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Lie Group Formulation and Sensitivity Analysis for
Shape Sensing of Variable Curvature Continuum

Robots with General String Encoder Routing
Andrew L. Orekhov1,2, Elan Z. Ahronovich1, and Nabil Simaan1

Abstract—This paper considers a combination of actuation
tendons and measurement strings to achieve accurate shape
sensing and direct kinematics of continuum robots. Assuming
general string routing, a methodical Lie group formulation
for the shape sensing of these robots is presented. The shape
kinematics is expressed using arc-length-dependent curvature
distributions parameterized by modal functions, and the Magnus
expansion for Lie group integration is used to express the shape
as a product of exponentials. The tendon and string length
kinematic constraints are solved for the modal coefficients and
the configuration space and body Jacobian are derived. The
noise amplification index for the shape reconstruction problem
is defined and used for optimizing the string/tendon routing
paths, and a planar simulation study shows the minimal number
of strings/tendons needed for accurate shape reconstruction. A
torsionally stiff continuum segment is used for experimental
evaluation, demonstrating mean (maximal) end-effector absolute
position error of less than 2% (5%) of total length. Finally, a
simulation study of a torsionally compliant segment demonstrates
the approach for general deflections and string routings. We
believe that the methods of this paper can benefit the design
process, sensing and control of continuum and soft robots.

Index Terms—Continuum robots, soft robots, shape sensing,
Lie group methods, human-robot collaboration

I. INTRODUCTION

CONTINUUM robots achieve infinitely varied shapes gov-
erned by their elastic equilibrium conformations rather

than being solely determined by the values of their active
joints, as shown in Fig. 1. As a result, the direct kinematics
of these robots is corrupted with a large level of uncertainty
due to structural deflections. Since active joint values alone
are not sufficient for achieving accurate direct kinematics,
an additional sensing source is needed. This need motivated
efforts on shape sensing for continuum and soft robots, which
focused on using extrinsic and/or intrinsic sensing.

Extrinsic sensing relies on use of external metrology (e.g.
magnetic trackers [1] and computer vision [2–5]). Intrinsic
sensing relies on sensors that augment joint-level data to
produce shape estimates. The use of PVDF bimorph sensors
for shape sensing of soft actuators under planar bending was
explored in [6] along with considerations for the number of
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sensors and their spacing to avoid Runge’s phenomenon when
fitting a modal function series to estimate the shape. Others
focused heavily on the use of fiber Bragg grating (FBG)
sensors for shape sensing [7–9]. A mechanics model combined
with moment sensing was presented in [10] to estimate the
shape of whiskers and in [11] for Mckibben muscle actuated
continuum robots, and a mechanics model was combined with
passive cable displacement in [12] for shape sensing. Finally,
string potentiometers were explored in [11], [13], [14] for
shape sensing of continuum robots under planar or constant
curvature shapes.

Fig. 1. A continuum segment subject to passive deflections (a) starting in
a straight configuration (b) starting with a bent configuration. This paper
addresses the problem of sensing the deflected shape using string encoders.

Despite previous works, there are two key technological
and theoretical gaps that motivate this work. First, there is a
need for a low cost solution to the problem of shape sensing.
While use of FBG sensor arrays is possible, it is not an
economical solution and seems to be at odds with the low cost
of soft and continuum robots. Therefore, this paper is focused
on presenting a modeling and design optimization framework
for low-cost solutions to shape sensing of continuum robots
using intrinsic sensing. This solution assumes that the con-
tinuum/soft robot is equipped with actively actuated tendons
(henceforth referred to simply as tendons) and a set of passive
measurement strings (henceforth referred to simply as strings).
These strings can be in the form of string potentiometers (akin
to spring-loaded lanyards) or string encoders. The combined
set of length measurements of these tendons and strings is used
to estimate the shape of these robots. The second gap stems for
the lack of a theoretical study focused on the effect of string
routing on the shape sensing problem and design guidelines
for string routing optimization to minimize the sensitivity of
the shape sensing problem to measurement noise. To address
this gap, we present a Lie group mathematical formulation that
enables us to answer these core questions:
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ã What is the impact of string routing on the kinematic
sensitivity of the shape sensing to sensory noise?

ã How many sensors are needed per a continuum segment?
and, if one has a fixed number of sensors, where should
they be placed to minimize the shape error or to minimize
the end effector error?

While addressing these questions, we present a Lie group
formulation for the string routing. We use a modal represen-
tation for the curvature distribution along the robot length and
derive the general string routing kinematics relating variations
in bending shape to string length. While one may obtain
the string routing kinematics as in [15] for calibration of
continuum robots, we believe that the use of the Lie group
formulation presented here leads to an elegant formulation of
the body Jacobian. Finally, we adapt the noise amplification
index presented by [16] within the context of robot calibration
to guide the design of string routing.

Although accurate mechanics models have been presented in
prior work on continuum robots, in this work we are interested
in a formulation that could be used for online control, so we
intentionally pursue a kinematics-based method, using lower-
order polynomials that lead to either closed-form expressions
or relatively cheap to compute optimization problems. Our
kinematic deflection sensing approach does not require knowl-
edge of applied loads from actuation, string encoders, or the
environment, and it provides insight at the initial design stage
for choosing string routings.

While our sensing approach does not rely on a mechan-
ics model, our use of modal representation of curvature
is related to continuum mechanics models for flexible [17]
and continuum robots [18], [19]. Lie-group based kinematic
integration formulations using the Magnus expansion have
been used in other works for solving more general Cosserat
rod mechanics models [18], [20] and a Lie-group finite-
element formulation of beam dynamics was presented in [21].
Modal representations have also been used in prior works to
parameterize the shape of hyper-redundant robots [22] and
continuum/soft robots [23], with some works using modal
functions to parameterize curvature/strain [19], [24] as we do
here.

This paper is focused on shape sensing of larger scale hyper-
redundant and continuum/soft robots, e.g. [25–27], but we
believe the approach presented herein could also be applied to
smaller continuum robots used in minimally-invasive surgery,
e.g. [28], [29]. This could potentially be achieved by mounting
the string encoder housings remotely away from the robot
body, as is already done with actuation units in surgical
continuum robots.

The contributions of this paper lies in addressing the
two key gaps identified above for single-segment continuum
robots. In doing so, we present: 1) a Lie group kinematics
formulation for shape sensing with general string routing and
modal shape deflections, 2) an approach for optimizing string
routing to improve the shape sensing kinematic conditioning
with recommendations for designing string routings, and 3)
an experimental validation and a simulation study of the
proposed approaches on a torsionally stiff continuum robot
and a torsionally compliant soft robot, respectively.

II. LIE GROUP KINEMATIC FORMULATION

This section presents the kinematic formulation and modal
representation for parameterizing the variable curvature back-
bone shape and deriving the resulting pose of local frames
along the continuum segment. This parametrization will be
used for describing general string routing and the associated
kinematic Jacobians for shape sensing.

A. Central Backbone Kinematics

Referring to Fig. 2, we assume a robot with a total arc
length L and define the arc length coordinate s as shown.
We also assume that the robot’s central backbone has a high
slenderness ratio consistent with the assumption of negligible
shear strains. With this assumption, the shape of the backbone
can be described by its curvature distribution along its arc
length s in three directions, u(s) = [ux, uy, uz]

T ∈ IR3. For a
given location, s, a local frame T(s) is assigned with its z-
axis tangent and pointing in the direction of arc length growth
and its two other axes in the backbone’s local cross section:

T(s) =

[
0Rt(s)

0p(s)
0 1

]
∈ SE(3), s ∈ [0, L] (1)

where 0Rt(s) and 0p(s) are expressed in the world frame
{0}1. As the backbone changes its local curvature, this local
frame undergoes a twist η(s) defined with the angular velocity
preceding the linear velocity. The set of local frames associated
with local curvatures u(s) has a corresponding twist distribu-
tion η(s). Describing the twist η(s) in its local frame T(s),
we can write η(s) = [u(s)T, eT

3 ]T ∈ IR6 where e3 = [0, 0, 1]T

denotes the local tangent unit vector.

Fig. 2. Variables used in our kinematic model to describe variable curvature
deflections and general string routing.

As the frame T(s) undergoes the body twist η, it satisfies
the following differential equation [30]:

T′(s) = T(s)η̂(s), η̂(s) =

[
û(s) e3

0 0

]
∈ se(3)

û(s) =

 0 −uz(s) uy(s)
uz(s) 0 −ux(s)
−uy(s) ux(s) 0

 ∈ so(3)

(2)

where (·)′ denotes the derivative with respect to s and the
hat operator ( ·̂ ) forms the standard matrix representations of

1The notation ay designates vector y described in frame {A} and aRb is
the orientation of frame {B} with respect to frame {A}
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so(3) and se(3) from their vector forms u and η, respectively.
We also define the adjoint representation of se(3), which will
be used below for computing Jacobians:

ad (η(s)) =

[
û(s) 0
ê3 û(s)

]
(3)

In the following analysis, we choose to represent the cur-
vature distribution u(s) as a weighted sum of polynomial
functions (similar to [18]). We denote the polynomial functions
as φx(s), φy(s), and φz(s) and the weights as cx, cy , and
cz , for the x, y, and z directions, respectively. The curvature
distribution then takes the following form:

u(s) =

φT
x cx
φT
y cy
φT
z cz

 =

φT
x 0 0

0 φT
y 0

0 0 φT
z

cx
cy
cz


= Φ(s)c, Φ(s) ∈ IR3×m, c ∈ IRm

(4)

where the columns of Φ(s) form a modal shape basis, and c
is a vector of constant modal coefficients.

The modal description of the curvature distribution offers a
description of a variety of variable curvature deflections using
a finite set of modal coefficients. This also provides simplified
kinematic expressions for computing the workspace, solving
for the shape using the string encoder measurements, and
designing the string encoder routing to improve the numerical
conditioning of the shape sensing problem.

For a given configuration c, the frames T(s) are found by
integrating (2). A number of Lie group integration methods
could be used for this, as reviewed in [31], but here we use an
approach based on the Magnus expansion because both fourth
and sixth order expansions can be computed efficiently and
because of the Magnus expansion’s large convergence bound
[31]. After integration with a Magnus expansion method (or
another Lie group integration method), the spatial curve is
given as a product of matrix exponentials [20]:

T(s) = T(0)

k∏
i=0

eΨi , Ψi ∈ se(3) (5)

Details on computing Ψi can be found in [20], [31]. We
will show below that because we use a modal shape basis,
Lie group integration is not needed to solve the shape sensing
problem (i.e. determining the modal coefficients), however,
once the configuration c is determined, (2) must be integrated
to compute the robot’s forward kinematics and Jacobian, as
shown in Section II-F. In this paper, we compute (5) with small
step sizes (100 points along the backbone) at a rate of ∼ 45 Hz
in an unoptimized MATLAB implementation. Larger steps can
be used in practice for faster computation times [20], but we
use a fine discretization here to avoid introducing additional
integration error into this study.

