
AVMON: Optimal and Scalable Discovery of Consistent

Availability Monitoring Overlays for Distributed Systems∗

Ramses V. Morales and Indranil Gupta†

Department of Computer Science

University of Illinois at Urbana-Champaign

{rvmorale,indy}@cs.uiuc.edu

Abstract

This paper addresses the problem of selection and discovery of a consistent availability monitoring

overlay for computer hosts in a large-scale distributed application, where hosts may be selfish or colluding.

We motivate six significant goals for the problem - consistency, verifiability, and randomness, in selecting

the availability monitors of nodes, as well as discoverability, load-balancing, and scalability in finding

these monitors. We then present a new system, called AVMON, that is the first to satisfy these six

requirements. The core algorithmic contribution of this paper is a range of protocols for discovering the

availability monitoring overlay in a scalable and efficient manner, given any arbitrary monitor selection

scheme that is consistent and verifiable. We mathematically analyze the performance of AVMON’s

discovery protocols, and derive optimal variants that minimize memory, bandwidth, computation, and

discovery time of monitors (or different combinations of these metrics). Our experimental evaluations

of AVMON use three types of availability traces - synthetic, from PlanetLab, and from a peer-to-peer

system (Overnet) - and demonstrate that AVMON works well in a variety of distributed systems.
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1 Introduction

Large-scale distributed applications running atop PlanetLab [10] and Enterprise Grids [18], as well as on

top of peer-to-peer (p2p) systems, have to deal with the phenomenon of churn. Churn refers to rapid and

continuous arrival and departure, failure, and birth and death, of computer hosts (nodes) in the system. Such

availability variation across nodes and across time, has recently led to the design of many availability-aware

strategies for distributed computing problems such as replication, multicast, etc., [3, 4, 7, 9, 11, 14]. These

strategies aim to make such distributed systems churn-resistant and and churn-adaptive.

However, such availability-aware strategies necessarily rely on the presence of an underlying availability

monitoring service. The high-level goal of an availability monitoring service is to maintain long-term avail-

ability information for each host (i.e., for each node) in the system. While a few availability monitoring

solutions have been proposed in the literature (e.g., [3, 4, 11]), the generic availability monitoring problem

has not been addressed as yet. This paper is the first to explicitly define goals for the availability moni-

toring problem, to address these goals with a general and overlay-independent solution, and to explore the

optimality of discovery protocols for the overlay.

The problem challenge in the availability monitoring overlay problem comes from the fact that nodes may

be selfish or colluding, thus reporting higher-than-measured availabilities for themselves and their “friend”

nodes (we will elaborate on this soon). Yet, the benefits of an availability monitoring service that overcomes

this challenge, are numerous and varied. For instance, such a service can be used for availability-based replica

selection [3, 4, 7, 14], availability-based parent selection in overlay multicast trees [7], and for implementing

availability-based reliability predicates for multicast [11]. In fact, Godfrey et al recently showed in [7] that

with detailed availability history about each node in the system, one can design “smart” node selection

strategies for replication of a service or a file, and that these outperform availability-agnostic strategies.

Finally, availability histories of nodes can even be used to predict availability of individual nodes in the

future, e.g., [9].

Concretely, this availability monitoring problem consists of two orthogonal sub-problems: I. Selection and

Discovery of the Availability Monitoring Overlay: for each node x, select and discover a list of nodes who

monitor node x, and II. Availability History Maintenance: what is the exact mechanism used by a monitor of

a given node x to store x’s availability history. While several different techniques have been proposed for the

sub-problem II, i.e., how a monitor maintains history (see, e.g., [3, 9]), the solution space for the sub-problem

I is relatively less-explored. In other words, any existing technique for availability history maintenance, such

as raw, aged, recent, etc. [9], can be used orthogonally with any availability monitoring overlay.

Thus, our focus in this paper is only on the more challenging sub-problem I above: of selection and

discovery of the Availability Monitoring Overlay. Formally, this problem can be stated as follows (following
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the notation of [11]). For each node x, select and discover a small subset of nodes to monitor x. Denote this

monitoring set of x as PS(x), called the pinging set of node x. Each of the nodes in PS(x) is responsible

for monitoring node x’s long-term availability history. Similarly, node x might in turn be asked to monitor

the availability of a small set of other nodes - this is called TS(x), or the target set of x. The TS and PS

relationships are inverses of each other.

We assume a system model whereby nodes may be selfish and colluding. That is, each node would like

to have its availability seen as high as possible by the system. In addition, a given node may have up to a

constant number of colluders (“friends”) that always misreport its availability. This makes the design of an

availability monitoring service challenging, and none of the existing solutions appear to satisfy this model.

To address the above challenges, we specify six goals for our problem. The first three goals are for the

selection of the pinging set of a node - consistency, verifiability, and randomness. In addition, we would also

desire discoverability, i.e., a node should be able to locate its pinging set and target set quickly and easily,

and in a manner that is load-balanced and scalable. These six requirements can be stated concretely as follows:

1. Consistency: Given two nodes x, y, the relationship of whether or not y ∈ PS(x), should be consistent,

i.e., this relationship should not change due to any factors such as joining and leaving of nodes in the system,

with the size of the system, etc. This ensures that each node will always be monitored by a consistent set

of other nodes, regardless of whatever else happens in the system. Consistency is also required in order

maintain long-term availability history of node x at each of its monitors, and to avoid having to transfer

such histories upon node churn. Consistency can avoid pollution of monitoring node sets with colluders.

Finally, consistency is related to the next important property called Verifiability.

2. Verifiability: Given two nodes x, y, any third node should be able to correctly verify whether y ∈ PS(x)

or not. This is an important requirement as this prevents selfish nodes from selecting and advertising its

colluding nodes as being in its PS(x).

3. Randomness: For each node x, PS(x) should consist of a random selection of nodes from across the

system, and this selection should be completely uncorrelated with the PS(y) of any other node y. Formally,

this can be understood as two requirements: (a) [randomness] every node should be picked as a candidate

for PS(x) with the same likelihood as any other node, i.e., given three distinct nodes x, y, z, and that

y ∈ PS(x), then Pr(z ∈ PS(x)|y ∈ PS(x)) = Pr(z ∈ PS(x)); and (b) [non-correlation] given four distinct

nodes w, x, y, z, and that two nodes y, z ∈ PS(x), and also that y ∈ PS(w), then Pr(z ∈ PS(w)|y, z ∈

PS(x)&y ∈ PS(w)) = Pr(z ∈ PS(w)). Condition (a) is important in order to have each node be monitored

by others that are less likely to be collusive with it and report a high availability for it. In addition, this also

helps in load-balancing. Condition (b) is needed to avoid having groups of nodes (e.g., y and z) that are
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correlated to be present together in several pinging sets. If such correlated nodes start maliciously over-(or

under-)reporting availabilities, availability information for several other nodes could get jeopardized.

