially for the
LiTS (131) and the Pancreas (361). The main reason

is that the CT phases of most cases in the other three
datasets are different from the KiTS.

• for spleen segmentation, both DSC and NSD scores
also drop on the other three datasets, especially for
the KiTS (210) datasets where 10.6% dropping in DSC
and 17.9% dropping in NSD is observed, indicating
that the SOTA method does not generalize well on
different CT phases.

• for pancreas segmentation, the performance also has
a significant decline on KiTS (210) because of the
differences in CT phases. Remarkably, the LiTS (131)
and Spleen (41) obtain similar DSC scores compared
to the MSD Pan. (56), but the NSD scores have large
improvements with 9.3% and 11% because most
cases in the two datasets have a healthy pancreas.
The results demonstrate that the pancreas segmen-
tation model generalizes better on pancreas healthy
cases than pancreas pathology cases, especially for
the boundary-based metric NSD.

In summary, the current SOTA single organ segmentation
method can achieve very high performance (especially for
the DSC) when the training set and the testing set are
from the same distribution, but the high performance would
degrade when the testing sets are from new medical centers.

4.2 Multi-organ segmentation
In this subsection, we focus on evaluating the generaliza-
tion ability of the SOTA method (nnU-Net) on multi-organ
segmentation tasks. Specifically, we conduct four groups of
experiments. In each group, we train the nnU-Net on one
dataset with four organ annotations and test the trained
model on the other three new datasets. It should be noted
that the training set and testing set are from different medi-
cal centers in each group.

Table 4 shows quantitative segmentation results for each
organ10. It can be observed that

• the DSC scores are relatively stable in liver and
spleen segmentation results, achieving 90%+ in all
experiments. However, the NSD scores fluctuate
greatly among different testing sets, ranging from
77.4% to 92.1% for liver segmentation and from
86.0% to 97.0% for spleen segmentation.

10. The corresponding violin plots are presented in supplementary
(Supplementary Figure 1).
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(a) Image (b) Ground truth (c) Segmentation (d) Image (e) Ground truth (f) Segmentation

Well-segmented cases Challenging cases

Fig. 7: Well-segmented and challenging examples from testing sets in the large-scale fully supervised multi-organ
segmentation study.

• both DSC and NSD scores vary greatly in kidney
segmentation results for different testing sets. For
example, in the first group experiments, nnU-Net
achieves average kidney DSC scores of 96.0% and
85.6%, and NSD scores of 92.4% and 78.9% on Pan-
creas Plus (361) and Spleen Plus (41) datasets, respec-
tively, which has a performance gap of 10%+.

• pancreas segmentation results are lower than the
other organs across all experiments, indicating that
pancreas segmentation is still a challenging problem.

Figure 7 presents some examples of well-segmented
and challenging cases. It can be observed that the well-
segmented cases have clear boundaries and good contrast
for the organs, and there exist no severe artifacts or lesions
in the organs. In contrast with the well-segmented cases, the
challenging cases usually have heterogeneous lesions, such
as the liver lesion (Figure 7 (d)-1st row) and the pancreas
lesions (Figure 7 (d)-3rd row). In addition, the image quality
can be degraded by the noise, e.g., Figure 7 (d)-2nd row.

4.3 Is abdominal organ segmentation a solved prob-
lem?
In summary, for the question:

Is abdominal organ segmentation a solved problem?

the answer would be Yes for liver, kidney, and spleen
segmentation, if

• the evaluation metric is DSC, which mainly focuses
on evaluating the region-based segmentation error.

• the data distribution of the testing set is the same as
the training set.

• the cases in the testing set are trivial, which means
that the cases do not have severe diseases and low
image quality.

However, we argue that abdominal organ segmentation
remains to be an unsolved problem in following situations:

• the evaluation metric is NSD, which focuses on eval-
uating the accuracy of organ boundaries.

• testing sets are from new medical centers with differ-
ent data distributions from the training set.

• the cases in the testing sets have unseen or severe dis-
eases and low image quality, such as heterogeneous
lesions and noise, while training sets do not have or
only have few similar cases.

As mentioned in Section 2.2, existing abdominal organ
segmentation benchmarks cannot reflect these challenging
situations. Thus, in this work, we build new segmentation
benchmarks that can cover these challenges. Existing bench-
marks have received extensive attention in the community
and have little rooms for improvements in current testing
sets and associated evaluation metric (i.e., DSC) [16], [17].
Therefore, we expect that our new segmentation bench-
marks would bring new insights and again attract wide
attention.

