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Abstract

Increasing population density, closer social contact and interactions make epidemic control 

difficult. Traditional offline epidemic control methods (e.g., using medical survey or medical 

records) or model-based approach are not effective due to its inability to gather health data and 

social contact information simultaneously or impractical statistical assumption about the dynamics 

of social contact networks, respectively. In addition, it is challenging to find optimal sets of people 

to be quarantined to contain the spread of epidemics for large populations due to high 

computational complexity. Unlike these approaches, in this paper, a novel cluster-based epidemic 

control scheme is proposed based on Smartphone-based body area networks. The proposed 

scheme divides the populations into multiple clusters based on their physical location and social 

contact information. The proposed control schemes are applied within the cluster or between 

clusters. Further, we develop a computational efficient approach called UGP to enable an effective 

cluster-based quarantine strategy using graph theory for large scale networks (i.e., populations). 

The effectiveness of the proposed methods is demonstrated through both simulations and 

experiments on real social contact networks.

I. Introduction

EPIDEMIC control becomes more challenging nowadays due to the increasing population 

density, closer social contact and interactions. The recent epidemic outbreaks have caused a 

lot of fatalities. For example, about 774 people died due to the outbreak of SARS in 2003, 

and more than 8870 people died due to the outbreak of H1N1 influenza in 2009, and at least 

345 people died due to H5N1 since 2003 [1].

Traditional offline epidemic control strategies typically include both offline control and 

model-based approaches, which can quarantine or immunize people to contain the epidemic 

spreading. However, these approaches lack the effectiveness due to either the time-delayed 

data collection (e.g, using medical survey or medical records) or impractical statistic 

assumptions about the dynamics of social contact networks. As a type of social networks, 

social contact network [2] focuses more on physical social contact than online social 

relationships. To address the effectiveness issue, we proposed a WBAN-smartphone based 

data collection framework to collect people’s health data and social contact information 

simultaneously in our previous work [3], [4]. The architecture of this proposed information 
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collection framework is illustrated in Fig. 1. It is integrated by body mounted body sensor 

networks and smartphones. Note that sensors can also sense surrounding environmental 

information. In the proposed system, vital signs of human body such as body temperature, 

blood pressures, could be collected by the body sensors.

The data collection works as follows: 1) smartphones collect social information. Such 

information mainly includes physical social contact information (e.g., the social interaction 

frequency and time interval) and social pattern. 2) Body Sensors collect vital signs such as 

blood pressure, heart rate and body temperature. 3) smartphones also assist in sensing body 

behavior or collecting gesture information. 4) smartphones act as gateways for body sensor 

networks. 5) All sensed information will be delivered to smartphones and then will be 

forwarded to the remote control center.

Further, as the social information and health information are available, it is challenging to 

fuse these information together when they are from different information sources. In this 

paper, we propose to utilize network graphs to represent the data and fuse them together. 

Network graphs are widely used to represent relations between interacting actors or nodes. 

They can be used to describe the behavior of epidemics. The edges in the network graph can 

be used to represent the presence or strength of a relationship between two nodes. Nodes can 

represent people and the color of nodes can represent health status (i.e., infected or not) of 

people. Then based on the network graph, we can predict the evolutions of epidemic spread 

and find optimal sets of people to be removed to contain the spread of epidemics. However, 

Using the proof similar to [5], finding the optimal sets in a graph has been proved to be a 

NP-hard problem for large scale networks consisting of smartphones and WBANs. An 

approximation method with high effectiveness is to divide the populations into multiple 

clusters, and then realize the control strategy within the clusters in which both inter- and 

intra- critical node identification (CNI) algorithms can be applied.

In the literature, some approximation algorithms for finding optimal sets such as high degree 

set targeting and dominating set targeting, have been studied for epidemic control. Unlike 

these approaches, we focus on applying graph partitioning to find the optimal sets. We also 

show that the graph partitioning based approach outperforms these existing approaches. In 

graph theory, there are some existing typical criteria for defining good graph clusters. 

Spectral algorithms are typically used to discover these clusters where the eigenvector of a 

matrix related to the adjacency matrix can be used to find a good cut for subgraphs. In this 

paper, based on the graph theory, a new approach called unequal graph partitioning (UGP) 

method is introduced to find out the minimal separator of clusters.