4. Discoverability: Any node x should be able to discover its PS(x) and TS(x) quickly. Further, any other

node y should be able to locate at least a constant number of (any) given node x’s PS(x). This enables

protocols using the availability service, e.g., [3, 4, 7, 9, 11, 14], to gather information about individual nodes’

availability1.

5. Load Balancing: For discovery of pinging sets, the message overhead, memory overhead, and computa-

tional overhead, should each be uniformly distributed across all nodes.

6. Scalability: For discovery of pinging sets, the per-node message overhead, computational overhead, and

memory overhead should each be low and scalable.

Existing availability monitoring overlay schemes in literature today predominantly adopt one of the fol-

lowing three approaches - self-reporting, centralized, or DHT-based. (1) [Self-reporting] relies on a node

reporting its own availability (i.e., PS(x) = {x}). (2) [Central] uses a central availability monitor (i.e.,

PS(x) = y0, where y0 is a specific node or a small fixed subset of nodes). (3) [DHT-based] uses a p2p DHT

(distributed hash table [13, 15]) overlay to decide the monitoring set for a node, e.g., akin to [3, 4].

Each of the above existing schemes has disadvantages, and none of these schemes satisfies all of the

conditions (1)-(6) we laid down above. Firstly, self-reporting does not follow randomness and thus allows

nodes to potentially lie about their own availability by reporting arbitrarily high values. Secondly, central

monitoring is neither load-balanced, nor scalable.

Finally, the DHT-based approach typically decides the PS(x) for a node x based on the position of the

hash of x in a DHT ring, by selecting the neighboring K nodes with id’s around the hashed nodeID of x (i.e.,

a “replica set” around a hashed value). This approach does not satisfy either Consistency or Randomness,

and has problems w.r.t. Verifiability2. Consistency may be violated when there is churn, e.g., consider a

newly born node joining very close to the hashed value of x; this changes the set of monitoring nodes. This

could thus cause frequent transfers of node x’s availability history across churned nodes. Randomness is

violated because the condition 3(b) above is not satisfied - two nodes y, z that are in a PS(x) are likely to

hash to nearby points on the ring, and thus are likely to appear together in other pinging sets as well (of other

nodes that hash nearby). Finally, verifiability could be expensive under node churn - birth of new nodes

which hash on the ring in between a previously verified monitor’s hash and x’s hash will require monitors to

be updated. Such overhead is avoided by consistent monitor selection in our new system called AVMON.

1We do not consider the problem of aggregating node availability histories in this paper.

2Other approaches based on the hashing of x also suffer from the same disadvantages.
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In-Brief Contributions of this Paper: This paper presents AVMON, the first complete system for

selection and discovery of an availability monitoring overlay, in order to satisfy all the six properties of

consistency, verifiability, randomness, discoverability, load-balance, and scalability. The two core algorithmic

contributions of the current paper are: (i) a distributed, efficient, scalable, and load-balanced algorithm for

discovery of monitors according to any consistent and verifiable selection scheme, and (ii) derivation of

optimal variants of this discovery protocol, in order to optimize different combinations from among the

metrics of memory and communication bandwidth (M), discovery time (D), and computation complexity

(C). Specifically, for (ii), we discover three variants of AVMON that satisfy different optimality conditions

- MD (optimal w.r.t. M and D), DC (optimal w.r.t. D and C), and MDC (optimal w.r.t. M, D, and C).

The AVMON system uses the consistent hash-based pinging set selection leveraged from [11] - we describe

this briefly and assume it in the rest of the paper. The AVMON system itself also includes practical

optimizations for our algorithms in order to address high-churn systems. We have implemented AVMON,

and our evaluation using three types of churn traces - synthetic, from PlanetLab, and from a peer-to-peer

system (Overnet) - shows that AVMON works well in a variety of churned distributed systems.

The rest of this paper is organized as follows. Section 2 discusses other related work. Section 3 describes

the basic AVMON algorithms, and Section 4 analyzes the discovery algorithms, while also deriving optimal

variants. Section 5 presents experimental results, and Section 6 concludes.

2 Other Related Work

Section 1 discussed existing availability monitoring approaches, and systems that use such a monitoring

service. This section briefly touches on other work that is related to our approach.

Distributed membership maintenance protocols have been the focus of several researchers. The goal of

these protocols is to have each node maintain a neighbor list, which then defines a membership graph in the

system. SWIM [5] and the gossip-based membership protocol by van Renesse et al. [16] use probabilistic

mechanisms to have each node maintain a complete neighbor list of all nodes in the system (i.e., a complete

membership graph).

Several systems have aimed to build a random membership graph among the nodes of a distributed system

(without attention to consistency or verifiability). The SCAMP membership system [6] works by having each

joining node initiate several joining requests which then undergo random walks and probabilistic inclusion in

the membership lists of recipient nodes. The CYCLON system [17] works by having each node periodically

exchange its neighbor lists with a random neighbor, and pick a new neighbor list from the union of these

lists. T-Man [8] is yet another membership protocol that is able to support a generic class of membership
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graph predicates, thus allowing arbitrary membership graphs (such as random ones) to be formed by local

node actions.

Somewhat like SCAMP, AVMON uses a random spanning tree approach to have joining nodes inform

a subset of other nodes of their presence. AVMON also uses a mechanism similar to (but simpler than)

CYCLON to constantly keep changing the neighbor lists of nodes. While the goal of CYCLON was to have

the neighbor lists change to combat system churn, AVMON’s goal is to also use the neighbor lists to discover

monitoring relationships among node pairs. Although AVMON has some design decisions similar to some of

the above systems (as noted), none of these systems addresses availability monitoring as a first class problem.

While the constructed membership graphs are random, the conditions of consistency and verifiability are

not addressed by these systems.

Finally, as noted before, the monitoring relationship in this paper is borrowed from our previous work

[11]. However, that paper [11] did not address scalable discovery of monitors (as is the focus of the current

paper). Instead, [11] had each node broadcast (to everyone in the system) whenever it joined the system

- this led to quick discovery, but used a very high message bandwidth. We label this approach of [11] as

Broadcast, and compare our new AVMON approaches analytically with it (see Table 1 in Section 4).

3 The AVMON Approach - Overview and Algorithm

This section first discusses the system model, then gives a brief overview of the AVMON approach, and

then describes individual components of the AVMON algorithms.

System Model and Problem: We assume a distributed system where each node may leave, fail in a

crash-stop manner, or rejoin the system, at any time. In addition, nodes may be born (i.e., join for the first

time), and may also die (i.e., leave the system for good). Deaths are silent and not explicit, i.e., a node may

leave or fail for the last time without specifying it was a death. As noted in Section 1, each node may be

selfish and colluding. That is, each node would like to have its availability seen as high as possible by the

system. In addition, a given node may have up to a constant number of colluders (“friends”) that always

misreport its availability. We assume that communication between pairs of nodes is reliable and timely if

both nodes are currently alive.