5 NEW ABDOMINAL CT ORGAN SEGMENTA-
TION BENCHMARKS ON FULLY SUPERVISED, SEMI-
SUPERVISED, WEAKLY SUPERVISED AND CONTIN-
UAL LEARNING

Our new abdominal organ segmentation benchmarks aim
to include more challenging settings. In particular, we focus
on

• evaluating not only region related segmentation er-
rors but also boundary related segmentation errors,
because the boundary errors are critical in many
clinical applications, such as surgical planning for
organ transplantation.

• evaluating the generalization ability of segmentation
methods on cases from new medical centers and CT
phases.

• evaluating the generalization ability of segmentation
methods on cases with unseen and severe diseases.

In addition to the fully supervised segmentation bench-
mark, we also set up, to the best of our knowledge, the
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first abdominal organ segmentation benchmarks for semi-
supervised learning, weakly supervised learning, and con-
tinual learning, which are currently active research topics
and can alleviate the dependency on annotations. In each
benchmark, we select 50 challenging cases and 50 random
cases as the testing set, which is friendly to future users
to evaluate their methods because it does not cost too
much time during inference. More importantly, the final
performance is not easy to be biased by the easy cases.
We also introduce a new dataset as the common testing
set, which can allow apple-to-apple comparisons among the
four benchmarks. Moreover, for each benchmark, we have
developed a strong baseline with SOTA methods, which
can be an out-of-the-box method for researchers who are
interested in these tasks.

5.1 Fully supervised abdominal organ segmentation
benchmark
Fully supervised segmentation is a long-term and popular
research topic. In this benchmark, we focus on multi-organ
segmentation (liver, kidney, spleen, and pancreas) and aim
to deal with the unsolved problems that are presented in the
large-scale study in Section 4.

5.1.1 Task setting
Motivation of the training set and the testing set choice: a
large training set is often expected in fully supervised organ
segmentation. Thus, we choose MSD Pan. Plus (281) as the
base dataset in the training set because it has the largest
number of training cases. On top of MSD Pan. Plus (281),
different cases are added to the training set to build two
subtasks as shown in Table 5.

• Subtask 1. The training set is composed of MSD Pan.
Plus (281) and NIH Pan. Plus (80) where all the CT
scans are from the portal phase. We use the baseline
model in Section 5.1.2 to predict all the remaining
cases in LiTS Plus, KiTS Plus, and Spleen Plus. Then,
50 cases with the lowest average DSC and NSD
are selected as the testing set. These cases usually
have heterogeneous lesions and unclear boundaries,
which are very challenging to segment and also very
important in clinical practice.

• Subtask 2. The added NIH Pan. Plus (80) is replaced
by 40 cases from LiTS Plus and 40 cases from KiTS
Plus that have similar phases as the testing set. In
this way, one can evaluate whether including shared
contrast phases across training and testing sets can
improve the performance or not.

We use the baseline model in Section 5.1.2 to infer all the
remaining cases and select 100 cases as the final testing
set, including 50 challenging cases with the lowest average
DSC and NSD scores and 50 randomly selected cases. More
importantly, the cases in the training set and the testing set
have no overlap in each subtask.

5.1.2 Baseline and results
The baseline is built on 3D nnU-Net [24], which is the SOTA
method for multi-organ segmentation. Table 5 presents the
detailed results for each organ in each subtask. It can be

found that the performances of all organs in subtask 1 are
lower than the performances in subtask 2 because the cases
with shared contrast phases are introduced in subtask 2.
Although fully supervised abdominal organ segmentation
seems to be a solved problem (e.g., liver, kidney, and spleen
segmentation) because SOTA methods have achieved inter-
expert accuracy [17], [87], our studies on a large and diverse
dataset demonstrate that abdominal organ segmentation is
still an unsolved problem, especially for the challenging
cases and situations.

Testing

cases 

in

subtask

2

Testing

cases 

in

subtask

1

(a) Image (b) Ground truth (c) Segmentation

Fig. 8: Challenging examples from testing sets in fully su-
pervised segmentation benchmark.

The violin plots of each organ are presented in Supple-
mentary Figure 2. For the DSC score, though the high DSC
scores and low dispersed distributions from the violin plots
of the liver segmentation indicate great performance, the
results degrade for the other organs. For the NSD score, the
obtained scores and the dispersed distributions observed
from the violin plots indicate unsatisfying segmentation
performance for all four organs. It is worth pointing out that
for liver segmentation, the DSC scores are above 95% for
both subtasks, indicating great segmentation performance
in terms of region overlap between the ground truth and
the segmented region. NSD scores are 83% and 85.8% for the
two subtasks respectively, demonstrating that the boundary
regions contain more segmentation errors, which need fur-
ther improvements. This phenomenon further proves the
necessity of applying NSD for the evaluation of segmenta-
tion results.

