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Abstract—Rank aggregation with pairwise comparisons is widely encountered in sociology, politics, economics, psychology, sports,
etc. Given the enormous social impact and the consequent incentives, the potential adversary has a strong motivation to manipulate the
ranking list. However, the ideal attack opportunity and the excessive adversarial capability cause the existing methods to be impractical.
To fully explore the potential risks, we leverage an online attack on the vulnerable data collection process. Since it is independent of
rank aggregation and lacks effective protection mechanisms, we disrupt the data collection process by fabricating pairwise comparisons
without knowledge of the future data or the true distribution. From the game-theoretic perspective, the confrontation scenario between the
online manipulator and the ranker who takes control of the original data source is formulated as a distributionally robust game that deals
with the uncertainty of knowledge. Then we demonstrate that the equilibrium in the above game is potentially favorable to the adversary
by analyzing the vulnerability of the sampling algorithms such as Bernoulli and reservoir methods. According to the above theoretical
analysis, different sequential manipulation policies are proposed under a Bayesian decision framework and a large class of parametric
pairwise comparison models. For attackers with complete knowledge, we establish the asymptotic optimality of the proposed policies. To
increase the success rate of the sequential manipulation with incomplete knowledge, a distributionally robust estimator, which replaces
the maximum likelihood estimation in a saddle point problem, provides a conservative data generation solution. Finally, the corroborating
empirical evidence shows that the proposed method manipulates the results of rank aggregation methods in a sequential manner.

Index Terms—Online Manipulation, Adversarial Learning, Pairwise Comparison, Ranking Aggregation.

✦

1 INTRODUCTION

RANK aggregation has wide-ranging applications in so-
cial choice theory [2], psychology [46], economics [45],

statistic [29], bioinformatic [4], and other fields. In pursuit
of large benefits, the potential attackers have strong moti-
vations to manipulate the ranking aggregation algorithms
which are utilized in high-stakes scenarios, e.g. elections
[6], sports competitions [31], and recommendations [43]. A
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profit-seeking adversary will try his/her best to designate
the ranking list and fulfill his/her demands. In addition
to statistical [17] and computational [50] properties, the
integrity issue of ranking results becomes a new direction
in the study of rank aggregation algorithms.

The pioneer in conducting security-related research on
rank aggregation is [37]. [37] develops a strong threat model
for perturbing the aggregated results. The adversary has
complete knowledge of the initial truthful data and cor-
responding feedback of victims. He/her can corrupt the
original data by inserting, deleting, or flipping any pair-
wise comparisons with limitations on quantity of modifi-
cation. [37] also considers the adversary with incomplete
knowledge, who lacks the preference score generated by
the victims. The attack strategies are solved by maximizing
the objective functions of the victims with global modifi-
cation on the weights of comparison graph. Their results
show that the rank aggregation algorithms are vulnerable to
these attackers. Concurrent to [37], [32] and [1] restrict the
modification scope and degree of weights towards specific
families of comparison graphs, then provide the recovery
guarantees for the ground truth ranking with the proposed
procedures. It is noteworthy that these weaker threat models
could not be translated into any defense mechanism against
the unregulated attackers. Furthermore, [38] poses the ma-
nipulation problem against rank aggregation algorithms.
The purposeful attackers are not satisfied with simply per-
turbing the ranking list, but with designating it. The attack
behavior with a target ranking list is a fixed point belonging
to the composition of the adversary and the victim from
the perspective of the dynamical system. The manipulation

ar
X

iv
:2

40
7.

01
91

6v
1 

 [
cs

.A
I]

  2
 J

ul
 2

02
4



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

(a) offline attack against rank aggregation (b) online attack against rank aggregation

Fig. 1: Overview of the offline and online adversarial settings. (a) In the offline confrontation scenario, the adversary
observes the whole comparison graph on Oct. 17 and he/her obtains the attack strategy which needs to flip the comparisons
which have occurred on Sep. 25 and Oct. 2. However, no one can return to the past and change what has happened.
Moreover, bypassing the defense mechanisms of the rank aggregation to modify the completed comparison graph is really
a challenging task. (b) Different form the offline attack methods, we consider the sequential manipulation strategies which
has no knowledge of all future observed pairwise comparisons. The proposed online attack method inserts malicious into
the data stream before the construction of comparison graph.

strategies equal to the conditions that the weights of com-
parison graph should satisfy when the victims obtain the
target ranking list. From the above analysis, we conclude
that the existing methods study the security issue of rank
aggregation in an “offline” adversarial scenario [51], [52],
[53]. In general, the attackers from the existing methods
try to modify the pairwise comparisons that have already
been collected. These offline attacks must occur after the
construction of the comparison graph and before the vic-
tims aggregate its results. The rank aggregation algorithms
would wait for the adversary to complete his/her malicious
actions and unconditionally accept the modifications to the
data before they can begin their own jobs. Opportunity for
such attacks affords the adversary some privileges. There
exists an implicit assumption that the adversary is capable
of changing the existed data in the possession of the victims.
However, the data held by the rank aggregation algorithms
is often immutable in practice. In sports competitions, the
final ranking is only produced when all the races have been
completed. Theoretically, the existing methods could per-
turb or manipulate the ranking lists of all teams or players.
But no one can travel to the past and change the outcome
of a match that has already finished. Once a vote has been
cast at the polling station, the ballot will not be changed
by any third party. In the partial confrontation scenarios,
the existing methods assume that they have completely
bypassed the constraints of time and space. Therefore, these
offline methods fail to profile the capability boundary of the
potential attackers and illuminate the underlying risks of
ranking aggregation algorithms.

To address the above challenges, we need a new online
paradigm for manipulating rank aggregation algorithms. In
terms of attack opportunities, attackers need to seek more
chances for archiving his/her goal and bypass the time and
space constraints. The whole process of obtaining a ranking
list can be divided into two parts: online data collection and
offline data aggregation. Compared to offline aggregation,

online collection is much more vulnerable. As a distributed
and asynchronous process, data collection can’t be done in
a controlled environment and is therefore independent of
rank aggregation. The defense mechanisms of aggregation
often fail to protect online data collection. In addition, data
collection always takes a long time and the attacker has
sufficient chances to execute his/her actions. Consequently,
disrupting the data collection process by online falsifying
pairwise comparisons is more sophisticated than offline
changing the collected data. Having determined the attack
opportunity, it is necessary to identify the attacker’s capabil-
ities during data collection. During the collection process, a
data source generates many pairwise comparisons waiting
to be sampled. Once a comparison is sampled, it is used to
construct the comparison graph and cannot be modified.
If the attacker performed malicious actions during data
collection, all he/she could do was mimic the behavior of
normal data. The adversary could construct an adversarial
data source which generates specific pairwise comparisons
and insert them into the data stream. Since the cost of
authenticating data sources is much greater than the cost of
fabricating a pairwise comparison with malicious intention,
an attacker can effectively bypass the victim’s defenses. To
the best of our knowledge, manipulating aggregation results
by fabricating the data source and continuously injecting
malicious pairwise comparisons into the data stream is
a new formulation for attacking against rank aggregation
algorithms, which is still under-explored.

The core of this paper is to make the above analysis
rigorous by establishing a principle framework for sequen-
tial manipulating rank aggregation algorithms. The main
methodology and theoretical contributions are summarized
as follows.

• Under a distributionally robust game theoretic frame-
work, we construct the confrontation model between
the online manipulator and the ranker who is bound to
the original data sources. We then prove the existence
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of distributionally robust Nash equilibrium in such a
game, which guarantees the possibility of sequential
manipulation. This adversarial game describes the goal,
knowledge and capability of the attacker, with particu-
lar emphasis on the uncertainty that all players must
deal with.

• We characterize the data collection process as a sam-
pling algorithm and focus on two of the most basic and
well-known sampling algorithms: Bernoulli sampling
and reservoir sampling. Our theoretical analysis shows
that the sampled results could be representative with
respect to the mixture of the original and adversarial
data sources. Such results suggest that the actions of
adversary could resist the effects of randomness in the
original data source and the data collection.

• Different sequential manipulation policies are proposed
under a Bayesian decision framework and a large class
of parametric pairwise comparison models. The under-
lying Bayes risk consists of the expected Kendall’s tau
distance and the expected relative generation cost. We
then derive the asymptotic optimality of the proposed
policies with complete knowledge.

• To increase the success rate of the sequential manip-
ulation with incomplete knowledge, we empower the
generation rule against uncertainty. A distributionally
robust estimator replaces the maximum likelihood es-
timation in a saddle point optimization problem. Then
the corresponding conservative generation rule is ob-
tained by mirror descent algorithm.

The rest of the paper is organized as follows. In Section 2,
we introduce the basic concept of rank aggregation and two
representative algorithms as HodgeRank [29] and Rank-
Centrality [41]. Section 3 establishes the general framework
for sequential manipulating rank aggregation algorithms.
We present the details of manipulation strategies and the
theoretical results in Section 4. Section 5 illustrates the sim-
ulated and real-world data results, followed by concluding
remarks in Section 6. Technical proofs are provided in the
supplementary material.

2 PRELIMINARY

We begin with a formal description of the parametric model
for binary comparisons, a.k.a Bradley-Terry-Luce (BTL)
model [12]. Then we revisit the comparison graph and the
Laplacian matrix which are essential for the ranking algo-
rithms tailored to the BTL model. Two popular approaches
which rank the items based on appropriate estimation of the
latent preference scores, named HodgeRank [29] and Rank
Centrality [41], are chosen as the victims to motivate our
target attack strategies. In the remainder of this paper, we
will use positive integers to indicate alternatives and voters.
Let V be the set [n] = {1, . . . , n} which denotes a set
of alternatives to be ranked. U = {u1, . . . , um} denotes
a set of voters. We will adopt the following notation from
combinatorics:[

V
l

]
:= set of all l elements subset of V .

In particular,[
V
2

]
:= set of all unordered pairs of elements of V

:=
{
[i, j]

∣∣∣ ∀ i, j ∈ V , i ̸= j
}
.

Moreover, for any i, j ∈ V , i ̸= j, we write i ≻ j to
mean that alternative i is preferred over alternative j. Such
a comparison could be converted into an ordered pair (i, j).
The set of ordered pair will be denoted as

V × V :=
{
(i, j)

∣∣∣ i ≻ j, ∀ i, j ∈ V , i ̸= j
}
.

Ordered and unordered pairs will be delimited by paren-
theses (i, j) and braces {i, j} respectively. If we wish to
emphasize the preference judgment from a particular voter
u ∈ U , we will write i ≻u j.

2.1 Parametric Model and Pairwise Comparisons
Given a collection V of n alternatives, the parametric model
of pairwise comparisons assumes that each i ∈ V has a
certain numeric quality score θ∗i . Suppose that θ∗ ∈ Rn

θ∗ = [θ∗1 , . . . , θ
∗
n]

⊤ (1)

comprises the underlying preference scores assigned to each
of the n items. Without loss of generality, θ∗ could be
positive as

θ∗i > 0, ∀ i ∈ [n].

Specifically, a comparison of any pair {i, j} ∈
[
V
2

]
is

generated via the comparing between the corresponding
scores θ∗i and θ∗j (in the presence of noise) by the BTL model.
Let y∗ij denote the outcome of the comparison of the pair i
and j based on θ∗, such that y∗ij = 1 if i is preferred over j
and y∗ij = −1 otherwise. Then, according to the BTL model,

y∗ij =

{
1, with probability θ∗i /(θ

∗
i + θ∗j ),

−1, otherwise.
(2)

Since the BTL model is invariant under the scaling of the
scores, the latent preference score is not unique. Indeed,
under the BTL model, a score vector θ∗ ∈ Rn

+ is the
equivalence class

Θ∗ =
{
θ
∣∣∣ there exists α > 0 such that θ = αθ∗

}
.

The outcome of a comparison depends on the equivalence
class Θ∗.

2.2 Comparison Graph and Combinatorial Laplacian
A graph structure, named comparison graph, arises natu-
rally from pairwise comparisons as follows. Let G = (V ,E)
stand for a comparison graph, where the vertex set V = [n]
represents the n candidates. In our problem setting, we
pay attention to the complete graph setting: the directed
edge set E = V × V and N := |E| = n(n − 1). One
can further associate weights w∗ on E as voters U would
have rated, i.e. assigned cardinal scores or given an ordinal
ordering to, the complete set of the alternatives V . But
no matter how incomplete the rated portion is, one may
always convert such judgments into pairwise rankings that
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have no missing values as follows. For each voter u ∈ U ,
the pairwise ranking matrix is a skew-symmetric matrix
Y u = {yuij} ∈ {−1, 0, 1}n×n as

yuij = −yuji, ∀ (i, j) ∈ E, ∀ u ∈ U , (3)

where

yuij =


1, if i ≻u j,

−1, if j ≻u i,

0, otherwise.

(4)

Furthermore, we associate weight with each directed edge
as w∗ = [w∗

12, w
∗
13, . . . , w

∗
n,n−1]

⊤ ∈ Z+

w∗
ij :=

∑
u∈U

I[yuij > 0] + I[yuji < 0], (5)

where I[·] is the Iverson bracket. Consequently, we can
represent any pairwise ranking data as a comparison graph
G with edge weights w∗.

Given a graph G and weights w∗, it is common to con-
sider the weight matrix W ∗ with w∗

ij as matrix elements, as
well as the diagonal degree matrix D∗ = diag(d∗1, . . . , d

∗
n)

given by d∗i =
∑

j∈V w∗
ij , which represents the volume

taken by each node in the graph G. The combinatorial
Laplacian L0 is defined as

L0 =D∗ −W ∗. (6)

In both solving process and the theoretical analysis, the
combinatorial Laplacian L0 plays a vital role in the popular
approaches based on the parametric model.
Remark 1. In this paper, we select HodgeRank [29] and
RankCentrality [41] to verify that online manipulation be-
havior is a potentially significant threat to rank aggregation
methods. This is due to the following considerations. First,
these two representative methods that have received much
recent attention have been well studied by [15], [17], [29]
and their theoretical properties guarantee the promising
recovery performance. The successful manipulation will be
in stark contrast to the original aggregated results. Second,
the variants of HodgeRank and RankCentrality are hot
topics of the literature [11], [14], [33], [36]. The online at-
tack method proposed in this paper has a large potential
victimization. Third, the destructive results of these two
estimators for the famous Bradley–Terry–Luce (BTL) model
will prompt researchers to focus on the security issue of rank
aggregation in the high-stakes applications.
Remark 2. When exists a purposeful adversary, the collected
pairwise comparisons would be a mixture of the data which
supports the original ranking list and the fabricated data
by the adversary. To manipulate the aggregated results, the
attacker will predict the ranker’s behavior with incomplete
information and fabricate the suitable pairwise compar-
isons. Therefore, we need a mathematical tool to formu-
late the ranker’s and the adversary’s behaviors, which has
been extensively modeled as a two-player, non-cooperative
game in the adversarial learning [20]. Specifically, the con-
frontation scenario between the online manipulator and the
ranker who takes control of the original data source is
formulated as a distributionally robust game that deals with
the uncertainty of knowledge. The ranker’s set of actions
corresponds to selecting pairwise comparisons and mini-
mizing the difference between the aggregation result and

the original ranking list. Meanwhile, the adversary’s set of
actions corresponds to generate pairwise comparisons and
minimizing the difference between the aggregation result
and the desired ranking list. For two players, the upcoming
data is the uncertain knowledge.
Remark 3. Although the offline [38] and online attackers
have the same goal, different behavioral patterns result
in the two having different knowledge and capabilities.
Specifically, let T0 be the stopping time of data collection,
the offline attacker has full/partial knowledge of the com-
parison graph weightwA(T0). Then the offline manipulator
has the ability to modify w(T0) in its entirety, increasing
or decreasing the values of wA(T0) at arbitrary position1.
Meanwhile, the online manipulator of this paper sequen-
tially obtains his/her knowledge but knows nothing about
the forthcoming pairwise comparisons. More importantly,
the online attacker will execute his/her strategy based on
the knowledge wA(t) at each time step t instead of wait-
ing for the moment T0. Thus, the greatest limitation on
the ability of the online attacker is that he/she can only
insert fabricated pairwise comparisons. The online attack
paradigm could bypass the existing defense mechanisms
of rank aggregation algorithms and break the barrier of
time. We provide an example in Fig. 1. It is noteworthy that
utilizing the offline method at each time step can’t achieve a
similar result as the online method, since the offline method
does not guarantee that the collected data keep unchanged.
Remark 4. In order to accomplish an effective online attack
without modifying the collected data, the adversary will
generate the most destructive data to inject based on the
current partial information and stop when the ambiguity
of ranking list falls below a certain level. This paper devel-
ops a general framework against the parametric models of
rank aggregation, especially the BTL model. The proposed
adversarial generation process, corresponding to the third
core contribution, can designate the leading candidate of the
aggregated ranking lists by HodgeRank and RankCentral-
ity. In addition, the offline attack methods [37], [38] cannot
yield the available attack results in the online manipulation
setting of this paper.

3 GENERAL FRAMEWORK

In this section, we systematically introduce the general
framework for sequential manipulating against pairwise
ranking algorithms. To mathematically characterize the suc-
cessive interaction between the manipulator and the vic-
tims, we perform threat modeling to profile the attacker’s
goal, knowledge and capability in Sec. 3.1 and dissect the
online adversarial behavior. Then we develop the game-
theoretic formulation between the online adversary and the
offline rank aggregation procedure in Sec. 3.2 with particular
emphasis on the uncertainty that the online manipulator
must deal with. Such a game with fundamental uncertainty
about future data and the opponent’s strategies and the
settings of [37], [38] are significantly different. Meanwhile
the existence of the distributionally robust Nash equilibrium
is also established.

1. Please see Eq. (53)-(56), (73) and (81) of [38] for the detailed
utilization of the offline knowledge.
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3.1 Threat Model of Online Adversary

Here we present the threat model of the manipulator to
specify his/her goal, knowledge and capability with online
behavioral pattern. The threat model helps to establish the
online interactions between the purposeful attacker and the
rank aggregation with pairwise comparisons.
The Goal of Online Adversary. Inducing the threatened
rank aggregation approaches to produce the designated
ranking is the goal of a manipulator. On the one hand,
the adversary cannot interact directly with the threatened
rank aggregation procedure due to the inevitable defense
mechanisms. On the other hand, the collection of pairwise
comparisons is an online process which is independent of
the subsequent rank aggregation method. It often takes
place in open environments and lacks adequate supervision.
If the attacker could interfere with the data collection pro-
cedure, he/she has a high possibility of bypassing defense
mechanisms and accomplishing manipulation. The data col-
lection procedure is always treated as a random sampling
process. All possible pairwise comparisons consist of the
data stream. A random sampling algorithm will receive and
choose the data which constructs the comparison graph. To
archive manipulation, the adversary proactively disguises
the crafted malicious data as part of the data stream. Then
these malicious data could be adopted by sampling algo-
rithms and used to construct a comparison graph. After
sampling, the ranker produces the aggregated result based
on the comparison graph. These sequential actions of the
adversary will induce the ranker to produce a designated
ranking result. If the ranking list meets the demand of
adversary, we will say that the adversary has executed a
successful manipulation.