B. Modal Shape Basis with Chebyshev Polynomials

Although any set of modal shape functions could be used
to form Φ, (e.g. Euler curves [32], [33], monomials [15],
Legendre polynomials [17], or trigonometric functions), in this
paper we use Chebyshev polynomials of the first kind since
each polynomial is bounded by ±1, which provides improved

Fig. 3. The first five shifted Chebyshev polynomials.

Fig. 4. Deflections generated on a rod with L = 300 mm and second order
Chebshev series modal shape basis on the y direction curvature, as given by
(8). Deflections were generated by taking π

2L
steps in each of the three modal

coefficient directions.

scaling of the modal coefficients and simplifies computation
of the admissible workspace, as described in Section III. The
Chebyshev polynomials can be expressed recursively as [34]:

T0 = 1, T1(x) = x

Tn(x) = 2xTn−1(x)− Tn−2(x), n = 2, 3, ...
(6)

where Tn(x), x ∈ [−1, 1] is the nth degree Chebyshev poly-
nomial. Since the arc length coordinate is given by s ∈ [0, L]
and Tn(x) is defined for x ∈ [−1, 1], the following coordinate
transformation is used:

x(s) =
2s− L
L

(7)

We then evaluate Tn(x(s)) via (6). In the remainder of this
paper, we refer to the polynomials as simply Tn(s) with the
transformation (7) implied. The first five Chebyshev polyno-
mials, shifted to s ∈ [0, L], are shown in Fig. 3.

As an example, to represent a y direction curvature with
a second-order Chebyshev series, the modal shape basis and
modal coefficients would be given by:

uy(s) = φy(s)cy

φT
y (s) =

[
T0 T1(s) T2(s)

]T
, cy ∈ IR3

(8)

where the first three Chebyshev polynomials, shifted to s ∈
[0, L] are given by:

T0 = 1, T1(s) =
2s− L
L

, T2(s) =
8s2

L2
− 8s

L
+ 1 (9)

Figure 4 illustrates shapes generated by these first three
Chebyshev polynomials for a planar continuum segment. Of
note is that shapes in the T0 and T1 directions of the modal
shape basis correspond to experimentally observed deflection
shapes in tendon-actuated and multi-backbone robots. Shapes
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along the T0 direction correspond to constant curvature deflec-
tions exhibited in continuum segments with actuation wires
equidistantly distributed about the central backbone. Shapes
along the T1 direction correspond to constant-orientation de-
flections due to external forces applied to the end disk of a
tendon-actuated continuum segment, as shown in Fig. 1.

The shape sensing methods presented below would apply to
other choices for Φ as well. For example, a modal shape basis
with coupling between the modal coefficients could be used,
e.g. [18]. If we choose Φ as the identity matrix, c corresponds
directly to constant curvatures in the x, y, and z directions (see
Fig. 4), so the results here also apply to robots modeled with
the commonly used constant-curvature assumption [35].

C. General String Routing Kinematics

In [36], a Cosserat-rod based mechanics model was pre-
sented for tendon-actuated robots with general tendon routing.
In the kinematics model presented here, we use a similar
method for describing the string routing. Assuming p strings,
the string path, as shown in Fig. 2, is expressed in the moving
frame T(s) and given by:

tri(s) = [rxi
(s), ryi(s), 0]T, i = 1, 2, . . . , p (10)

Our kinematic formulation permits any differentiable function
for r(s), but in Sections V and VI we consider constant pitch-
radius paths and helical paths. The position of a point along
the string/wire rope path in the world frame is given as the
vectorial sum of the point p(s) along the central backbone
and the radial vector r(s), defined in the moving frame:

0wi(s) = 0p(s) + 0Rt(s)
tri(s) (11)

Noting that vector norms are invariant under rotations, the
length of the ith string is given by:

`i =

∫ sai

0

‖tw′i(s)‖ ds, i = 1, 2, . . . , p (12)

where sai designates arc length along the central backbone
at which the string is anchored to the spacer disk/end disk.
Taking the derivative of (11) with respect to s, substituting
(4), and then using tw′i(s) = 0R

T
t
0w′i(s) results in:

tw′i(s) = e3 − tr̂i(s)Φ(s)c + tr′i(s), i = 1, 2, . . . p (13)

Deriving the above result also requires (2), which states that
0p′(s) = 0Rt(s)e3 and 0R′t(s) = 0Rt(s)û(s).

Recalling that tri(s) is in a moving frame having a body
angular velocity û(s), we can visualize (13) as the velocity of
a point traversing the string path as the arc length s is increased
at a unit speed. This point speed is given as the sum of the
induced velocity due to the rotation of the moving frame and
the velocity of that point relative to the moving frame due to
traversal along the central backbone and the rate of change of
the string’s radial placement tr′i(s). Since (13) is a function
only of the modal basis, the string routing function, and the
modal coefficients, we can numerically integrate (12) with any
quadrature rule (e.g. the trapezoid rule) and avoid the cost of
integrating the Lie group differential equation in (2).

The string routings tri, i = 1 . . . p can be chosen by the
designer, but must each satisfy a geometric constraint that
the string path in world frame must not have a cusp at any
configuration of the continuum segment. To ensure physically
realizable string paths, the local tangent to the actuation string
must point in the same direction as the local tangent of the
central backbone. It is possible for the angular rate of changes
ux and uy to be large enough to cause tw′i to point in the
opposite direction of e3, which causes the string path to change
directions. To avoid this scenario, we require that tw′i always
point in the same direction as e3. Using (13), we obtain the
following set of p constraint equations for each string:(

tw′i
)T

e3 = ryi(s)ux(s)− rxi
(s)uy(s) + 1 > 0 (14)

This can be rewritten as constraints on ux and uy:

ux(s) ≤ rxi
(s)uy(s) + 1

ryi(s)
, uy(s) ≤ ryi(s)ux(s) + 1

rxi(s)
(15)

In the coming sections, the string routings will be incorporated
into a model that captures their effect on increasing the
robustness to noise in string length measurements to changes
in the estimated shape of the continuum segment.

D. Solving for the Modal Coefficients
To solve for the shape of the robot, we concatenate (12) for

each string together with the string length measurements `∗:

`(c)− `∗ = 0, ` ∈ IRp, `∗ ∈ IRp (16)

and solve this system of equations for the modal coefficients c.
We then integrate T′(s) once to find the backbone pose at any
desired arc length. In some cases, for particular choices of tri
and Φ, unique closed-form solutions to (16) can be found by
explicit integration of (12). This occurs below for the planar
case and for the case of robots with high torsional stiffness.

In general however, the system of equations in (16) can be
nonlinear in c and may have multiple solutions, so it must be
solved by an iterative numerical method, e.g. Gauss-Newton.
A necessary condition for using the Gauss-Newton algorithm
is p ≥ m where p is the number of strings and m is the number
of columns in Φ. The Jacobian needed for each iteration of
the Gauss-Newton method is provided in the next section.

E. Configuration Space Jacobian
Since the modal vector c uniquely defines the shape of the

continuum segment for a given modal basis Φ, we use c as the
configuration space variable. We also define the configuration-
space Jacobian as the Jacobian relating small changes in the
string lengths to small changes in the modal coefficients:

d` = J`cdc, J`c ∈ IRp×m (17)

Following [19], the ith row of J`c can be derived as:

d`i
dc

=

∫ sai

0

(
tri ×

(tw′i)

‖tw′i‖

)T

Φ ds (18)

where we have dropped the dependence on s in the integrand
terms for brevity and tw′i was given in (13). As with the
integral in (12), (18) can be computed with any quadrature
rule.
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F. Body Jacobian

Next, we define the body Jacobian as the Jacobian relating
the twists of the moving frame T(s) expressed in T(s) (also
called body twists) to small changes in the modal coefficients:

ξ(s) = Jξc(s)dc, ξ ∈ se(3) (19)

where ξ(s) = [ω(s)T,v(s)T]T is the instantaneous twist of
T(s) produced by dc, expressed in the body frame T(s) and
with angular velocity followed by linear velocity. The ith

column of Jξc(s), denoted by J
[i]
ξc(s) is the twist produced

by a small change in the ith element of c, denoted by ci:

J
[i]
ξc(s) =

(
T−1(s)

∂

∂ci
(T(s))

)∨
∈ se(3) (20)

where (·)∨ denotes the inverse operation of ( ·̂ ).
Referring back to (5), we require the terms ∂

∂ci

(
eΨj

)
to be

able to compute ∂
∂ci

(T(s)). These derivatives are given by:

∂

∂ci
eΨj = eΨj dexp

(
∂Ψj

∂ci

)
(21)

where the dexp operator is defined in [37] as:

dexp
(
∂Ψj

∂ci

)
=

( ∞∑
k=0

(−1)
k

(k + 1)!
adk (Ψj)

)(
∂Ψj

∂ci

)
(22)

Closed-form expressions for dexp for the case of se(3)
are also available in [38]. The value of ∂Ψj

∂ci
can be derived

symbolically and will vary depending on the order of the
Magnus expansion used. Alternatively, it can be estimated via
finite difference approximation.

The kinematic expressions defined above provide the equa-
tions needed for solving the shape sensing problem and
computing the forward/inverse kinematics for a particular
continuum robot design and string routing function definition.
In Section V we provide experimental validations of this
modeling and shape sensing approach.

III. STRING ROUTING OPTIMIZATION

A benefit of our proposed kinematic formulation is that in
addition to capturing variable curvature deflections, it provides
a designer flexibility in the design of the string routing by
allowing non-straight string routings. In some cases, there
may be practical mechanical integration considerations that
would benefit from non-straight routing, e.g. routing strings
around proprioceptive sensing electronics embedded in the
continuum structure [39] or routing strings in a tapered path for
a segment with a decreasing diameter from base to tip [40]. In
this section, we provide considerations for choosing the string
routing paths to reduce the propagation of string measurement
error to pose error while avoiding ill-conditioned Jacobians.