Figure 8 shows segmentation results of some challenging
examples from each subtask. It can be found that the SOTA
method does not well generalize to lesion-affected organs.
For example, the first row in Figure 8 shows a case with
fatty liver in which the liver is darker than the healthy
cases. The SOTA method fails to segment the liver com-
pletely. The spleen (blue) segmentation result is also poor
in this situation. Moreover, the cases in the 2nd, 3rd, and
4th rows have kidney (green), and spleen (blue) tumors,
respectively. There exist serious under-segmentation and
incorrect segmentation in the segmentation results. These
challenging cases are still unsolved problems for abdominal
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TABLE 5: Task settings and quantitative baseline results of fully supervised multi-organ segmentation benchmark.

Training Testing Liver Kidney Spleen Pancreas
DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%)

MSD Pan. Plus (281)
NIH Pan. Plus (80)
Subtask 1: 361 cases 100 cases 95.8±6.04 83.0±12.1 84.1±14.8 73.8±14.1 89.8±15.5 80.6±18.3 65.0±22.7 55.2±17.6

MSD Pan. Plus (281)
LiTS Plus (40)
KiTS Plus (40)

Subtask 2: 361 cases

97.0±2.93 85.8±9.92 91.7±11.6 84.1±13.1 93.6±13.3 87.4±15.0 78.1±15.8 65.0±15.2

organ segmentation, which are not highlighted in current
publicly available benchmarks.

TABLE 6: Task settings of semi-supervised multi-organ seg-
mentation.

Training Testing NoteLabelled Unlabelled
Spl. Plus (41) -

100
cases

Lower Bound
Spl. Plus (41) Pan. Plus (400) Subtask 1

Spl. Plus (41)

Pan. Plus (400)
LiTS Plus (145)
KiTS Plus (250)
Spl. Plus Ts (5)

Subtask 2

Spl. Plus (41)
Pan. Plus (400)
LiTS Plus (145)
KiTS Plus (250)
Spl. Plus Ts (5)

- Upper Bound

5.2 Semi-supervised organ segmentation benchmark
Semi-supervised learning is an effective way to utilize unla-
belled data and reduce annotation demand, which is an ac-
tive research topic currently. There are several benchmarks
in the natural image/video segmentation domain [94], [95].
However, there still exists no related benchmark in the med-
ical image segmentation community. Thus, we set up this
benchmark to explore how we can use the unlabelled data
to boost the performance of abdominal organ segmentation.

5.2.1 Task setting
Motivation of the training set and the testing set choice:
this semi-supervised task employs MSD Spleen Plus, LiTS
Plus, KiTS Plus, MSD Pancreas Plus, and NIH Pancreas Plus
as the training and testing datasets. The semi-supervised
task is dedicated to alleviating the burden of manual anno-
tations. In this scenario, a small portion of labelled data and
a large amount of unlabelled data are available. Therefore,
we set the smallest subset, Spleen Plus with 41 cases, as
the labelled training set. To show the superiority of semi-
supervised methods for leveraging a large amount of un-
labelled data, approximately 10-20 times amount of data
(400-800 cases) from the remaining subsets are selected as
the unlabelled training set. We use the baseline model in
Section 5.2.2 to infer all the remaining cases and select
100 cases as the final testing set, including 50 challenging
cases with the lowest average DSC and NSD scores and 50
randomly selected cases.

Table 6 presents the semi-supervised segmentation
benchmark settings that consist of 2 subtasks. As a contrast,
we start with a fully supervised lower-bound task, where
a model is trained solely on MSD Spleen Plus containing

41 well-annotated cases. The upper-bound task is also fully
supervised that involves the additional 800 labelled cases.
Precisely, in upper-bound training set, 41 cases are from
MSD Spleen Plus, 400 cases are from MSD and NIH Pan-
creas Plus, 145 cases are from LiTS Plus, 250 cases are from
KiTS Plus, and 5 cases are from MSD Spleen Plus testing
set. Based on the lower-bound and upper-bound subtasks,
unlabelled cases are gradually involved in the following
semi-supervised subtasks. In order to evaluate the effect
of the unlabelled data and their quantity on multi-organ
segmentation, we carefully design 2 subtasks concerning
the source and quantity of unlabelled data. Specifically,
subtask 1 utilizes 400 unlabelled cases from MSD and NIH
Pancreas Plus, and in addition to the 400 cases, subtask
2 exploits additional 400 unlabelled cases from LiTS plus,
KiTS plus, and MSD Spleen Plus testing set. Both subtasks
are evaluated on the consistent hold-out testing set for fair
comparisons.