We denote A and R be the adversary and the ranker
respectively. LetC = {c1, c2, . . . } be a sequence of recurring
pairwise comparisons involving at most n candidates. The
perturbed sequence by A is C ′. The sequence of pairwise
comparisons will be transferred into the comparison graphs
as (5). Suppose that G(C) is the comparison graph con-
structed by C. The relative ranking scores θ and θ′ are
produced by R with G(C) and G(C ′) accordingly. The non-
adversarial rank aggregation can be portrayed as

R(G(C)) = θ. (7)

Then the rank aggregation result under online manipulation
strategies would be

R(G(C ′)) = θ′. (8)

Although A is able to achieve multiple objectives with the
help of θ′, designating the winner will be the most desired
achievement of A. Therefore, we consider the following
scenario: after the action of R, it holds that

θ′ ∈ ΘA :=

{
θ ∈ Rn

∣∣∣ max
i∈[n], i ̸=i0

θi ≤ θi0
}
, (9)

where i0 is the winner candidate desired by A. Then we
will say that A has a successful online manipulating strategy
against R by substituting G(C) with G(C ′) through sequen-
tial behavior. It is noteworthy that the goal in this paper
implicitly requires sequential/online attack behavior, while
[38] needs the help of offline manipulation strategy. The

differences between online and offline strategies are shown
in the following parts.
The Knowledge of Online Adversary. Let

C(T ) = {c1, c2, . . . , cT } (10)

be a sub-sequence of C with its first T pairwise compar-
isons. Without loss of generality, the number of pairwise
comparisons in C will be increased by 1 at each step as

C(T ) = [C(T − 1), cT ], T ∈ N. (11)

As a consequence, the knowledge of A at T step, denoted
CA(T ) = [CA(T − 1), φ(cT )], contains two parts:

• a subset of C(T − 1) as

CA(T − 1) ⊆ C(T − 1), (12)

• and the state of cT :

φ(cT ) =

{
cT , if A obtains cT ,
∅, otherwise,

(13)

where ∅ indicates that no pairwise comparisons will
enter the sequence.

Based on the completeness of CA(T ), we consider the
following two adversarial scenarios:

i) If it holds that

CA(T ) = C(T ), ∀ T ∈ N, (14)

that is CA(T − 1) = C(T − 1) and φ(cT ) = cT , ∀ T ∈
N, we say that A has the complete knowledge.

ii) If there exists a time step T such that

CA(T ) ⊂ C(T ), (15)

we say that A has incomplete knowledge. Limited
by time and cost, the incomplete state will be held
throughout the whole adversarial operation.

Special attention needs to be paid to the fact that the
online manipulator in this paper lacks prior information of
subsequent data C/C(T ) at T step. The offline manipulator
of [37], [38], on the other hand, doesn’t need the prior
information but requires the length of C to no longer grow,
i.e. there exist a step T0 such that |C| = T0. Consequently,
the offline adversary in [37], [38] is a special case of the
online manipulator, who is the online manipulator at the
step that all pairwise comparisons have been collected.
Such a distinction will affect the abilities of the offline and
online attackers.
The Capability of Online Adversary. The above goal and
knowledge empower the online attacker with completely
divergent capabilities from those of the offline attacker. The
online manipulator A is able to insert arbitrary pairwise
comparisons into the data stream. Then the perturbed data
will replace to produce the comparison graph for rank
aggregation. More specifically, the fabricated pairwise com-
parisons with the knowledge CA(T ) is

c′(CA(T )) = [c′(1), . . . , c′(aT )], (16)

where aT is the maximum number of possible insertions
at T step. This sequence (16) reflects A’s capability. It is
noticed that A is unable to change the pairwise comparisons
in CA(T ) ⊆ C(T ). However, in addition to insertion, the
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offline attackers of [37], [38] could delete or flip a pairwise
comparison ct ∈ CA(T ) ⊆ C(T ),∀ t ≤ T even through ct
is generated in the past or protected by the defense mecha-
nisms. Therefore, the online attacker is more restricted than
its offline counterpart. The observed sequence of pairwise
comparisons for R at T step is

C ′(T ) = (C ′(T − 1),C(T )/CA(T ), c′(CA(T ))). (17)

(17) is a mixture of the collected data C ′(T − 1), the data
inaccessible to attackers C(T )/CA(T ), and the fabricated
pairwise comparisons (16).

3.2 Distributionally Robust Game between the Ranker
and the Online Adversary

With the above threat modelling, we can further understand
the adversarial scenario from a game-theoretic perspective.
When there exists A, the pairwise comparisons for R come
form two sources: the original data stream C and the fraud
data C ′/C. Due to the extreme difficulty of identifying
the possible sources of pairwise comparisons, R is only
able to aggregate C ′ and obtain a ranking list θ′, which is
different with the result θ form C. However, the existence
of normal data stream C will alleviate the impact of A on
R and try to keep θ′ away from ΘA. With the help of
defense and protection mechanisms, we believe that R will
select pairwise comparisons that will preserve the original
result θ. At the same time, A needs to induce R with
the interference of C and make C ′ sufficient to support
θ′ ∈ ΘA. As a consequence, this adversarial scenario is a
game between R and A who choose pairwise comparisons
to produce the desired ranking results.

To establish the adversarial game of the online adversary
and the ranker, we first transfer the sequence of pairwise
comparison at T step C(T ) = {c1, . . . , ct, . . . , cT } into a
comparison graph G(C(T )) = {V ,E,w(T )}. The vertex
set V is the set of all candidates as V = [n] and the
edge set E contains all directed edges between any pair
of candidates as

E = {i→ j|i, j ∈ [n], i ̸= j}. (18)

Here w(T ) = {w1,2(T ), w1,3(T ), . . . , wn,n−1(T )} is the
weights of E in C(T ) as

wi,j(T ) =
T∑

t=1

I[ct = (i, j)] (19)

where I[·] is the Iverson bracket. The weight w(T ) repre-
sents how often a pairwise comparison occurs in C(T ).
Furthermore, w(T ) can be treated as a random variable
defined on the probability space (C,E,P):

w(T ) ∼ P, (20)

where C is the sample space of all possible pairwise com-
parisons involving n candidates

C = {(i, j) | i, j ∈ [n], i ̸= j}, (21)

E is the event space of all sequences with length T and P
is a probability function. Consequently, the data sequence
C(T ) is associated with data distribution P which describes
the occurrence frequency of different pairwise comparisons.

A notable characteristic of the adversarial game in this
paper is that the decision-making processes of R and A
involve uncertainty: the true distribution of the mixed se-
quence (the observed weight) is unknown to both R and A
during the whole procedure. All players bear the risk due
to the uncertainty. Then the resulting Nash equilibrium may
be different from the equilibrium with the true distribution.
The uncertainty drives R and A to adopt conservative
strategies. To be more specific, we consider the following
Nash equilibrium problem: at any time step, each player
needs to make decisions prior to the realization of uncer-
tainty by minimizing their expected dis-utility with the most
pessimistic situation:

min
ar∈ZN

+

sup
P∈Pr

Ew∼P

[
fr(ar,a−r,πr,w)

]
, (22)

where r represents the rth player in the game. Such a
distributionally robust game (DRG) models the interaction
between the ranker and adversary. Each player in this game
holds a continuous dis-utility function as

fr : ZN
+ × ZN

+ × Nn × RN → R, (23)

N is the cardinality of C as N := |C| = n(n− 1). The action
of r, ar = {ar1,2, . . . , arn,n−1} ∈ ZN

+ , indicates the number
of pairwise comparisons selecting by r, and a−r represent
the actions of r’s opponents. πr is the desired ranking list
of player r. Here the “maximum” operation w.r.t P means
the player r decides his/her optimal strategy on the worst
expected value of fr from the set of distributions Pr which
is constructed from the partially observed information wr .
(22) is known as the distributionally robust game [35] in the
literature. The solution of (22) is named as distributionally
robust Nash equilibrium. If any ambiguity set Pr only
contains a single distribution, (22) collapses to a stochastic
game problem [13]. It is noticed that the ranker R is often
unaware of the existence of A and the corresponding action
turns out to be

min
ar

Ew∼P0

[
fr(ar,w,πr)

]
, (24)

which means the ranker will focus on the original ranking
list and choose the data with some sampling methods.
Meanwhile the player of A still needs to consider the most
pessimistic situation as (22).

Definition 1 (Distributionally Robust Nash Equilibrium). A
tuple (a∗

1, . . . ,a
∗
R) is a distributionally robust Nash equilibrium

(DRNE) if

a∗
r ∈ arg min

ar

sup
P∈Pr

Ew∼P

[
fr(ar,a

∗
−r,πr,w)

]
, (25)

where
a∗
−r =

∑
s̸=r

a∗
s. (26)

This definition shows that the DRNE is a solution of the
corresponding DRG (22). Here we consider the case of
R = 2, say that the game between R and A. In what
follows, we investigate the existence of DRNE by the fol-
lowing theorem. The detailed proof can be found in the
supplementary materials.
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Theorem 1. There exists a DRNE (25) if the following states
hold for any r = 1, . . . , R.
(a) Given (a−r,πr,w), fr(·,a−r,πr,w) is convex over ZN

+ .
(b) Ew∼P

[
fr(ar,a−r,πr,w)

]
has finite values for any

(ar,a−r), P ∈ Pr and πr is a permutation of [n].
(c) Pr has weakly compactness.

This result tells us that there exists at least one stable state
for both R and A with the above conditions holding. The
next key step toward executing manipulation is to identify
an equilibrium state that is favorable to A or not. When
an equilibrium state is favorable to A, the perturbed data
C ′(T ) could lead R generating θ′ ∈ ΘA.

3.3 Successful Opportunity to Sequential Manipulation
Without prior knowledge of the original data distribution,
analyzing the equilibrium of the proposed distributionally
robust game is really challenging. Here we try to dissect the
outcome after the adversarial game directly. At the end of
the distributionally robust game between R and A, we have
a sequence of pairwise comparisons (17) for construction of
the comparison graph. To simulate the competitive results
of (25), we treat (17) as a stochastic process, the output
of a sampling method S. The random nature of the sam-
pling process replaces the uncertainty of the distributionally
robust game. In addition, utilizing S to analyze C ′(T )
makes our subsequent discussion more pertinent to actual
confrontation scenarios. Here we show that the two classic
sampling methods will become an accomplice of the online
manipulator, who help to generate the stable sequences
favoring to A’s goal.

In the non-adversarial scenario, an (ϵ, δ)-representative
sampling method always suffices to take only a small num-
ber of random samples C in order to represent the data
source C truthfully [48]. Even with the aimless attacker [8]
who still adopts the original data source C as the source of
perturbation, Bernoulli and the reservoir sampling methods
could lead R to generate the same ranking result. To be spe-
cific, the perturbed sequence C ′

1 and the original sequence
C would produce different comparison graph weights wC′

1

and wC . However, they still obey the same distribution as

wC , wC′
1
∼ P0, (27)

where P0 is the distribution of original comparison graph
weights. If the probability distribution of comparison
graph’s weight w is P0, it holds that

R(wC) = R(wC′) = θ0. (28)

Consequently, R generates the original ranking list πθ0

even if the aimless attacker A exists. This so-called “adver-
sarial robustness” [8] is on side of the sampling methods.

Unfortunately, the attacker will be sophisticated in the
real confrontation scenario. He/she could construct new
data sources instead of simply using C. For example, given
any θ′ ∈ ΘA like (9), A could generate the pairwise
comparison through the BTL model: the larger the θ′i/θ

′
j , the

higher the probability of generating pairwise comparison
i ≻ j. Such actions construct the adversarial data source CA
whose underlying distribution is PA which is distinct from
the P0 as R will produce the manipulated score:

R(w) = θ′, w ∼ PA. (29)

The distributionally robust game between C and CA (22)
creates the mixed data source C′. Once the underlying
distribution of C′ is consistent with PA, it holds that

wC′
2
∼ PA, (30)

where C ′
2 is the perturbed sequence form C′. There is no

doubt that the sampled data C ′
2 will lead R to obtain πθ′

as (29). We call such an attacker the “purposeful adversary”.
Then the (ϵ, δ)-representative sampling algorithms would
fall into a trap. From the perspective of the purposeful
adversary, the original “representativeness” turns into the
“vulnerability”. This “vulnerability” is the other side of the
sampling methods like Bernoulli and reservoir.

We introduce some definitions which will help to es-
tablish the vulnerability results of Bernoulli and reservoir
sampling methods. The data stream from C′ is a mixture of
two data streams from C and CA. The mixed data source C′

satisfies

C′ ⊆ C ∪ CA, C′ ∩ C ̸= ∅, C′ ∩ CA ̸= ∅. (31)

Here we consider the following two types of mixtures,
which correspond to different behaviors of players in the
distributionally robust game. In fact, the dynamic stream
comes from the distributionally robust game whose players
execute (22) and the static stream corresponds to players
who executes (24).

Definition 2 (Static stream). Let C = {ct}∞t=1 be a sequence
from C′ which is a mixture of two data streams from C and CA.
For any ct ∈ C′ ∩ C, if the generation of ct is independent with
{c1, . . . , ct−1}, we call C from C′ is a static stream.

Definition 3 (Dynamic stream). Let C = {ct}∞t=1 be a
sequence from C′ which is a mixture of two data streams from C
and CA. For any ct ∈ C′∩C and ct /∈ C′∩CA, if the generation
of ct is dependent with {c1, . . . , ct−1}, we call C from C′ is a
dynamic stream.

The concept of ϵ-approximation measures the similarity
between two sequences from the same data source.

Definition 4 (ϵ-approximation). A sequence C1 is an ϵ-
approximation of sequence C0 with respect to the data source
C, if there exists an ϵ ∈ (0, 1) such that

|dC(C0)− dC(C1)| ≤ ϵ, (32)

where C is a data source, dC(C) is the density of C in the sequence
C, the fraction of pairwise comparisons in C that are also in C:

dC(C) = P
(
c ∈ C

∣∣ c ∈ C). (33)

This definition give us a similarity metric between two
sequences with the density function. It is noteworthy that
the lengths of C0 and C1 could be different, where the
length of C0 could be infinite and C1 only has a limited
number of elements. To portray the data source and ana-
lyze the vulnerability of sampling methods, we adopt the
(ϵ, δ)-representativeness to quantify the quality of a sampling
method w.r.t a data source.

Definition 5 ((ϵ, δ)-representativeness). A sampling method
is called (ϵ, δ)-representative if the sampled sequence of C1 is an
ϵ-approximation of the whole stream C0 with respect to C, with
probability at least 1− δ.
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Algorithm 1: Online Interaction between A and R
Input : the number of turns T , the sampling

parameter ϱ, the true ranking list π0, the
target ranking list πA, the dis-utility
functions of the original and adversarial
data sources f , fA, the stopping time S0

and the unweighted complete comparison
graph G = {E,V }.

1 Initialization: let the stream, the sampled sequence
and the comparison graph weights be empty:

C = ∅, C ′ = ∅, w(0) = 0.

2 for t = 1 to T do
3 Action of the ranker R:

a ∈ argmin
a

max
P∈P(w(t−1))

Ew∼P
[
f(a,w,π0)

]
.

4 Update the data stream C:

C ← a.

5 Action of sampling method S:

C ′ ← S(C, ϱ).

6 Update the weights:

w(t)← C ′.

7 Let s = 1 and update the knowledge:

wA(s) = mask(w(t)).

8 while s < S0 and w(s) ̸= wA(S0) do

9 Action of the online manipulator A:

aA(s) ∈
argmin

a

max
P∈P(wA(s))

Ew∼P
[
fA(a,w,πA)

]
.

10 Update the data stream C:

C ← aA(s).

11 Action of sampling method S:

C ′ ← S(C, ϱ).

12 Let s← s+ 1 and Update the knowledge:

wA(s)← C ′.

13 end
14 Update the weights:

w(t)← C ′.

15 end
Output: G(T ) = {E,V ,w(T )}.

The following theoretical results show that as long as the
sampling parameters satisfy certain conditions, S must be
(ϵ, δ)-representative with respect to C′.

Theorem 2. Let C′ be a mixture of C and CA satisfying (31).

i) For any static stream C = {ct}∞t=1 from C′,

• if the parameter of Bernoulli sampling method satisfies

ϱ ≥ c · log n(n− 1) + ln(1/δ)
ϵ2T

, (34)

where T is the number of sampling, the output of Bernoulli
sampling is (ϵ, δ)-representative with respect to C′.

• if the parameter of reservoir sampling method satisfies

ϱ ≥ c · log n(n− 1) + ln(1/δ)
ϵ2

, (35)

the output of reservoir sampling is (ϵ, δ)-representative
with respect to C′.

ii) For any dynamic stream C = {ct}∞t=1 from C′,
• if the parameter of Bernoulli sampling method satisfies

ϱ ≥ 10 · ln |C′|+ ln(4/δ)
ϵ2T

, (36)

where T is the number of sampling, the output of Bernoulli
sampling is (ϵ, δ)-representative with respect to C′.

• if the parameter of reservoir sampling method satisfies

ϱ ≥ 10 · ln |C′|+ ln(2/δ)
ϵ2

, (37)

the output of reservoir sampling is (ϵ, δ)-representative
with respect to C′.

Theorem 2 indicates that the mixed data source C′ could
be a DRNE which will be a favor to A. When the underlying
distribution of C′ is consistent with CA, the Bernoulli and
reservoir sampling methods always select the data that
consisted with π(θ′) with high probability. The detailed
proof can be found in the supplementary materials. Now we
formally define the online adversarial interaction between
R and A discussed in this paper.

• The behavior of R relies on the original data source C
whose distribution P0 would lead R to generate θ. The
pairwise comparisons from C would be contrary to the
attacker’s goal as θ /∈ ΘA. The way that C generates
data can be active or passive, corresponding to dynamic
and static streams, respectively. In fact, C often takes
a passive approach like (24) and its dis-utility f is
dependent of the sampler S. When C is active, we
consider that the defense and protection mechanisms
exist. It means that C will help the ranker R to take
actions like (22) and maintain πθ0

as much as possible.
• In the proposed adversarial game, the online manipula-

tor A will try his/her best to creat data source C′ whose
distribution PA would induce R to obtain θ′. The
sequential strategy that A employs along the way is dy-
namic. Based on the current partial information wA(t),
A would like to choose the most helpful comparisons
by fA, which reduce the divergence between the poten-
tial aggregated result and the target ranking. A needs
to be aware of the existence of original ranking data
which is always an obstruction of archiving his/her
goal. Therefore, A needs to take the most pessimistic
action as (22).