For a general purpose manipulator, the external loading
magnitude and location may not be known a priori. For
this reason, here we propose a Jacobian-based method to
optimize the string routing path tri(s) without assuming any
particular loading conditions. We do this by designing tri(s)
to improve the numerical conditioning of both the task space
and configuration space Jacobians to reduce the upper bound

on error propagation from the string length measurements to
errors in the spatial curve T(s). We validate the approach in
simulations and experiments in Sections IV, V, and VI.

We first define the noise amplification index, a design
measure used in robot calibration [16]. For an expression
Ax = b the noise amplification is given by:

ℵ (A) =
σ2
min (A)

σmax (A)
(23)

where σmin (A) and σmax (A) are the minimum and maxi-
mum singular values of A, respectively. As shown in [16], the
noise amplification index provides a bound on how errors in
b propagate to errors in x:

‖δx‖ ≤ 1

ℵ (A)
‖δb‖ (24)

Within the context of shape sensing, (17) is the mapping
relating noise in string length measurement d` to a change
in modal coefficients dc. Also, (19) provides the mapping
relating twist and changes in dc. We solve (17) for dc and
substitute into (19), then solve the equation for d` to produce:

d` = J`ξξ(s), J`ξ =
(
JξcJ

+
`c

)+
, (25)

where (+) denotes the pseudoinverse. Using (24), (25) has the
following noise amplification bound:

||δξ(s)|| ≤ 1

ℵ (J`ξ)
||δd`|| (26)

Since the pose T(s) is an integral of the twist, minimiz-
ing the effect of string encoder measurement noise on the
estimates of the segment shape requires minimizing ||δξ(s)||,
which in turn requires maximizing ℵ(J`ξ). Since ℵ(J`ξ) con-
tains linear/angular velocity units, we multiply the first three
rows corresponding to angular velocity by a characteristic
length c` [41]. For our experimental and simulation results, we
chose c` to be the segment’s kinematic radius so that angular
velocities are scaled to represent linear velocities at the edge
of the disk.

We must also consider the numerical conditioning of the
configuration space Jacobian J`c, since it is used when it-
eratively solving (16). Since maximizing ℵ(J`ξ) does not
guarantee a well-conditioned J`c, we seek to also prevent
ℵ(J`c) = 0, which would indicate a singular J`c. We define
this design problem as a constrained optimization problem:

max
k
ℵg (J`ξ) s.t. ℵ (J`c) ≥ ε (27)

where ℵg is the global noise amplification index defined below,
k are a set of string path design parameters, and ε is a lower-
bound on the noise amplification index. We will provide two
examples of defining k to ensure the string paths are physically
realizable in the simulation and experimental studies below.
For these two examples, k are restricted to a set of integers
such that (27) can be solved by a brute-force search.

We define ℵg(A) as the global noise amplification index,
which is the average of ℵ(A) over an admissible configuration
workspace Ca denoting all admissible configurations c. This
global performance measure can be numerically approximated
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by sampling Ca along j sample points c1 . . . cj and computing
ℵ(A) at each sampled configuration:

ℵg(A) ,

∫
Ca ℵ(A) dCa∫
Ca dCa

≈ 1

j

j∑
i=1

ℵ(Ai) (28)

We define the admissible workspace Ca as the set of all
shapes that a segment can achieve:

Ca = {c | f(c) ≤ 0} (29)

where f(c) is a vector of constraints on the robot’s configura-
tion. To compute the admissible workspace, we take samples
in the configuration space c and discard samples that violate
the constraints f(c). The constraints f(c) need to be defined
on a case-by-case basis, but in this paper we define three
constraints that are relevant to the robots considered in our
simulation studies and experimental results.

The first set of constraints we consider are maxi-
mal strain limits on the continuum structure εmax =
[εmax,x, εmax,y, εmax,z]

T. Assuming a backbone diameter db
and a beam model following linear elasticity, the local curva-
ture limits are given by:

maxs (uj(c, s))−
εmax,j
(db/2)

≤ 0, j ∈ {x, y, z} (30)

where maxs denotes the maximum over s ∈ [0, L] for a
configuration c.

The second set of constraints we consider are the maximum
curvatures to prevent the intermediate disks from colliding.
Considering a subsegment of the robot between two interme-

Fig. 5. Kinematic variables for a subsegment in a constant curvature
configuration with disk collision.

diate disks with length Ls, and assuming the subsegment is
under constant curvature as shown in Fig. 5, we have:

tan
(
θs
2

)
=

hd
2 (ρ∗ − rd)

(31)

where θs is the angle between the intermediate disks, hd is
the height of each intermediate disk, rd is the radius of each
disk, and ρ∗ is the radius of curvature when the disks collide.
Substituting θs = Ls

ρ∗ into (31), we have the following

2 (ρ∗ − rd) tan
(
Ls
2ρ∗

)
= hd (32)

which we solve numerically for ρ∗. To prevent disk collision,
we then require that the curvatures in the x and y direction
are low enough to avoid this collision condition:

maxs
(
‖ux/y(s)‖

)
≤ 1

ρ∗
(33)

where ux/y(s) = [ux(s), uy(s)]T and maxs again denotes the
maximum over s ∈ [0, L].

The third set of constraints we include are given by (15),
which ensure that the string paths are physically realizable.
Using these three sets of constraints (as specified by (30),
(15), and (33)), we determine the admissible workspace by
searching for configurations that do not violate the constraints,
and compute ℵg for these admissible configurations. This
allows us to explore how to design the string routing paths
to maximize ℵg , which we do below for several simulation
and experimental examples.

IV. PLANAR CASE STUDY

In this section, we present a simulation case study for
a segment subject only to planar deflections. We show that
for planar deflections and string routings with constant pitch
radius, the configuration space Jacobian J`c is constant for
any choice of the modal basis Φ(s). We then explore choices
of string anchor points and pitch radii that improve the noise
amplification indices ℵg (J`ξ) and ℵ (J`c).

Fig. 6. Variables of the kinematic model used in the planar case study.

Consider a planar continuum segment that is restricted to
deflect in the x− z plane, i.e. ux = uz = 0, as shown in Fig.
6. We choose to represent the curvature distribution using a
second-order Chebyshev series as given in (8), and we assume
three strings are routed within the segment and anchored at
arc lengths sa1 , sa2 , and sa3 . We also assume the strings are
routed in a path with a constant pitch radius, i.e. tri(s) =
[rxi

, 0, 0]T, where rxi
∈ IR is a constant scalar. Noting that

tr′i(s) = [0, 0, 0]T, (13) simplifies to:

tw′i(s) =
[
0, 0,

(
1− rxiφ

T
y (s)cy

)]T
(34)

Applying the requirement from (14) that (tw′i)
T

e3 > 0, for
this planar case, (12) simplifies to:

`i = sai − rxi

∫ sai

0

φT
y (s)cy ds (35)

We will now consider how many strings are needed to
accurately predict the tip pose T(L) of this planar segment.
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We assume here that the number of columns in the modal
shape basis is equal to the number of strings, i.e. p = m
and J`c is square. This means each additional sensing string
enables an additional higher-order term to be added to the
shape basis to further reduce the tip pose error. Prior works
that used shape functions for modeling continuum robots have
shown that low-order shape functions can be sufficient for
capturing variable curvature deflections [18], [32], [42]. We
will also demonstrate this here for this simulation study and
experimentally in Sections V and VI.

We used a Cosserat rod mechanics model from [20], which
neglected shear strains and extension, to simulate a Nitinol rod
with a length L = 300 mm and a diameter of 4 mm (similar to
the central backbone Nitinol rod used in the robot in Section
V). To generate a variety of variable curvature rod shapes,
we subjected the rod to planar forces in the world frame’s
x direction and moments in the world frame’s y direction,
with the world frame assigned as shown in Fig. 6. A subset
of these variable curvature shapes is shown in Fig. 7. The
shape of the rod was obtained as a solution to a boundary
value problem using the shooting method for each applied
wrench. The maximum applied force and moment were fe =
[±60, 0, 0] N and me = [0,±6, 0]T Nm, with 10 wrenches
selected between these maximum values, for a total of 100
applied wrenches and rod shapes that were solved for.

Fig. 7. The tip position error between our kinematic model and a simulated
Nitinol rod rapidly converges as the number of strings p is increased.
Individual data points are shown for p = 1, and a subset of the 100 simulated
variable curvature rod shapes is shown in the inset.

For each set of 100 shapes and number of strings considered,
we determined the string routing radii and anchor points by
solving the following constrained optimization problem:

max
rxi

,sai

ℵ (J`c) s.t. 0 ≤ sai ≤ L i = 2, 3, . . . , p (36)

where we have assumed that rx1 = 0.25 and sa1 = L
to represent an actuation tendon anchored at the end disk.
We solved (36) using the interior point solver provided by
MATLAB’s fmincon() with an initial guess of evenly spaced
radii and anchor points. For each additional string, we used
the Cosserat rod model to determine the string lengths, then
used these simulated string lengths to predict the shape and
tip pose T(L) by solving (16).

We report the error between the tip pose predicted by the
mechanics model and the solution given by solving (16) as a
percent of the segment length:

ep =
‖ps − pp‖

L
× 100 (37)

where ps and pp are the tip positions given by the mechanics
model and predicted via (16), respectively. The position errors
across the 100 shapes and for different numbers of strings are
shown in Fig. 7. We do not report rotation errors because, as
shown in [43], one string anchored to the end disk is sufficient
to provide the tip angle of a planar segment and the rotation
errors were therefore within numerical precision across all of
the simulations.

Fig. 7 shows rapid convergence of the tip position error as
the number of strings is increased. The average tip position
errors across the 100 simulated shapes was 15%, 0.47%,
0.059% and 0.0052% of the segment length for one, two, three
and four strings, respectively. We proceed with this case study
by choosing p = 3.

Concatenating the string lengths for i = [1, 2, 3] results in

` =

sa1sa2
sa3

−
rx1

0 0
0 rx2

0
0 0 rx3



∫ sa1

0
φT
y (s) ds∫ sa2

0
φT
y (s) ds∫ sa3

0
φT
y (s) ds


︸ ︷︷ ︸

J`c

cy (38)

where we have denoted the Jacobian J`c with an underbrace.
For the planar case, J`c is independent of the configuration c
(i.e. it is constant throughout the workspace).