Nodes are assumed to have persistent storage that can be retrieved after a failure or a rejoin - this will be

used to store availability information about other monitored nodes. Finally, we also assume that the system

has a stable system size (i.e., number of alive nodes), and this is known a priori as N . This assumption

is true in practice, as even high-churn p2p systems have a stable system size; the actual system size varies

always within a constant factor of the stable value [2].
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Recall that our problem is to select and discover, for each node x, a set of pinging set nodes PS(x) that

will monitor x’s availability. In addition, node x needs to be informed of nodes in its target set TS(x) (the

inverse of PS(.)) that it needs to monitor. Our goal is to satisfy all the properties (1)-(6) described in

Section 1 3.

AVMON Overview: First (Section 3.1), AVMON relies on a hash-based implementation of the monitor-

ing relationship. This hash-based function can be executed by any node in the system, and determines if

a given arbitrary pair of nodes x, y is related by y ∈ PS(x) (or vice-versa). We chose a hash-based imple-

mentation because it is consistent, verifiable, and random. Second (Section 3.2), in order to discover any

consistent and verifiable monitoring relationships (such as the one in Section 3.1), AVMON maintains and

uses a coarse overlay. Each node maintains a fixed-size neighbor list, called the coarse view, that is a random

subset of the remaining nodes in the system. This coarse overlay is used by nodes to discover monitoring

relationships between other pairs of nodes and inform the relevant nodes of such discovery. The protocol for

coarse overlay maintenance and neighbor discovery is scalable, and load-balanced. Finally (Section 3.3), the

PS(.) sets are used to monitor other nodes in a scalable manner, with optimizations.

3.1 Monitor Selection Scheme - Using Consistent Hashing

This section describes a consistent, verifiable, and random, scheme that AVMON uses in selecting when a

given node x is a monitor for another given node y. We leverage this scheme from our previous work [11].

Given < IPaddress, portnumber > pairs for two nodes x and y, we use a consistent hash function H with

range normalized to real interval [0, 1] (MD-5 or SHA-1 could be used), and two consistent parameters K and

N to determine if x ∈ PS(y) (or y ∈ PS(x)). Here, K is a small fixed number (typically a constant) and N

is a fixed parameter that reflects the expected system size. Even though distributed systems undergo churn,

the actual system size stays quite stable [2], thus it suffices to set this N to a value that is approximate - the

properties of our algorithms continue to hold as long as the real system size stays within a constant factor

of parameter N .

Given this, two nodes x, y are related as:

y ∈ PS(x) ⇐⇒ H(y, x) ≤ K
N [Consistency Condition]

It is easy to see that an expected O(K) nodes will be present in PS(x) for any node x. It is also evident

that this relationship is consistent, verifiable, and random, at any third node.

3Although garbage collection of dead nodes is not an explicit goal, we will address it via the optimization called “Forgetful

Pinging” in Section 3.3.
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3.2 Monitor Discovery - Composition and Maintenance of the Coarse View

While the previous section described a specific consistent monitor selection scheme, this section aims at

discovering monitors according to any arbitrary monitor selection scheme, as long this scheme is consistent

and verifiable. Such a discovery protocol needs to be efficient, scalable, and load-balanced.

The discovery is done by having each node maintain a coarse view, a random subset of other nodes in

the system. This coarse view is used to discover monitors for other nodes. Although the discovery protocol

described below is generic, for concreteness we will assume the hash-based monitor selection from Section 3.1.

Each node x maintains a set of neighbors in its coarse view, denoted as CV (x). The size of each node’s

coarse view is limited to a maximal cvs entries. In order to maintain randomness of the coarse view at each

node, we describe two sub-protocols below: (1) the (re-)joining sub-protocol executed for nodes (re-)entering

the system, and (2) the coarse view maintenance and monitor discovery sub-protocol.

Joining Sub-Protocol: Figure 1 describes the join sub-protocol. Node x initiates this protocol whenever

it either joins the system freshly (i.e., after being born), or rejoins it. The goal of this protocol is to have an

expected cvs other nodes know about node x, at any point of time. The protocol works by having x create

a JOIN message, specifying its own id (x), and an integer weight (values of which are detailed in the next

paragraph). This JOIN message is sent to a random node to start with. When a node y receives such a

JOIN message with a non-zero weight c, it first checks if x is already present in CV (y). If not, y includes

x in its CV , and decrements the weight value c of the JOIN. Finally, y forwards two JOIN messages with

weights set to (b c
2c) and (d c

2e) respectively, each to a random node from its CV (y).

The goal of this protocol is to have an expected cvs other nodes include given node x in their coarse

views, by creating a random spanning graph with the requisite number of internal and leaf nodes. Thus,

the initial weight assigned to the JOIN message by a freshly joining node (being born) is thus cvs. On the

other hand, for a node x that is rejoining the system, this weight is set to the minimum of cvs, and the time

elapsed since the last departure of node x from the system (time in “protocol periods”, term defined in the

next paragraph). This is because, once node x leaves the system, the protocol described next (in Figure 2)

ensures that the average rate at which nodes delete x from their own coarse view is 1 per protocol period.

Section 4 analyzes the join sub-protocol in detail, showing that it is unlikely for multiple JOIN messages to

be received at a node, and that the spread time of the JOIN information is O(log(cvs)) w.h.p.

Coarse View Maintenance and Discovery Sub-Protocol: Figure 2 shows the pseudocode for main-

taining the coarse view and for discovering monitoring relationships. The maintenance protocol described

in the figure is executed at each node once every protocol period (also known as “rounds”)- protocol period

durations are fixed at nodes, but are executed asynchronously across nodes. The sub-protocol at node x has
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For node x to (re-)join the system:

Pick a random node y;

if (this is the first join of this node)

Send y a JOIN(x, cvs) message (with an integer weight of cvs);

else

let tdown =
time since the latest leave from system of this node

protocol period duration

Send y a JOIN(x, min(cvs, tdown));

Inherit view from this random node;

Participate in the Coarse Membership Protocol (Figure 2);

Each node y receiving a JOIN(x, c) message:

if(c ≤ 0)

discard JOIN message; return;

if (x is not already present in CV (y))

add x to CV (x);

c := c − 1;

Create two messages JOIN(x, b c
2
c) and JOIN(x, d c

2
e);

Send each of these messages to a randomly selected node from CV (x);

Figure 1: Joining (and Rejoining) Sub-Protocol for Nodes.

three tasks: to eliminate from CV (x) nodes that have left the system (and may or may not rejoin), to shuffle

CV (x) with new entries (to keep it random), while discovering monitoring relationships in the process.