All data sources are sampled with the same sampler S. The
proposed online adversarial interaction is summarized in
Algorithm 1. The ranker R will obtain the aggregated result
with the output G(T ) = {E,V ,w(T )}. The remaining
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question of executing manipulation is how to construct the
data source C′ which owns PA as the underlying distribu-
tion. We provide the details of dynamic attack strategy, say
the adversarial pairwise comparison generation process, in
the next section.

4 ADVERSARIAL GENERATION PROCESS

In Section 4.1, we propose two adversarial policies for
adversary A with complete knowledge and present the
asymptotic optimality of these policies. Then, we provide
the efficient optimization algorithm for incomplete informa-
tion in Section 4.2.

4.1 Sequential Generation with Complete Knowledge
The strategies of A try to maximize the consistency between
full order with his/her goal θ′ ∈ ΘA in the online adver-
sarial game. A should choose the most destructive com-
parisons to inject based on the current partial information
and stop when the ambiguity of ranking list falls below
a certain level. The actions of adversary consist of two
components: an adaptive generation rule and a stopping
time. For the adaptive rule, we adopt probabilistic rules
which contain the deterministic rules as the special cases.
Let λi,j denote the probability of generating (i, j) and
λ = [λ1,2, . . . , λn,n−1] ∈ ∆ be the categorical distribution,
where

∆ =

 λ
∣∣∣∣∣ ∑
(i,j)

λi,j = 1, λi,j ≥ 0

 (38)

is a probability simplex over n(n − 1) pairs. In each turn,
the distributionally robust Nash equilibrium (25) (line 7 in
Algorithm 1) decides cA2 according to λ, which depends on
the goal θ′ and the knowledge wA. The generative rules in
the online adversarial game constitute the following set:

Λ =
{
λ(s)

∣∣∣ λ(s) ∈∆, s = 1, 2, . . .
}
. (39)

There is no doubt that the longer the stopping time [26],
the higher the possibility of achieving the manipulation.
However, the adversary can’t insert without limitations. A
large amount of {cA} will alert the ranker R thus lose the
opportunity to attack. Consequently, we measure the quality
of sequential manipulation via the generation cost and the
ranking consistency. The risk associated with the stopping
time S is defined as

R(S) = χ · S. (40)

Here the constant χ > 0 indicates the relative cost of
inserting one cA into C (line 10 in Algorithm 1). The choice
of χ is associated with the difficulty of attack against the
specific ranking system.

On the other hand, we adopt Kendall-τ distance to
measure the risk of inconsistency: given a full ranking list
π(Λ, S) from the victim R with (Λ, S), we convert π(Λ, S)
to the binary decisions set RΛ,S over pairs

R(Λ, S) =
{
ri,j ∈ {0, 1}

∣∣∣ i, j ∈ [n], i ̸= j
}

(41)

2. Without lose of generality, we constraint the adversary insert only
one pairwise comparison at any step s in in Algorithm 1. It means that
the action aA will be a one-hot vector which corresponds to cA.

where
ri,j =

{
1, i ≻π(Λ,S) j,
0, otherwise, (42)

and i ≻π j means that i is located before j in π. The risk
of inconsistency between π(Λ, S) and the target ranking
induced by θ′ = [θ′1, . . . , θ

′
n] is defined by

R(R(Λ, S))

=
∑
(i,j)

I[θ′i < θ′j ]ri,j + I[θ′i > θ′j ](1− ri,j). (43)

In this paper, we consider the ranking algorithms tai-
lored to the BTL model, say HodgeRank and RankCentral-
ity. The ranking decision of these two victims is locating
the candidates based on appropriate estimates of the latent
preference scores in the full ranking list. Consequently,
our proposed generation policy will depend on the maxi-
mum likelihood estimation (MLE) of BTL model. Given the
ranker R under attack, we analyze the combination of (40)
and (43) under the Bayesian decision framework, in which
the manipulated preference score of the victim is assumed
to be random and follows a prior distribution ρθ′(θ) which
is specified by the adversary. The Bayesian risk associated
with the victim R is defined as

R(Λ, S) = E[R(S) +R(R(Λ, S))], (44)

where the expectation E[·] is taken with respect to the
adaptive generation rule Λ and the stopping time S. The
adversary A hopes to execute the optimal policy (Λ∗, S∗)
which will lead to the minimal risk R∗

R∗ = inf
Λ,S

R(Λ, S). (45)

For any given cost χ, the value of R∗ represents the effect
of manipulation: a small R∗ indicates A would be close
to his/her purpose and vice versa. However, obtaining the
analytical form of (Λ∗, S∗) is typically infeasible. We turn
to the asymptotic optimality [18] which is the other well-
known evaluation of sequential decision. A policy (Λ, S)
for R is said to be asymptotically optimal if

inf
χ→0

R(Λ, S)

R∗ = 1. (46)

By the above definition, we know that the asymptotically
optimal policy could work when the relative cost χ con-
verges to 0. Although χ cannot be ignored, the relative cost
is negligible compared to the huge profit from a successful
manipulation. The adversary A can do whatever it takes
to manipulate the ranking results. Therefore, the asymptot-
ically optimal policy is still important for A. Now we pay
attention to the inner loop of Algorithm 1 (from line 8 to 13).
Suppose the log-likelihood function of the BTL model with
a comparison graph G = {V ,E,wA(S)} is

L

(
θ,wA(S)

)
=
∑
(i,j)

wi,j(S) · log gi,j(θ), (47)

where gi,j(θ) is the probability mass function of i ≻ j
with θ and wA(S) represent the complete knowledge. The
corresponding MLE with adversarial goal ρθ′ is

θ̂S = arg min
θ∈Supp(ρθ′ )

− L
(
θ,wA(S)

)
, (48)
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where Supp(ρθ′) is the support of the prior probability
density function ρθ′(θ).
Stopping Time. Based on the generalized likelihood ratio
statistic [22], we leverage two types of stopping time to
decide the number of inserted pairwise comparisons with
the complete knowledge:

S1 = inf

 S > 0

∣∣∣∣∣ ∑
(i,j)

e−|∆i,jLS | ≤ e−zα(χ)


S2 = inf

{
S > 0

∣∣∣∣∣ min
(i,j)

|∆i,jLS | ≥ zα(χ)

}
,

(49)

where zα(·) is a monotone function with α ∈ (0, 1)

zα(χ) = |log(χ)| ·
(
1 + |log(χ)|−α

)
. (50)

Here ∆i,jLS measures the difference between θi ≥ θj and
θi ≤ θj in (47):

∆i,jLS = min
θ∈Θi,j

− L
(
θ,wA(S)

)
− min

θ∈Θj,i

− L
(
θ,wA(S)

)
,

(51)

where

Θi,j =
{
θ ∈ Rn

+ | θi ≥ θj
}
∩ Supp(ρθ′). (52)

Generally speaking, the proposed criteria (49) will stop the
generation process when the likelihood (47) can decide θi ≥
θj or vice versa.
Generation Rule. Next we discuss the probabilistic genera-
tion rule for sequential manipulation. Inspired by the exist-
ing sequential design for rank aggregation [16], selecting the
desired λ(S) equals to maximize the consistency between θ̂S
and the goal θ′. Such consistency could be measured by the
minimum of the mutual information between gi,j(θ̂S) and
any other gi,j(θ̃) when (i, j) is generated according to λ(S):

min
θ̃∈Supp(ρθ′ )

∑
(i,j)

λ
(S)
i,j · gi,j(θ̂S) · log

gi,j(θ̂S)

gi,j(θ̃)
,

subject to π(θ̂S) ̸= π(θ̃).

(53)

It is noteworthy that (53) also minimizes the drift of log-
likelihood ratio statistics between two distributions of pair-
wise comparisons specified by θ̂S and θ̃ under the BTL
model and the probabilistic generation λ(S). The smaller
the minimum value of (53) corresponding to the given λ(S),
the higher the consistency between θ̂S and the goal θ′. Then
we select a generation rule λ(S) to maximize the consistency
measured by (53):

max
λ∈∆

min
θ̃∈Supp(ρθ′ )

∑
(i,j)

λi,j · gi,j(θ̂S) · log
gi,j(θ̂S)

gi,j(θ̃)
,

subject to π(θ̂S) ̸= π(θ̃).

(54)

We discuss the detailed optimization approach for solving
(54) in the following part. With the balance between the
exploration and exploitation for the generation procedure
controlled by (49) and (54), we provide the asymptotic
optimality guarantee of the proposed policy (49) and (54)
in the supplementary materials.

4.2 Robust Optimization with Incomplete Knowledge
By the adversarial policy (49) and (54) with complete knowl-
edge, the adversary A could insert pairwise comparisons to
manipulate the rank aggregation results in the sequential
way. However, complete knowledge assumption could be
not realistic in the actual confrontation scenarios. To dissect
the vulnerability as much as possible, we develop a dis-
tributionally robust formulation against the uncertainty of
knowledge.

Notice that the log-likelihood function L (47) is a scale-
free function w.r.t the weights of a comparison graph. The
MLE (48) would be invariant when we map wA into a
probabilistic simplex and replace the discrete variable wA

3

with a continuous variable p = [p1,2, . . . , pn,n−1] ∈ Rn(n−1)
+ :

p =
1

M
·wA, p

⊤1 = 1 (55)

where 1 is a n-dimension vector whose elements are 1 and
M is the total number of observed pairwise comparisons by
A:

M =
∑
(i,j)

wi,j . (56)

In fact, p is drawn from a distribution P:

P =
1

n(n− 1)

∑
(i,j)

δ(pi,j). (57)

where δ(pi,j) is the Dirac measure concentrated at pi,j .
What is more, we can portray the difference between wS(t)
and wA (line 7 in Algorithm 1) by the distance between
distributions. Such treatments introduce an uncertainty set
of P which contains the probability distributions around P:

Uγ(P) =
{
Q
∣∣∣W1(P, Q) ≤ γ

}
, (58)

where W1(·, ·) is the 1-Wasserstein distance [24] as the dis-
crepancy measure. The definition of 1-Wasserstein distance
and related properties can be found in the supplementary
materials. With the help of Uγ(P), we execute a conservative
strategy to estimate the parameter of BTL model with
incomplete knowledge. Instead of p, we choose the other
random variable q as the weight in (47). The distribution of
q belongs to Uγ(P) and q conducts the worst expected value
of L. Such a conservative strategy can alleviate the uncer-
tainty generated by incomplete knowledge in the sequential
decisions of manipulation policy. Then the relative ranking
score with incomplete is estimated by solving the following
distributionally robust optimization (DRO) problem:

max
θ∈Supp(ρθ′ )

sup
Q∈Uγ(P)

Eq∼Q [L(θ, q)] , (59)

where L(θ, q) replaces the incomplete knowledge wA with
the random variable q ∼ Q in (47). The supreme operation
w.r.t. Q means that the estimation of the latent preference
score is based on the worst expected value of L from the set
of distributions Uγ(P).

Next, we specify the formulation of Supp(ρθ′). Without a
lost of generality, we assume the estimated and the desired
scores belong to a probability simplex. Given the desired
relative ranking score θ′, we hope that the estimation from

3. We omit the indices of stopping time S when the context is clear.
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(59) is in a neighborhood of θ′, namely, the distance d :
Rn × Rn → R+ between the estimation from (59) and θA
would be sufficiently small:

Supp(ρθ′) =
{
θ ∈ Rn

+

∣∣∣ ∥θ − θ′∥22 ≤ β, θ⊤1 = 1
}
. (60)

Theorem 3. Suppose that p is drawn from the empirical distribu-
tion P (57) and q is drawn from Q ∈ Uγ(P) (58). If the distance
between pi,j and qi,j is chosen as

d(pij , qij) =
∣∣ pij − qij ∣∣. (61)

Then, the DRO problem (59) has an equivalent form:

max
θ∈Supp(ρθ′ )

h(θ), (62)

where

h(θ) =
√
γ
∑
(i,j)

log gi,j(θ) +
∑
(i,j)

pi,jlog gi,j(θ). (63)

Moreover, if the comparison model is BTL model, we have

h(θ) =
√
γ ·

∑
(i,j)

log(1 + exp(θj − θi))

+
∑
(i,j)

pi,j log(1 + exp(θj − θi)).
(64)

From the above theoretical results, we conduct the ad-
versarial policy for the incomplete knowledge. The stopping
time (49) turns to be

S′
1 = inf

 S > 0

∣∣∣∣∣ ∑
(i,j)

e−|∆′
i,jLS | ≤ e−zα(χ)


S′
2 = inf

{
S > 0

∣∣∣∣∣ min
(i,j)

|∆′
i,jLS | ≥ zα(χ)

}
,

(65)

where

∆′
i,jLS = max

θ∈Θi,j

sup
Q∈Uγ(P)

Eq∼Q [L(θ, q)]

− max
θ∈Θj,i

sup
Q∈Uγ(P)

Eq∼Q [L(θ, q)]

= max
θ∈Θi,j

h(θ)− max
θ∈Θj,i

h(θ).

(66)

Now we discuss the generation rule with the robust esti-
mation by (62). Let θ̄S be a solution of (62) with stopping
time (65). We obtain the generation rule with incomplete
knowledge by replacing θ̂S with θ̄S in (54):

max
λ∈∆

min
θ̃∈Supp(ρθ′ )

∑
(i,j)

λi,j · gi,j(θ̄S) · log
gi,j(θ̄S)

gi,j(θ̃)
,

subject to π(θ̄S) ̸= π(θ̃).

(67)

Consider the inner problem

min
θ̃∈Supp(ρθ′ )

∑
(i,j)

λi,j · gi,j(θ̄S) · log
gi,j(θ̄S)

gi,j(θ̃)
,

subject to π(θ̄S) ̸= π(θ̃),

(68)

we know that the objective function is smooth and convex
w.r.t θ̃ for the BTL model gi,j(·). Moreover, the flexible set{

θ̃ ∈ Supp(ρθ′)
∣∣∣ π(θ̄S) ̸= π(θ̃)} (69)

could be re-written as a union of convex sets which contain
at most 2 ∗ n linear equalities and inequalities like{

θ̃ ∈ Supp(ρθ′)
∣∣∣ θ̃i < θ̄πθ̄(i

′−1), θ̃i = θ̄πθ̄(i
′)

}
, (70)

where θ̃ = [θ̃1, . . . , θ̃n], and θ̄πθ̄(i
′) indicates the preference

score of candidates πθ̄(i) whose position in πθ̄ is i′. There-
fore, the inner problem is the convex problem which can be
solved efficiently by the standard numerical solvers. Then
we analyze the outer problem:

min
λ∈∆

F (λ), F (λ) = max
θ̃∈Supp(ρθ′ )

π(θ̄S )̸=π(θ̃)

ϕ(λ, θ̃) (71)

where

ϕ(λ, θ̃) = −
∑
(i,j)

λi,j · gi,j(θ̄S) · log
gi,j(θ̄S)

gi,j(θ̃)
. (72)

It is noteworthy that ϕ(λ, θ̃) is a continuous and bounded
function. Furthermore, ϕ(λ, θ̃) is convex w.r.t λ for any θ̃
and Supp(ρθ′) is a convex set. By Danskin Theorem [9],
F (λ) is a convex function w.r.t λ and the min-max optimiza-
tion problem (67) can be solved efficiently using the mirror
descent algorithm [7]. The corresponding solution process
is summarized as Algorithm 2. We elaborate the steps of
Algorithm 2 in the supplementary materials.

Algorithm 2: Adversarial Generation
Input : the probability mass function g, the

incomplete knowledge p, the uncertainty
radius γ.

1 Obtain the robust estimation based on the partial
observation by solving (62):

θ = RobustEstimation(g,p, γ).

2 Solve the generation rule λ via the min-max
problem (67):

λ = MirrorDescent(g,θ).

3 Select pairwise comparison c according to the
categorical distribution λ.

Output: a pairwise comparison c.

5 EXPERIMENTS

In this section, three examples are exhibited with both simu-
lated and real-world data to illustrate the validity of the pro-
posed online attack strategy against the Bernoulli method
for rank aggregation like HodgeRank [29] and RankCentral-
ity [41]. The first example is with simulated data while the
latter two exploit real-world datasets involved in election
and crowdsourcing.
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5.1 General Setting
We treat the online manipulation against the rank aggre-
gation as the interaction between the original and adver-
sarial data source like Algorithm 1. In each turn of this
game, the original and adversarial data sources generate
the pairwise comparisons separately. The generation process
of the original data source is always a black box for the
adversary and the action of the original data source (line
3 of Algorithm 1) will be replaced by a random procedure.
Based on the analysis in Sec. 3.3, the sampling method could
be (ϵ, δ)− representative w.r.t the mixed data source C′

when the sampling parameters are sufficiently large. In most
cases, the sampling methods for rank aggregation satisfy
these conditions. Even if the sampling methods reject the
samples generated by the adversary, he/she can still try
repeatedly until such samples affect the final aggregation
result. As a consequence, we don’t consider the effects of
sampling methods (Line 5 and 11 of Algorithm 1) in the
experimental studies. It is noteworthy that the attacker only
has incomplete knowledge in the adversarial game, say
that he/she only observes partial weight of the comparison
graph (Line 7 of Algorithm 1). The actions of the attacker is
the adversarial generation process with the target ranking
list π′, which is discussed in Sec. 4 summarized as Algo-
rithm 2. In each turn, the adversarial generation process will
insert S0 pairwise comparisons into the mixed data stream,
where S0 is the stooping time. We establish the asymptotic
optimality of the proposed stopping time S1, S2 (49) under
the complete knowledge condition. With the incomplete
knowledge, we set the stopping time S0 empirically. At
the end of the adversarial game, we finish the collection of
pairwise comparisons and obtain the weighted comparison
graph G(T ) (the output of Algorithm 1). Then the rank
aggregation methods leverage G(T ) to create the ranking
list π′′. We evaluate the similarity between π′ and π′′. The
more the two orders are similar, the more the manipulation
is successful.