Solving for the modal coefficients cy requires inverting
J`c. This Jacobian is the product of a diagonal matrix whose
elements are the pitch radii of each string and a Vandermonde-
like matrix of polynomial functions determined by the choice
of modal basis. Here we seek to design the string routing paths
to improve the numerical conditioning of J`c. For a given
choice of the modal basis φy , the design parameters for each
string are 1) the pitch radii rxi , and 2) the anchor points sai .

There are several string routing design insights that can be
observed directly from (38). First, rxi must not be zero to
avoid rank deficiency. Second, increasing the pitch radius rxi

reduces the sensitivity of cy to changes in `, so increasing
rxi

(while keeping the ratios of the pitch radii close to one)
will increase ℵ(J`c). Third, if any two string anchor points
sai are equal, J`c will lose rank, so the strings should be
anchored at unique sai along the segment. Noting that actu-
ation tendons endowed with motor encoder sensing provide
the same shape information as a passive string encoder, this
means that although actuation tendons are commonly anchored
at the end disk to expand the segment’s workspace [35],
any additional actuation tendon anchored to the end disk
provides no additional shape information (in the planar case).
In Section V, we provide conditions under which strings or
tendons anchored at the end disk do provide additional shape
information for out-of-plane deflections.

We will now consider how to choose sai to maximize
ℵ(J`c) (the noise amplification index of the configuration
space Jacobian) for our planar example. To represent an
actuation tendon that is anchored at the end disk, we choose
sa3 = L. We choose rx3 = 0.25L to correspond to the
typical length-diameter ratio of most continuum robots. We
now investigate how to optimally choose the radii and anchor
points of the two remaining strings.
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Fig. 8. The values of a) ℵ(J`c) and b) ℵ(J`ξ) for different choices of string anchor points (
sa1
L

and
sa2
L

) shown for two sample string radii (
rx1
L

and
rx2
L

) in the planar robot shown in Fig. 5. The location of the two peaks on each plot are marked with an asterisk (∗), and a triangle (4) denotes the peak
values for the other designs included in Table I and Table II. The contours for the peaks denoted with triangles are not shown for clarity, but they follow a
similar pattern to the ones shown.

TABLE I
PLANAR CASE: LOCAL MAXIMA OF ℵ(J`c) COMPARED TO EQUIDISTANT

SPACING OF STRING PLACEMENT. β SHOWS THE PERCENT
IMPROVEMENT IN ℵ(J`c)

rx1/L rx2/L sa1/L sa2/L ℵ(J`c) (×10−3) β

0.10 -0.10 0.204 0.772 1.03 64%
0.772 0.204 1.03 64%

0.10 -0.20 0.269 0.841 1.32 54%
0.714 0.128 1.50 76%

0.20 -0.10 0.128 0.714 1.50 65%
0.841 0.269 1.32 46%

0.20 -0.20 0.200 0.749 3.29 53%
0.749 0.200 3.29 53%

Figure 8a and Table I show ℵ(J`c) for different choices of
string radius and anchor point, from which we make several
observations. First, we note that each plot in Fig. 8a contains
two peaks, and that ℵ(J`c) = 0 when sa1 = sa2 and when
sai = 0 or sai = L. Second, we observe that increasing
the pitch radius of both string increases ℵ(J`c) while not
substantially changing the peak location. Third, we note that
increasing a single string’s pitch radius increases ℵ(J`c) while
allowing the location of the peak to be adjusted.

Of note is the fact that the intuitive design choice of evenly
spacing out the anchor points along s = [0, L] does not result
in the best kinematic conditioning for J`c. Table I shows the
values of the noise amplification index for each of the peaks
in Fig. 8 as well as for designs where the string anchor points
are evenly spaced, i.e. sa1 = sa2 . Table I also shows the
improvement in the noise amplification index over the evenly
spaced designs, calculated as:

β =
[(
ℵ (J`c)− ℵ

(
J̃`c

))/
ℵ
(
J̃`c

)]
× 100 (39)

where J̃`c denotes the Jacobians for designs having evenly
spaced wire anchor points at sa1 = L/3, sa2 = 2L/3, sa3 =
L. As shown in Table I, placing the anchor points at one of the
peaks instead of using evenly spaced anchor points resulted
in 46% or greater improvement in ℵ (J`c) for all the cases
considered.

We now consider improving the numerical conditioning of
the full kinematic mapping (joint to task space) ℵg (J`ξ(L)).
We computed ℵg (J`ξ(L)) for this robot using 67 configura-

TABLE II
PLANAR CASE: LOCAL MAXIMA OF ℵg(J`ξ) COMPARED TO

EQUIDISTANT SPACING OF STRING PLACEMENT. β SHOWS THE PERCENT
IMPROVEMENT IN ℵ(J`ξ)

rx1/L rx2/L sa1/L sa2/L ℵg(J`ξ(L)) β

0.10 -0.10 0.573 0.428 0.159 146%
0.428 0.573 0.159 146%

0.10 -0.20 0.343 0.534 0.181 204%
0.660 0.468 0.181 204%

0.20 -0.10 0.468 0.660 0.181 213%
0.534 0.343 0.181 213%

0.20 -0.20 0.573 0.431 0.228 76%
0.431 0.573 0.228 76%

tions sampled in the admissible workspace, which we defined
as any configuration that did not exceed 5% strain for a 4 mm
central backbone. Figure 8b shows the noise amplification for
different string radii and anchor points. We observe that the
design parameters that optimize ℵg (J`ξ(L)) are not the same
parameters that optimize ℵ (J`c) in Fig. 8a, and in fact there is
a conflict between these two design objectives, since the peaks
in Fig. 8b correspond to valleys in Fig. 8a. Since the design
objective is usually to minimize the pose error at a particular
location, designing for maximizing ℵg (J`ξ(L)) is sufficient as
long as the string routing solution avoids singularity of J`c.

We also observe again that the intuitive design of using
evenly spaced anchor points does not result in an optimally
conditioned kinematic mapping. Table II shows the values of
ℵ(J`ξ(L)) for the peaks shown in Fig. 8b as well as the percent
improvement in ℵ(J`ξ(L)) as compared to a design using
evenly spaced anchor points, i.e. sa2 = L

3 and sa3 = 2L
3 .

The peak values of ℵg(J`ξ(L)) were increased by 76% or
greater for all cases considered.

In this planar example, we have shown that increasing the
number strings reduces the pose estimation error, provided
string path design considerations, and showed that the intuitive
choice of evenly spaced anchor points does not lead to optimal
values for the noise amplification. The optimal placement of
string anchor points depends to some degree on the family of
deflected shapes that a given robot experiences under target
design operating conditions (loading and reach). We have
simulated the same case using a monomial basis as opposed
to a Chebyshev polynomial basis and noted that the peaks
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in Fig. 8 experience negligible changes. Nevertheless, the
designer should carry out a simulation as in Fig. 8 to achieve
a qualitative understanding of the optimal location of wire
anchor points and then determine these points while respecting
practical design considerations. Building on these simulation
results, we will now demonstrate our modeling and shape
sensing approach on two other continuum robot embodiments
that are subject to more realistic spatial deflections.

V. ROBOTS WITH HIGH TORSIONAL STIFFNESS AND
CONSTANT PITCH STRING PATHS

We now consider robots that are subject to spatial deflec-
tions but have sufficiently high torsional stiffness that renders
the torsional deflections negligible. We consider this category
of robots because a number of continuum robots with high
torsional stiffness have been presented in prior work [44–
47], and we will present here a new modular collaborative
continuum robot in this category and use it to experimentally
validate the model we present. This model is also directly
applicable to hyper-redundant robots with torsionally stiff
universal joint backbones, e.g. [25], [48]. This category of
robots is also of interest because, as we will show, if the
string paths are restricted to constant pitch radius paths,
the configuration space Jacobian is constant and the modal
coefficients are linear with respect to the string lengths, which
simplifies the solution of the shape sensing problem.

First, we will present the kinematic formulation for this
category of robots and provide considerations for designing the
string paths. In particular, we show that two strings anchored
to the same disk add distinct information only if their polar
coordinates are distinct by angle difference other than 0◦ and
180◦ (i.e. they are not collinear in the radial direction of
the disk). We then present the results of the string routing
optimization for our collaborative continuum segment and
experimentally validate the sensing approach, showing that the
end disk position can be sensed with position errors below
5% of arc length using information from four passive string
encoders and two actuators.

A. Kinematic model for torsionally stiff continuum robots

Under the assumption of negligible torsional deflections, i.e.
uz(s) = 0 the shape basis (4) takes the form

u(s) =

φT
x 0

0 φT
y

0 0

[cx
cy

]
= Φ(s)c (40)

We restrict our consideration here to constant pitch-radius
string routings give by:

tri(s) =
[
rxi

ryi 0
]T
, rxi

∈ IR, ryi ∈ IR (41)

Noting that tr′i(s) = [0, 0, 0]T, the string path derivative (13)
simplifies to:

tw′i(s) =
[
0, 0,

(
ryiφ

T
x cx − rxi

φT
y cy + 1

)]T
(42)

Applying the requirement from (14) that (tw′i)
T

e3 > 0 and
using (12) results in the string length as:

`i = sai +

(∫ sai

0

[
ryiφ

T
x , −rxiφ

T
y

]
ds

)
c (43)

where c = [cTx , c
T
y ]T. Concatenating for each string i ∈

[1, . . . , p] gives:

` =

sa1...
sap

+


∫ sa1

0

[
ry1φ

T
x , −rx1

φT
y

]
ds

...∫ sap

0

[
rypφ

T
x , −rxpφ

T
y

]
ds


︸ ︷︷ ︸

J`c

c (44)

As in the planar case, we observe that J`c is independent of
the configuration c.

We now consider how to choose the anchor points and string
paths to avoid singularities in J`c. Consider the scenario where
two anchor points are equal, sai = saj , i 6= j. To prevent
singularities, we must avoid a scenario where two rows of J`c
become dependent, e.g. one row is a scalar multiple of another.
Considering a cross section of the segment at s = sai = saj ,
this will occur if the string radii [rxi , ryi ] and [rxj , ryj ] lie on
a line passing through the origin of the body frame T(sai) =
T(saj ).

Furthermore, anchoring more than two strings will also
cause J`c to become rank-deficient. This is apparent since
two radially non-collinear strings define the plane of the
disk. Therefore, for an inextensible, torsionally stiff continuum
segment, no more than two parallel-routed strings should be
anchored to the same intermediate disk (to prevent rank-
deficiency in J`c).