The detailed protocol operations are as follows. Once during each protocol period, node x picks a single

node z uniformly at random from its CV (x), and pings it - an unresponsive node is removed from the CV 4.

Observe that this implies that a dead node z (i.e., one that has left for good) will eventually be deleted from

all coarse views that contained z (Theorem 2 in Section 4.1).

Since an expected cvs nodes know about any given node z, and the probability of any of these nodes

picking z to ping is 1
cvs per protocol period, the expected number of nodes that delete a non-alive node z

from their coarse view is cvs× 1
cvs = 1 per protocol period. Recall that this motivated the weights assigned

4Notice that this pinging is not the same as the availability monitoring (which will be discussed in Section 3.3).
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At Node x: Periodically (once every protocol period)

Pick a random node z from CV (x) and ping it;

If (z does not respond)

Remove z from CV (x);

Pick a random alive node w from CV (x);

Fetch CV (w) from w;

Check all (u, v) pairs (u 6= v) in ({CV (x) ∪ {x, w}} × {CV (w) ∪ {x, w}})∪

({CV (w) ∪ {x, w}} × {CV (x) ∪ {x, w}})

for the consistency condition H(u, v) ≤ K
N

;

for (each pair (u, v) discovered to satisfy the above consistency condition)

Inform both nodes u and v of the match by sending a NOTIFY(u, v) ;

CV (x) := ∅;

CV (x) := Subset of cvs random entries from CV (x) ∪ CV (w) ∪ {w};

Figure 2: Coarse Membership and Monitor Discovery Sub-Protocol.

to JOIN messages in Figure 1.

During each protocol period, node x also picks a random and alive node w ∈ CV (x), and fetches its coarse

view CV (w). It checks the consistency condition (Section 3.1) among all pairs of nodes (u, v) and (v, u),

where u ∈ CV (x) ∪ {x, w}, v ∈ CV (w) ∪ {x, w}, and u 6= v. Any node pair (u, v) discovered to satisfy the

consistency condition are informed via a NOTIFY message sent to both. Finally, to maintain randomness

of coarse views, node x selects a new coarse view CV (x) by selecting cvs elements at random from the set

CV (x)∪CV (w) ∪ {w} 5. Section 4 will show that (1) if a node and its potential monitor both stay alive for

long enough, they will eventually discover each other (Theorem 1); (2) the expected discovery time is small

for reasonably small values of cvs.

3.3 Using the Monitoring Overlay

This section briefly discusses how the monitoring overlay is used to track availability, how nodes report their

monitors, and an important optimization. From the previous section, whenever a NOTIFY(u, x) message

is received at node x, if node u is not already present in PS(x), the consistency condition H(u, x) ≤ K
N

5Observe that the above protocol implies that at any time at node x, the consistency condition for all pairs within CV (x)

have already been checked.
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is re-checked and if true, node u is included in PS(x) (i.e., node x will be monitored by node u from now

on). Similarly, on receipt of a NOTIFY(x, u) message at node x, the corresponding consistency condition is

checked and if true, node u is included in TS(x) (i.e., node x will monitor u’s availability from now on).

Each node x periodically sends monitoring pings to each of the nodes in TS(x), and records this information

in its persistent storage. Please note that monitoring pings are different from the pings in the protocol of

Figure 1. Monitoring pings may be sent out at a frequency different from the protocol period of the coarse

view membership protocol, i.e., monitoring pings are sent out once every monitoring period, which may be

different from the protocol period of Figure 2. As noted in Section 1, the granularity in which measured

availability information about TS(x) nodes is stored at x can be arbitrary, i.e., stored availability information

could either be raw, aged, or recent, etc.

Whenever a node y wants to discover a given node x’s pinging set nodes, it is the burden of node x to

report to node y the requisite number of its monitoring nodes. For instance, node y’s policy may be to require

x to report at least l ≤ K monitoring nodes. Node x can then select any l of its PS(x) nodes to report to y,

but cannot lie about these, since y can check the consistency condition for each reported monitor. Node y

can then ask each reported monitor individually for x’s availability history. Section 4.3 analyzes how large

K needs to be to support such an “l out of K” policy.

Optimization - Forgetful Pinging: When nodes die, TS(x) and PS(x) may be filled with garbage nodes

that may never join the system again. Since deaths are silent, there is no way of knowing whether an

unresponsive node will rejoin or not, thus these garbage elements cannot be deleted. Instead, we propose

here an optimization to reduce the rate of monitoring pings sent to these unresponsive nodes. The goal here

is to reduce the bandwidth consumption due to dead nodes.

The optimization works as follows at node x - if a node u in TS(x) has been unresponsive for time t, and

t > τ , where τ is a time-threshold, and ts(u) was the last up-time (session time) for node u measured at

node x (alternatively, this could be exponentially averaged), then pick u to ping with probability c·ts(u)
ts(u)+t ,

per monitoring protocol period. The goal here is to reduce the load of pinging, yet ensure that on average,

between two successive joins, node u receives at least an expected c monitoring pings from each of its PS(u)

nodes. Section 5 evaluates the effectiveness of this optimization.

4 Analysis: AVMON Performance and Optimal Variants

We first analyze in Section 4.1 the performance of the joining and coarse view maintenance protocols (from

Section 3.2), then Section 4.2 studies different optimal variants of AVMON discovery. Section 4.3 discusses
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values for K and the effect of colluding nodes.

4.1 Basic Analysis

As a precursor to our optimality discussion, this section first analyzes the join, coarse view maintenance,

and discovery protocols of Figures 1,2. Then, we derive the memory, message, computation and discovery

time complexity for the AVMON protocol. We will assume that cvs = o(
√

N) in all of the discussion below.

Coarse View Analysis: Spread and Dissemination Time of JOIN information: Since the weight

of the very first JOIN(x, w) message from a freshly born node x is set to cvs, no more than cvs nodes can

add x to their coarse views right after x’s birth. In addition, when the node rejoins, it sets the initial weight

to make up for the lost number of entries pointing to it (Figure 1). thus keeping (as Section 3.2 explained)

at cvs the expected number of coarse views pointing to x.

We analyze the expected dissemination time of a newly born node x’s first JOIN message. This upper-

bound also holds for JOINs sent by rejoining nodes. Notice that the spread of JOIN(x, .) messages, via the

random coarse view graph, is akin to building a random spanning tree with cvs total nodes (internal + leaf

nodes). This gives a spread time of O(log(cvs)) time for the JOIN information, unless a large number of

nodes receive duplicate JOIN(x,.) messages. In fact, this “unless” clause is improbable - the probability

of a given node receiving a JOIN(x, .) message in a given round with m forwarders is = 1 − (1 − 2
N )m ≤

1 − (1 − 2
N )cvs ' 2·cvs

N , since cvs = o(
√

N). Thus, the expected number of duplicate JOIN-receiving nodes,

per protocol period, is upper-bounded by cvs × 2·cvs
N = o(1). In addition, the probability that none of the

cvs nodes receive duplicate JOIN messages is =(1 − 2
N )cvs ' (1 − 2·cvs

N ), which → 1 as N → ∞.