5.2.2 Baseline and results
Motivated by the success of the noisy-student learn-
ing method in semi-supervised image classification [96]
and semi-supervised urban scene segmentation [97] tasks,
we develop a teacher-student-based method for semi-
supervised abdominal organ segmentation, which includes
five main steps:

• Step 1. Training a teacher model on the manually
labelled data.

• Step 2. Generating pseudo labels of the unlabelled
data via the teacher model.

• Step 3. Training a student model on both manual and
pseudo labelled data.

• Step 4. Finetuning the student model in step 3 on the
manually labelled data.

• Step 5. Going back to step 2 and replacing the teacher
model with the student model for a desired number
of iterations.

In the experiments, we employ 3D nnU-Net for both
teacher and student models. The results are presented in Ta-
ble 7. Due to the different quantity of labelled cases during
training, there exists a performance gap between the lower-
bound and the upper-bound subtasks. With unlabelled data
involved, the performance gradually increased in terms of
the average DSC and NSD, indicating that the proposed
method can leverage unlabelled cases to improve the multi-
organ segmentation performance.

Figure 9 illustrates segmentation results of 3 challenging
examples from each subtask. It is observed that our semi-
supervised method is able to reduce misclassification by
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TABLE 7: Quantitative multi-organ segmentation results in semi-supervised benchmark.

Task Liver Kidney Spleen Pancreas Average
DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%)

Lower Bound 95.7±5.3 83.0±11 91.3±14 83.8±12 93.6±12 88.2±15 81.5±15 67.7±16 90.5±13 80.7±16
Subtask 1 96.2±4.2 84.0±9.7 91.5±12 83.6±12 94.6±11 90.4±14 82.8±13 69.2±16 91.3±12 81.8±15
Subtask 2 96.2±4.0 83.7±9.5 92.2±12 84.3±11 94.9±11 90.6±13 82.9±13 68.4±15 91.5±12 81.8±15

Upper Bound 97.4±2.3 86.7±8.6 95.4±4.0 86.9±8.3 96.0±9.5 92.9±12 85.7±8.9 72.5±13 93.6±8.3 84.7±13

(a) Image (b) Ground Truth (c) Lower Bound (d) Subtask 1 (e) Subtask 2 (f) Upper Bound

case_192
liver_104
pancreas_183

Fig. 9: Challenging examples from testing sets in semi-supervised segmentation benchmark.

leveraging unlabelled data. The first and third rows show
cases with a large kidney tumor and cholangiectasis inside
the liver, respectively. The pathology changes pose an ex-
treme challenge for the kidney segmentation. The second
row demonstrates a case that the spleen shares similar
appearances with the liver, where it tends to be recognized
as the liver when the training data is limited. We can also
find that the segmentation error can be gradually corrected
by utilizing more unlabelled data. The violin plots of the
segmentation results in Supplementary Figure 3 show that a
performance increasing trend is observed for the four organs
when the quantity of the unlabelled data is increased.

5.3 Weakly supervised abdominal organ segmentation
benchmark

This benchmark is to explore how we can use weak annota-
tions to generate full segmentation results. There are several
different weak annotation strategies for segmentation tasks,
such as random scribbles, bounding boxes, extreme points
and sparse labels. Sparse labels are the most commonly used
weak annotations for organs segmentation when radiolo-
gists manually delineate the organs [88]. In this benchmark,
we provide slice-level sparse labels in the training set, where
only part (≤ 30%) of the slices are well annotated.

5.3.1 Task settings

Motivation of the training set and the testing set choice:
we select the Spleen Plus (41) as the training set because
it has the least training cases. This choice is more in line
with reality compared with using other datasets (e.g., KiTS
Plus (210), LiTS Plus (131)), because the training set has only
limited well-annotated cases in many medical centers.

The weakly supervised organ segmentation benchmark
contains three subtasks as shown in Table 8, in which only

a fraction of the slices are annotated at roughly uniform in-
tervals. We generate sparse labels with roughly uniform in-
tervals because, in practice, human-raters usually annotate
such sparse labels and then interpolate the unlabelled slices
[88]. Specifically, we set three different annotation rates 5%,
15%, and 30%, which are similar to the existing work [98]
on brain tissue segmentation. We use the baseline model
in Section 5.3.2 to infer all the remaining cases and select
100 cases as the final testing set, including 50 challenging
cases with the lowest average DSC and NSD scores and 50
randomly selected cases.