5.2 Evaluation Metrics
Here we adopt Reciprocal rank and Kendall τ coefficient for
evaluating the correlation between the target ranking list π′

and the final aggregated result π′′. These measurements can
be divided into two categories. The reciprocal rank metric
reflects whether the first candidates of two ranking lists are
the same. The Kendall τ coefficient considers the consistency
of every pairwise comparison in the two ranking lists.
Reciprocal Rank (R. Rank). The reciprocal rank is a statistic
measure for evaluating any process that produces an order
list of possible responses to a series of queries, ordered by
the probability of correctness or the ranking scores. The
reciprocal rank of a ranking list is the multiplicative inverse
of the leading object’s position in the new order list. The
R. Rank between π′ and π′′ is defined as

R. Rank(π′,π′′) =
1

(π′′)−1
[
π′(1)

] , (73)

where π(i) refers to the item index which lies in the i-th
position of ranking list π, and π−1[i] indicates the position
of ranking list π which belongs to the item i. If it holds that
π′(1) = π′′(1), we have R.r(π′,π′′) archives its maximum

value 1. Lager reciprocal rank value indicates a better ma-
nipulation result.
Kendall τ Coefficient (K. τ ). The Kendall rank correlation
coefficient evaluates the degree of similarity between two
ranking lists given the same objects. This coefficient depends
upon the number of inversions of pairs of objects which
would be needed to transform one rank order into the other.
The definition of Kendall τ coefficient is the normalization
of (43). Lager Kendall-τ value indicates a better purposeful
attack result. If dτ (π′, π′′) = 1, we have π′ = π′′.

5.3 Competitors
To the best of our knowledge, the proposed method is
the first overture to online manipulation strategies against
the pairwise ranking algorithms. We compare the proposed
methods with the following three competitors: the random
strategy (referred to as ‘Random’), the greedy strategy
(referred to as ‘Greedy’) and the straightforward strategy
(referred to as ‘Straight’).
Random perturbation involves a random data source which
generates any pairwise comparisons with the same prob-
ability. This method does not rely on any information of
the desired ranking π′. We conjecture that the purposeless
behavior of the random perturbation would not sculpt the
desired results out of the mixed data stream C ′. However,
this strategy is still the evidence to prove the necessity of
sophisticated attacker in the online manipulation against the
rank aggregation methods.
Greedy manipulation generates the mixed data stream C ′

in a greedy way with the help of the target ranking list
π′. Specifically, this method only insert π′(1) ≻ π′(j), j =
2, . . . , nwith the same probability. The greedy manipulation
could designate the leading position of the aggregated list.
Compared with the proposed method, the greedy method
lack the manipulation ability of full ranking list.
Straightforward strategy implements the adversarial data
source with the so-called “Matthew Principle”: increasing
the number of the pairwise comparisons which are consis-
tent with the desired ranking list. There exist n(n − 1)/2
pairwise comparisons which are consistent with π′ and
they have the equal chance to insert into the mixed data
stream C ′. Obviously, this strategy could archive the goal
with sufficient turns in the adversarial game between two
data source. Compared with the proposed method, the
straightforward method will waste some opportunities and
need more actions to archive the goal.

5.4 Simulated Study
Description. We validate the proposed sequential manip-
ulation strategies against HodgeRank and RankCentrality
on simulated data. We generate the data stream as follows.
First, we build a complete graph G = (V ,E) where
V = [n]. Then the latent preference score is assigned to
each candidate/vertex of V and the true ranking is obtained
by these scores. Setting n = 10 and the true ranking is
π0 = (10, 9, 8, 7, 6, 5, 4, 3, 2, 1). Next, we randomly sample
744 pairwise comparisons from V × V based on their
preference score. Notice that the samples could contain the
comparisons which are inconsistent with the true ranking.
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(a) R. Rank of HodgeRank (b) K. τ of HodgeRank (c) R. Rank of RankCentrality (d) K. τ of RankCentrality

Fig. 2: Comparative results of different sequential manipulation methods against HodgeRank and RankCentrality on sim-
ulated data. The box plot illustrates the results of 50 trials with different data sequences which will make HodgeRank and
RankCentrality generate π0 = (10, 9, 8, 7, 6, 5, 4, 3, 2, 1). The target list of the adversary is π′ = (8, 9, 10, 7, 5, 6, 4, 3, 2, 1).
The proposed method provides a stable manipulation in the form of sequential action. All metrics of the proposed method
will be 1 with rare outliers. Meanwhile the three competitors fail to manipulate HodgeRank and RankCentrality with
sequential actions. The ‘Greedy’ perturbation only focuses on the top-1 candidate but can’t guarantee the designation of
a winner. The result of ‘Straightforward’ strategy is inferior to the proposed method when the number of actions is the
same.

(a) R. Rank of HodgeRank (b) K. τ of HodgeRank (c) R. Rank of RankCentrality (d) K. τ of RankCentrality

Fig. 3: Change of evaluation metrics on simulated data for different sequential manipulation methods against HodgeRank
and RankCentrality. The horizontal axis lists the turns of game. When the interaction proceeds, the proposed method is
able to generate malicious pairwise comparisons with incomplete knowledge and manipulate the victim, whose aggregated
results are consistent with the attacker’s target.

We regard these samples from the original data source (line
3 of Algorithm 1) and construct 50 sequences with different
orders. Each sequence will be a trail for the adversary. The
goal of adversary is to make HodgeRank and RankCentral-
ity produce π′ = (8, 9, 10, 7, 5, 6, 4, 3, 2, 1). The number of
turns in the adversarial game (T = 75 in Algorithm 1) is 10
percent of the length of the complete sequence. In each turn,
the sample from the original data source has an 80% chance
of being observed by the adversary (line 7 of Algorithm
1). If his/her knowledge is not updated, the attacker will
not take any action and wait for another sample from the
original data source. Moreover, the attackers could insert
S0 = 5 pairwise comparisons to construct the comparison
graph in each turn (line 8 of Algorithm 1).

Comparative Results. The results of each method against
HodgeRank on simulated data are reported in Fig. 2 (a)-
(b). Our method exhibits higher success rate due to the
parsimonious mechanism and consistently outperforms all
the competitors by a significant margin. Concerning the
performances of the three competitors, we can easily find
that:

• Due to the existence of non-modifiable data, the blind

attack strategies cannot even interfere with the aggrega-
tion results of victim with limited actions. The random
perturbation (‘Random’) can’t boost the position of can-
didate 8 in all aggregated results. Although the mean of
Kendall τ coefficient with 50 trials is 0.77, the degree of
consistency between Random and π0 remains higher
than that between Random and π′. These arguments
could be justified by the visualization of ranking lists in
Figure 4.

• The greedy manipulation (‘Greedy’) can have an im-
pact on the winner of the final ranking lists. However,
this method failed to consistently manipulate the aggre-
gation results over a specified number of actions. The
interquartile range of reciprocal rank is a large interval
and the median is 0.5 when the adversary executes
Greedy against HodgeRank. As all the insertions of
Greedy are consistent with the target list, the Kendall τ
coefficient of Greedy is higher than that of Random.
This phenomenon does not imply that Greedy had
complete control over the victim’s result as its gener-
ation mechanism only guarantees the desired winner
could beat the other candidates.
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(a) HodgeRank (b) RankCentrality

Fig. 4: The victims’ aggregation results of different manipulation methods on simulated data. The original ranking list is
π0 = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] and the target one is π′ = [8, 9, 10, 7, 5, 6, 4, 3, 2, 1] (refer to Target in the figure). The dark
dots represent the candidates with large ID and vice versa. If a candidate is not in the same position in both ranking lists,
there will exist an intersection and the width of the line represent the degree of inconsistent influence on the aggregation
results. We mark the inconsistent dots with red circles. When there exist multiple intersections and the key locations
(top-3) are marked by red circles, the attacker has failed to achieve his/her goal. (a) The victim is HodgeRank. The
proposed method accomplishes the manipulation of the complete ranking list (no intersection or red circle). (b) The victim
is RankCentrality.

(a) Random v.s. HodgeRank (b) Straight v.s. HodgeRank (c) Greedy v.s. HodgeRank (d) Ours v.s. HodgeRank

(e) Random v.s. RankCentrality (f) Straight v.s. RankCentrality (g) Greedy v.s. RankCentrality (h) Our v.s. RankCentrality

Fig. 5: Data distribution generated by different methods on simulated data. The vertical axis lists the number of rounds in
the adversarial games and the horizontal axis displays all possible pairwise comparisons. For the same victim, all results
are based on the same observed data. The original ranking list is π0 = [10, 9, 8, 7, 6, 5, 4, 3, 2, 1] and the target one is
π′ = [8, 9, 10, 7, 5, 6, 4, 3, 2, 1].

• In principle, the straightforward strategy (‘Straight’)
has potential to manipulate the complete aggregation
results of victim. The efficiency of the method is a
concern as it ignores the existing data. We suspect that
the method will only work under the conditions of the
so-called “flooding attack”, where T and S0 will be
sufficiently large.

We report the results of each method against RankCentral-
ity on simulated data in Fig. 2 (c)-(d). The best performance
and the median of our method consistently surpass all
the competitors. The Kendall τ coefficient of the proposed
method is not 1. We speculate that this phenomenon comes
from the challenge posed by controlling the spectral struc-

ture of comparison graph. However, the proposed method
is the only one which is able to designate the winner of
the aggregation results. Furthermore, we show the specific
behavior of the proposed method in every turn of the adver-
sarial game in Fig. 3. Despite the existence of unknown data,
all metrics of the proposed method grow and eventually
remain stable. This phenomenon implies that the proposed
method could obtain an equilibrium state which favors to
the adversary even if the details of the victims are not
involved. The ranking lists of different methods are shown
in Fig. 4. We illustrate every pair of the manipulation result
and the target ranking list. All results are based on the
same observed data sequence. The proposed method could
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designate the winner of the aggregation result (8 is the top-
1 candidate in our results) and keep a high correlation with
the target ranking list (there only exist two intersections in
our result).

The data distributions generated by different methods
are illustrated in Fig. 5. With the help of the data dis-
tribution, we can better understand the reasons why the
proposed method can achieve sequential manipulation with
the interference of the original data source. The victim
of the first row is HodgeRank and the second one is
RankCentrality. Here the horizontal axis lists all possible
pairwise comparisons. The vertical axis list 5 representa-
tive turns in the adversarial games. We index them as
follows: No.(i − 1) ∗ 9 + 1 to i ∗ 9 are the comparisons
{(i, j) | j ∈ [10], j ̸= i}. The proposed method makes
efficient manipulation with specific purposes. We observe
that the bins which represent the desired winner defeating
the other candidates are higher after the attack procedure,
especially No. 72 (8 ≻ 10) and No. 71 (8 ≻ 9). Such behavior
ensures that the aggregation results of the victims are resis-
tant to the original data source. The ‘Greedy’ method also
increases the number of No. 64 to No. 72. However, it is not
sufficient to guarantee that ‘Greedy’ could manipulate the
victims’ ranking lists. The ‘Straight’ method disperses its
power and fails to promote the position of candidate 8. The
‘Random’ method uniformly generates all kinds of pairwise
comparisons but it does not help to achieve the goal.

5.5 Crowdsourcing

Description. 30 images from the human age dataset
FGNET4 are annotated by a group of volunteer users on
a crowdsourcing platform5. The ground-truth age ranking
is known to us. The annotator is presented with two images
and given a binary choice of which one is older. Totally,
we obtain 8, 017 pairwise comparisons from 94 annotators.
The top-4 candidates of the true ranking is (29, 20, 8, 13).
The goals of adversary are to make HodgeRank and
RankCentrality produce (20, 29, 8, 13), (8, 29, 20, 13) and
(13, 29, 20, 8) as the top-4 candidates. The rest part of the
whole ranking list remains unchanged. The number of turns
in the adversarial game is 5% of the length of the complete
sequence. In each turn, the sample from the original data
source has a 90% chance of being observed by the adversary.
If his/her knowledge is not updated, the attacker will not
take any action and wait for another sample from the
original data source. Moreover, the attackers could insert
S0 = 10 pairwise comparisons to construct the comparison
graph in each turn.

Comparative Results. It is worth mentioning that this real-
world data has a high percentage of outliers (about 20% of
all comparisons conflict with the correct age ranking). The
proposed methods against HodgeRank and RankCentrality
still show promise manipulation as Table 1. It is more
challenging to change (29, 20, 8, 13) to (8, 29, 20, 13) than to
(20, 29, 8, 13). Consequently, the values of Kendall τ coeffi-
cient will decrease when the difficulty of the manipulation
increases.

4. https://yanweifu.github.io/FG NET data/
5. http://www.chinacrowds.com/

5.6 Election

Description. The Dublin election data set6 contains a com-
plete record of votes for elections held in county Meath,
Dublin, Ireland in 2002. This set contains 64, 081 votes over
14 candidates. These votes could be a complete or partial
list of the candidate set. The ground-truth ranking of 14
candidates is based on their obtained first preference votes7.
The five candidates who receive the most first preference
votes will be the winner of the election. The top-4 of is
π0 = (4, 2, 13, 5). Then these votes are converted into the
pairwise comparisons. The total number of the comparisons
is 652, 817. The goals of adversary are to make HodgeRank
and RankCentrality produce (2, 4, 13, 5), (13, 4, 2, 5) and
(5, 4, 2, 13) as the top-4 candidates. The number of turns
in the adversarial game is 1% of the length of the complete
sequence. In each turn, the sample from the original data
source has an 80% chance of being observed by the ad-
versary. If his/her knowledge is not updated, the attacker
will not take any action and wait for another sample from
the original data source. Moreover the attackers could insert
S0 = 5 pairwise comparisons to construct the comparison
graph in each turn.

Comparative Results. It is worth noting that the election
result is not obtained by pairwise ranking aggregation.
However, the ordered list aggregated from induced com-
parisons still shows a positive correlation with the actual
election result. Once the attackers generate a successful
manipulation strategy against the ballots collection process,
this attack plan could be adopted to manipulate the election
in the real world. Consequently, the proposed sequential
strategy is still able to manipulate the election results. The
aggregation results of HodgeRank and RankCentrality are
still manipulated by the proposed method, see Table 2.

6 CONCLUSION

In this paper, we establish the first study of sequential
manipulation in the context of ranking aggregation with
pairwise comparisons to the best of our knowledge. We find
that the data collection process is the Achilles’ heel of the
rank aggregation. The sequential attack problem is formu-
lated as a distributionally robust game between two players,
the online manipulator and the ranker who possesses the
original data ‘source’. Furthermore, we introduce the sam-
pling algorithms to analyze the properties of the underlying
distributionally Nash equilibrium. Like the two sides of a
coin, we prove that the representation ability of sampling
methods could turn into the vulnerability when the mixed
data source supports the goal of an adversary. With the
help of Bayesian decision theory, we develop the manip-
ulation policy with complete knowledge, which achieves
the asymptotic optimality. Then a distributionally robust
generation rule is proposed to resist the uncertainty of the
observed sequence. Our empirical studies show that the
proposed sequential manipulation methods could achieve
the attacker’s goal in the sense that the leading candidate

6. http://www.preflib.org/data/election/irish/
7. https://electionsireland.org/result.cfm?election=2002&cons=

178&sort=first

https://yanweifu.github.io/FG_NET_data/
http://www.chinacrowds.com/
http://www.preflib.org/data/election/irish/
https://electionsireland.org/result.cfm?election=2002&cons=178&sort=first
https://electionsireland.org/result.cfm?election=2002&cons=178&sort=first
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TABLE 1: Numeric results of different attack methods on crowdsourcing data. The best results are highlighted with bold
text.

Methods
HodgeRank RankCentrality

(20, 29, 8, 13) (8, 29, 20, 13) (13, 29, 20, 8) ((20, 29, 8, 13) (8, 29, 20, 13) (13, 29, 20, 8)
R. Rank K. τ R. Rank K. τ R. Rank K. τ R. Rank K. τ R. Rank K. τ R. Rank K. τ

Random 0.50 0.37 0.50 0.35 0.20 0.25 0.33 0.39 0.33 0.33 0.25 0.14
Straight 0.50 0.64 0.50 0.59 0.25 0.52 0.50 0.44 0.33 0.35 0.25 0.23
Greedy 1.00 0.52 1.00 0.49 0.50 0.38 1.00 0.55 0.33 0.55 0.25 0.24

Ours 1.00 0.55 1.00 0.54 1.00 0.44 1.00 0.67 1.00 0.55 1.00 0.36

TABLE 2: Numeric results of different attack methods on Dublin election data. The best results are highlighted with bold
text.

Methods
HodgeRank RankCentrality

(2, 4, 13, 5) (13, 4, 2, 5) (5, 4, 2, 13) (2, 4, 13, 5) (13, 4, 2, 5) (5, 4, 2, 13)
R. Rank K. τ R. Rank K. τ R. Rank K. τ R. Rank K. τ R. Rank K. τ R. Rank K. τ

Random 0.50 0.93 0.50 0.91 0.25 0.58 0.50 0.93 0.33 0.91 0.25 0.58
Straight 0.50 0.97 0.50 0.93 0.25 0.58 0.50 0.93 0.33 0.91 0.25 0.58
Greedy 1.00 0.98 1.00 0.96 0.50 0.87 1.00 0.93 0.50 0.91 0.33 0.49

Ours 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

of the aggregated ranking list is the designated one by the
adversary.
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The first part is about two ranking algorithms tailored to the BTL model, say Hodgerank [29] and the spectral ranking
algorithm [41].

The second part is the proof details of Theorem 1, which states the existence of a distributionally robust Nash
equilibrium. This result tells us that there exists at least one stable state for both ranker and attacker. To prove the existence
of the distributionally robust Nash equilibrium, we need a proposition from [35], which shows that the distributionally
robust Nash equilibrium is a global minimizer of the reformulation of (22). This reformulation is also well known for the
deterministic Nash equilibrium problem [44]. Based on this proposition, we show the existence results of DRNE for the
adversarial game. This result is an extension of the famous Kakutani’s fixed point theorem [30].

The third part is the proof details of Theorem 2. We need some important lemmas. Lemma 1 is a martingale
concentration inequality which can deal with the case that the maximum value M of |xt+1−xt| is large, but the maximum
is rarely attained (making the variance much smaller than M2) [19], [23], [39]. The following two lemmas assert that for
any given subset SA of the universe C, the fraction of elements from SA within the sample typically does not differ by
much from the corresponding fraction among the whole stream. Lemma 2 corresponds to the Bernoulli sampling. Lemma
3 corresponds to the reservoir sampling. Theorem 2 shows the vulnerability of the Bernoulli and reservoir sampling
methods. When the sampling parameters of these two methods fulfill the conditions, the data for the ranker will be
(ϵ, δ)-representative with respect to the sequence fabricated by the adversary. The adversary are able to obtain the desired
ranking list with these pairwise comparisons.

The forth part proves the asymptotic optimality of the proposed adversarial policy (49) and (54) with complete
knowledge. First we show some important assumptions. Considering Assumption 1-5, Theorem 4 establishes a lower
bound on the minimal Bayesian risk with the help of Lemma 4-7. Theorem 5 provides the asymptotic upper bounds for
the expected Kendall tau of the proposed manipulation policy with complete information with the help of Lemma 8 and 9.
Theorem 6 shows the asymptotic optimality of the expected stopping time of the proposed manipulation policy with the
help of Lemma 10 and 11. These three theorems are sufficient to show the asymptotic optimality of the proposed stopping
time (49) and the generation rule solved by (54) with complete knowledge as the identifiability of BTL model by adopting
the MLE to obtain the preference score.