B. Experimental validation on a collaborative continuum
robot module

We now validate our kinematic model on a continuum
segment, shown in Fig. 9 and in the multimedia extension,
that is a portion of a robotic arm currently under development
for collaborative manufacturing in confined spaces. Additional
discussion on the motivations for development of this device
can be found in [39], [49].

The flexible structure of the segment consists of aluminum
intermediate disks with torsionally stiff metal bellows attached
to the disks with an acrylic adhesive. Each bellow has a
torsional stiffness of approximately 63 Nm/°, making the
bellows approximately 1950 times stiffer in torsion than in
bending. For the target application, the segments are expected
to experience static torsional loads of up to 64 Nm, resulting
in approximately 1° of torsional deflection per bellow. Since
these maximum deflections are small relative to the bending
deflections, we neglect the torsional deflections in our kine-
matic model below. These bellow subassemblies are bolted
together, and a �4 mm solid Nitinol rod is passed through the
center of the structure to prevent contraction of the segment.
The length of the segment, measured from the top of the
actuation unit to the bottom of the end disk, is 300.65 mm.

The segment is actuated by a pair of actuation tendons that
pass through bronze bushings in the intermediate disks and are
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Fig. 9. The modular continuum segment consists of torsionally stiff metal
bellows 1 with a �4 mm Nitinol rod 2 passing through their centers. The
segment is actuated with a capstan mounted on a linear ball spline 3 that
is actuated by a brushed DC motor/geartrain 4 . Idler pulleys 5 provide a
2:1 reduction in the actuation tendon force. Each continuum segment contains
four string encoders, which consist of a wire rope 6 , a constant-torque return
spring 7 , and a magnetic encoder 8 with an I2C interface 9 .

made from �2.38 mm steel wire rope. The actuation tendons
are actuated in a differential manner (as shown in Fig. 10) by
a capstan mounted on a linear ball spline, and this ball spline
is actuated by a gearmotor with a 111:1 gear ratio (maxon
DCX22L/GPX22HP) through a single spur gear stage with
a gear ratio of 1.851. In the distal endplate assembly of the
segment, idler pulleys route the tendons back towards the base
of the segment, and the tendons are anchored to a manual
pretensioning mechanism within the actuation unit. These idler
pulleys provide a 2:1 reduction in the tendon force, which
reduces the required sizing of the mechanical components in
the actuation unit.

Each intermediate disk is also equipped with 8 time-of-flight
proximity sensors and 8 contact sensors which enable mapping
of the environment, human-robot physical interaction, and
bracing against the environment along the entire body of
the segment. The potential for whole-body contact with this
segment is one motivation for the study of sensitivity analysis
along different arc-lengths that we carry out below. Additional
details on these sensing disks can be found in [39], [50].

Four custom-built string encoders are mounted in the distal
portion of the segment, as shown in Fig. 9. The encoders have
a �0.33 mm diameter wire rope wrapped around a �12 mm
capstan and a constant-torque return spring (Vulcan Spring
SV3D48) that results in a constant preload of 3.3 N on each
string. This preload was sufficient to overcome friction and
keep the string taught. Although the preload had a negligible
effect on the robot shape, we note that our kinematic approach
captures any deflections that occur due to the string preload.
A printed circuit board (PCB) with a magnetic encoder (Ren-
ishaw AM4096 12 bit incremental) measures the angle of the
capstan. The PCB also has connectors for the encoder’s I2C
interface. All of these components are housed in a 3D-printed
PLA housing. The magnetic encoder angle is read via I2C by
a Teensy 4.1 microcontroller at a rate of ∼150 Hz. The Teensy
then provides the angle via UDP using a Wiznet WIZ850IO
ethernet board to a Robot Operating System (ROS) node that

publishes the string extensions on a ROS topic.
The segment motors are controlled with a control box

containing six motor drivers (maxon ESCON 50/5), encoder
reading cards (Sensoray 526) and a PC/104 CPU (Diamond
Systems Aries) running Ubuntu/Linx with the PREEMPT-
RT real-time patch. A higher-level ROS controller computes
a fifth-order quintic polynomial trajectory and sends desired
velocities to the motor control box via UDP. A real-time PI
controller then commands desired motor currents based on the
desired positon/velocity profile.

The radius of the capstan on each string encoder was
calibrated by extending the string in 0.2 mm increments using
a 3-DoF Cartesian robot. The linear stages of the Cartesian
robot are Parker 404XR ballscrew linear stages actuated with
brushed DC motors (Maxon RE35) and equipped with 1000
counts-per-turn encoders. The motion control accuracy of the
linear stages was evaluated at ±15 µm. The Cartesian robot
was used to extend/release the string over nc = 1201 positions
given by dr = [0, 0.2, 0.4, . . . , 120, 119.8, 119.6, . . . , 0]T mm.
Using the wrapping capstan model while neglecting the helix
angle, we obtain the measurement model dr = θere, where
θe ∈ IRnc is the vector of magnetic encoder angles and
re is radius of the encoder capstan. We then solve for the
value of re that minimizes the least-squares error between
the predicted string extension based on string encoder angle
and the distance traveled by the Cartesian robot by evaluating
re = θ+e dr. We calibrated all four of the string encoders and
found that the average extension measurement error was below
0.1 mm (0.08% of the total stroke) and the maximum extension
measurement error across all four string encoders was 0.27 mm
(0.23% of total stroke).

Fig. 10. The path of the actuation tendons (numbered 5-12) and string
encoders (numbered 1-4) are shown in (a) a 3D view, and (b) a simplified
side view. Shown in (c) is top view of an intermediate disk with the locations
where each string/tendon passes.

Due to space considerations for integrating sensing elec-
tronics in the intermediate disks [39], the strings are restricted
to be routed in constant pitch radius paths. The strings paths
are therefore given by (41), where the values for rxi

and ryi
are determined from the geometry in Fig. 10c. Since the string
encoders are mounted in the distal endplate (instead of in the
robot’s base), the string lengths `i, i ∈ [1, 2, 3, 4] are found
via (12), except integration is performed from sai to L rather
than from 0 to sai , resulting in an expression similar to (43).
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We also use the actuation tendon lengths `i, i ∈ [5, . . . , 12]
as additional input to the problem of shape estimation. The
routing path definitions for the actuation tendons require
special consideration because of the idler pulleys in the end
plate that reduce the tendon force by rerouting the tendons to
the base of the robot. We separate the actuation tendon paths
into eight different curves between the base plate and the end
plate, as partially shown in Fig. 10a as blue curves. We then
require the difference in the tendon path lengths on each side
of the actuation capstan be equal to the change in length due
to the actuation capstan rotation:

∆`θ1 = ∆ (`5 + `6) = −∆ (`9 + `10)

∆`θ2 = −∆ (`7 + `8) = ∆ (`11 + `12)
(45)

where `5 . . . `12 refer to the actuated tendon lengths corre-
sponding with the numbered bushings shown in Fig. 10c and
`θ1 and `θ2 are the change in tendon length due to rotation of
the capstan for joints 1 and 2, respectively. The values of `θ1
and `θ2 are determined from the motor angles while accounting
for the helical wrapping pattern on the capstan:

`θi =
θi
2π

√
(2πrc)

2
+ γ2, i ∈ [1, 2] (46)

where θ1 and θ2 are the angles of the first and second actuation
capstans, respectively, rc is the radius of the capstan, and γ
is the lead of the helical groove on the capstan. The actuation
tendon lengths `i, i ∈ [5 . . . 12] are found via (43).

Information from the two motor encoders and the four string
encoders allows for a modal basis with six columns (p = 6).
Neglecting torsional deflections, the curvature distribution is
given by (40) with the following shape functions:

φx(s) = φy(s) =
[
T0, T1(s), T2(s)

]T
(47)

The string encoder length equations for i ∈ [1, 2, 3, 4] are
concatenated together with (45) to give the string lengths in a
similar form as in (44), but accounting for the string encoder
routing as described above while adding the tendon lengths:

`1
`2
`3
`4
`θ1
`θ2

 =


L− sa1
L− sa2
L− sa3
L− sa4

0
0

+ J`cc, J`c ∈ IR6×6, c ∈ IR6 (48)

Given a set of string measurements, we then solve (48)
for the modal coefficients c with a single matrix inversion.
Our MATLAB 2019b implementation computes c at a rate of
∼ 125 kHz. As with the planar example above, the config-
uration space Jacobian J`c is constant when assuming zero
torsional deflections, so J`c and J−1`c can be computed once
and stored.

Based on the analysis in Section V-A of singularities in
J`c, the two actuation tendon equations in (45) do not in-
troduce singularities into J`c, because the tendon pairs that
are collinear with the central backbone point are in the same
equations in (45). However, any additional string anchored at
the end disk (or equivalently at the base disk for the strings
mounted in the endplate) would not provide additional shape

information. The radius of the passive sensing strings is fixed,
so in designing the string paths for this segment, we can only
change the string anchor points. The anchor points are also
restricted to the discrete points along the central backbone
where the five intermediate disks lie. We therefore have five
possible choices for sai for each of the four strings.

To design the string routings, we run a brute-force search
across all possible combinations of sai (625 possible designs)
to find the combination with the largest ℵg (J`ξ(s)). We chose
the characteristic length to be 0.0652, the kinematic radius of
the actuation tendons. The global noise amplification index
ℵg was computed for a set of 320 configurations in the
segment’s admissible workspace, and the noise amplification
index for the end disk, denoted as ℵg (J`ξ(L)), and the noise
amplification index for the third disk, denoted as ℵg (J`ξ(s3)),
where s3 is the arc length at which the third disk is located,
were computed at each configuration.

Fig. 11. Noise amplification indices at the end disk and the third disk for
all physically realizable string routing designs of the collaborative continuum
robot. A large range of noise amplification indices are possible, but the noise
amplification indices for the design optimal for end disk pose estimation is not
significantly different than for the design optimal for Disk 3 pose estimation.

Out of the 625 string routing designs considered, 225
resulted in a singular J`ξ(L) and (J`ξ(s3)). Figure 11 shows
the noise amplification indices for 400 of the string routing
designs in our brute-force search that did not result in sin-
gularities. Some designs resulted in the noise amplification
being particularly close to zero. For example, one poorly
conditioned routing design was a design with anchor points at
disk 2, disk 4, disk 3, and disk 5, for strings 1-4, respectively,
with the disk numbers given in Fig. 10. This design places
one string on each disk except disk 1. Although this choice
might seem reasonable to a designer at first glance, its noise
amplification index is ℵg(J`ξ(L)) = 8.3e-3, which is two
orders of magnitude smaller than for the optimal design.
This highlights the importance of carrying out the sensitivity
analysis we present herein when choosing a string routing
design to avoid these ill-conditioned string routings.