TABLE 8: Task settings and quantitative baseline results of
weakly supervised abdominal organ segmentation.

Training Ratio Testing DSC (%) NSD (%)

Spleen Plus (41)
5%

100 cases
78.0 ± 21.8 63.5 ± 20.2

15% 83.9 ± 17.5 70.4 ± 18.1
30% 84.7 ± 16.7 70.9 ± 17.6

5.3.2 Baseline and results

Our baseline method is built on the combination of 2D nnU-
Net [24] and fully connected Conditional Random Fields
(CRF) [99], which is motivated by the method proposed
in [100] where the missing annotation challenge was ad-
dressed. The main idea in [100] is to train a pixel-wise
classification (segmentation) network with limited labelled
images and then segment the unlabelled image to obtain ini-
tial segmentation results, followed by a refinement step with
fully connected CRF. Fully connected CRF has been widely
used in many segmentation tasks (e.g., liver and liver tumor
segmentation [101], [102], brain tumor segmentation [103]),
which could be an effective way to refine segmentation
results. Our new baseline also follows this idea and has the
following three main steps:
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TABLE 9: Quantitative multi-organ segmentation results in weakly supervised benchmark.

Task Method Liver Kidney Spleen Pancreas
DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%)

5% labels 2D U-Net 92.5 ± 6.50 72.7 ± 12.0 80.3 ± 19.2 68.9 ± 15.1 82.0 ± 21.7 69.0 ± 22.5 57.2 ± 18.9 43.3 ± 14.4
2D U-Net + CRF 92.7 ± 6.19 72.9 ± 12.1 78.3 ± 19.7 65.1 ± 15.2 81.8 ± 22.7 70.3 ± 23.6 55.2 ± 19.6 42.5 ± 15.2

15% labels 2D U-Net 93.5 ± 6.15 76.5 ± 10.9 85.0 ± 17.1 75.4 ± 15.1 88.7 ± 15.7 76.6 ± 18.8 68.5 ± 17.5 52.9 ± 14.8
2D U-Net + CRF 93.7 ± 5.89 77.2 ± 10.7 83.4 ± 17.5 71.3 ± 16.0 89.0 ± 16.2 79.0 ± 18.8 67.2 ± 18.6 52.5 ± 16.2

30% labels 2D U-Net 93.6 ± 6.07 76.6 ± 11.1 86.0 ± 16.1 75.8 ± 14.5 88.8 ± 15.4 76.1 ± 19.0 70.5 ± 17.0 55.0 ± 14.7
2D U-Net + CRF 93.8 ± 5.76 76.9 ± 11.1 84.3 ± 16.5 72.0 ± 15.3 89.1 ± 15.9 78.4 ± 19.4 69.3 ± 18.1 54.5 ± 16.1

• Step 1. Training a 2D U-Net [24] with the sparse
labels;

• Step 2. Obtaining segmentation probability maps by
inferring the testing cases;

• Step 3. Refining the segmentation results with fully
connected CRF where the unary potential is the
probability map and the pairwise potentials are three
Gaussian-kernel potentials defined by the CT atten-
uation scores [99], [100].

Table 8 presents the average DSC and NSD scores for the
four organs, and Table 9 presents the detailed segmentation
results for each organ. As expected, the higher annotation
ratio the training cases have, the better segmentation per-
formance the baseline method can achieve. With only 15%
annotations, the baseline can achieve an average DSC score
over 90% for liver segmentation. The results could motivate
us to employ deep learning-based strategies to reduce man-
ual annotation efforts and time. In Supplementary Figure
4, we show violin plots of the segmentation results with
different annotation ratios. The performance gains from 15%
to 30% annotation ratio are fewer than the gains from 5%
to 15%, indicating that naively adding annotations cannot
always bring linear performance improvements.

In addition, it can be found that using CRF does not
bring remarkable performance improvements. A similar
phenomenon has also been found by the winner solu-
tion [104] in the well-known brain tumor segmentation
(BraTS) challenge 2018. Although the results are not promis-
ing as expected, they offer new opportunities and challenges
for traditional energy-based segmentation methods. Specif-
ically, given initial (inaccurate) CNN segmentation results,
how or what kind of energy-based models can consistently
improve the segmentation accuracy? All the related results,
including trained models, the used CRF code and hyper-
parameter settings, the segmentation results and its prob-
ability maps will be publicly available for future research
along this direction.