The fifth part gives us the solution of (59), which gives birth to the stopping time (65) and generation rule (67) for
adversary with incomplete knowledge. Proposition 2 shows that the strong duality ensures that the inner supremum of
(59) admits a reformulation which is a simple, univariate optimization problem. Theorem 3 gives the equivalent form of
(59), which can be solved efficiently using the mirror descent algorithm. The detailed solving process is Algorithm 3, 4 and
5.
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HODGERANK AND RANKCENTRALITY

HodgeRank
The Hodgerank method discussed in [29] consists in finding the relative ranking score by solving the following least-
squares problem:

minimize
θ∈Rn

1

2

∑
(i,j)∈E

w∗
ij

(
yij − θj + θi

)2
(74)

where y = [y12, y13, . . . , yn,n−1]
⊤ represents the directions of edges. As G is a complete graph, we set yij = 1 which

indicates a direct edge from node i to j. Based on combinational Hodge theory [29], the minimal norm solution of (74) is
simply given as

θ̄ = −L†
0 · div(y), (75)

where L†
0 is the Moore-Penrose pseudo-inverse of L0, and the divergence operator div is defined as

[div(y)](i) =
∑

j:(i,j)∈E

w∗
ijyij , ∀ i ∈ [n]. (76)

Rank Centrality
The spectral ranking algorithm, or RankCentrality [41], is motivated by the connection between the pairwise comparisons
w∗ and a random walk over a directed graph G. The spectral method constructs a random walk on G where at each time,
the random walk is likely to go from vertex i to vertex j if items i and j were ever compared; and if so, the likelihood of
going from i to j depends on how often i lost to j. That is, the random walk is more likely to move to a neighbor who is
more probable to “wins”. How frequently this walk visits a particular node in the long run, or equivalently the stationary
distribution, is the score of the corresponding item. Thus, effectively this algorithm captures the preference of the given
item versus all the others, not just immediate neighbors: the global effect induced by the transitivity of comparisons is
captured through the stationary distribution.

A random walk can be represented by a time-independent transition matrix P = {Pi,j}1≤i,j≤n ∈ Rn×n
+ , where Pi,j =

P(Xt+1 = j|Xt = i) and Xt represents the state of the process (arriving node) at time t. By definition, the entries of a
transition matrix are nonnegative and satisfy

Pi,j + Pj,i = 1, ∀ i, j ∈ [n], i ̸= j. (77)

One way to define a valid transition matrix P of a random walk on G is to scale all the edge weights by the maximum
out-degree of a node, noted as dmax. This re-scaling ensures that each row-sum is at most one. Finally, to ensure that each
row-sum is exactly one, the spectral method adds a self-loop to each node of V . Concretely, the transition matrix P ∗ is
converted from the pairwise comparison data w∗ in such a way that

P ∗
i,j =



0, if i ̸= j, w∗
ij + w∗

ji = 0,

1

dmax

w∗
ij

w∗
ji + w∗

ij

, if i ̸= j, w∗
ij + w∗

ji ̸= 0,

1− 1

dmax

∑
k ̸=i

w∗
ik

w∗
ik + w∗

ki

, otherwise.

(78)

Rank centrality estimates the probability distribution obtained by applying matrix P ∗ repeatedly starting from any initial
condition. Precisely, let θt(i) = P(Xt = i) denote the distribution of the random walk at time t with θ0 = {θ0(i)} ∈ Rn

+ as
an arbitrary starting distribution on [n]. Then the random walk holds

θ⊤t+1 = θ⊤t P
∗. (79)

wwwwww One expects the stationary distribution of the sample version P ∗ to form a good estimate of true relative
ranking score8, provided the sample size is sufficiently large. When the transition matrix has a unique left eigenvector θ∗

related to the largest eigenvalue, then starting from any initial distribution θ0, the limiting distribution θt+1 is unique. This
stationary distribution lim

t→∞
θt is the top left eigenvector of P ∗ as

lim
t→∞

θt = θ̄ and θ̄
⊤
= θ̄

⊤
P ∗, (80)

which only involves a simple eigenvector computation.

8. The original paper assumes that the true relative scores are generated from the logistic pairwise comparison model, e.g. Bradley-Terry-Luce (BTL) model, multi-nominal logit (MNL) and Plackett-Luce (PL) model.
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PROOF OF THEOREM 1
We clarify the definition of weakly compactness of P .

Definition 6. A set of probability distribution (measures) P is said to be weakly compact if every sequence {PN} ⊂ P contains a
sub-sequence {PN0

} and a point P0 such that {PN0
} converges to P0 weakly.

To prove the existence of the distributionally robust Nash equilibrium, we need the following proposition [35],
which shows that the distributionally robust Nash equilibrium is a global minimizer of the reformulation of (22). This
reformulation is also well known for the deterministic Nash equilibrium problem [44].

Proposition 1. Let

ϕ(A′,A) =
R∑

r=1

max
P∈Pr

Ew∼P

[
fr(a

′
r,a−r,w)

]
, (81)

where A′ = [a′
1, . . . ,a

′
R]. Under the conditions of Theorem 1, A∗ is a distributionally robust Nash equilibrium as (25) if and only if

A∗ ∈ arg min
A′

ϕ(A′,A∗). (82)

Proof. 1) The ‘if’ part. If A∗ is not an equilibrium state, there exists at least one a′
r0 which satisfies

max
P∈Pr0

Ew∼P

[
fr0(a

′
r0 ,a

∗
−r0 ,w)

]
< max

P∈Pr0

Ew∼P

[
fr0(a

∗
r0 ,a

∗
−r0 ,w)

]
.

(83)

Let A′′ be
A′′ = [a∗

1, . . . ,a
∗
r0−1,a

′
r0 ,a

∗
r0+1, . . . ,a

∗
R] (84)

and we could conduct the following contradiction by (83):

ϕ(A′′,A∗) < ϕ(A∗,A∗). (85)

2) The ‘only if’ part. By the definition of distributionally robust Nash equilibrium, for any A′, it holds that

max
P∈Pr

Ew∼P

[
fr(a

′
r,a

∗
−r,w)

]
≥ max

P∈Pr

Ew∼P

[
fr(a

∗
r ,a

∗
−r,w)

]
, ∀ r ∈ [R].

(86)

Summing the two sides of the above inequality, we have

ϕ(A′,A∗) =
R∑

r=1

max
P∈Pr

Ew∼P

[
fr(a

′
r,a

∗
−r,w)

]

≥
R∑

r=1

max
P∈Pr

Ew∼P

[
fr(a

∗
r ,a

∗
−r,w)

]
= ϕ(A∗,A∗)

(87)

which implies A∗ is a global optimal solution as (82).

Based on the Proposition 1, we show the existence results of DRNE for the adversarial game. This results is an extension
of the famous Kakutani’s fixed point theorem [30].

Theorem 1. There exists a DRNE (25) if the following states hold for any r = 1, . . . , R.
(a) Given (a−r,πr,w), fr(·,a−r,πr,w) is convex over ZN

+ .
(b) Ew∼P

[
fr(ar,a−r,πr,w)

]
has finite values for any (ar,a−r), P ∈ Pr and πr is a permutation of [n].

(c) Pr has weakly compactness.

Proof. We know that the ‘supremum’ operator will preserve the convexity. Moreover, with the weakly compactness of Pr, the
‘supremum’ operator also preserve the continuity. As a consequence, for any given a−r , Ew∼P[fr(·,a−r,w)] is continuous
and convex for every P ∈ Pr, r = 1, . . . , R. By the definition of ϕ (81), for any givenA, ϕ(A′,A) is continuous and convex
w.r.t. any A′. Besides, the existence of an optimal solution to

min
A′

ϕ(A′,A) (88)
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with given a is guaranteed by assuming that Ew∼P[fr(·,a−r,w)] only has finite values.
The remaining part is to show the existence of A∗ which satisfies

A∗ ∈ arg min
A′

ϕ(A′,A∗). (89)

Let Γ(A) be the solution set of min ϕ(A′,A) with given A. By the convexity of ϕ(·,A), Γ(A) is a convex set. Γ(A) is also
a closed set: for any {At} → Ā as t→∞ and A′

t ∈ Γ(At) with {A′
t} → Ā

′
, it holds that

Ā
′ ∈ Γ(Ā). (90)

By [5], Γ(A) is upper semi-continuous on RN×R. With the well-known Kakutani’s fixed point theorem [30], there exists
A∗ such that

A∗ ∈ arg min
A′

ϕ(A′,A∗). (91)

With Proposition 1, we know A∗ is a distributionally robust Nash equilibrium.
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PROOF OF THEOREM 2
In this section, we prove the main technical result for Bernoulli sampling. First we need the follow well-known results of
martingale inequalities.

Definition 7. A martingale is a sequence X = (x1, . . . , xT ) of random variables with finite means, such that

E
[
xt+1|x1, . . . , xt

]
= xt, ∀ t ∈ [T ]. (92)

The most basic and well-known concentration result of martingale is the Azuma’s (or Hoeffding’s) inequality, which
asserts that martingales with bounded differences |xt+1− xt| are well-concentrated around their mean. However, we need
the other concentration inequality which can deal with the case that the maximum value M of |xt+1 − xt| is large, but
the maximum is rarely attained (making the variance much smaller than M2) [19], [23], [39]. The martingales that we
investigate in this paper depict this behavior.

Lemma 1. Let X = (x1, . . . , xT ) be a martingale and the variance of xt+1 given x1, . . . , xt be bounded

Var(xt+1|x1, . . . , xt) ≤ σ2
t+1, ∀ t ∈ [T ], (93)

where σt ≥ 0. If there exist a constant M such that
|xt+1 − xt| ≤M, (94)

we have

P
(
X − E[X] ≥ λ

)
≤ exp

(
− λ2∑T

t=1 σ
2
t +

λM
3

)
, (95)

where E[X] is defined as

E[X] =
T∑

t=1

E[xt]. (96)

Particularly,

P
(∣∣X − E[X]

∣∣ ≥ λ) ≤ 2 · exp

(
− λ2∑T

t=1 σ
2
t +

λM
3

)
. (97)

The following lemmas assert that for any given subset SA of the universe C, the fraction of elements from SA within the
sample typically does not differ by much from the corresponding fraction among the whole stream. Lemma 2 corresponds
to the Bernoulli sampling. Lemma 3 corresponds to the reservoir sampling.

Lemma 2. For any dynamic stream C = {ct}∞t=1 from C′, if the parameter of Bernoulli method ϱ holds that

ϱ ≥ 10 · ln(4/δ)
ϵ2T

, (98)

we have
P(|dC′(C)− dC′(C ′)| ≥ ϵ) ≤ δ, (99)

where C ′ is a sequence which is sampled from C by the Bernoulli method.

Proof. At any given time step t ∈ [T ] along the sampling process, let Ct = (c1, . . . , ct) be the sequence of pairwise
comparisons submitted to the Bernoulli method until time t, and C ′

t ⊆ Ct be a sub-sequence of the sampled pairwise
comparisons from Ct. Note that CT = C and C ′

T = C ′, and hence, to prove the lemma, we need to show that

|dC′(CT )− dC′(C ′
T )| ≤ ϵ.

Given a C′, we define the random variables

At(C′) =
t

T
· dC′(Ct) =

|C′ ∩Ct|
T

,

Bt(C′) =
|C′ ∩C ′

t|
ϱT

,

Zt(C′) = Bt(C′)−At(C′),

(100)

where the intersection between a set C′ and a sequenceCt is the sub-sequence ofCt consisting of all pairwise comparisons
(repetitions are allowed) that also belong to C′. Next we show that (Z0(C′), . . . , ZT (C′)) is a martingale. Suppose that the
C ′

t−1 is fixed and thence the values of Z0(C′), . . . , Zt−1(C′) are fixed. Now a new pairwise comparison ct is ready to
submit. Note that ct may be either the original data or the comparison perturbed by the adversary.
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If ct /∈ C′, we have
At(C′) = At−1(C′),

Bt(C′) = Bt−1(C′),

Zt(C′) = Zt−1(C′),

(101)

and it holds that

E
[
Zt(C′)

∣∣ Z0(C′), . . . , Zt−1(C′), ct /∈ C′ ] = Zt−1(C′) (102)

When ct ∈ C′, we have

At(C′) = At−1(C′) +
1

T
,

Bt(C′) =


Bt−1(C′), if ct is not sampled,

Bt−1(C′) +
1

ϱT
, otherwise.

Zt(C′) =


Zt−1(C′)− 1

T
, if ct is not sampled,

Zt−1(C′) +
1

ϱT
− 1

T
, otherwise.

(103)

Recall that each pairwise comparison is sampled by the Bernoulli method, independently, with probability ϱ. Therefore,
we have that

E
[
Zt(C′)

∣∣ Z0(C′), . . . , Zt−1(C′), ct ∈ C′ ]
= Zt−1(C′) + ϱ ·

(
1

ϱT
− 1

T

)
+ (1− ϱ) ·

(
− 1

T

)
= Zt−1(C′).

(104)

Combine the two cases, we know that (Z0(C′), . . . , ZT (C′)) is a martingale.
Next we will show that the variance of Zt(C′) conditioned on Z0(C′), . . . , Zt−1(C′) is bounded by 1/ϱT 2. If ct /∈ C′

and with simple calculation from (101) and (102), the variance of Zt(C′) given Z0(C′), . . . , Zt−1(C′) equals to zeros as

Var( Zt(C′)
∣∣ Z0(C′), . . . , Zt−1(C′), ct /∈ C′ ) = 0. (105)

When ct ∈ C′, we have
Var( Zt(C′)

∣∣ Z0(C′), . . . , Zt−1(C′), ct ∈ C′ )

= (1− ϱ) ·
(
1

T

)2

+ ϱ ·
(

1

ϱT
− 1

T

)2

=
1

T 2
·
(
1

ϱ
− 1

)
≤ 1

ϱT 2
.

(106)

Combine the two cases, we know that the variance of Zt(C′) conditioned on Z0(C′), . . . , Zt−1(C′) is bounded by 1/ϱT 2.
It always holds that

|Zt(C′)− Zt−1(C′)| ≤ max
{
1

T
,
1

ϱT
− 1

T

}
≤ 1

ϱT
. (107)

At last, we complete the proof of this lemma by proving the following two inequalities for any ϱ satisfying the condition
(98).

P
( ∣∣AT (C′) −BT (C′)

∣∣ ≥ ϵ

2

)
≤ δ

2
(108a)

P
( ∣∣BT (C′)− dC′(C ′

T )
∣∣ ≥ ϵ

2

)
≤ δ

2
(108b)

We can choose λ = ϵ/2, σ2
t = 1/ϱT 2 and M = 1/ϱT and apply Lemma 1 on (Z0(C′), . . . , ZT (C′)). As Z0(C′) = 0, we have

|AT (C′)−BT (C′)| = |ZT (C′)− Z0(C′)|, (109)
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and (108a) will holds that
P
( ∣∣AT (C′)−BT (C′)

∣∣ ≥ ϵ

2

)
≤ 2 · exp

(
− (ϵ/2)2

2T · (1/ϱT 2) + ϵ/(6ϱT )

)

< 2 · exp
(
−ϵ

2ϱT

9

)
.

(110)

When

ϱ ≥ 9 · ln(δ/4)
ϵ2T

, (111)

the (110) is further bounded by δ/2.
To prove (108b), we observe that

BT (C′) = dC′(C ′
T ) ·
|C ′

T |
ϱT

, (112)

and each pairwise comparison is selected by Bernoulli method with probability ϱ, independently of other pairwise
comparison. The size of C ′

t equals to the expectation of binaomial distribution Binaomial(T, ϱ), regardless of the
adversary’s strategy. Applying the Chernoff inequality with δ = ϵ/2, we have

P
(∣∣|C ′

T | − ϱT
∣∣ ≥ ϵϱT

2

)

≤ 2 · exp
(
− (ϵ/2)2ϱT

2 + ϵ/3

)

< 2 · exp
(
−ϵ

2ϱT

10

)
.

(113)

When

ϱ ≥ 10 · ln(δ/4)
ϵ2T

, (114)

the above inequality is further bounded by δ/2. Conditioning on this event (||C ′
t| − ϱT | ≥ ϵϱT/2), we have∣∣dC′(C ′

T )−BT (C′)
∣∣

=

∣∣∣∣1− |C ′
T |

ϱT

∣∣∣∣ · dC′(C ′
T )

≤
∣∣∣∣1− |C ′

T |
ϱT

∣∣∣∣ ≤ ϵ

2
,

(115)

where the first inequality follows the fact dC′(C ′
T ) is always bounded by 1, and the second inequality follows form the

condition ||C ′
t| − ϱT | ≥ ϵϱT/2. We complete the proof of (108b).

Indeed, taking a union bound over (108a) and (108b), applying the triangle inequality and observing that AT (C′) =
dC′(C ′

T ), we obtain the desired conclusion (99).

Lemma 3. For any dynamic stream C = {ct}∞t=1 from C′, if the parameter of reservoir method ϱ holds that

ϱ ≥ 2 · ln(2/δ)
ϵ2

, (116)

we have
P(|dC′(C)− dC′(C ′)| ≥ ϵ) ≤ δ, (117)

where C ′ is a sequence which is sampled from C by the reservoir method.

Proof. Generally speaking, the proof of this lemma goes along the same lines as Lemma 2, except that adopting the other
martingale. Specifically, we define

At(C′) = t · dC′(Ct) = |C′ ∩Ct|,

Bt(C′) = t · dC′(C ′
t) =

t

ϱ
|C′ ∩C ′

t|,

Zt(C′) = Bt(C′)−At(C′),

(118)
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for t ∈ (ϱ, T ]. When t < ϱ, we define
At(C′) = Bt(C′) = |C′ ∩Ct|. (119)

The next step is similar to Lemma 2. We first show that (Z0(C′), . . . , ZT (C′)) is a martingale. Notice that
(Z0(C′), . . . , ZT (C′)) is obviously a martingale for t ≤ ϱ. When t > ϱ, the C ′

t−1 is fixed and thence the values of
Z0(C′), . . . , Zt−1(C′) are fixed. Let ct be the next pairwise comparison for the reservoir sampling method, which could be
either from the original data source or the adversarial data source controlled by the adversary. It is easy to check that

At(C′) =

{
At−1(C′), ct /∈ C′,

At−1(C′) + 1. ct ∈ C′.
(120)

For Bt(C′), we consider the three factors:
i) is ct ∈ C′ or not?

ii) is ct sampled or not?
iii) conditioning on ct being sampled, does it replace an element rt from C′ in the sample, or rt not in C′?