The main contributions of this paper can be summarized as follows.

1. Develop a new approach to group the populations into clusters for epidemic 

control;

2. Develop effective inter- and intra- cluster based epidemic control strategies based 

on real social contact networks;

3. 3) Provide a graph partitioning based approach for large scale networks (i.e., 

populations) with reduced computational complexity.
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The rest of the paper is organized as follows. Section II presents the literature review; 

Section III introduces the system design; Section IV shows performance evaluations based 

on both simulations and real dataset testing; The paper is concluded in Section V.

II. Related Work

Cluster based epidemic control requires effective clustering approach. The clustering 

methods for network graph have been studied in the literature. The authors in [6] proposed a 

criterion to combine internal density with external sparsity for social network clustering. In 

the paper [7], the authors proposed a DP-cluster algorithm based on the distance-preserving 

subgraphs, which finds the proper distance preserving subgraphs and partitions a graph into 

an arbitrary number of distance-preserving subgraphs. However, these methods do not 

consider node’s location and their attributes at the same time and thus are not applicable to 

the epidemic control applications. In the paper [8], [9], the author studied a latent position 

cluster model (LPCM) for social network clustering method. LPCM clusters the social 

network based on nodes’s locations and the probability of a social contact between two 

nodes, but it ignores the attributes of nodes such as gender, age, occupation and others that 

are related with epidemics. In this paper, we study a clustering approach that can consider 

both social relations and divergence (i.e., infection state) of nodes.

On the other hand, the spread of epidemic disease has been investigated for many years. The 

modelings of epidemics are used to describe the mechanisms of disease spreading and 

predict the spread of the epidemic and evaluate the epidemic control strategies. An SIR 

model is widely used to characterize the epidemic spread for a fixed population. The 

compartments used in the SIR model are susceptible, infected and recovered. Each 

individual is at one of the three compartments at a time moment [10]. The author in [11] 

models the epidemic and gives the threshold of the epidemics. However, it is designed based 

on the homogeneous population and does not consider the diversity of individuals.

The spread of epidemic on social networks has been studied in [12]–[14]. The authors in 

these papers study the spread of epidemic in social networks, but they ignore the fact that the 

epidemic spreads through physical contact rather than traditional social relationship 

represented by the social networks such as Facebook and Twitter. Therefore, these model-

based approaches have too idea statistical assumption about the dynamics of social contact 

networks, and thus might not provide effective epidemic control.

Graph partitioning is an NP hard problem for numerous applications. Some algorithms have 

been proposed to divide the graph into several small clusters. The “Chaco” scheme [15] 

allows applications to find small edge separators. The authors in [16] proposed a multilevel 

algorithm to partition graphs which are approximated by a sequence of increasingly smaller 

clusters. In the graphs, the number of links between clusters is minimized. A general 

framework of graph clustering is proposed in [17], which balances the overlapped clusters 

and minimizes the sum of computational and communication time. A K-way partitioning 

algorithm is presented in [18], which reduces the size of the graph by collapsing vertices and 

edges. The above algorithms can divide a graph into smaller clusters by minimizing the links 

between clusters. These algorithms could be potentially used for solving the epidemic 
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control problem. In this paper, the algorithm we proposed is to find the smallest separator 

node set to divide the graph into small clusters, which minimizes the correlations between 

clusters and thus is suitable for cluster-based epidemic control. It is widely accepted that the 

most efficient epidemic control strategies are based on high-degree targeted strategies [19]– 

[21]. By quarantining or immunizing the high-degree nodes, the network breaks down to 

smaller clusters, and then the epidemic spreading can be contained. To further improve the 

performance of epidemic control, a novel unequal graph partitioning algorithm called UGP 

is proposed in the paper. The details of the UGP methods are introduced in the following 

section.

III. System Design

A. Framework

As shown in Fig. 2, the framework of the proposed system includes two steps. At the first 

step, the critical network (i.e., population) is clustered to many small groups based on their 

locations and social contacts. At the second step, a cluster based epidemic control will be 

implemented, which includes critical node identification, critical set identification and an 

unbalanced graph partitioning method. The social sensing detection in this paper is to find 

physical social contact pattern. Our study is focused on the collections of physical social 

interactions (e.g., face-to-face interactions) which may cause epidemics spreading. The 

social information from traditional social networks could be helpful for detecting social ties 

among people. However, the information is different from the one obtained from the social 

sensing in the proposed scheme. In the proposed system, a social contact network graph 

called critical network [3] in our previous work is employed to collect the vital signs and 

social interaction information. The research in this paper is based on the data collection 

framework and the focus is on finding effective epidemic control strategies. The proposed 

algorithm runs on the critical networks which can quickly capture the critical epidemic 

information in different environments.