5.4 Continual learning benchmark for abdominal organ
segmentation

Continual learning has been a newly emerging research
topic and attracted significant attention [81]. The goal is to
explore how we should augment the trained segmentation
model to learn new tasks without forgetting the learned
tasks. There are several terms for such tasks, e.g., continual
learning, incremental learning, life-long learning or online
learning. In this paper, we use continual learning to denote
such tasks, which is widely used in existing literatures [81].
In CVPR 2020, the first continual learning benchmark, to the

best of our knowledge, is set up for image classification11.
However, there is still a lack of a public continual learning
benchmark for medical image segmentation. Therefore, we
set up a continual learning benchmark for abdominal organ
segmentation and develop a baseline solution.

5.4.1 Task setting
Motivation of the training set and the testing set choice:
the original single organ datasets, including KiTS (210),
Spleen (41), and MSD Pancreas (281), are used as training
sets. To evaluate the generalization ability of approaches,
we choose MSD Pancreas Ts (139) as the training set with
only liver annotation rather than LiTS (131) dataset, because
the LiTS (131) is a multi-center dataset that would be better
to serve as a testing set. We use the baseline model in
Section 5.4.2 to infer all the remaining cases and select
100 cases as the final testing set, including 50 challenging
cases with the lowest average DSC and NSD scores and 50
randomly selected cases. As shown in Table 10, the training
set contains four datasets where only one organ is annotated
in each dataset. Specifically, the labels of MSD Pancreas Ts
(139), KiTS (210), Spleen (41), and MSD Pancreas Ts (139)
are liver, kidney, spleen, and pancreas, respectively. In a
word, this task requires building a multi-organ segmenta-
tion model with only single organ annotated training sets.
It also should be noted that one cannot access the previous
tasks’ dataset when switching to a new task. For example,
if a kidney segmentation model has been built with the
KiTS (210) dataset, this dataset will be not available when
augmenting the model to segment the spleen with Spleen
(41) dataset.

5.4.2 Baseline and results
Motivated by the well-known learning without forget-
ting [105], we develop an embarrassingly simple but ef-
fective continual learning method as the baseline, which
contains the following four steps:

• Step 1. Individually training a liver segmentation
nnU-Net [24] model based on the MSD Pancreas Ts
(139) dataset.

• Step 2. Using the trained liver segmentation model to
infer KiTS (210) and obtain pseudo liver labels. Thus,
each case in the KiTS (210) has both liver and kidney
labels. Then, we use the new labels to train a nnU-
Net model that can segment both liver and kidney.

• Step 3. Using the trained model in Step 2 to infer
Spleen (41) and obtain both liver and kidney pseudo
labels. Thus, each case in the Spleen (210) has liver,
kidney, and spleen labels. Then, we use the new

11. https://sites.google.com/view/clvision2020/challenge
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TABLE 10: Task settings and quantitative baseline results of continual learning.

Training Testing DSC (%) NSD (%)Dataset Annotation Dataset Annotation
MSD Pancreas Ts (139) Liver

100 cases
Liver, kidney,
spleen, and

pancreas
80.6±10.1 69.8±9.77KiTS (210) Kidney

Spleen (41) Spleen
MSD Pancreas (281) Pancreas

labels to train a nnU-Net model that can segment
the three organs.

• Step 4. Using the trained model in Step 3 to infer
MSD Pancreas (281) and obtain liver, kidney and
spleen pseudo labels. Thus, each case in the MSD
Pancreas (281) has liver, kidney, spleen, and pancreas
labels. Finally, we can obtain the final multi-organ
segmentation model by training a nnU-Net with the
new labels.

TABLE 11: Quantitative multi-organ segmentation results of
continual learning.

Organ DSC (%) NSD (%)
Liver 94.7±7.99 81.7±14.0

Kidney 79.4±18.9 73.6±16.5
Spleen 83.8±23.2 72.9±24.2

Pancreas 64.7±21.6 51.1±16.3

Table 10 presents the average DSC and NSD scores for
the four organs, and Table 11 presents the detailed results
for each organ. Overall, the performance of learning with
single organ datasets is lower than learning with the full an-
notations as presented in the fully supervised segmentation
results (Table 4, Table 5), indicating that the model still tends
to forget part of the previous tasks when switching to a new
task. The violin plots of the segmentation performance for
each organ are presented in Supplementary Figure 5. Liver
segmentation obtains the best DSC and NSD scores with
compact distributions and fewer outliers while pancreas
segmentation obtains lower performance. The low scores
and dispersed distributions of NSD reveal relatively high
boundary errors because of the effects of various pathologi-
cal changes as shown in Figure 10.