Case 1. When ct /∈ C′ is either not sampled, or sampled but with rt /∈ C′, the pairwise comparisons from C′ are neither added
nor removed into the cache of the reservoir method. Consequently, we have

C′ ∩Ct = C′ ∩Ct−1. (121)

By the definition of Bt(C′)

Bt(C′) =
t

ϱ
· |C′ ∩Ct|

=
t− 1

ϱ
· |C′ ∩Ct−1|+

1

ϱ
· |C′ ∩Ct−1|

= Bt−1(C′) + dC′(Ct−1),

(122)

where the third equality stands since the sampled pairwise comparisons of Ct−1 is |Ct−1| = ϱ when t > ϱ. Therefore
conditioned on ct /∈ C′, the expectation of Bt(C′) is

E[Bt(C′)|ct /∈ C′]

=
(
1− ϱ

t
dC′(Ct−1)

)
·
(
Bt−1(C′) + dC′(Ct−1)

)
+
ϱ

t
dC′(Ct−1)

(
Bt−1(C′) + dC′(Ct−1)−

t

ϱ

)
= Bt−1(C′).

(123)

Moreover, At(C′) = At−1(C′) when ct /∈ C′ and we deduce that

E
[
Zt(C′)

∣∣ Z0(C′), . . . , Zt−1(C′), ct /∈ C′ ] = Zt−1(C′). (124)

Case 2. Now ct ∈ C′. When ct is neither added nor removed into the cache of the reservoir method, we have |Ct| = |Ct−1|
and Bt(C′) = Bt−1(C′) + dC′(Ct−1). If ct into the cache and the replaced element rt /∈ C′, which has probability
(ϱ/t) · (1− dC′(Ct−1)), we have

|C′ ∩Ct| = |C′ ∩Ct−1|+ 1

Bt(C′) =
t

ϱ
· |C′ ∩Ct|

=
t

ϱ
· |C′ ∩Ct−1|+

t

ϱ

= Bt−1(C′) + dC′(Ct−1) +
t

ϱ
.

(125)

Then the expectation of Bt(C′) conditioned on ct ∈ C′ is

E[Bt(C′)|ct ∈ C′]

= Bt−1(C′) + dC′(Ct−1) +
(ϱ
t
· (1− dC′(Ct−1)

)
· t
ϱ

= Bt−1(C′) + 1.

(126)

Furthermore, with the definition of At(C′) when ct ∈ C′, we know that

E
[
Zt(C′)

∣∣ Z0(C′), . . . , Zt−1(C′), ct ∈ C′ ] = Zt−1(C′). (127)

The analysis of the above two cases implies that (Z0(C′), . . . , Zt(C′)) is indeed a martingale.
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The second part of proof is to obtain the bounds on the difference |Zt(C′)−Zt−1(C′)| and the variance of Zt(C′) given
Z0(C′), . . . , Zt−1(C′). With the above analysis, we know that

At(C′) =

{
At−1(C′), ct /∈ C′,

At−1(C′) + 1, ct ∈ C′.

Bt(C′) ∈


[Bt−1(C′), Bt−1(C′) + 1] , ct /∈ C′,[

Bt−1(C′), Bt−1(C′) + 1 +
t

ϱ

]
, ct ∈ C′.

(128)

By the definition of Zt(C′), we conclude that

|Zt(C′)− Zt−1(C′)| ≤ t

ϱ
. (129)

We next bound the variance of Zt(C′) conditioned on Z0(C′), . . . , Zt−1(C′) and dC′(Ct−1). When ct /∈ C′, with probability
(ϱ/t) · dC′(Ct−1), it holds that

E[Zt(C′)]− Zt(C′) =
t

ϱ
− dC′(Ct−1). (130)

Otherwise, with probability 1− (ϱ/t) · dC′(Ct−1), we have

Zt(C′)− E[Zt(C′)] = dC′(Ct−1). (131)

Therefore,

Var( Zt(C′)
∣∣ Z0(C′), . . . , Zt−1(C′), ct /∈ C′, dC′(Ct−1) )

=
ϱ

t
· dC′(Ct−1) ·

(
t

ϱ
− dC′(Ct−1)

)2

+
(
1− ϱ

t
· dC′(Ct−1)

)
· d2C′(Ct−1)

=
t

ϱ
· dC′(Ct−1)− d2C′(Ct−1)

≤ t

ϱ
.

(132)

When ct ∈ C′, with probability (ϱ/t) · dC′(Ct−1), it holds that

Zt(C′)− E[Zt(C′)] =
t

ϱ
+ dC′(Ct−1)− 1. (133)

Otherwise, with probability 1− (ϱ/t) · dC′(Ct−1), we have

E[Zt(C′)]− Zt(C′) = 1− dC′(Ct−1). (134)

Thus,

Var( Zt(C′)
∣∣ Z0(C′), . . . , Zt−1(C′), ct ∈ C′, dC′(Ct−1) )

=
ϱ

t
· dC′(Ct−1) ·

(
t

ϱ
− dC′(Ct−1)

)2

+
(
1− ϱ

t
· dC′(Ct−1)

)
· d2C′(Ct−1)

=
t

ϱ
· dC′(Ct−1)− d2C′(Ct−1)

≤ t

ϱ
.

(135)

(132) and (135) indicate that the conditional variance of Zt(C′) is bounded by t/ϱ. Moreover, the bound remains intact
when we remove the condition on dC′(Ct−1).

Now we come to the conclusion of the whole lemma. Observe that

P(|dC′(C)− dC′(C ′)| ≥ ϵ)

= P(|BT (C′)−AT (C′)| ≥ ϵ · T )

= P(|ZT (C′)− Z0(C′)| ≥ ϵ · T ).

(136)
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Then we apply Lemma 1 on the martingale Z(C′) = (Z0(C′), . . . , ZT (C′)) with λ = ϵT , σ2
t = t/ϱ for t ≥ ϱ and σ2

t = 0 for
t ≥ ϱ, and M = T/ϱ

P(|ZT (C′)− Z0(C′)| ≥ ϵ · T )

≤ 2exp

−
λ2

2
T∑

t=1

σ2
t +

λM

3



= 2exp

−
ϵ2T 2

2
T∑

t=1

t

ϱ
+
ϵT 2

3ϱ



= 2exp

− ϵ2T 2ϱ

T (T + 1) +
ϵT 2

3


≤ 2exp

(
−ϵ

2T 2ϱ

2T 2

)
= 2exp

(
−ϵ

2ϱ

2

)
.

(137)

Therefore, it suffices to hold

ϱ ≥ 2

ϵ2
ln
(
2

δ

)
(138)

and get the desired result.

Theorem 2. Let C′ be a mixture of C and CA satisfying (31).
i) For any static stream C = {ct}∞t=1 from C′,

• if the parameter of Bernoulli sampling method satisfies

ϱ ≥ c · log n(n− 1) + ln(1/δ)
ϵ2T

, (34)

where T is the number of sampling, the output of Bernoulli sampling is (ϵ, δ)-representative with respect to C′.
• if the parameter of reservoir sampling method satisfies

ϱ ≥ c · log n(n− 1) + ln(1/δ)
ϵ2

, (35)

the output of reservoir sampling is (ϵ, δ)-representative with respect to C′.
ii) For any dynamic stream C = {ct}∞t=1 from C′,

• if the parameter of Bernoulli sampling method satisfies

ϱ ≥ 10 · ln |C′|+ ln(4/δ)
ϵ2T

, (36)

where T is the number of sampling, the output of Bernoulli sampling is (ϵ, δ)-representative with respect to C′.
• if the parameter of reservoir sampling method satisfies

ϱ ≥ 10 · ln |C′|+ ln(2/δ)
ϵ2

, (37)

the output of reservoir sampling is (ϵ, δ)-representative with respect to C′.

Proof. For i), the results of static case have been discussed by [34], [47], [48]. Notice that log n(n− 1) is the VC-dimension
of C′. For ii), we start with the Bernoulli sampling method. For any dynamic stream C form C′, we apply the first part of
Lemma 2 with ϵ and |C′|

P
(∣∣dC′(C)− dC′(C ′)

∣∣ ≥ ϵ) ≤ δ

|C′|
, (139)

where C ′ is the sampled sequence by the Bernoulli sampling method. In the event∣∣dC′(C)− dC′(C ′)
∣∣ ≤ ϵ, ∀ C ∈ C′, (140)
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by definition we know that C ′ is an ϵ-approximation of C. Taking a union bound over all C′ ∈ C′, we conclude that the
probability of this event not to hold is bounded by

δ

|C′|
· |C′| = δ, (141)

meaning that Bernoulli method with ϱ as above is (ϵ, δ)-representative.
The proof for reservoir method is identical, except that we apple Lemma 3.
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ASYMPTOTIC OPTIMALITY OF THE PROPOSED POLICY WITH COMPLETE KNOWLEDGE

We discuss the asymptotic optimality of the proposed stooping time and generation rule with the complete knowledge. The
assumption for the theoretical analysis is described. First there exist some regularity conditions on the prior distribution
ρθ′ . Without loss of generality, we could set θ′1 = 0 and the unknown model parameter satisfies θ = [θ2, . . . , θn] ∈ Rn−1.
The following assumptions have been applied in the sequential design for rank aggregation [16]. It is noteworthy that
the following assumptions are mainly for the theoretical analysis. The proposed sequential manipulation method does not
depend on the condition of Supp(ρθ′) or the probability mass function g.

Assumption 1. The support

Supp(ρθ′) =

{
θ ∈ Rn−1

∣∣∣∣∣ ρθ′(θ) > 0

}
(142)

is a compact set, where {·} denotes the closeure of {·}. Besides, for any full ranking list π0 which does not include the candidates
belong to θ′1, {{

θ ∈ Rn−1

∣∣∣∣∣ π(θ) = π0

}⋂
Supp(ρθ′)

}◦

̸= ∅, (143)

where {·}◦ represents the interior of {·}.

This assumption assigns the bounded support Supp(ρθ′) to the prior distribution ρθ′ . The second part tell us that the
support Supp(ρθ′) contains a non-empty interior for every full ranking list.

Assumption 2. For all s > 0, there exists a constant δ > 0 such that

L (B(θ, ϵ) ∩ Supp(ρθ′)) ≥ min{δϵn−1, 1}, (144)

where B(θ, ϵ) denotes the open ball centered at θ with radius ϵ, and L(·) denotes the Lebesgue measure.

This assumption keeps the support Supp(ρθ′) be non-singular.

Assumption 3. The log probability mass function log gij(θ) is uniform continuous differentiable w.r.t. θ for all pairwise comparisons
(i, j), that is

sup
θ∈Supp(ρθ′ ),

(i,j)∈C

∥∇θ log gij(θ)∥ <∞. (145)

This assumption needs the smoothness of the likelihood function. The BTl model satisfies this assumption.

Assumption 4. The probability mass function g satisfies:

min
θ,θ̃∈Supp(ρθ′ ),

π(θ) ̸=π(θ̃)

max
(i,j)

gi,j(θ) · log
gi,j(θ)

gi,j(θ̃)
> 0. (146)

This assumption requires the distinguishability between any pair of candidates in Supp(ρθ′), e.g. there does not exist tie
between any pair of candidates. Assumption 4 is a standard assumption in sequential hypothesis testing, which is known
as the “indifference zone” assumption. The “indifference zone” condition tell us that the null and alternative hypotheses are
separated in the sense that the Kullback-Leibler divergence between the two hypotheses is positive. Here the assumption
excludes the case that the true preference score is in between the two hypotheses (i ≻ j and j ≻ i). Furthermore, it means
that selecting i ≻ j or j ≻ i (the null and alternative hypothesis) will be different.

Assumption 5. The prior distribution ρθ′ satisfies

inf
θ∈{Supp(ρθ′ )}◦

ρθ′(θ) > 0,

sup
θ∈Supp(ρθ′ )

ρθ′(θ) < 0.
(147)

This assumption requires that the density function of prior distribution ρθ′ is positive over Supp(ρθ′).
Considering the Assumption 1-5, the following theorem establishes a lower bound on the minimal Bayesian risk (45)

R∗ = inf
Λ,S

R(Λ, S). (45)

Theorem 4. If the Assumption 1-5 hold, we have

lim inf
χ→0

R∗

χE [τχ(Θ)]
≥ 1, (148)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 31

where

τχ(θ) = |log χ| ·

max
λ∈∆

min
θ̃∈Supp(ρθ′ ),

π(θ) ̸=π(θ̃)

∑
(i,j)

λi,jgi,j(θ) · log
gi,j(θ)

gi,j(θ̃)


−1

, (149)

and
E [τχ(Θ)] =

∫
Supp(ρθ′ )

τχ(θ)ρθ′(θ)dθ. (150)

To avoid confusion, we write Θ when θ is viewed as a random variable.

Proof. For any manipulation policy (Λ, S) and a prior probability density function ρθ′ , there only exist two cases:

•
E[R(R(Λ, S))] ≥ χ|log χ|2. (151)

•
E[R(R(Λ, S))] < χ|log χ|2. (152)

For the first case, the Bayesian risk
R(Λ, S) = E[R(S) +R(R(Λ, S))] (44)

satisfies
R(Λ, S) ≥ χ|log χ|2 ≥ (1 + o(1))χE [τχ(Θ)] . (153)

For the second case, it is easy to see
R(Λ, S) ≥ E[R(S)] = χE[S]. (154)

Therefore, proving the results equals to show that

lim inf
χ→0

χE[S]
χE [τχ(Θ)]

≥ 1. (155)

In other words, for any δ > 0, there exists a χ0 > 0 such taht when χ < χ0,

E[S] ≥ (1− δ)E [τχ(Θ)] . (156)

For each δ > 0, we set

τχ,δ(θ) =

(
1− 2

3
δ

)
τχ(θ), (157)

then
E[S] ≥ E[S|S > τχ,δ(Θ)]

≥
∫

Supp(ρθ′ )
ρθ′(θ)τχ,δ(θ)P(S > τχ,δ(Θ)|Θ = θ)dθ

= E [τχ,δ(Θ)]−
∫

Supp(ρθ′ )
ρθ′(θ)τχ,δ(θ)P(S ≤ τχ,δ(Θ)|Θ = θ)dθ

≥ E [τχ,δ(Θ)]− τmax
χ,δ · P(S ≤ τχ,δ(Θ)),

(158)

where τmax
χ,δ is defined as

τmax
χ,δ = max

θ∈Supp(ρθ′ )
τχ,δ(θ). (159)

According to Assumption 4, we know that

τmax
χ,δ = O(|log χ|) = O(E [τχ(Θ)]). (160)

Furthermore, to prove (156), it is sufficient to show

P(S ≤ τχ,δ(Θ)) = o(1). (161)

The next step is to establish an upper bound for P(S ≤ τχ,δ(Θ)). Given a full ranking list π0, we write

Θπ0 = {θ|π(θ) = π0} (162)
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as all preference score which will generate the full ranking π0. Then

P(S ≤ τχ,δ(Θ)) =
∑
π0

P(S ≤ τχ,δ(Θ),Θ ∈ Θπ0
)

= O(1) ·max
π0

P(S ≤ τχ,δ(Θ),Θ ∈ Θπ0).
(163)

Then we conduct an upper bound of P(S ≤ τχ,δ(Θ),Θ ∈ Θπ0
) for any π0. Define an event Eπ0

:

Eπ0 =

 P(Θ ∈ Θπ0 |FS)

max
(i,j):Θi,j∩Θπ0=∅

P(Θ ∈ Θi,j |FS)
>
χ

δ
10

ϵ

 , (164)

where FS = σ(c1, . . . , cS) denotes the σ-algebra generated by c1, . . . , cS , ϵ > 0 is a constant and the definition of Θi,j is

Θi,j =
{
θ ∈ Rn

+ | θi ≥ θj
}
∩ Supp(ρθ′). (52)

For each P(S ≤ τχ,δ(Θ),Θ ∈ Θπ0
), we have

P(S ≤ τχ,δ(Θ),Θ ∈ Θπ0)

= P(S ≤ τχ,δ(Θ),Θ ∈ Θπ0
,Eπ0

) + P(S ≤ τχ,δ(Θ),Θ ∈ Θπ0
,Ec

π0
)

(165)

where Ec
π0

is the complement of Eπ0
. Then P(S ≤ τχ,δ(Θ),Θ ∈ Θπ0

) can be further bounded by

P(S ≤ τχ,δ(Θ),Θ ∈ Θπ0
)

≤ P(S ≤ τχ,δ(Θ),Θ ∈ Θπ0 ,Eπ0) + P(θ ∈ Θπ0 ,E
c
π0

).
(166)

The first term P(S ≤ τχ,δ(Θ),Θ ∈ Θπ0 ,Eπ0) equals to

P(S ≤ τχ,δ(Θ),Θ ∈ Θπ0
,Eπ0

) =

∫
Θπ0

P(S ≤ τχ,δ(θ),Eπ0
|Θ = θ)ρθ′(θ)dθ. (167)

Notice that the intersection of {S ≤ τχ,δ(θ)} and Eπ0
will be

{S ≤ τχ,δ(θ)} ∩Eπ0 ⊂

 max
1≤S≤τχ,δ(θ)

P(Θ ∈ Θπ0 |FS)

max
(i,j):Θi,j∩Θπ0=∅

P(Θ ∈ Θi,j |FS)
>
χ

δ
10

ϵ

 . (168)

Then

P(S ≤ τχ,δ(θ),Eπ0 |Θ = θ) ≤ P

 max
1≤S≤τχ,δ(θ)

P(Θ ∈ Θπ0 |FS)

max
(i,j):Θi,j∩Θπ0=∅

P(Θ ∈ Θi,j |FS)
>
χ

δ
10

ϵ

∣∣∣∣∣Θ = θ

 . (169)

The next step is to transform the right-side of the inequality to a probability by a martingale parameterized by θ. The
corresponding results are represented by the Lemma 3 in [16].

Lemma 4. Suppose that MS(θ
′′) is a martingale w.r.t the filtration {FS : S ≥ 1} and probability measure P(·|Θ = θ) for any

θ′′ ∈ Θπ0
,

MS(θ
′′) = ℓS(θ

′′)− ℓS(θ∗S)−
S∑

s=1

∑
(i,j)

λ
(s)
i,j gi,j(θ) · log

gi,j(θ)

gi,j(θ
∗
S)

+
S∑

s=1

∑
(i,j)

λ
(s)
i,j gi,j(θ) · log

gi,j(θ)

gi,j(θ
′′)
, (170)

where

ℓS(θ) = log
S∏

s=1

gij(θ), (171)

and

θ∗S ∈ arg min
θ̃∈Supp(ρθ′ ),

π(θ) ̸=π(θ̃)

S∑
s=1

∑
(i,j)

λ
(s)
i,j gi,j(θ)log

gi,j(θ)

gi,j(θ̃)
. (172)
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There exists a χ0 > 0 such that when χ satisfies 0 < χ < χ0, it holds that

P

 max
1≤S≤τχ,δ(θ)

P(Θ ∈ Θπ0
|FS)

max
(i,j):Θi,j∩Θπ0

=∅
P(Θ ∈ Θi,j |FS)

>
χ

δ
10

ϵ

∣∣∣∣∣ Θ = θ



≤ P

 max
1≤S≤τχ,δ(θ),

θ′′∈Θπ0

MS(θ
′′) ≥ δ

2
|log χ|

∣∣∣∣∣ Θ = θ

 .
(173)

With Lemma 4, we know that establishing the upper bound of (169) equals to find an upper bound of the right hand
side of (173). It is noteworthy that the right hand side of (173) is a stochastic process, indexed by θ′′ and S, going beyond
a certain level (δ|log χ|/2).