The detail of critical network definition can be refereed to our previous study in [3]. 

Basically, the elements of a critical network are nodes, arcs, and a series of planes. A node 

represents a user of the data collection system. Each node can be white, gray, or black. 

White nodes denote people who have never been infected and are healthy; Gray nodes 

denote people who were infected but now have already been recovered; Black nodes denote 

people who are infected and have not been recovered yet. An arc between two nodes 

represents the infection relationship; the node pointed by the arc is infected by the one that 

originates the arc. We also define weights on each arc to indicate how much in terms of 

possibility the node at the tail of the arc is infected by the one at the head of arc. A plane 

represents the above information during one time period unit. Planes are also called 

snapshots of a critical network. The proposed epidemic control strategy includes two major 

stages as discussed in the following:

1) The First step: Clustering: The population represented in critical network is divided into 

clusters based on their location and attribute similarities. The goal of this division is to 

partition the graph into k clusters with short mean distance and homogeneous attribute 

values. The problem is quite challenging because their location and attribute similarities are 
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two independent objectives we pursued. For the network clustering, we design a distance 

function as follows to calculate the distance between two nodes vi and vj

(1)

in which dE(vi, vj) is Euclidean distance between vertices vi and vj and dA(vi, vj) is attribute 

similarity (e.g., vital signs and infected status) between them. If the coordinates of vi and vj 

are (x1, y1) and (x2, y2), respectively, the Euclidean distance is 

. Suppose that each vertex has an attribute set A = {A1,A2, …, 

Am} with values {a1, a2, …, am}, e.g., the values of attribute set {A1, A2, …, Am} for nodes 

vi are a1i, a2i, …, ami, then the attribute similarity between vertices vi and vj is calculated by 

.

The probability that a social contact (edge) exists between nodes vi and vj is modeled by

(2)

where the logit of a probability p is . The model accounts both observed 

attributes and Euclidean distance between vertices vi and vj . To identify the scale of the 

positions zi and weight ϕ and θ, the positions are restricted to have unit root mean square

(3)

where N is the number of nodes in the critical networks (i.e., population). We assume that 

the population could be divided into M clusters (groups), and each cluster satisfies a 

multivariate normal distribution with a mean vector and spherical covariance matrix which 

differ between clusters. Then

(4)

where λm is the probability that a vertex vi belongs to the lth cluster, λm ≥ 0 and . 

d is multivariate normal distribution of a d-dimensional random vector. μl and 

are the mean vector and covariance matrix for lth cluster, respectively. Qd is the d × d 

identity matrix. Based on the distance function and probability function, we can divide the 

nodes of social contact networks (i.e., populations) into multiple clusters.

2) Epidemic Spreading: Let S(t), I(t) and R(t) respectively denote the number of susceptible 

nodes, infective nodes and recovered nodes at the time t, and suppose that at time t = 0 these 

numbers are given by S(0) = n − m, I(0) = m and R(0) = 0. We use the a typical q-influence 

model to describe the epidemic spreading. It has been often used to simulate the spread of 

computer virus in computer network [22] and spread of epidemic diseases in social network 
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[4]. In a q-influence model, a susceptible node could be infected by one of its neighbors with 

a fixed probability of q. In the model, the influences from its neighbors are independent. 

Suppose that a susceptible node vi has n neighbors and m of them are infective nodes, the 

probability that the node will be infected by its infective neighbors is:

(5)

As shown in 3, a susceptible individual has five neighbors whom the individual has contact 

with, and two of them are infective nodes. If the influence parameter q = 0.1, the probability 

that the node will be infected by its infective neighbors is p = 1 − (1 – 0.1)2 = 0.19. The 

dynamics of the model are defined as follows. An infectious individual infects a susceptible 

person through social contacts. People who were infected start spreading the disease 

according to the same rule. Infected individual remains infectious for a fixed time period and 

then they stop being infectious, recover and become immune to the diseases. The epidemic 

starts at time t = 0. As the epidemic evolves, new individuals get infected, then recover, and 

there will be no infective nodes in the community after time T. When no further individuals 

can get infected, the epidemic spread stops. The final state of the epidemic is described by 

the ultimate infected number of nodes R(T) . It is worthy to notice that there are different 

infection models such as m-threshold influence model and majority rule influence model 

given in [23]. We chose q-influence because of its simplicity and being widely adopted. In 

addition, the epidemic spreading could highly depend on the initial location and number of 

epidemic sources.