(a) Image (b) Ground truth (c) Segmentation

Fig. 10: Challenging examples from testing sets in continual
learning multi-organ segmentation benchmark.

5.5 Evaluation and comparison on the common testing
set
The above testing sets are different in the four benchmarks.
For an apple-to-apple comparison between the benchmarks,

we introduce a common testing set (NJU dataset as de-
scribed in Section 3.1) with 50 abdomen CT cases.

Table 12 presents the quantitative results of the common
testing set of the four benchmarks. It is observed that the
fully supervised method achieves the best average DSC and
NSD scores for kidney, spleen and pancreas segmentation,
because it uses many labelled cases. However, due to the
burden of annotation, it is usually difficult to obtain the
desired amount of annotations in clinical practice. Therefore,
the problem lies in that what is the desired annotation-
efficient method. The semi-supervised method in subtask
2 with only 41 labelled cases and 800 unlabelled cases
achieves the best performance for the liver and the over-
all performance is very close to the best fully supervised
method (361 labelled cases), indicating that using large
and diverse unlabelled cases can significantly improve the
performance. The weakly supervised methods achieve the
lowest performance, but it requires the least annotation
burden.

6 CONCLUSION

In this work, we have introduced AbdomenCT-1K, the
largest abdominal CT organ segmentation dataset, which
includes multi-center, multi-phase, multi-vendor, and multi-
disease cases. Although the SOTA method has achieved
unprecedented performance in several existing benchmarks,
such as liver, kidney, and spleen segmentation, our large-
scale studies reveal that some problems remain unsolved
as shown in Section 4. In particular, the SOTA method can
achieve superior segmentation results when the evaluation
metric is DSC, the testing set has a similar data distribution
as the training set, and no hard cases with unseen diseases
in the testing set. However, the SOTA method cannot gener-
alize the great performance on unseen datasets with many
challenging cases, such as the cases with new CT phases,
severe diseases, acquired from distinct scanners or clinical
centers.

To advance the unsolved problems, we set up four
new abdominal organ segmentation benchmarks, including
fully supervised, semi-supervised, weakly supervised, and
continual learning. Different from existing popular fully su-
pervised abdominal organ segmentation benchmarks (e.g.,
LiTS [16], MSD [20], and KiTS [17]), our new benchmarks
have three main characteristics:

• the testing cases in each benchmark are from multi-
ple distinct CT scanners and medical centers.

• the challenging cases (e.g., with unseen or rare dis-
eases) are selected and included in our testing sets,
such as huge-tumor cases.

• instead of only focusing on the region-based metric
(DSC), we also emphasize the boundary-related met-
ric (NSD), because the boundary errors are critical
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TABLE 12: Quantitative results on the common testing set of the four benchmarks.

Task Liver Kidney Spleen Pancreas Average
DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%)

Fully
Supervised

Subtask 1 95.9±5.4 87.5±8.7 94.8±6.5 89.2±12 86.3±18 78.2±22 76.3±24 65.1±22 88.3±17 80.0±20
Subtask 2 97.5±2.5 89.3±5.2 97.4±3.8 95.7±6.6 97.3±5.4 94.5±10 82.5±19 71.8±18 93.6±12 87.8±15

Semi-
Supervised

Subtask 1 96.9±1.4 83.2±7.1 96.0±4.4 90.0±7.6 93.3±11 86.3±18 72.5±20 57.9±19 89.7±15 79.4±19
Subtask 2 97.9±1.0 91.2±4.0 97.1±4.3 93.4±6.8 97.2±3.9 94.1±9.7 82.3±12 70.7±13 93.6±9.4 87.4±13

Weakly
Supervised

Subtask 1 84.8±9.8 55.0±10 73.7±24 56.1±21 63.8±34 55.5±28 16.8±19 14.8±16 60±35 45.6±27
Subtask 2 84.8±9.7 55.3±11 81.6±17 62.4±19 68.7±31 58.6±27 29.8±21 20.4±17 66.2±30 49.2±25
Subtask 3 84.8±9.4 55.4±11 83.1±11 62.7±17 68.8±29 57.5±26 30.6±22 21.4±18 66.8±29 49.2±25

Continual Learning 93.6±9.8 79.6±13 90.3±13 81.7±16 80.8±24 67.1±22 77.0±20 59.1±19 85.4±19 71.9±20

in the preoperative planning of many abdominal
organ surgeries, such as tumor resections and organ
transplantation.