To handle the level-crossing probabilities, we introduce the Azuma-Hoeffding inequality [3], [28] and derive the level-
crossing probability by aggregating marginal tail bounds of a random field by Lemma 5 and 6.

Lemma 5 (Azuma-Hoeffding Inequality). LetMS be a martingale w.r.t. the filtration {FS : S ≥ 1} and ∆MS =MS−MS−1.
Suppose that ∆MS ∈ [aS , bS ] where aS and bS are deterministic constants, for each S > 0, we have

P
(

max
1≤s≤S

Ms ≥ S0

)
≤ exp

(
− 2S2

0∑S
s=1(bs − as)2

)
. (174)

Lemma 6. Let {ζ(θ) : θ ∈ Θ} be a random filed over a compact set Θ ⊂ Rn that satisfies Assumption 2, where ζ(·) has a
continuous sample path almost surely under a probability measure P. Moreover, ζ(·) has a Lipschitz-continuous sample path in the
sense that there exists a constant κ such that for all θ,θ′ ∈ Θ,∣∣ζ(θ)− ζ(θ′)∣∣ ≤ κ∥θ − θ′∥ (175)

almost surely under P. We define
β(θ, b) = P

(
ζ(θ) ≥ b

)
, (176)

and for all γ > 0, it holds that

P
(

max
θ∈Θ

ζ(θ) ≥ b
)
≤ κn−1

L

γn−1δb
×
∫
Θ
β(θ, b− γ)dθ, (177)

where δb is the constant in Assumption 2.

With Lemma 5, we set
P = P(·|Θ = θ),

S = τχ,δ(θ),

S0 =
δ

2
|log χ| − 1,

MS = MS(θ
′′),

aS = bS = 2 max
θ∈Supp(ρθ′ ),

(i,j)∈C

|log gi,j(θ)|,

(178)

and for each θ′′, we have

P

(
max

1≤S≤τχ,δ(θ)
MS(θ

′′) ≥ δ

2
|log χ| − 1

∣∣∣∣∣ Θ = θ

)
≤ exp

(
−
2
(
δ
2 |log χ| − 1

)2
τχ,δ(θ) · a21

)
. (179)

According to Assumption 1 and 3, a1 <∞ stands and

P

(
max

1≤S≤τχ,δ(θ)
MS(θ

′′) ≥ δ

2
|log χ| − 1

∣∣∣∣∣ Θ = θ

)
≤ exp

(
−Ω(δ2|log χ|)

)
, (180)

where O(·) is the infinitesimal of the same order. Notice that

max
1≤S≤τχ,δ(θ)

MS(θ
′′)− max

1≤S≤τχ,δ(θ)
MS(θ

′′′)

≤ max
1≤S≤τχ,δ(θ)

|MS(θ
′′)−MS(θ

′′′)|

≤ τχ,δ(θ) · κ0 · ∥θ′′ − θ′′′∥, ∀ θ′′,θ′′′ ∈ Θπ0 ,

(181)
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where
κ0 = 4 max

θ∈Supp(ρθ′ ),

(i,j)∈C

|∇log gij(θ)| <∞ (182)

is the Lipschitz constant ofM1(θ
′′). Consequently,MS(θ

′) is a Lipschitz-continuous random field w.r.t. θ′′ ∈ Θπ0
. Then

adding the constraint θ′′ ∈ Θπ0
into (180) and adopting Lemma 6 give

P

 max
1≤S≤τχ,δ(θ),

θ′′∈Θπ0

MS(θ
′′) ≥ δ

2
|log χ| − 1

∣∣∣∣∣ Θ = θ


≤ exp

(
−Ω(δ2|log χ|)

)
· L(Θπ0) ·

τχ,δ(θ)
n−1κn−1

0

δb

= exp
(
−Ω(δ2|log χ|)

)
·O(|log χ|n−1).

(183)

Combine (167), (169), (173) and (183), we have

P(S ≤ τχ,δ(Θ),Θ ∈ Θπ0 ,Eπ0) ≤ exp
(
−Ω(δ2|log χ|)

)
·O(|log χ|n−1). (184)

we have established a upper bound for first term in the right-hand side of (166). To bound the second term, we adopt
the following lemma [16].

Lemma 7. For every full ranking involving n candidates π0 generated by (Λ, S), the corresponding risk is

RΘ(R(Λ, S)) =
∑

(i,j)∈C

I[θ′i < θ′j ]ri,j + I[θ′i > θ′j ](1− ri,j). (43)

If
E[R(R(Λ, S))] ≤ ϵ, (185)

we have

P(Θ ∈ Θπ0
,Ec

π0
) ≤

(
1 +

χ
δ
10

ϵ

)
ϵ. (186)

Consequently, (166) will be bounded by

P(S ≤ τχ,δ(Θ),Θ ∈ Θπ0
) ≤ exp

(
−Ω(δ2|log χ|)

)
·O(|log χ|n−1) +

(
1 +

χ
δ
10

ϵ

)
ϵ. (187)

Back to (163), it holds that

P(S ≤ τχ,δ(Θ) ≤ O(1)×
{

exp
(
−Ω(δ2|log χ|)

)
·O(|log χ|n−1) +

(
1 +

χ
δ
10

ϵ

)
ϵ

}
. (188)

Therefore, when χ→ 0
P(S ≤ τχ,δ(Θ) = o(1). (189)

We finish the proof.

By the definition of asymptotic optimality of manipulation policy (Λ, S):

inf
χ→0

R(Λ, S)

R∗ = 1, (46)

we know that (Λ, S) is asymptotic optimal when χ→ 0 if

R(Λ, S) = (1 + o(1)) ·R∗. (190)

Theorem 4 tells us that
R(Λ, S) = (1 + o(1)) ·R∗ = (1 + o(1))χEθ∼Supp(ρθ′ ) [τχ(θ)] (191)

as χ → 0 is sufficient to show the asymptotic optimality of (Λ, S). To prove the asymptotic optimality with complete
knowledge of the proposed stopping time (49) and the generation rule solved by (54), we require the identifiability of model
to adopt the MLE and obtain the preference score. It is worth noting that the BTL model could satisfy this requirement.

The following theorem provides the asymptotic upper bounds for the expected Kendall tau of the proposed manipula-
tion policy with complete information.
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Theorem 5. Consider the proposed stopping time (49) and the generation rule solved by (54) with complete knowledge, when the
exploration probability p ∈ (0, 1) will be

p ∝ |logχ|− 1
2+δ0 (192)

for some δ0 ∈
(
0, 12

)
. Then we have

E[R(R(Λ, S))] = O(χ). (193)

Proof. We first discuss the second stopping time S2. By the generation rule solved through (54), the expected Kendall tau
at S2 is

E[R(R(Λ, S2))] = E
∑

(i,j)∈C

I[θ′i < θ′j ]ri,j

=

∫
Supp(ρθ′ )

∑
(i,j):θ∈Θi,j

P

{
sup

θ1∈Θi,j

ℓS2
(θ1) > sup

θ2∈Θj,i

ℓS2
(θ2)

∣∣∣∣∣ Θ = θ

}
ρθ′(θ)dθ

=

∫
Supp(ρθ′ )

∑
θ∈Θi,j

P

{
sup

θ∈Θi,j

ℓS2(θ1)− sup
θ∈Θj,i

ℓS2
(θ2) > zα(χ)

∣∣∣∣∣ Θ = θ

}
ρθ′(θ)dθ

(194)

where R(Λ, S), ri,j , Θi,j , zα(χ), ℓS(θ) are defined as (41), (42), (52), (50) and (171) correspondingly. The above equation
can be further bounded by

E[R(R(Λ, S2))]

≤ n(n− 1)

2
· L
(
Supp(ρθ′)

)
× sup

θ∈Supp(ρθ′ )

ρθ′(θ)

× sup
θ∈Supp(ρθ′ )

max
(i,j):θ∈Θi,j

P

{
sup

θ′′∈Θi,j

ℓS2
(θ′′)− ℓS2

(θ) > zα(χ)

∣∣∣∣∣ Θ = θ

}
.

(195)

Here the inequality holds as
sup

θ1∈Θi,j

ℓS2
(θ1) ≥ ℓS2

(θ2), if θ2 /∈ Θi,j (196)

and
sup

θ∈Supp(ρθ′ )

ρθ′(θ) <∞ (197)

by Assumption (5). The last part of (195) can be decomposed as

P

{
sup

θ′′∈Θi,j

ℓS2
(θ′′)− ℓS2

(θ) > zα(χ)

∣∣∣∣∣ Θ = θ

}

≤ P

{
sup

θ′′∈Θi,j

ℓS2
(θ′′)− ℓS2

(θ) > zα(χ) and S2 ≤ τ
∣∣∣∣∣ Θ = θ

}
+ P

{
S2 ≥ τ

∣∣∣∣∣ Θ = θ

}
.

(198)

For the first term of the above right-hand side, we introduce S2 ∧ τ = min(S2, τ) and write

P

{
sup

θ′′∈Θi,j

ℓS2
(θ′′)− ℓS2

(θ) > zα(χ) and S2 ≤ τ
∣∣∣∣∣ Θ = θ

}

≤ P

{
sup

θ′′∈Θi,j

ℓS2∧τ (θ
′′)− ℓS2∧τ (θ) > zα(χ)

∣∣∣∣∣ Θ = θ

} (199)

Let η(θ′′) be a random field
η(θ′′) = ℓS2∧τ (θ

′′)− ℓS2∧τ (θ), ∀ θ′′ ∈ Θi,j . (200)

The marginal tail probability of η(θ′′) can be obtained by the following lemma [16].

Lemma 8. For all θ′′ ̸= θ and constant L > 0, we have

P

{
sup

θ′′∈Θi,j

ℓS∧τ (θ
′′)− ℓS∧τ (θ) > L

∣∣∣∣∣ Θ = θ

}
≤ exp(−L). (201)
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We can take L = zα(χ)− 1 and obtain

P

{
η(θ′′) > zα(χ)

∣∣∣∣∣ Θ = θ

}
≤ exp(−zα(χ) + 1). (202)

Moreover, η(θ′′) is a Lipschitz-continuous function as

η(θ′′)− η(θ′′′) ≤ |ℓS2∧τ (θ
′′)− ℓS2∧τ (θ

′′′)| ≤ τ · κ0∥θ′′ − θ′′′∥. (203)

Combining Lemma 6 and 7, we arrive at

P

{
sup

θ′′∈Θi,j

η(θ′′) > zα(χ)

∣∣∣∣∣ Θ = θ

}
≤ O

(
τn−1exp

(
− zα(χ)

))
. (204)

To bound P

{
S2 ≥ τ

∣∣∣∣∣ Θ = θ

}
, we need the following lemma.

Lemma 9. When τ satisfies
τ = Ω(|log χ|3), (205)

we have

P

{
S2 ≥ τ

∣∣∣∣∣ Θ = θ

}
≤ χ2. (206)

For the stopping time S1, we have the similar result:

P

{
S2 ≥ τ

∣∣∣∣∣ Θ = θ

}
≤ χ2, if τ = Ω(|log χ|3). (207)

Combining (198) with (204) and Lemma 8, we have

P

{
sup

θ′′∈Θi,j

ℓS2(θ
′′)− ℓS2(θ) > zα(χ)

∣∣∣∣∣ Θ = θ

}

≤ O(χ2) +O
(
τn−1exp

(
− zα(χ)

))
= O(χ2) +O

(
exp(−|log χ| − |log χ|1−α + (n− 1)log τ)

)
= O(χ2) +O

(
χexp(−|log χ|1−α + 3(n− 1)log |log χ|)

)
= o(χ)

(208)

and finish the analysis of S2.
For S1, we have

max
(i,j):1≤i<j≤n

exp

{
min

(
sup

θ1∈Θi,j

ℓS1(θ1)− sup
θ2∈Supp(ρθ′ )

ℓS1(θ2), sup
θ1∈Θj,i

ℓS1(θ1)− sup
θ2∈Supp(ρθ′ )

ℓS1(θ2)

)}

≤
∑

(i,j):1≤i<j≤n

exp

{
min

(
sup

θ1∈Θi,j

ℓS1
(θ1)− sup

θ2∈Supp(ρθ′ )

ℓS1
(θ2), sup

θ1∈Θj,i

ℓS1
(θ1)− sup

θ2∈Supp(ρθ′ )

ℓS1
(θ2)

)}

≤ exp(−zα(χ)).

(209)

We take logarithm for the both sides of the inequality

min

(
sup

θ2∈Supp(ρθ′ )

ℓS1
(θ2)−min

(
sup

θ1∈Θi,j

ℓS1
(θ1), sup

θ1∈Θj,i

ℓS1
(θ1)

))
≥ zα(χ). (210)

Then the expected Kendall tau at S1 will be bounded by

E[R(R(Λ, S1))]

≤ n(n− 1)

2
· L
(
Supp(ρθ′)

)
× sup

θ∈Supp(ρθ′ )

ρθ′(θ)

× sup
θ∈Supp(ρθ′ )

max
(i,j):θ∈Θi,j

P

{
sup

θ′′∈Θi,j

ℓS1
(θ′′)− ℓS1

(θ) > zα(χ)

∣∣∣∣∣ Θ = θ

}
.

(211)
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The rest of the proof is similar to that for S2.

Now we arrive at the asymptotic optimality of the expected stopping time of the proposed manipulation policy.

Theorem 6. Consider the proposed stopping time (49) and the generation rule solved by (54) with complete knowledge, when the
exploration probability p ∈ (0, 1) will be

p ∝ |logχ|− 1
2+δ0 (212)

for some δ0 ∈
(
0, 12

)
. Then we have

lim sup
χ→0

E[S]
E [τχ(Θ)]

≤ 1. (213)

Proof. First we establish a upper bound for the expectation of a stopping time S, the numerator E[S].

E[S] =
∞∑

m=0

E
[
S
∣∣ m(1 + δ)τχ(Θ) ≤ S < (m+ 1)(1 + δ)τχ(Θ)

]
≤ (1 + δ)E[τχ(Θ)] +

∞∑
m=1

E
[
S
∣∣ m(1 + δ)τχ(Θ) ≤ S < (m+ 1)(1 + δ)τχ(Θ)

]
≤ (1 + δ)E[τχ(Θ)] + (1 + δ) · max

θ∈Supp(ρθ′ )
τχ(θ)·

∞∑
m=1

(m+ 1)P(m(1 + δ)τχ(Θ) ≤ S < (m+ 1)(1 + δ)τχ(Θ))

≤ (1 + δ)E[τχ(Θ)] + (1 + δ) · max
θ∈Supp(ρθ′ )

τχ(θ)·

∞∑
m=1

(m+ 1) max
θ∈Supp(ρθ′ )

P
(
m(1 + δ)τχ(Θ) ≤ S < (m+ 1)(1 + δ)τχ(Θ)

∣∣∣ Θ = θ
)
.

(214)

We start with stopping time S2. For m ≥ 1,

P
(
m(1 + δ)τχ(Θ) ≤ S2 < (m+ 1)(1 + δ)τχ(Θ)

∣∣∣ Θ = θ
)

≤ P

m(1 + δ)τχ(Θ) ≤ S2 < (m+ 1)(1 + δ)τχ(Θ), max
S/(1+δ)τχ(Θ)

∈[δ2m,m+1]

∥θ̂S − θ∥ ≤ |log χ|−δ1

∣∣∣∣∣ Θ = θ



+ P

 max
S/(1+δ)τχ(Θ)

∈[δ2m,m+1]

∥θ̂S − θ∥ ≥ |log χ|−δ1

∣∣∣∣∣ Θ = θ

 ,

(215)

where θ̂S is the MLE

θ̂S = arg sup
θ∈Supp(ρθ′ )

L

(
θ,w

(S)
A

)
, (48)

and the δ1 and δ2 is two constants related to exploration probability p ∝ |logχ|− 1
2+δ0 :

δ1 =
δ0
8
, δ2 = |log χ|−

δ0
2 . (216)

The following lemma show a upper bound of the second term in the preceding display.

Lemma 10. Suppose λ(S) = {λ(S)
i,j } is a generation rule at S step and {ϵλ,T1,T2}, {δT1,T2} is two sequences of real numbers such

that
min

T1≤S≤T2,

(i,j)∈C

λ
(S)
i,j ≥ ϵλ,T1,T2

,

lim
T1→∞

T1 · ϵλ,T1,T2
· δ2T1,T2

=∞.

(217)
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Then, it holds that

P

(
max

T1≤S≤T2

∥θ̂S − θ∥ ≥ δT1,T2

∣∣∣∣∣ Θ = θ

)
≤ exp

(
− Ω

(
T1ϵ

2
λ,T1,T2

δ4T1,T2

))
×O

(
Tn
2

)
. (218)

When

T1 = m(1 + δ)δ2τχ(θ), T2 = m(1 + δ)τχ(θ), ϵλ,T1,T2
= Ω

(
|logχ|− 1

2+δ0
)
, δ2T1,T2

= |logχ|−δ1 , (219)

we have

P

 max
S/(1+δ)τχ(Θ)

∈[δ2m,m+1)

∥θ̂S − θ∥ ≥ |log χ|−δ1

∣∣∣∣∣ Θ = θ


≤ exp

(
−Ω
(
m(1 + δ)δ2τχ(θ)|logχ|−4δ1 |logχ|−1+2δ0

))
×O

(
mn−1|logχ|n−1

)
= exp

(
−Ω
(
m|logχ|2δ0−4δ1δ2

))
×O

(
mn−1|logχ|n−1

)
= exp

(
−Ω
(
m|logχ|δ0

))
×O

(
mn−1|logχ|n−1

)
.