Thus, with high probability, the JOIN(x, .) spreads quickly to the requisite cvs nodes in time that is

O(log(cvs)). In the worst case, this time is O(log(N)).

Discovery time of the Consistency Condition for a node pair (D): Firstly, we have the following

theorem for eventual discovery of monitors:

Theorem 1: If (x, y) satisfy the consistency condition, and if nodes x, y stay alive for long enough in the

system, then x will eventually discover y, i.e., y ∈ TS(x) eventually.

This arises because node y will see node x an infinite number of times in its coarse view, and thus node y

is guaranteed to eventually pick x to exchange coarse views with (Figure 2), during which y will check for

the consistency condition with x.

Secondly, we show that discovery is in fact fast. We do so by upper-bounding the expected discovery

time, where we are interested only in an asymptotic bound. Given a pair of nodes x, y, the discovery of

the monitoring relationship between x and y occurs at the first instance when some node (not necessarily
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either x or y) checks for the consistency condition with the pairs (x, y) and (y, x). Based on the protocol of

Figure 2, this check happens only during the coarse view fetches. Given a node u that fetches the coarse view

of another node w, the probability that x will be present in CV (u) and that y will be present in CV (w), is

= ( cvs
N × cvs

N ) = cvs2

N2 . Thus, the probability that the (x, y) pair is not checked by this particular coarse view

fetch is ≤ (1− cvs2

N2 ) (ignoring the residual probability of y ∈ CV (u) and x ∈ CV (x), since we are interested

only in asymptotic bounds). Now, notice that per protocol period, there are a total of N such coarse view

fetches. Putting all this together, we can derive the probability of the pair (x, y) being checked by at least

one of the fetches in one protocol period as:

≥ 1 − (1 − cvs2

N2
)N ≥ 1 − ((1 − cvs2

N2
)

N
2

cvs2 )
−cvs

2

N ≥ 1 − e
−cvs

2

N

Thus, the expected time to discovery of the monitoring relationship for an arbitrary node pair (x, y) can be

bounded as (in number of protocol periods):

E[D] ≤ 1

1 − e
−cvs2

N

Notice that with cvs = o(
√

N) and N → ∞, the exponential series expansion can be used to simplify this

as: E[D]upper-bound ' N
cvs2 . We will assume cvs = o(

√
N) henceforth in the paper.

Effect of Dead Nodes: From the first three lines of Figure 2, we have:

Theorem 2: A dead node z (i.e., one that has left for good) will eventually be deleted from all coarse

views that contained z.

In addition, a node x with dead node z ∈ CV (x), will delete z w.h.p. 1
N in T ∗ = (cvs · log(N)) protocol

periods. This is because the probability of deletion of z from CV (x) in T rounds is = 1− (1− 1
cvs )T , which

is ' (1 − 1
N ) for T = T ∗.

Memory, Message Overhead (M): The size of the memory at each node x is (|CV (x)| + |PS(x)| +

|TS(x)|), which is O(cvs + 2K) = O(cvs). The message overhead for the Coarse Membership Protocol

(Figure 2) is O(cvs) bytes per protocol period. The message overhead for the monitoring protocol is O(K)

per monitoring protocol period. Since K is usually smaller than cvs, the primary bandwidth consumption

arises from the coarse view fetches. With cvs = O( 4
√

N) (Optimal-MDC - see Section 4.2 below), this turns

out to be a very small overhead. For N = 1 Million, cvs ' 32, a protocol period=1 second, and with 6 Bytes

per entry, the per-node bandwidth consumption is 192Bps, which is reasonably small.

Computational Overhead (C): This is O(cvs2) per protocol period per node, and arises from the

consistency checking following the coarse view fetches (Figure 2). For N = 1 Million, and cvs = 4
√

N

(Optimal-MDC - see Section 4.2 below), this turns out to be 1000 hash computations per protocol period.
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However, MD5 is a very fast hash function - [1] shows a processing capacity of 32MBps (on a Pentium 4 2.1

GHz processor under Windows XP SP 1, C++ program on Visual .NET 2003), which means that 1000 hash

computations per protocol period (each with 12 B) will take about 0.375 ms. This is reasonable since the

length of a protocol period in our Coarse Membership Protocol is very large (several seconds). For instance,

a protocol period duration of 10 s implies that 0.003% of CPU time is used for such hash calculations.

4.2 Optimal Variants of AVMON

From the analysis in the previous section, the size of the coarse view (cvs) determines a tradeoff between

memory, communication bandwidth, and computation on the one hand, and discovery time on the other

hand. However, an application may be interested in optimizing only some of these metrics, and not others.

For instance, if AVMON is run within the hosts of an in-house PC cluster connected over a high bandwidth

LAN, we may be interested in minimizing only the computation (C) and discovery time (D), but not the

message or memory. Alternatively, AVMON being run in a PlanetLab-like cluster with multicore machines

may not care about computation, but would like to optimize discovery time (D), and memory and bandwidth

(M). Of course, there are applications that would like to optimize all of M,D,C.

Below, we mathematically derive the values of cvs for each of these three optimal variants (MD, MDC

and DC), and then discuss the practicality of these optimal variants6. For each of these, we will assume that

cvs = o(
√

N).

Optimality Analysis 1 - Optimal-MD: We would like to minimize both memory utilization and

message bandwidth (M) at each node (cvs units), as well as the discovery time (D) which is E[D] = 1

1−e
−cvs2

N

.

Thus, we want to minimize the function: f(cvs) = cvs + 1

1−e
−cvs2

N

' cvs + N
cvs2 .

Differentiating f w.r.t. cvs gives us:

d(f(cvs))

d(cvs)
= (1 − 2 · N

cvs3
) = 0 ⇒ cvsOptimal−MD =

3
√

2N

Notice that d(f(cvs))2

d2(cvs) = 6·N
cvs4 > 0 at this optimum, thus implying it is a minimum of f . This is the optimal

cvs value to minimize memory, bandwidth, and discovery time. The optimal values of memory, per-node

message bandwidth (M), and expected discovery time (D) are each O( 3
√

2N) (different units in each case).

Optimality Analysis 2 - Optimal-MDC: We would like to minimize both memory utilization and

message bandwidth (M) at each node (cvs units), the discovery time (D): E[D] = 1

1−e
−cvs2

N

, as well as the

computational overhead (C). Thus, we want to minimize the function:

g(cvs) = cvs + cvs2 + 1

1−e
−cvs2

N

' cvs + cvs2 + N
cvs2 .