From the designs in Fig. 11, we found that the anchor points
that maximize ℵg (J`ξ(L)) were disk 4, disk 4, disk 2, and
disk 2, for strings 1-4 respectively. Below, we will refer to this
string routing design as the end disk routing. For maximizing
ℵg (J`ξ(s3)), the optimal anchor points were disk 1, disk 1,
disk 3, and disk 3, for strings 1-4, respectively. Below, we will
refer to this string routing design as the third disk routing.

The noise amplification indices for these two optimized
designs are given in Table III. Although the brute-force search
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TABLE III
NOISE AMPLIFICATION INDICES FOR OPTIMIZED STRING ROUTING

DESIGNS ON COLLABORATIVE CONTINUUM MODULE

Disk Used For Routing Optimization
End 3rd

ℵg
(
J`ξ(L)

)
8.69e-3 6.94e-3

ℵg
(
J`ξ(s3)

)
5.08e-5 5.79e-5

Fig. 12. The frequency histogram of pose error when the string routing is
optimized to minimize the effect of measurement noise for either the end disk
pose (end disk routing) or the pose of the third disk (third disk routing). (a)
The end-disk position error histograms for both routings showing that the error
distribution for T(L) is shifted leftward compared to the third disk routing
(b) The third-disk position error histograms for both routings showing that
the error distribution for T(s3) is shifted leftward compared to the end disk
routing.

optimization increased ℵg (J`ξ(L)) for the end disk routing
by 25% compared to the middle disk routing, and the value
of ℵg (J`ξ(L)) for the middle disk routing was increased by
14% compared to the end disk routing, we will show in our
experimental results below that these changes in ℵg (J`ξ(L))
are not large enough to have a significant effect on the pose
error either at the end disk or at the third disk. Either of these
string routing designs could be chosen for this robot without
having a significant effect on the pose error.

We experimentally validated the shape sensing approach on
the physical continuum robot. We routed the string encoders
according to the two routing designs given by our optimization
procedure, and for each string routing design, we measured
the shape of the segment across a large variety of variable
curvature shapes, a subset of which are shown in Fig. 13.
The segment was mounted on a revolute joint driven by
an off-the-shelf actuator (Dynamixel PH54-200-S500-R), and
the angle of the revolute joint was commanded to 0, 45°,
and 90°. For each of these three angles, we commanded the
segment to move from the initial home configuration to four
different configurations: θ = [0◦, 500◦], θ = [0◦,−500◦],
θ = [500◦, 0◦], and θ = [−500◦, 0◦], where θ = [θ1, θ2]T

contains the angles of the actuation capstans. The motion
profile to reach these four poses was generated using a fifth-
order polynomial trajectory planner, with a time of 45 seconds
to move to the desired configuration from the initial home

configuration. During these motions, we continuously captured
the string lengths using the rosbag ROS package. We captured
ground-truth pose of the third intermediate disk and the end
disk using a stereo vision optical tracker (ClaroNav H3-60)
and optical markers mounted on the robot. The data collection
rate is limited by the optical tracker’s ∼ 8.5 Hz sample rate.
This experiment was carried out with the end disk routing,
and then repeated for the third disk routing.

Fig. 13. A subset of the variable curvature spatial configurations used to
validate our shape sensing approach for a torsionally stiff continuum segment
with straight string routing. The third and end disk poses were captured using
optical trackers with and without weights attached to the end disk.

Using the string length measurements acquired with the
string encoders, we solved for the modal coefficients using
the full shape sensing model given by (48). To compare
against a scenario where the robot did not have shape sensing
encoders, we also reconstructed the shape using only the
actuation variables θ. For this case, we used a modal basis
with two columns where φx = φy = 1. This is identical to the
commonly used constant-curvature model [35]. We report the
constant-curvature model results using the data set collected
with the third disk routing, but note that the errors were similar
for this constant-curvature model using the end disk routing.

TABLE IV
AVERAGE (MAXIMAL) ABSOLUTE POSITION AND ORIENTATION ERRORS
IN MM AND ◦ FOR THE SEGMENT IN FIG. 9. THE ERRORS ARE SPECIFIED

FOR THE END DISK (s = L) AND THE 3rd DISK (s = s3)

End Disk
Routing

Third Disk
Routing

w/o Passive
Strings

p̄e(L), max (pe(L)) 5.9 (14.4) 6.0 (13.8) 56.2 (104.9)
p̄e(s3), max (pe(s3)) 3.8 (10.2) 3.3 (9.2) 31.8 (58.6)
θ̄e(L), max (θe(L)) 1.5 (8.6) 1.5 (3.9) 3.6 (14.4)
θ̄e(s3), max (θe(s3)) 2.0 (6.0) 1.6 (4.2) 15.4 (28.1)

The mean and maximum errors of our shape sensing model
(with the two different routing designs) as well as the constant
curvature model are given in Table IV. The position error is
given by pe(s) = ‖pmodel(s)−pmeas(s)‖, where pmodel(s) ∈
IR3 is the model-predicted position, and pmeas(s) ∈ IR3 is the
measured position, and we denote the average of pe(s) across
all configurations as p̄e(s). The angular error is given by:

θe(s) = cos−1
(

trace(Rmeas(s)Rmodel(s)
T − 1

2

)
(49)



©2022 IEEE. ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON ROBOTICS. 13

where Rmeas(s) ∈ SO(3) is the measured rotation matrix and
Rmodel(s) ∈ SO(3) is the model-predicted rotation matrix.
Both the end disk routing and the middle disk routing reduced
the mean end disk errors compared to the constant curvature
model by more than 89% in position and 58% in angle.
The maximum end disk error was reduced compared to the
constant curvature model by more than 85% in position and
40% in angle for both string routing designs. Both routing
designs have average tip position errors below 2.0% of the
total arc length, a significant improvement compared to the
constant curvature model error of 18.7% of total arc length.
The maximum tip position error of our approach was 4.8%
of the total arc length, compared to 34.9% for the constant-
curvature model.

The third disk routing reduced the mean position error at s3
by 0.5 mm and the maximum by 1 mm. The third disk routing
design also reduced the mean angular error at s3 by 0.4°and
the maximum by 1.8°. Figure 12 shows the histograms of the
normalized error en ∈ IR at the end disk and the third disk:

en =
√
‖pmodel − pmeas‖+ c`θe (50)

where c` is the characteristic length used in the string routing
design optimization procedure (in this case, we used the
kinematic radius of the disk 0.1304/2 m as shown in Fig. 10).
We observe that, as expected, the error distribution of T(s3)
is shifted leftward towards reduced error due to the increase
in ℵg (J`ξ(s3)). However, we also observe that the maximum
errors for T(L) were higher using the routing optimized for
the end disk. This indicates that the change in the noise
amplification index at T(L) when using the routing optimized
for the third disk was not significant enough to affect the tip
pose error in a way that would overcome other sources of
error, i.e. friction, mechanical clearances, and the continuously
parallel routing assumption. Overall, while the general trends
in the errors match the expected behavior due to the noise
amplification index, we observe that the pose error of the
middle and end disk was not substantially affected, meaning
that either of the two optimized string routing designs could
be used. This provides flexibility in the string routing design.

In this section, we have presented the kinematic formulation
for sensing deflections of robots with negligible torsional stiff-
ness. The formulation results in a constant configuration space
Jacobian and linear shape sensing equations. We validated
the model and approach for a collaborative continuum robot
with high torsional stiffness and constant pitch radius string
paths, showing that our approach sensed the tip position with
errors below 4.8% of total arc length. We now demonstrate
the approach for the more general case of robots with non-
negligible torsional deflections and helical string routing.

VI. SENSING TORSIONAL DEFLECTIONS WITH
HELICAL STRING PATHS

In the section above, we validated our shape sensing ap-
proach on a segment with high torsional stiffness. Neglecting
torsional stiffness significantly simplifies the model equations
and reduces the computation cost of solving for the shape.
However, many continuum robots have relatively low torsional

stiffness, so torsional deflections cannot always be neglected.
In this section, we consider helical string routing as a way to
sense torsional deflections. We then validate the approach in
a simulation study using a Cosserat rod mechanics model.

Fig. 14. To validate our approach for torsional deflections and helical string
routing, we simulated a modular soft continuum segment. The segment’s
interlocking subsegments are over-molded with silicone, and a Nitinol rod
passes through their centers. Four string encoders are mounted at the segment’s
base, and each intermediate disk (b) has 32 holes to enable helical string paths.

We chose the geometry of the simulated continuum robot
based on a concept for a modular soft continuum robot,
shown in Fig. 14. The subsegments of the robot are built with
cylindrical silicone over-molded on the outer circumference
of the intermediate disks to act as a soft outer cover, and the
bottom plate of each subsegment has locking tabs that mate
with a slot in the top plate of the previous subsegment. A 293
mm long solid Nitinol rod passes through the center of the
continuum robot to prevent compression of the structure.

Four string encoders (as described in Section V) are
mounted below the segment, and four tendons are routed to
actuators via idler pulleys below the segment’s base. In this
embodiment, the actuation tendons are routed in straight paths
with the tendon path given by (41). We assume that two of
the tendons are anchored at the end disk, and that two of the
tendons are anchored at disk 7. This choice in anchor points
for the actuation tendons allows all four actuation tendons
to provide shape information (since more than two strings
anchored to a disk will result in a singular J`c when the robot
is straight) while still allowing the segment to bend in all
four directions and have a large reachable workspace. The
string encoders are routed in helical paths given by (51). As
shown in Fig. 14c, the bottom plate of each subsegment has
32 holes through which the strings pass, allowing the strings
to be routed in the desired helical shape. We now optimize the
anchor points of the four string encoders and the twist rate of
their helical paths.

The helical routing string path function is given by [36]:
tri(s) = rs[cos(ωs+ αi), sin(ωs+ αi), 0]T (51)

where rs is the radius of the helical path, ω is the twist rate of
the helical path (which we assumed was constant and equal for
all four strings to prevent the string paths from intersecting),
and αi is an angular offset for each string. Since we have eight
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inputs to our shape sensing model (four passive string encoders
and four active actuation tendons), we choose a modal basis
with eight columns. The modal shape basis is given by (4)
with the following shape functions:

φx(s) = φy(s) =
[
T0, T1(s), T2(s)

]T
φz(s) =

[
T0, T1(s)

]T (52)

where the Chebyshev functions Ti(s) are given by (9). We
compute the string lengths and the configuration space Jaco-
bian J`c by numerically integrating (12) and (18), respectively.