IV. The Second Step: Cluster-based Epidemic Control

The proposed cluster-based epidemic control includes two tier control: intra-cluster and 

inter-cluster control.

A. Intra-cluster epidemic control

The goal of intra-cluster control is is to remove minimal number of nodes in a cluster so that 

the epidemic spread within the cluster can be effectively contained. Intra-cluster critical 

nodes identification algorithm is designed based on the q-influence model. It will be easy to 

extend our model to other typical epidemic models. The focus of the algorithm is to find a 

set of critical nodes to be removed to minimize the overall number of infected nodes within 

a specified time period T.

Logically, if the infection possibility for each individual is available, it is highly possible to 

deduce whom will be more (or less) likely to be infected in some future time. First, the 

number of infected nodes at the next time moment can be predicted by using the epidemic 

spread model. As long as the social contact information and vital signs (i.e., infected status) 

are available, the potential infected nodes at the next time moment are predictable.

The proposed intra-cluster critical nodes identification algorithm works as follows. (i) The 

inputs of the algorithm are current time t, network graph Gt, susceptible nodes S(t), infective 

nodes I(t), recovered nodes R(t), and the isolation (i.e., immunization or treatment) 

capability β. n is the number of individuals in the network and k is the number of infected 
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individuals. Then, we initialize the variables to 0 (i, j = 0). (ii) Remove one infected node 

from the network and predict the epidemic spread at the next time I0(t+1), and then remove 

the infective nodes one by one to get a set of predicted infective nodes at the next time {I0(t

+1), I1(t+1), … Ik(t+1)}. In the process, a critical node s is the one that leads to minimized 

number of infective nodes after it is removed. (iii) Put the critical nodes into the critical 

nodes set Γ and increase the count of critical nodes by 1 j = j + 1. (iv) Check whether the 

algorithm has found all critical nodes. If j < β, set i = 0 and the algorithm goes to (ii). 

Otherwise, the algorithm outputs the critical nodes set Γ and exits.

1) Inter-Cluster Epidemic Control: The major idea for inter-cluster control is to identify the 

critical clusters and to remove the links among clusters. Under the limited medical 

resources, we want to identify the most significant clusters to be isolated so that the spread 

of epidemics can be effectively contained. The inter-cluster method is similar to the 

intracluster epidemic control method. In this method, each cluster is viewed as a node. 

Comparing to the critical nodes identification algorithm above, the critical clusters 

identification algorithm contains a set of big “nodes”. Zm, (m = 1, 2, …, M).

(6)

where Nm denotes the number of nodes in mth cluster. If node vi is in mth cluster and node vj 

is in nth cluster, the probability that a social contact exist between vertices vi and vj is P(ei,j 

= 1|di,j). Suppose that the mth cluster Cm and the nth cluster consist of Nm and Nn nodes, 

respectively, then the probability that a social contact exists between clusters Cm and Cn is 

defined to be the mean value of all edge probabilities between the two clusters. The inter-

cluster critical node identification algorithm is described in Fig. 4.

(7)

where Em,n and Dm,n are the edge and distance between the m and the nth clusters, 

respectively.

B. Privacy Issue and Missing Information

The privacy issue is critical for data collection. For example, some people carrying body 

sensor networks may not want to share their vital sign information with others due to their 

privacy concerns. Their privacy concerns may restrict them from taking advantage of the 

full benefits from the proposed system. There are many arguments for and against various 

forms using privacy control of BANs and smartphones. The security and privacy protection 

for saved data or data transmission is an unresolved concern for BANs and/or smartphones 

[24]. There have been ongoing research works such as [24], [25] that attempt to address the 

concern using access control, authentication, cryptography and etc.. The challenges for 

solving this issue not only come from the development of more innovative techniques, but 

also from the enforcement of public regulations. We argued that effective privacy control for 

BANs highly depends on the specific medical applications. For emergent epidemic 
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outbreaks, privacy would become less concerned, as being alive and not infected are more 

important.