6Notice that optimizing MC does not make sense since both M and C increase with cvs.
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Approach Memory, Expected Computations

Bandwidth per Discovery per

Round (M) Time (D) Round (C)

Broadcast (from [11]) O(N) O(log(N)) (One-Time only)

AVMON, Generic cvs O(cvs) 1

1−e
cvs2

N

O(cvs2)

AVMON, cvs = log(N) O(log(N)) N
(log(N))2 O((log(N))2)

(Optimal-MD) AVMON, O( 3
√

2N) 3
√

2N O((2N)
2/3

)

cvs = 3
√

2N

(Optimal-MDC,-DC) AVMON, O( 4
√

N)
√

N O(
√

N)

cvs = 4
√

N

Table 1: AVMON Variants: Performance of different algorithms for availability monitoring

(cvs=Coarse View Size).

Differentiating g w.r.t. cvs gives us:

d(g(cvs))

d(cvs)
= (1 + 2cvs − 2 · N

cvs3
) = 0 ⇒ cvsOptimal−MDC ' 4

√
N

Notice that d(g(cvs))2

d2(cvs) = 2 + 6·N
cvs4 > 0 at this optimum, thus implying it is a minimum of g. This gives a

memory and per-round bandwidth of O( 4
√

N) each, an expected discovery time of
√

N , and a computational

overhead of O(
√

N) (with different units in each case).

Optimality Analysis 3 - Optimal-DC: To minimize the discovery time (D) and computation com-

plexity (C), the reader will notice that the optimizing function can be derived in a manner similar to the

function g in the Optimal-MDC analysis above, and gives an optimal cvsOptimal−DC = 4
√

N .

Table 1 summarizes the results of our optimality analysis, and also compares the benefits of the AVMON

approach to the näıve Broadcast algorithm of [11].

In practice - Optimal-MDC AVMON (cvs = 4
√

N): As mentioned previously, for N = 1 Million,

cvs = 4
√

N = 32, and K = log2(N) = 20, the size of CV (x) is 192B, and the per-protocol period bandwidth

is 192Bps. The expected discovery time is 1000 time units, however a given node x discovers one new pinging

set node on average at least every 50 protocol periods. The computational overhead due to hash calculation

is also low.

As pointed out previously, the death of nodes from the system may cause TS(x) to contain garbage entries.

This is unavoidable since deaths are silent. However, if Nlongterm is the number of nodes that has been born
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in the system recently, then the expected size of TS(x) is K · Nlongterm/N . For minimal-death PlanetLab-

like Grid systems, N can be chosen to be the maximal number of machines, thus E[|TS(x)|] ≤ K. For p2p

systems, if Nlongterm is within a constant factor of N , E[|TS(x)|] is still bounded. Further, our forgetful

pinging optimization (Section 3.3) keeps the bandwidth effect of garbage entries referring to dead nodes,

very low. Experiments in Section 5 elaborate on the benefits of forgetful pinging.

4.3 Continuous Monitoring and Collusion-Resilience

In this section, we analyze how large K (the pinging set size) has to be in order to ensure continuous

monitoring of each node at all times. We also bound the minimal and maximal sizes of the pinging sets, and

finally we analyze the effect of colluders in the system misreporting the availability of a given node.

Choosing K: Suppose the average node availability (system-wide average) is a. Then the probability that

for node x, at least one PS(x) node is up is = (1− (1− a)K). If K = c.log(N), then this probability can be

written as = 1 − N−c/log(1/(1−a)). Choosing c such that c/log(1/(1 − a)) ≥ 2, implies that the probability

for each node x to have at least one PS(x) node alive is:

= (1 − N−c/log(1/(1−a)))N ≥ (1 − N−c/log(1/(1−a))+1) ≥ (1 − 1
N ), which → 1 as N → ∞.

In order to have the minimal size of any PS(.) at least l(= O(1)) nodes w.h.p, we need to choose K =

(l + 1).log(N). This will help support “l out of K” policies such as described in Section 3.3. This derivation

comes about because the probability of a node having fewer than l nodes in its PS(.) is:

=
∑l−1

i=1[C
N
i · (1 − K

N )(N−i) · (K
N )i], which:

≤ [(1 − K
N )N · ∑l−1

i=1 CN
i ] = [(1 − K

N )N · O(N (l−1))] ≤ [e−K · O(N (l−1))] = O( 1
N2 ).

Thus the probability that none of the N nodes will have fewer than l nodes in their PS(.) is

= (1 − O( 1
N2 ))N ' 1 − O( 1

N ).

Finally, Balls and Bins analysis ([12], Theorem 1) can be used to predict that having K = O(log(N)) will

ensure that the maximal size of any node’s TS(.) (and thus PS(.)) set is O(log(N)) w.h.p.

Resilience to Collusion: The AVMON system avoids nodes misreporting their own availability, but

there is the possibility that a node may be able to recruit colluders to misreport its availability. We analyze

the probability of pollution of PS(.) by such colluders. Suppose each node x in the system has C(= o( N
log(N) ))

colluding nodes, i.e., nodes that are willing to misrepresent x’s availability as a value higher than the measured

value, or in the worst case, as 100%. Given K = O(log(N)), the probability that none of the colluders of a

given a node x appear in its PS(x) is:

= (1 − K
N )C ' (1 − CK

N ) → 1 as N → ∞.

Thus, it is probabilistically impossible for a node to have its PS(.) set polluted by any colluders.
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The above calculation was for one node x. Finally, notice if there are D total of such colluding relationships

in the system (across any colludee-colluder pair of nodes) and D = o( N
log(N) ), K = O(log(N)), then the

probability that none of the colludee-colluder pairs are reflected in the system-wide PS(.) relationships is:

= (1 − K
N )D ' (1 − DK

N ) → 1 as N → ∞.

Thus, none of the colluders will have any effect on the system, w.h.p.

5 Experimental Evaluation

We implemented AVMON in C, and present here experimental results from a trace-driven discrete event

simulation in this section. All tests were run on a computer host with a 2.80GHz Intel Pentium 4 CPU, 2GB

RAM, and Fedora Core 4 Linux.

In order to test the efficacy of AVMON in practice, we studied individually the effect of injecting five

different availability models, falling into three classes - (I) synthetic churn models (labeled in our plots

as STAT,SYNTH, and SYNTH-BD), (II) availability traces from PlanetLab all-pairs-pings (labeled PL), and

(III) churn traces collected from a deployed p2p system called Overnet (labeled OV). STAT models a static

network with no churn, while SYNTH models a system with nodes joining and leaving according to exponential

distributions (i.e., Poisson processes), but no births or deaths (i.e., no nodes that are new or leaving for good).