We solved the optimization problem (27) with ε = 1e-7
through a brute-force search of all possible string anchor points
(disks 1-10) and helical path design parameters. Given the
32 holes on the intermediate disks, as shown in Fig. 14, the
helical path twist rate can be approximated as ω = nωγ, where
nω ∈ IR determines the number of routing holes to skip in
between the intermediate disks when routing the string, and
γ = 2π

32 is the angle between the routing holes, as shown in
Fig. 14. We constrained the twist rate to nω < 2 to prevent
large twist rates, since excessive twist rates increase the possi-
bility of binding between the string and the routing holes. With
the ten possible string anchor points and two possible twist
rates for four strings, there were 20,000 possible string routing
designs that we evaluated. Using a prototype subsegment, we
experimentally determined that each subsegment can bend up
to 10° and twist up to 7.5° without mechanical failure, so
the admissible workspace was defined as a set of 32 sampled
configurations that did not exceed 10° of bending and 7.5° of
twist in each subsegment. We chose the characteristic length
to be radius of the segment, 37.5 mm. We discarded all
designs that violated ℵg(J`c) ≥ 1e-7. We will consider below
the fourth, sixth, and end disk as representative examples to
optimize J`ξ for, so we stored the noise amplification indices
for s = L, s = s4 (the location of the fourth disk), and s = s6
(the location of the sixth disk).

TABLE V
NOISE AMPLIFICATION INDICES FOR OPTIMIZED STRING ROUTING

DESIGNS ON SIMULATED SEGMENT WITH HELICAL ROUTING

Disk Used For Routing Optimization
End 6th 4th

ℵg
(
J`ξ(L)

)
3.47e-3 3.50e-3 3.35e-4

ℵg
(
J`ξ(s6)

)
5.24e-4 5.40e-4 2.27e-4

ℵg
(
J`ξ(s4)

)
7.91e-5 8.27e-5 8.85e-5

Figure 15 shows the noise amplification indices across all
string routing designs that did not violate ℵg(J`c) ≥ 1e-7,
sorted in descending order of ℵg (J`ξ(L)). Table V shows the
values ℵg (J`ξ(L)), ℵg (J`ξ(s6)), and ℵg (J`ξ(s4)) for the de-
signs that maximize each of these three values (which are also
indicated with arrows in Fig. 15). We observe that the design
that maximizes ℵg (J`ξ(s6)) results in only a 0.8% decrease in
ℵg (J`ξ(L)), however, the design that maximizes ℵg (J`ξ(s4))
results in a 90% decrease in ℵg (J`ξ(L)). Choosing the string
routing design that maximizes ℵg (J`ξ(s4)) would therefore
tend to increase the pose error at s = L. We also note that
ℵg (J`ξ(s4)) only increases by 4.6% between the end disk
routing and the fourth disk routing, indicating that we would

Fig. 15. The noise amplification indices across all physically realizable
string routing designs for the simulated soft robot with torsional deflections.
The routing that maximizes ℵg(J`ξ(s4)) results in a significantly reduced
ℵg(J`ξ(L)), but for disk 6, ℵg(J`ξ(L)) does not significantly change.

not expect to see a significant change in the pose error at
s4 between these two designs. We will now validate these
predicted behaviors in a simulation study.

Fig. 16. (a) A subset of the spatial configurations used to validate our shape
sensing approach on a segment subject to torsional loads utilizing helical
routing, and (b) the segment in its zero-curvature configuration.

We simulated the robot in Fig. 14 using the Cosserat rod
model from [36]. This model takes as inputs the applied
tensions on the actuation tendons as well as the external
forces/moments applied to the tip of the segment and returns
the curvature, shear, and extension of the segment. We sim-
ulated the robot with a preload force of 25 N applied on all
four tendons, and applied additional forces of up to 300 N
on the tendons to bend the segment in 8 different directions.
For each direction, we applied 12 different external wrenches
with forces of ±20 N and moments of ± 4 Nm, expressed in
the world frame. We selected these loads to generate a large
variety of shapes without exceeding the maximum curvature
to keep the segment within its admissible workspace. We also
included constant forces of 3.3 N on the helical strings due to
the constant-torque spring in the string encoder housing.
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For each tendon tension/external wrench combination, we
started with the segment initially unloaded and incremented
the external wrench with 5 steps to incrementally apply the
load and solve for the shape at each external wrench increment.
We did this to ensure that a good initial guess was provided to
the solver. This simulation resulted in 480 different configu-
rations of the continuum segment. For each configuration, we
stored the string/tendon lengths, and then used these lengths
as inputs to our kinematic shape sensing model to compare
the accuracy of our shape sensing approach. Our unoptimized
MATLAB 2019b implementation used MATLAB’s lsqnonlin()
to solve (16) for c at a rate of ∼ 4 Hz on average, using an
80 point trapezoid rule to compute J`c. Future code can be
orders of magnitude faster with direct implementation in C++.

We compared the mechanics model to two different shape
sensing models. The first used all 8 length measurements (4
string encoders and 4 actuation tendons) with the modal basis
given by (52). The second used only the 4 actuation tendons
to compare our shape sensing model to a scenario without
any helical shape sensing strings. For this second model, the
modal basis has 4 columns and is given by (40), with the
modal functions given by φx(s) = φy(s) =

[
T0, T1(s)

]T
.

TABLE VI
AVERAGE (MAXIMAL) ABSOLUTE POSITION AND ORIENTATION ERRORS

IN MM AND ◦ FOR THE SEGMENT IN FIG. 14. ERRORS ARE SPECIFIED
FOR THE END DISK (s = L) AND THE 4th DISK (s = s4)

End Disk
Routing

Fourth Disk
Routing

w/o Passive
Strings

p̄e(L), max (pe(L)) 1.29 (3.39) 1.94 (5.64) 5.61 (32.87)
p̄e(s4), max (pe(s4)) 0.45 (0.90) 0.52 (1.51) 0.63 (3.07)
θ̄e(L), max (θe(L)) 1.17 (3.04) 6.72 (21.78) 4.55 (23.44)
θ̄e(s4), max (θe(s4)) 0.61 (1.55) 0.57 (1.20) 2.15 (12.17)

Fig. 17. Histograms of normalized pose error at the end disk and at the fourth
intermediate disk for the routing that maximizes ℵg(J`ξ(L)) and for the
routing that maximizes ℵg(J`ξ(s4)). The pose error at the fourth intermediate
disk is not significantly effected by the change in routing design, but the tip
pose error is significantly effected due to the larger change in ℵg(J`ξ(L))
between the two designs.

The statistical results are given in Table VI, where we
denote the string routing design that maximizes ℵg (J`ξ(L))

as the end disk routing and the string routing design that max-
imizes ℵg (J`ξ(s4)) as the fourth disk routing. Both optimized
string routing designs had maximum absolute end disk position
errors below 2% of arc length. However, the fourth disk
routing resulted in a 616% increase in max(θe(L)) compared
to the end disk routing. There was also a 474% increase in
θ̄e(L), and small increases in both p̄e(L) and max (pe(L))
when compared to the fourth disk routing. This confirms the
expected behavior due to the large decrease in ℵg (J`ξ(L)) in
the fourth disk routing given in Table V.

Figure 17 shows the histograms of the error at the end
disk and the fourth disk, normalized using (50). We observe
that the end disk error with the end disk routing is shifted
leftward compared to the fourth disk routing errors, as ex-
pected due to the large change in ℵg (J`ξ(L)). Furthermore,
since ℵg (J`ξ(s4)) did not significantly change, we do not
see a significant difference in the error distribution for the
fourth disk pose, and in fact see a small shift rightward
with the fourth disk routing. This increase in error using
the fourth disk routing is explained by the known fact that
kinematic conditioning indices are not guaranteed to directly
correlate with the true errors (see [51]). Large changes in the
conditioning index should be sought to increase the possibility
of reducing the true errors.

Compared to the model without string measurements, the
end disk routing reduced the maximum end disk position error
by 90% and the maximum angular end disk error by 87%. The
fourth disk routing reduced the fourth disk maximum position
error by 51% and the fourth disk maximum angular error
by 90%. These simulation results demonstrate that 4 passive
string (together with the four actuation tendons) can signif-
icantly improve the accuracy of continuum robot kinematics
over actuation-based sensing alone.

VII. CONCLUSIONS

In this paper, we have presented a Lie group kinematic
formulation for capturing variable curvature deflections of
continuum robots using general string encoder routing. We
used this formulation for a sensitivity analysis of the error
propagation from error in string extension measurements to er-
ror in the modal coefficients and error in the central backbone
shape. This analysis allows the designer to avoid string encoder
routings that lead to ill-conditioned Jacobians. We then applied
the approach on a planar example, a segment with high
torsional stiffness, and a robot subject to torsional deflections
using helical routing, showing that this shape sensing approach
can result in mean and maximal absolute position error below
2% and 5% of arc length, respectively.

Our results provided several simple design guidelines for
routing the strings to improve numerical conditioning, which
we summarize here. For a planar segment, the strings should
not be anchored at the same disk, and the pitch radius should
be maximized. For a segment with high torsional stiffness, no
more than two strings should be anchored to a disk, and if two
strings are anchored to a disk, their anchor points should not be
collinear in the radial direction of the disk. For segments with
general deflections including torsion, simple design rules are
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more difficult to define, but the numerical conditioning can be
improved using our proposed design optimization procedure.

This sensing approach utilizes standard mechanical and
electrical components, providing a relatively low-cost way of
sensing the variable curvature deflections of large continuum
robots, and the kinematic formulation and analysis presented
herein enables practitioners to design string routings that
improve the numerical conditioning of shape sensing. We have
shown that four string encoders can provide accurate shape
sensing, and have demonstrated a physical embodiment of
a segment utilizing this approach, but a drawback of this
approach compared to other sensing methods is the physi-
cal space required to mount the string encoders within the
robot. To overcome this drawback, directions for future work
include investigating more tightly integrated design of the
string encoder mechanical components into the robot body
or mounting of the string encoder housing remotely outside
of the robot body. Future work also includes evaluation on
multi-segment continuum robots and using this shape sensing
approach and Lie group kinematic formulation to provide
updates to continuum robot mechanics models.
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[6] Y. Shapiro, G. Kósa, and A. Wolf, “Shape tracking of planar hyper-
flexible beams via embedded PVDF deflection sensors,” IEEE/ASME
Transactions on Mechatronics, vol. 19, no. 4, pp. 1260–1267, 2014.