In addition, the information of some nodes may not available due to several reasons, such as 

privacy concerns, failure of the device, and even people who are infected turn off the BANs 

to escape from quarantining. Thus, it is important to accurately estimate the status of the 

unknown nodes. We proposed to use the social contact information of a node’s neighbor to 

estimate its health status. As show in the Fig. 5, the information of two nodes, A and B, are 

lost. We need to estimate the status of the two nodes to fully understand the spread of 

endemic disease. It is easy to use an N-threshold voting method to classify the center node. 

By the N-threshold, a node is infected when last least N of its neighbors are infected. 

Suppose we set the threshold N = 3, then node A is estimated not infected and B is infected, 

because A only has two infected neighbors but B has four infected neighbors. Although the 

N-threshold voting method works well, it is sensitive to the number of neighbors. In the 

proposed social contact network, we use a local majority estimation method, by which an 

unknown node is infected if over η fraction of its neighbors are infected. Compared with the 

above N-threshold voting method, the threshold number of nodes in majority varies 

automatically according to the number of neighbors the unknown nodes have. If we set 

majority fraction η = 0.5, both the node A and B in Fig. 5 are estimated to be infected.

C. Improved Control via Unequal Graph Partitioning

Running critical node/cluster identification algorithm for large scale networks (i.e., 

population) is not realistic because it is a NP-hard problem to find the best strategy to 

quarantine or immunize (receiving vaccine) a group with a minimal number of people. The 

proposed cluster based control algorithm has high computation complexity issues for large 

scale networks. We further proposed to use graph theory to address the issue. In order to 

find a optimal immunization set, an unequal graph partitioning method is proposed in this 

work.

Assume in a weighted graph G (i.e., a critical network), the nodes in G are a set of nodes to 

be grouped into k clusters. The most direct way to construct a partition is to solve the mincut 

problem [26]. However, mincut always causes imbalance graph partitioning (e.g. one 

partition only contains one vertex), and we need to guarantee that sets A1, …, Ak are 

“reasonably large”. The common objective function which can implement this requirement 

is the normalized cut: , while the size is measured by the weights of its edge 

vol(Ai). A well-known solution to such a problem is obtained by computing the top k 

eigenvectors of the Laplacian matrix [26]. However, the partitioning method itself cannot 

solve the optimal set problem for epidemic control. Therefore, we proposed an algorithm 

that combines the graph partitioning and optimal searching algorithm of removal nodes. The 

algorithm is described in Algorithm 2 (including Algorithm 1), which can identify 

minimized set of nodes to be removed so that the spread of epidemics can be effectively 

contained.
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The above method uses both social contact information and vital signs to optimize the 

epidemic control. However, in some scenarios, either the social contact information or vital 

signs may not be available due to some reasons such as privacy concern. As a result, the 

incomplete health and social data resulting from the potential unavailability of WBANs and 

mobile phones (e.g., due to their limited deployment) makes the prediction more 

challenging. To address the issue, we could consider some estimation algorithms such as 

majority voting algorithm, which enable the estimation of the missing health information 

(i.e., infectious state). It could be also possible for us to predict the epidemic spreading 

through a certain portion of data collected from a relatively small group of monitored 

people. However, the accuracy of the prediction algorithms will significantly be impacted by 

the level of missing data. In addition, to deal with the privacy issue during the data 

collections, the identity of each individual people could be mapped to a processed ID 

through one-way encryption algorithm and all the identity information will be deleted after 

the mapping process. There are no ways to covert the processed ID back to each individual’s 

identity. In the proposed scheme, the identity information is not needed for the epidemic 

predictions.