The main limitation is that we only focus on the seg-
mentation of four large abdominal organs. However, there
exist far more difficult organs [64], [106] and lesions where
the annotations are not available in our dataset. To address
this limitation, we annotate 50 cases with 8 extra organs, in-
cluding esophagus, gallbladder, stomach, aorta, celiac trunk,
inferior vena cava, right adrenal gland and left adrenal
gland. For the lesions, the detailed pathology information
is not available in the original dataset. It is challenging to
make a definite and accurate diagnosis with only CT scans
because identifying the (malignant) tumor usually requires
pathological examinations. As an alternative, we include
the original single-organ tumor masks [16], [17], [20] and
provide pseudo tumor labels of 663 cases by annotating all
the other possible tumors, which can be used for noisy label
learning.

Deep learning-based segmentation methods have
achieved a great streak of successes. We hope that our large
and diverse dataset and out-of-the-box baseline methods
help push abdominal organ segmentation towards the real
clinical practice.
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[99] P. Krähenbühl and V. Koltun, “Efficient inference in fully con-
nected crfs with gaussian edge potentials,” in Advances in Neural
Information Processing Systems, vol. 24, 2011, pp. 109–117.

[100] M. Gao, Z. Xu, L. Lu, A. Wu, I. Nogues, R. M. Summers,
and D. J. Mollura, “Segmentation label propagation using deep
convolutional neural networks and dense conditional random
field,” in 2016 IEEE 13th International Symposium on Biomedical
Imaging, 2016, pp. 1265–1268.

[101] P. F. Christ, M. E. A. Elshaer, F. Ettlinger, S. Tatavarty, M. Bickel,
P. Bilic, M. Rempfler, M. Armbruster, F. Hofmann, M. D’Anastasi
et al., “Automatic liver and lesion segmentation in ct using
cascaded fully convolutional neural networks and 3d conditional
random fields,” in International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, 2016, pp. 415–423.

[102] Y. Zhang, Z. He, C. Zhong, Y. Zhang, and Z. Shi, “Fully con-
volutional neural network with post-processing methods for
automatic liver segmentation from ct,” in 2017 Chinese Automation
Congress, 2017, pp. 3864–3869.

[103] X. Zhao, Y. Wu, G. Song, Z. Li, Y. Zhang, and Y. Fan, “A
deep learning model integrating fcnns and crfs for brain tumor
segmentation,” Medical Image Analysis, vol. 43, pp. 98–111, 2018.

[104] A. Myronenko, “3d mri brain tumor segmentation using au-
toencoder regularization,” in International MICCAI Brainlesion
Workshop, 2018, pp. 311–320.

[105] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 40, no. 12,
pp. 2935–2947, 2017.

[106] L. Xie, Q. Yu, Y. Zhou, Y. Wang, E. K. Fishman, and A. L.
Yuille, “Recurrent saliency transformation network for tiny target
segmentation in abdominal ct scans,” IEEE Transactions on Medical
Imaging, vol. 39, no. 2, pp. 514–525, 2019.


	1 Introduction
	1.1 Limitations of existing abdominal organ segmentation methods and benchmark datasets
	1.2 Contributions

	2 Related Work
	2.1 Abdominal organ segmentation methods
	2.2 Existing abdominal CT organ segmentation benchmark datasets

	3 AbdomenCT-1K dataset
	3.1 Dataset motivation and details
	3.2 Annotation
	3.3 Backbone network
	3.4 Evaluation metrics

	4 A large-scale study on fully supervised organ segmentation
	4.1 Single organ segmentation
	4.2 Multi-organ segmentation
	4.3 Is abdominal organ segmentation a solved problem?

	5 New abdominal CT organ segmentation benchmarks on Fully supervised, semi-supervised, weakly supervised and continual learning
	5.1 Fully supervised abdominal organ segmentation benchmark
	5.1.1 Task setting
	5.1.2 Baseline and results

	5.2 Semi-supervised organ segmentation benchmark
	5.2.1 Task setting
	5.2.2 Baseline and results

	5.3 Weakly supervised abdominal organ segmentation benchmark
	5.3.1 Task settings
	5.3.2 Baseline and results

	5.4 Continual learning benchmark for abdominal organ segmentation
	5.4.1 Task setting
	5.4.2 Baseline and results

	5.5 Evaluation and comparison on the common testing set

	6 Conclusion
	References