SYNTH-BD extends the above models to include node birth and death according to exponential distributions

(i.e., Poisson processes). All the above three models in (I) ensure a stable value for the system size, i.e.,

the current number of alive nodes in the system. The PL,OV models do not have the Poisson assumption

and reflect the true availability variation in these systems. The PlanetLab host availability traces (for the

PL experiments) [7] were done once each second, and were injected as such in the simulation. The Overnet

availability traces were from the authors of [2], were measured once every 20 minutes (i.e., availabilities of

all nodes were measured once every 20 minutes), and are injected as such in the simulation.

In what follows, we will distinguish results from the individual five scenarios mentioned above. However,

in all these scenarios, the AVMON protocol used the following default settings: (1) the protocol period (see

Figure 2) was T = 1 minute; (2) per-node coarse view size cvs = 4 · 4
√

N , where N was the stable system size

for each of the STAT,SYNTH,SYNTH-BD settings, and was the long-term average system size for each of the PL

and OV settings;7 (3) parameter K = log2(N) (see Section 3.1); (4) libSSL’s MD5 implementation was used

for the hash-based consistency condition, with only the first 64 bits returned considered (see Section 3.1);

(5) the forgetful pinging parameters τ = 2 minutes, c = 1 (see Section 3.3); (6) the monitoring protocol

period TA = 1 minute (see Section 3.3).

Before discussing the data, we need to mention a few more details about the five individual availability

7We set cvs a factor of 4 above cvsOptimal−MDC for performance reasons.
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models used. The stable system size N for each of the STAT,SYNTH,SYNTH-BDmodels was varied from 100 to

2000. For SYNTH, we wanted to achieve a 20% per-hour rate of churn, akin to the Overnet traces [2], hence

the leaving rate λl and rejoin rate λr were set as λl = λr = 0.2N
60 per minute. In addition, for SYNTH-BD, we

wanted to achieve a 20% per-day rate of births and deaths, thus the birth rate λb and death rate λd were set

as λb = λd = 0.2N
1440 per minute. Finally, the stable system size for PL was N = 239, and for OV was N = 550.

The metrics of interest measured in the following sections are discovery time, and memory, computation,

and bandwidth overheads. Each experiment on each of the plots shown below was run for 48 hours. Each

point on each plot depicts the average across relevant nodes considered.

5.1 Effect of Varying System Size in the STAT,SYNTH,SYNTH-BD Models

This section shows, for each of the synthetic models STAT,SYNTH,SYNTH-BD, the effect of different values

of N , ranging from 100 to 2000, on the metrics of interest. For each of STAT,SYNTH,SYNTH-BD, an initial

warm-up period of 1 hour was used, where nodes were allowed to be born, die, join, and leave according to the

respective model. For each of STAT and SYNTH, a control group, consisting of a new set of nodes numbering

10% of the stable system size, was then made to join simultaneously, in order to measure discovery time of

their monitors. The new nodes followed the respective availability model. For SYNTH-BD, the control group

was implicit, i.e., consisted of nodes born after the warm-up stage.

Discovery Time: Although the expected number of monitors K was set as log2(N), this experiment at first

focuses only the time to find, for each node in the control group, at least one of its monitors. Henceforth, we

call this as the “discovery time” of the first monitor of that node. For instance, this could be used to satisfy

the “l out of K” policy (see Section 3.3) with l = 1. Figure 3 plots the average time to discovery of the

first monitor for each node in the control group8. This plot illustrates two observations about the average

discovery time: (1) it stayed consistently below 1 minute (recall that the protocol period itself was 1 minute),

and (2) it was not affected by joins and leaves (compare STAT and SYNTH lines), although it appeared to be

affected by births and deaths (compare SYNTH and SYNTH-BD lines) 9.

Yet, discovery stayed fast in spite of births and deaths. Figures 4 and 5, show the cumulative distribution

function (CDF) of the discovery time for the two models STAT and SYNTH-BD respectively. Observe that in

each of these settings, at least 93% of first monitors were discovered within 60 seconds. To wrap up, Figure 6

8For each point on the plot, the average was taken over all measured discovery times, but by ignoring the one highest

measured discovery time datapoint for that setting. Such points are ignored because they are outliers (the top ignored values

were 110 min, 72 min, and 42 min) and would skew our conclusions if included.

9For the SYNTH-BD setting, discovery time was measured from among the new nodes born after the warm-up - these numbered

as 47 for N = 100, 198 for N = 500, 390 for N = 1000, and 785 for N = 2000.
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Figure 3: Average discovery times of first monitors for the

control group nodes introduced in the three synthetic models.
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x-axis) for each node in control group, for the three synthetic

models.

shows the average times to discover, for each node, the first L monitors of the node. This plot illustrates

that for each churn model, PS(.) nodes were discovered at uniform time intervals. Thus, we conclude that

AVMON’s discovery time stays low, regardless of birth, death, join and rejoin.

Computational Overhead: Figure 7 shows that the average computations per second per node varied

sublinearly with N , and the per-minute overhead was close to 2 × cvs2. Figure 8 then illustrates the CDF

of this distribution across nodes. This data showed us that even for N = 2000, the worst-case computation

at any node was 0.611 ms per minute, which is about 1% of the CPU. Both plots, put together, show that

the computational overhead of AVMON is not influenced much by churn.

Memory Usage: The total memory at each node x, due to (CV (x)| + |PS(x)| + |TS(x)|), is plotted in
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Figure 7: Average computations per time unit (with 1 stan-

dard deviation), averaged over all control group nodes, for

STAT,SYNTH,SYNTH-BD models.
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Figure 8: CDF of the computational overhead from Fig-

ure 7.

Figure 9, and the CDF of the distribution across all nodes is shown in Figure 10. The measured memory

utilization was close to the expected value of (2K + cvs). For instance, when N = 2000 (and K = 11,

cvs = 27), Figure 9 shows that for STAT, the average per-node memory stayed below the expected value

of 49 entries. For the churned models SYNTH, SYNTH-BD, the average value was only slightly above that

expected, primarily because of garbage entries in the PS(.), TS(.) sets. Finally, in Figure 10, from the CDF

distributions for STAT,SYNTH,SYNTH-BD for N = 2000, we can conclude that the memory usage of AVMON

is minimally influenced by churn.

Bandwidth: Although the upcoming Section 5.4 studies per-node outgoing bandwidth in detail, we can

calculate this in the STAT model as (K + cvs) per minute. For N = 2000 (with K = 11, cvs = 27), 8B per

coarse view entry, 8B per monitoring ping message, this turned out to be 5.067Bps per node.