Algorithm 1

2-way Partitioning Algorithm

Require: Graph G(V, E), Target fraction η ≥ 0.5

Ensure: Subgraph G1, G2, Separator S

  1: Generate the connected component G′ of graph G

  2: Randomly assign nodes in G′into two clusters G1 and G2, the size ratio of G1 and G2 is approximately equal to η

  3: Move all nodes in G1 (G2) that are connected to G2 (G1) to a third cluster S

  4: repeat

  5:   Swap a node in S with that in G1 or G2

  6:   if the size ratio of G1 and G2 is approximately equal to η and The size of S reduces and there are no connection 
between G1 and G2 then

  7:      The swap is accepted

  8:   end if

  9: until No further swap can reduce the size of S

Algorithm 2

Unequal Graph Partitioning Algorithm

Require: Graph G(V, E), Target fraction η

Ensure: Separator S

1: if η ≥ 0.5 then

2:   call Algorithm 1 with G(V, E), η

3: else

4:   call Algorithm 1 with G(V, E), η = 0.5

5:   repeat

6:       if Size ratio of Gi, i = 1, 2 is bigger than η then
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7:         call Algorithm 1 with Gi, η = 0.5

8:      end if

9:   until the size ratios of all subgraphs are smaller than η

10:   the separator S is the union of all the generated separators

11: end if

12: return Separator S

V. Performance Evaluation

A. Epidemic spreading on a scale-free network

A scale-free graph is a graph whose node degree follows a power law distribution. In a 

scale-free graph, the fraction of the nodes that have k neighbors, denoted by P(k), is 

proportional to k−α for large values of k, or

(8)

where α is a positive constant with typical value in range of 2 < α < 3. Each node in G(V, E) 

presents a person and a node can influence the other nodes if there are connections, denoted 

by edges e, between them. For example, if node i is infected, it may infect its neighbors. 

Obviously, one can have different infection models such as q-influence model, m-threshold 

influence model and majority rule influence model given in [27]. Our study is focused on 

the statistical properties of the scale-free random social networks. First, we construct a local 

mean field (LMF) of an arbitrary node in G. LMF is a transformation of G and we can use it 

to model the correlation structure on local neighborhoods. Also, LMF provides an 

asymptotic behavior when the number of nodes of a sparse random graph goes to infinity 

with a given asymptotic degree distribution P0(k) [28].

To construct LMF of G, we randomly choose a node, r ∈ V, as the root node of the local 

mean field. Because r is randomly chosen, it should have deg(r) neigbors, [v1, v2,…, vdeg(r)], 

where deg(r) follows the power law distribution,

(9)

where C is a constant and . Then, for an infinite random power law graph, 

the probability that node has degree k is

(10)

where  is the Riemann zeta function. Thus, the degree distribution of 

the descendants of node r follows a shifted power law distribution P1(k). Then the local 

mean field of G is completely determined. It is recursive and free of loops. In the following, 

we will use the model to study the epidemic spread.
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We first build a social contact network graph G with N nodes and E edges using the above 

social network modeling. Then we assume that Nt nodes are infected at the beginning time t 

= 0. If we assume that the nodes have no self-recovery capability (the recovery period time 

Trec is bigger than the sample duration), and the system has limited immunization capability. 

The parameters used in the simulation are shown in Table I.

Fig. 6 and Fig. 7 show the epidemic control performance when the self-recovery (i.e., 

immunized) is considered or not. In Fig. 6, we use symbol ”[C1, C2, C3, C4]” to indicate the 

number of nodes to be removed in cluster C1, C2, C3, C4. Both figures show that removing 

the nodes from different sets could significantly impact the performance of epidemic 

control. In Fig. 6, removing nodes in the setting of ”[2,2,0,0]” can achieve the best epidemic 

control performance. It indicates the nodes in C1 and C2 clusters have more significant 

impact on the epidemic spreading. Therefore, it is critical to determine which group of nodes 

should be removed if the number of removal nodes is constrained. Even with the 

consideration of epidemic recovery capability, the setting of [2,2,0,0] still achieve better 

epidemic control performance.

B. A Case Study based on MIT Reality Mining Dataset

We further evaluate the performance of the proposed algorithms based on the real contact 

network dataset. The Reality Mining project was conducted from 2004–2005 at the MIT 

Media Laboratory. The Reality Mining study following ninety-four subjects using mobile 

phones pre-installed with several pieces of software that recorded and sent the researcher 

data about call logs, Bluetooth devices in the proximity of approximately five meters and 

other context information. In the Reality Mining project, when a Bluetooth device conducts 

a discovery scan, other Bluetooth devices within a range of 5–10 meters respond with their 

unique infirmations, such as user defined name, the device type, and MAC address. When a 

subject’s MAC address is discovered by a periodic Bluetooth scan performed by another 

subject, it indicates that the two devices are 5–10 meters close to each other. Based on the 

gathered information about the nearby devices, we could build a dynamic contact network. 