(220)

Now we analyze the first term on the right-hand side of (215). For m ≥ 1, S2 > m(1 + δ)τχ(θ) implies that there exists a
pairwise comparison (i, j) such that ∣∣∣∣∣ sup

θ1∈Θi,j

ℓS(θ1)− sup
θ2∈Θj,i

ℓS(θ2)

∣∣∣∣∣ ≤ zα(χ), (221)

where S = m(1 + δ)τχ(θ). Without loss of generality, let θ ∈ Θi,j and S2 > m(1 + δ)τχ(θ) further shows that

ℓS(θ)− sup
θ2∈Θj,i

ℓS(θ2) ≤ zα(χ). (222)

Consequently, the first term on the right-hand side of (215) will be bounded

P

m(1 + δ)τχ(Θ) ≤ S2 < (m+ 1)(1 + δ)τχ(Θ), max
S/(1+δ)τχ(Θ)

∈[δ2m,m+1)

∥θ̂S − θ∥ ≤ |log χ|−δ1

∣∣∣∣∣ Θ = θ



≤ P

ℓS(θ)− sup
θ2∈Θj,i

ℓS(θ2) ≤ zα(χ), max
S/(1+δ)τχ(Θ)

∈[δ2m,m+1)

∥θ̂S − θ∥ ≤ |log χ|−δ1

∣∣∣∣∣ Θ = θ

 .
(223)

The preceding display can be bounded by the following lemma.

Lemma 11. Suppose that the generation rule λ∗(θ̂S) is solved by (54):

λ∗(θ̂S) ∈ arg max
λ∈∆

min
θ̃∈Supp(ρθ′ )

π(θ̂S )̸=π(θ̃)

∑
(i,j)

λi,j · gi,j(θ̂S) · log
gi,j(θ̂S)

gi,j(θ̃)
. (54)

If λ∗(θ̂S) is adopted with probability 1− o(1) uniformly for S ∈ [m(1 + δ)δ2τχ(θ),m(1 + δ)τχ(θ)], we have

P

ℓS(θ)− sup
θ2∈Θj,i

ℓS(θ2) ≤ zα(χ), max
S/(1+δ)τχ(Θ)

∈[δ2m,m+1)

∥θ̂S − θ∥ ≤ |log χ|−δ1

∣∣∣∣∣ Θ = θ


≤ exp

(
− Ω(m|log χ|)

)
×O

(
|log χ|n−1mn−1

)
,

(224)

where S = m(1 + δ)τχ(θ).
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Combining the results of Lemma 9 and Lemma 10, (215) will be bounded as

P
(
m(1 + δ)τχ(Θ) ≤ S2 < (m+ 1)(1 + δ)τχ(Θ)

∣∣∣ Θ = θ
)

≤
(

exp
(
− Ω(m|log χ|)

)
+ exp

(
− Ω(m|log χ|δ0)

))
×O

(
|log χ|n−1mn−1

)
.

(225)

Aggregating the preceding display with (214), the expectation of the stopping time S2 will be bounded

E[S2] ≤ (1 + δ)E[τχ(Θ)] + (1 + δ) · max
θ∈Supp(ρθ′ )

τχ(θ)·

∞∑
m=1

(m+ 1) max
θ∈Supp(ρθ′ )

P
(
m(1 + δ)τχ(Θ) ≤ S < (m+ 1)(1 + δ)τχ(Θ)

∣∣∣ Θ = θ
)

≤ (1 + δ)E[τχ(Θ)] +O(|log χ|)×
∞∑

m=1

(m+ 1)
(

exp
(
− Ω(m|log χ|)

)
+ exp

(
− Ω(m|log χ|δ0)

))
×O

(
|log χ|n−1mn−1

)
≤ (1 + δ)E[τχ(Θ)] + o(|log χ|).

(226)

The preceding display is the desired conclusion for the asymptotic optimality of S2.
Next we proceed to the case of S1. Notice that the event S1 > S implies that∑

(i,j)

exp

(
min

(
sup

θ1∈Θi,j

ℓS(θ1)− sup
θ2∈Supp(θ′)

ℓS(θ2), sup
θ1∈Θj,i

ℓS(θ1)− sup
θ2∈Supp(θ′)

ℓS(θ2)

))
> exp(−zα(χ)) (227)

which further conducts

n(n− 1) ·max
(i,j)

exp

(
min

(
sup

θ1∈Θi,j

ℓS(θ1)− sup
θ2∈Supp(θ′)

ℓS(θ2), sup
θ1∈Θj,i

ℓS(θ1)− sup
θ2∈Supp(θ′)

ℓS(θ2)

))

> exp(−zα(χ)).

(228)

It means that there exist a pairwise comparison (i, j) such that∣∣∣∣∣ sup
θ1∈Θi,j

ℓS(θ1)− sup
θ2∈∈Θj,i

ℓS(θ2)

∣∣∣∣∣ ≤ zα(χ) + log n(n− 1). (229)

Then the analysis process of S1 is similar to S2 by replacing zα(χ) with zα(χ) + log n(n− 1).
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PROOF OF THEOREM 3
The following proposition [10] shows the strong duality for the Wasserstein DRO problem that we investigate in this paper:

max
θ∈Supp(ρθ′ )

sup
Q∈Uγ(P)

Eq∼Q [L(θ, q)] , (59)

This strong duality result ensures that the inner supremum admits a reformulation which is a simple, univariate
optimization problem. Note that there exists the other strong duality result of Wasserstein DRO [25].

Proposition 2. Let d : R×R→ [0,∞] be a lower semi-continuous cost function satisfying d(p, q) = 0 whenever p = q. For λ ≥ 0
and loss function ℓ

ℓ(θ, pi,j) = pi,j · log gi,j(θ), (230)

where f(i,j)(θ) is the probabilistic mass function of pairwise comparison (i, j), we define

ψλ,ℓ(θ, qi,j) := sup
qi,j∈R+

{
ℓ(θ, qi,j)− λ · d(pi,j , qi,j)

}
. (231)

Then it holds that

sup
Q∈Uγ(P)

Eq∼Q
[
L
(
θ, q

)]
= min

λ≥0

 λγ +
∑
(i,j)

ψλ,ℓ(θ, qi,j)

 (232)

With the strong duality, we have the following result.

Theorem 3. Suppose that p is drawn from the empirical distribution P (57) and q is drawn from Q ∈ Uγ(P) (58). If the distance
between pi,j and qi,j is chosen as

d(pij , qij) =
∣∣ pij − qij ∣∣. (61)

Then, the DRO problem (59) has an equivalent form:

max
θ∈Supp(ρθ′ )

h(θ), (62)

where
h(θ) =

√
γ
∑
(i,j)

log gi,j(θ) +
∑
(i,j)

pi,jlog gi,j(θ). (63)

Moreover, if the comparison model is BTL model, we have

h(θ) =
√
γ ·

∑
(i,j)

log(1 + exp(θj − θi))

+
∑
(i,j)

pi,j log(1 + exp(θj − θi)).
(64)

Proof. Let ∆ij = qij − pij where q = (q1,2, . . . , qn,n−1) ∈ RN
+ . We define ψλ,ℓ(θ) as

ψλ,ℓ(θ) = sup
q

∑
(i,j)

{
ℓ(θ, qij)− λ

[
d(pi,j , qi,j)

]2}
= sup

q

∑
(i,j)

{
qij · log g(i,j)(θ)− λ

∣∣pij − qij∣∣2}

=
∑
(i,j)

sup
∆ij∈R

(
∆ijbij − λ∆2

ij + pijbij
)
,

(233)

where
bi,j = log gi,j(θ), (234)

and the third equality holds due to ψλ,ℓ(θ) is a decomposable function. Expanding (233), we can simplify ψλ,ℓ(θ) as below:

ψλ,ℓ(θ) =
〈
p, b

〉
+
∑
(i,j)

sup
∆ij∈R

(
∆ijbij − λ∆2

ij

)

=

 ⟨p, b⟩+
1

4λ
∥b∥22, if λ > 0,

∞, if λ = 0.

(235)
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Next, we investigate the duality of (59) with Proposition 2. As ψλ,ℓ(θ, qi,j) =∞ when λ = 0, the dual formulation of the
supremum in (59) would be

sup
Q∈Uγ(P)

Eq∼Q [L(θ, q)]

= min
λ≥0

{
λγ + ψλ,ℓ(θ)

}

= min
λ>0

{
λγ + ⟨p, b⟩+ 1

4λ
∥b∥22

}
.

(236)

By the definition of b, we know that
L(θ, p) =

〈
p, b

〉
(237)

Moreover, notice that the right hand side of (236) is a convex function which approaches infinity when λ→∞, the global
optimal of it can be obtained uniquely via the first order optimality condition as

∂

∂λ

{
λγ + ⟨p, b⟩+ 1

4λ
∥b∥22

}
= 0, (238)

and the optimal dual variable is

λ∗γ =
∥b∥2
2
√
γ
. (239)

Substituting λ∗γ and b into (236), we have

sup
Q∈Uγ(P)

Eq∼Q [L(θ, q)]

=
√
γ · ∥b∥2 + ⟨p, b⟩

=

√
γ
∑
(i,j)

[log gi,j(θ)]2 +
∑
(i,j)

pi,jlog gi,j(θ).

(240)

When we sepicify the probability mass function of (i, j) as

gi,j(θ) =
eθi

eθi + eθj
,

we can obtain the formulation of h for the BTL model.

DETAILS OF ALGORITHM 3 AND 4
Definition 8 (p-Wasserstein distance). Let p ∈ [1,∞]. The p-Wasserstein distance between distributions P, Q ∈ P(Ω) is defined
as

Wp (P, Q) =



(
min

γ∈Γ(P, Q)

∫
Ω×Ω

[
d(p, q)

]p
γ
(
dp, dq

)) 1
p

, p <∞

inf
γ∈Γ(P, Q)

γ-ess sup
Ω×Ω

d
(
p, q

)
, p =∞,

where Γ(P, Q) denotes the set of all Borel probability distributions on Ω×Ω with marginal distributions P and Q, d : Ω×Ω→ R+

is a nonnegative function, and γ-ess sup expresses the essential supremum of d(·, ·) with respect to the measure γ.

The Wasserstein distance arises in the problem of optimal transport [40], [49]: for any coupling γ ∈ Γ(P, Q), the
conditional distribution γw|w′ can be viewed as a randomized overhead for ‘transporting’ a unit quantity of some material
from a random location w ∼ P to another location w′ ∼ Q. If the cost of transportation from w ∈ Ω to w′ ∈ Ω is given by
[d(w,w′)]p,Wp (P, Q) will be the minimum expected transport cost [42].

Introducing a dual variable µ for the constraint 1/2∥θ − θA∥22 ≤ β, we solve the original optimization problem (62)
by maximizing its dual problem. Furthermore, the strong duality stands for (62) as the Slater condition is satisfied by θA.
Then the standard min-max swap will be performed as

max
µ≥0

H(µ) := inf
θ∈Rn

{
L1(θ, µ)

∣∣∣ θ ⪰ 0, 1⊤θ = 1
}

= inf
θ∈Rn

{µ
2

∥∥θ − θA∥∥22 − µβ + h(θ)
∣∣∣ θ ⪰ 0,1⊤θ = 1

}
.

(241)
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Algorithm 3: Robust Estimation

Input : the probability mass function g, the support set Supp(ρθ′), the incomplete knowledge S and the solution
accuracy ϵ.

1 Initialization:
µmin = 0,

µmax = µ∞ = max
{
m · ∥z∥∞,

√
m

2β
· ∥z∥2

}
,

where z = [z1,2, . . . , zn,n−1]
zij = max

θ∈Supp(ρθ′ )
− log gi,j(θ).

2 while |µmax − µmin| > ϵ · µ∞ do
3

µ =
1

2
(µmin + µmax),

θ(µ) = SimplexProjection(θ(0), µ),

∇H(µ) =
1

2
∥θ(µ)− θA∥22 − β.

4 if ∇H(µ) > 0 then
5

µmin = µ,

6 else
7

µmax = µ.

8 end
9 end

10 Update

µ =
1

2

(
µmin + µmax

)
.

11 Solve the distributionally robust estimation

θ̂ = SimplexProjection(θ(0), µ)

Output: the distributionally robust estimation θ̂.

By Corollary 4.4.5 of Chapter VI in [27], we know that

∇H(µ) = ∇µ L1(θ(µ), µ)

= ∇µ

{
µ

2

∥∥θ(µ)− θA∥∥22 − µβ + h(θ(µ))

}

=
1

2

∥∥θ(µ)− θA∥∥22 − β.
(242)

If ∇H(µ) can be solved efficiently, it is possible to binary search with log(1/ε) iterations and the accuracy ε for the µ∗ as
∥∇H(µ∗)∥ ≤ ε.

Given µ∗ and denote the probabilistic simplex as

∆ = { θ ∈ Rn | θ ⪰ 0, 1⊤θ = 1 }, (243)

the corresponding θ(λ∗) can be obtained by the projected sub-gradient descent which minimizes the objective L with the
following sequence {θ(t)}Tt=1,

θ(t+1) = Proj∆
(
θ(t) − ηt∇L(θ(t), µ∗)

)
, (244)

where ∇L(θ(t), µ∗) is the (sub)gradient of L(θ, µ∗) at θ(t), ηt is the positive step size and Proj∆(φ) is the Euclidean
projection of φ onto ∆, i.e. the solution of

min
θ∈Rn

1

2
∥φ− θ∥22, s.t. θ ⪰ 0, 1⊤θ = 1. (245)
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Algorithm 4: SimplexProjection(θ(0), µ)
Input : the partial dual problem (241)

1 Initialization: the initial step size η0, the maximum iteration number T1, U = [n], s = 0, v = 0.
2 for t = 0 to T1 − 1 do
3

θ(t+1) = θ(t) − ηt∇L(θ(t), µ).

4 end
5 while U ̸= ∅ do
6 Pick k ∈ U at random and separate U as

G = { j ∈ U | θ(T1)
j ≥ θ(T1)

k },

L = { j ∈ U | θ(T1)
j < θ

(T1)
k }.

7 Set
∆v = |G|, ∆s =

∑
j∈G

θ̂
(T1)
j .

8 if (s+∆s)− (v +∆v) < 1 then
9

s← s+∆s, v ← v +∆v, U ← L

10 else
11

U ← G/{k}.

12 end
13 end
14

θ̂
(T1)

=
[
θ(T1) − γ · 1

]
+
,

where
γ =

s− 1

v
.

Output: θ̂
(T1)

.

The projection θ(t+1) has the form
θ(t+1) = [φ(t+1) − γ1]+ (246)

where [·]+ = max{·, 0} and γ holds

γ =
1

ρ

(
ρ∑

i=1

φ
(t+1)
i − 1

)
, (247)

ρ = max

{
j ∈ [n]

∣∣∣∣∣ ψj −
1

j

(
j∑

r=1

ψr − 1

)
> 0

}
, (248)

where ψ is the sorted version of φ(t+1) with descent order.

DETAILS OF ALGORITHM 5

λ̂
(m)

= arg max
λ∈∆

min
θ∈Θ:π(θ)̸=π(θ̂

(m)
)

g(θ,λ; θ̂
(m)

),

where λ = (λ1,2, . . . , λn,n−1),

g(θ,λ; θ̂
(m)

) =
∑

(i,j)∈A

λi,jD
i,j(θ̂

(m)
∥θ),

and Di,j(θ̂∥θ) is the Kullback-Leibler (KL) divergence from f(θ; (i, j), y) to f(θ̂; (i, j), y) as

Di,j(θ̂∥θ) =
∑

y∈{−1,1}

f(θ̂; (i, j), y) log
f(θ̂; (i, j), y)

f(θ; (i, j), y)
.
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Algorithm 5: MirrorDescent(S, f,Θβ
A,θ

(m))

Input : The MLE estimator θ̂ and the total number of iterations L.
1 Initialization: A starting point λ0 and a constant c0 > 0.
2 for l = 1 to L do
3 Solve the maximizing sub-problem

θ(λl−1) ∈ arg max
θ∈Θ:r(θ) ̸=r(θ̂)

− g(θ;λl−1, θ̂),

where
g(θ;λl−1, θ̂) =

∑
(i,j)∈A

λl−1
i,j D

i,j(θ̂∥θ).

4 Calculate the sub-gradient d(λl−1)

d(λl−1) =
(
d(λl−1)1,2, . . . , d(λ

l−1)n,n−1

)
,

where
d(λl−1)i,j = −Di,j(θ̂∥θ(λl−1)).

5 Solve the minimizing sub-problem

λl ∈ arg min
λ∈∆

ηl⟨d(λl−1),λ⟩+D(λ∥λl−1),

where ηl = c0/
√
l and

D(λ∥λl−1) =
∑

(i,j)∈A

λi,j log
λi,j

λl−1
i,j

6 end
7 The categorical distribution is obtained through averaging the sequence {λ1, . . . ,λL} like

λ̂ =
1

L

L∑
l=1

λl.

Output: The categorical distribution λ̂.

θ(λ(l−1)) ∈ arg max
θ∈Θ:r(θ)̸=r(θ̂)

− g(θ;λ(l−1), θ̂),

θ(λ(l−1)) ∈ arg min
θ∈Θβ

A:π(θ)̸=π(θ̂)

g(θ;λ(l−1), θ̂),

max
δ≥0

G(δ)

:= inf
θ∈Rn

{
L2(θ, δ)

∣∣∣ θ ⪰ 0, 1⊤θ = 1,π(θ) ̸= π(θ̂)
}

= inf
θ∈Rn


δ

2

∥∥θ − θA∥∥22 − δβ
+ g(θ;λ(l−1), θ̂)

∣∣∣∣∣∣
θ ⪰ 0,1⊤θ = 1,

π(θ) ̸= π(θ̂)


Balance the choice probability of the selection rule

λ
(m)
i,j = p · 2

n(n− 1)
+ (1− p)λ̂(m)

i,j , i, j ∈ [n], i ̸= j.

is chosen such that
∑

i θ
(t+1)
i = 1. With Lemma 2 of [21], we know that γ plays the same role as the unique index i

which
i∑

j=1

(
φ
(t+1)
j − φ(t+1)

i

)
< 1

i+1∑
j=1

(
φ
(t+1)
j − φ(t+1)

i+1

)
≥ 1,

(249)

or i = n if there does not exist any index satisfies (249).



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 45

The projection θ(λ) = [θi(λ), . . . , θn(λ)] has the form

θi(λ) =

[
θ̃i −

1

λ

∂F (θ)

∂θi

]
(250)

finding the the Euclidean projection of vector v(λ) = [v1, . . . , vn] ∈ Rn

vi = (251)

onto the probabilistic simplex. Then the projection θ(λ) has the form θi(λ) = (vi − η)+ for some η ∈ R where η is chosen
such that θ(λ) will satisfy the probabilistic unit sphere constraint. It is equivalent to find the unique index i such that

i∑
j=1

(vj − vi) < 1, and
i+1∑
j=1

(vj − vi+1) ≥ 1, (252)

and i = n if there does not exist such an index. By (252), we know that

vj − η
{
≥ 0, j ≤ i,
≤ 0, j ≥ i (253)
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