5.2 Effect of Varying Coarse View Size in STAT Model

As evident from our analysis of Section 4, varying the coarse view size cvs determines a tradeoff among

discovery time, memory, bandwidth, and computation. This section studies the practical implications of

varying cvs. In order to isolate the effects of cvs from churn, only the STAT model was used. We used four

different values for cvs based on the stable system size: 4 · 4
√

N , 6 · 4
√

N , 8 · 4
√

N , and 10 · 4
√

N .

Figure 11 shows that the discovery time (both average and standard deviation) decreased as cvs was

increased. For each value of N , the curve has a knee at the second data point - increasing cvs beyond

this (cvs = 8 · 4
√

N , e.g., for N = 2000, this is cvs ' 40), did not improve either the average or variance

of discovery time much. Figure 12 plots both the memory utilization (left y-axis) and the computational

overhead per node (right y-axis). First, notice that for a fixed value of cvs, system size N had no influence
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 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 16  20  24  28  32  36  40  44  48  52  56  60  64  68
 0

 20

 40

 60

 80

 100

 120

 140

 160

A
ve

ra
ge

 n
um

be
r 

of
 m

em
or

y 
en

tr
ie

s

A
ve

ra
ge

 n
um

be
r 

of
 c

om
pu

ta
tio

ns
 p

er
 s

ec
on

d

cvs

memory, N=500
memory, N=2000

comps., N=500
comps., N=2000

Figure 12: Memory entries vs. cvs, and computations per

minute vs. cvs on STAT churn model.

on either memory or the computational overhead. Second, notice that increasing cvs too much beyond the

knee of the curve derived from the previous Figure 11 raised the computational overhead. Yet, for practical

purposes, the per-node computational overhead stayed so small as to be negligible – even for cvs = 68, the

expected 9375.79 hashes would take only about 3.52 ms to execute (this is once per minute)10. Third, the

memory varied linearly with cvs - even for cvs = 68, the memory usage was 728B (assuming 8B per coarse

view entry). Thus, in practice, the value of cvs should be set based on the knee of the curve from Figure 11.

10Assuming a Pentium 4 2.1 GHz processor under Windows XP SP 1, C++ program on Visual .NET 2003.
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Figure 13: CDF of Discovery time of first monitors, for

each of PL and OV traces.
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Figure 14: CDF of number of memory entries per node, for

each of PL and OV traces.

5.3 Effect of Realistic and High Churn Models - PlanetLab and Overnet Traces

This section plots discovery time and memory utilization for AVMON under the per-second availability

traces from PlanetLab (PL) and the per-20-minute availability traces from Overnet (OV). For PL, we had the

stable system size N = 239, and K = 8, cvs = 16. For OV, we had N = 550, and K = 9, cvs = 19.

Figure 13 shows the CDF for the discovery time of the first monitor for each node. In OV, a total of

Nlongterm = 1319 nodes had been born after two days - 97.27% of these had discovered their first monitors

within 63 seconds after birth. For PL, Nlongterm = 239 after 2 days, and over 98% of nodes’ first monitors

were discovered in around a minute after birth. Figure 14 shows that per-node memory utilization was

uniformly distributed across nodes. The OV line in this plot shows that node birth and death cause memory

utilization to be higher than the expected value (of 19 + 2 × 9 = 37), but that no node had over 81 total

memory entries. For PL, this maximum number was measured to be 44.

Finally, to study the effect of very high churn, we used a new churn model called SYNTH-BD2, which

resembled SYNTH-BD, except that its birth and death rate was twice as high (i.e., λb = λd = 0.4N
1440 per min).

Figure 15 shows that there was no noticeable difference between the discovery times in the two models,

illustrating that AVMON discovery is churn-resistant. Figure 16 shows the additional memory entries due

to the increased churn in SYNTH-BD2 was less than 10% over that in SYNTH-BD.

5.4 Forgetful Pinging, Optimizations, and Overreporting

Forgetful Pinging: We evaluated the practical benefits of the forgetful pinging optimization (see Sec-

tion 3.3) for the SYNTH churn model. For this experiment, AVMON estimated each node’s availability as

the fraction of monitoring pings sent to that node which receive a response back. For N = 2000, Figure 17
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Figure 18: Forgetful pinging reduces useless pings sent to

absent nodes. Bars show 1 standard deviation.

plots the ratio, for each node in the control group, of its estimated availability to its real availability (frac-

tion uptime). While the lack of the forgetful ping optimization (“NON-Forgetful ping in plot”) measured

availability accurately, the plot for the “Forgetful ping” optimization had an average relative error of less

than 5%, with a maximal error of 8%. In turn, Figure 18 shows that the optimization reduced bandwidth

consumed by “useless pings” (sent by a node to nodes not currently in the system), by an order of magnitude.

Bandwidth: Figure 19 shows the CDF for the Outgoing Bytes per Second (BW) that nodes incurred in

the STAT and OV models. First, in STAT, with N = 2000 total nodes, 88% of the nodes had an outgoing

bandwidth below 10Bps. Notice that about 6.5% of nodes had a BW above 50Bps. We surmise that this was

due to indegree degradation owing to the static nature of the STAT model. To address this, we introduced

an optimization (called “PR2”) whereby a node that had not received a monitoring ping for two successive
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protocol periods would force all its coarse view nodes to add it to their own coarse views. Figure 19 shows

that this variant (labeled “STAT-PR2”) reduced bandwidth further for the STAT model - in fact, this caused

all nodes to have an outgoing bandwidth below 9Bps. In contrast to this, notice that in the Overnet churn

traces (OV), there was constant change in the coarse views due to node birth, death, join, and leave, and

consequently, the outgoing bandwidth was more uniform, with 99.85% of the nodes spending below 11Bps.

Effect of Overreporting Attack: Finally, Figure 20 had a fraction of nodes (x-axis) report 100% avail-

abilities for all their TS(.) nodes. The plot shows that the fraction of nodes whose measured availability

(averaged over their PS(.) nodes) differed from their actual availability by over 0.2, was very small for all

the four models SYNTH,SYTNH-BD,PL,OV. In the worst-case, only 3.5% nodes were affected.

6 Conclusions

This paper has presented and evaluated AVMON, a system that selects and discovers an availability

monitoring overlay for long-term host-level availability information in distributed systems. AVMON uses a

hash-based consistency condition for selection of per-node availability monitors in a manner that is consistent,

verifiable, and random. The core algorithmic contribution of this paper is a protocol for fast, load-balanced,

and scalable discovery of each node’s monitors, given any arbitrary monitor selection scheme that is consistent

and verifiable. Three variants of the discovery protocol were then derived to minimize different combinations

of memory, bandwidth, discovery time, and computation time. The AVMON variant minimizing all metrics

(Optimal-MDC) was found to perform well in a variety of churn models and traces - these included three

synthetic models (static, join-leave, and join-leave-birth-death), and availability traces from PlanetLab and

the Overnet p2p system.
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