As shown in Fig. 9, at each time unit (i.e., day), there is a contact graph which may be 

significant different from others. Then we assume that an epidemic disease outbreaks at the 

beginning and 5 nodes are initiated to be infected. Fig 9 and Fig 9 shows the spread of the 

epidemic on the MIT reality’s dynamic contact network, which demonstrated the 

effectiveness of our approaches.

C. Performance evaluation of UGP

We test the effectiveness of the UGP strategy on scale free network models. Based on a 

social network model and q-influence contagious model, we investigated four algorithms: 

(a) random selection, i.e., randomly remove (i.e., quarantine or immunize) M nodes; (b) high 

degree selection (”High degree” in Fig. 11 and Fig. 12), i.e., remove top-M nodes with 

higher degrees; (c) dominating set selection (”k-DS” in Fig. 11 and Fig. 12), i.e., remove M 

nodes from k-dominating set and (d) a heuristic UGP graph partitioning method, i.e., 

separate a network into two unequal-size clusters with a minimal number of nodes to be 

removed. All four algorithms separate the whole graph to a certain number of clusters after 

the selected nodes are removed. As shown in Fig. 11 and Fig. 12, in the worst case, UGP 
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outperforms other three algorithms in terms of maximal infected people by removing the 

same number of nodes. Fig. 11 and Fig. 12 show the significant benefits of employing graph 

partition methods for the epidemic control problem. However, the UGP may not be the best 

algorithm to solve the graph partitioning problem, and the performance of cluster-based 

epidemic control also depends on optimality of the algorithm of removing edges among 

clusters.

VI. Conclusion

In this paper, we proposed cluster based epidemic control based on social contact networks 

(i.e., critical networks) which can collect both vital signs and social interaction information. 

Unlike either common offline control or traditional model based approaches, our approach is 

designed based on the real time social contact and health information and can determine 

optimal number/set of nodes to be removed so that the epidemic spreading can effectively 

contained. Our approach can work for large scale networks where the optimization problem 

is an NP-hard problem. The proposed cluster based control approach includes two steps. In 

the first step, we group the population into multiple clusters. In the second step, critical 

node/set identification algorithms are applied within or among clusters. However, the 

proposed cluster based epidemic control still may have limitations in some application 

scenarios. As we discussed above, some information of either social contact or vital signs 

may not be collectable. For example, some people are not willing to carry body sensors or 

smartphones. We understand that the limitations could exist in the real applications. Some 

potential statistical estimation algorithms such as missing data estimation algorithms could 

be applied to mitigate the impact of the unavailability of the information, which would be 

the part of our future studies. Our major contributions are the innovations of inter- and intra 

cluster based epidemic control methods and exploring graph theory for epidemic control in 

large scale networks (i.e., populations). Our research work opens a new vista of epidemic 

control using smartphone based WBANs.
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Fig. 1. 
Vital signs and social interaction information collection
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Fig. 2. 
System framework
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Fig. 3. 
An case for epidemic spreading
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Fig. 4. 
Critical clusters identification algorithm
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Fig. 5. 
Local majority estimation for missing information
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Fig. 6. 
Epidemic control when self-recovery is not considered
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Fig. 7. 
Epidemic control when self-recovery is considered
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Fig. 8. 
Contact networks for six consecutive days.
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Fig. 9. 
Epidemic control using MIT Reality dataset
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Fig. 10. 
Cluster-based epidemic control using MIT Reality dataset
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Fig. 11. 
Performance of UGP on fixed network topology
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Fig. 12. 
Performance of UGP on scale free network
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TABLE I

Notations and Parameters

Symbol Notations value

G Social contact network graph -

N Total number of participant nodes in G 484

E Number of edges between nodes in G 1440

N0 Number of initial infected nodes 1

Nt Number of infected nodes at time t -

T Simulated epidemic spreading time 35

S, I, R Susceptible, Infected and Recover states -

Trec Recovery period x

q Influence probability 0.1

θ Infection threshold 0.5

β Number of removed nodes at each turn 1

η Majority fraction of a node 0.5
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