[7] Y.-L. Park, S. Elayaperumal, B. Daniel, S. C. Ryu, M. Shin, J. Savall,
R. J. Black, B. Moslehi, and M. R. Cutkosky, “Real-time estimation
of 3-D needle shape and deflection for MRI-guided interventions,”
IEEE/ASME Transactions on Mechatronics, vol. 15, no. 6, pp. 906–915,
2010.

[8] R. Xu, A. Yurkewich, and R. V. Patel, “Curvature, torsion, and force
sensing in continuum robots using helically wrapped FBG sensors,”
IEEE Robotics and Automation Letters, vol. 1, no. 2, pp. 1052–1059,
2016.

[9] R. J. Roesthuis, M. Kemp, J. J. van den Dobbelsteen, and S. Misra,
“Three-dimensional needle shape reconstruction using an array of fiber
Bragg grating sensors,” IEEE/ASME Transactions on Mechatronics,
vol. 19, no. 4, pp. 1115–1126, 2014.

[10] T. Clements and C. Rahn, “Three-dimensional contact imaging with an
actuated whisker,” IEEE Transactions on Robotics, vol. 22, no. 4, pp.
844–848, 2006.

[11] D. Trivedi and C. D. Rahn, “Model-based shape estimation for soft
robotic manipulators: The planar case,” Journal of Mechanisms and
Robotics, vol. 6, no. 2, p. 021005, May 2014.

[12] W. S. Rone and P. Ben-Tzvi, “Multi-segment continuum robot shape es-
timation using passive cable displacement,” in 2013 IEEE International
Symposium on Robotic and Sensors Environments (ROSE), 2013, pp.
37–42.

[13] K. Xu, Y. Chen, Z. Zhang, S. Zhang, N. Xing, and X. Zhu, “An insertable
low-cost continuum tool for shape sensing,” in 2017 IEEE International
Conference on Robotics and Biomimetics (ROBIO). Macau: IEEE, Dec.
2017, pp. 2044–2049.

[14] C. G. Frazelle, A. Kapadia, and I. Walker, “Developing a kinematically
similar master device for extensible continuum robot manipulators,”
Journal of Mechanisms and Robotics, vol. 10, no. 2, 02 2018, 025005.

[15] L. Wang and N. Simaan, “Geometric calibration of continuum robots:
Joint space and equilibrium shape deviations,” IEEE Transactions on
Robotics, vol. 35, no. 2, pp. 387–402, 2019.

[16] A. Nahvi and J. M. Hollerbach, “The noise amplification index for
optimal pose selection in robot calibration,” in Proceedings of IEEE
International Conference on Robotics and Automation, vol. 1, 1996, pp.
647–654.

[17] L. U. Odhner and A. M. Dollar, “The smooth curvature model: An
efficient representation of Euler–Bernoulli flexures as robot joints,” IEEE
Transactions on Robotics, vol. 28, no. 4, pp. 761–772, 2012.

[18] F. Renda, C. Armanini, V. Lebastard, F. Candelier, and F. Boyer, “A
geometric variable-strain approach for static modeling of soft manipula-
tors with tendon and fluidic actuation,” IEEE Robotics and Automation
Letters, vol. 5, no. 3, pp. 4006–4013, 2020.

[19] F. Boyer, V. Lebastard, F. Candelier, and F. Renda, “Dynamics of
continuum and soft robots: A strain parameterization based approach,”
IEEE Transactions on Robotics, vol. 37, no. 3, pp. 847–863, 2020.

[20] A. L. Orekhov and N. Simaan, “Solving Cosserat rod models via
collocation and the Magnus expansion,” in IEEE/RSJ International
Conference on Robots and Systems (IROS), Oct. 2020.

[21] R. Jödicke, U. Jungnickel, and A. Müller, “Lie group modeling of
nonlinear helical beam elements,” in International Design Engineering
Technical Conferences and Computers and Information in Engineering
Conference, vol. 6, Aug 2014, V006T10A030.

[22] G. S. Chirikjian and J. W. Burdick, “A modal approach to hyper-
redundant manipulator kinematics,” IEEE Transactions on Robotics and
Automation, vol. 10, no. 3, pp. 343–354, 1994.

[23] S. H. Sadati, S. E. Naghibi, I. D. Walker, K. Althoefer, and
T. Nanayakkara, “Control space reduction and real-time accurate model-
ing of continuum manipulators using Ritz and Ritz–Galerkin methods,”
IEEE Robotics and Automation Letters, vol. 3, no. 1, pp. 328–335, 2017.

[24] L. Wang and N. Simaan, “Investigation of error propagation in
multi-backbone continuum robots,” in Advances in Robot Kinematics.
Springer, 2014, pp. 385–394.

[25] M. W. Hannan and I. D. Walker, “Kinematics and the implementation
of an elephant’s trunk manipulator and other continuum style robots,”
Journal of Robotic Systems, vol. 20, no. 2, pp. 45–63, 2003.

[26] W. McMahan, V. Chitrakaran, M. Csencsits, D. Dawson, I. D. Walker,
B. A. Jones, M. Pritts, D. Dienno, M. Grissom, and C. D. Rahn, “Field
trials and testing of the OctArm continuum manipulator,” in 2006 IEEE
International Conference on Robotics and Automation (ICRA), 2006, pp.
2336–2341.

[27] W. Felt, M. J. Telleria, T. F. Allen, G. Hein, J. B. Pompa, K. Albert, and
C. D. Remy, “An inductance-based sensing system for bellows-driven
continuum joints in soft robots,” Autonomous robots, vol. 43, no. 2, pp.
435–448, 2019.

[28] J. Ding, R. E. Goldman, K. Xu, P. K. Allen, D. L. Fowler, and N. Simaan,
“Design and coordination kinematics of an insertable robotic effectors
platform for single-port access surgery,” IEEE/ASME Transactions on
Mechatronics, vol. 18, no. 5, pp. 1612–1624, 2012.

[29] N. Sarli, G. Del Giudice, S. De, M. S. Dietrich, S. D. Herrell, and
N. Simaan, “TURBot: A system for robot-assisted transurethral bladder
tumor resection,” IEEE/ASME Transactions on Mechatronics, vol. 24,
no. 4, pp. 1452–1463, 2019.

[30] K. M. Lynch and F. C. Park, Modern Robotics: Mechanics, Planning,
and Control. Cambridge University Press, 2017.

[31] A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, and A. Zanna, “Lie-group
methods,” Acta Numerica, vol. 9, pp. 215–365, Jan. 2000.

[32] P. S. Gonthina, A. D. Kapadia, I. S. Godage, and I. D. Walker, “Modeling
variable curvature parallel continuum robots using Euler curves,” in 2019
International Conference on Robotics and Automation (ICRA). IEEE,
2019, pp. 1679–1685.

[33] P. Rao, Q. Peyron, and J. Burgner-Kahrs, “Using Euler curves to model
continuum robots,” in 2021 IEEE International Conference on Robotics
and Automation (ICRA), 2021, pp. 1402–1408.



©2022 IEEE. ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON ROBOTICS. 17

[34] J. C. Mason and D. C. Handscomb, Chebyshev Polynomials. CRC
Press, 2002.

[35] R. J. Webster III and B. A. Jones, “Design and kinematic modeling
of constant curvature continuum robots: A review,” The International
Journal of Robotics Research, vol. 29, no. 13, pp. 1661–1683, 2010.

[36] D. C. Rucker and R. J. Webster, “Statics and dynamics of continuum
robots with general tendon routing and external loading,” IEEE Trans-
actions on Robotics, vol. 27, no. 6, pp. 1033–1044, Dec. 2011.

[37] W. Rossmann, Lie Groups: An Introduction Through Linear Groups.
Oxford University Press on Demand, 2006, vol. 5.

[38] J. M. Selig, Geometric Fundamentals of Robotics. Springer Science &
Business Media, 2004.

[39] C. Abah, A. L. Orekhov, G. L. H. Johnston, and N. Simaan, “A multi-
modal sensor array for human–robot interaction and confined spaces
exploration using continuum robots,” IEEE Sensors Journal, vol. 22,
no. 4, pp. 3585–3594, 2022.

[40] F. Renda, M. Giorelli, M. Calisti, M. Cianchetti, and C. Laschi,
“Dynamic model of a multibending soft robot arm driven by cables,”
IEEE Transactions on Robotics, vol. 30, no. 5, pp. 1109–1122, 2014.

[41] P. Cardou, S. Bouchard, and C. Gosselin, “Kinematic-sensitivity indices
for dimensionally nonhomogeneous Jacobian matrices,” IEEE Transac-
tions on Robotics, vol. 26, no. 1, pp. 166–173, 2010.

[42] J. Zhang, J. Roland, J. Thomas, S. Manolidis, and N. Simaan, “Optimal
path planning for robotic insertion of steerable electrode arrays in
cochlear implant surgery,” Journal of Medical Devices, vol. 3, no. 1,
12 2008.

[43] N. Simaan, R. Taylor, and P. Flint, “A dexterous system for laryngeal
surgery,” in IEEE International Conference on Robotics and Automation,
2004. Proceedings. ICRA’04. 2004, vol. 1, 2004, pp. 351–357.

[44] X. Dong, M. Raffles, S. Cobos-Guzman, D. Axinte, and J. Kell, “A novel
continuum robot using twin-pivot compliant joints: design, modeling,
and validation,” Journal of Mechanisms and Robotics, vol. 8, no. 2, p.
021010, 2016.

[45] J. A. Childs and C. Rucker, “Concentric precurved bellows: new bending
actuators for soft robots,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 1215–1222, 2020.

[46] J. Santoso and C. D. Onal, “An origami continuum robot capable
of precise motion through torsionally stiff body and smooth inverse
kinematics,” Soft Robotics, Jul. 2020.

[47] J. A. Childs and C. Rucker, “Leveraging geometry to enable high-
strength continuum robots,” Frontiers in Robotics and AI, vol. 8, 2021.

[48] V. C. Anderson and R. C. Horn, “Tensor arm manipulator,” Feb. 24
1970, US Patent 3,497,083.

[49] G. L. Johnston, A. L. Orekhov, and N. Simaan, “Kinematic modeling
and compliance modulation of redundant manipulators under bracing
constraints,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), 2020, pp. 4709–4716.

[50] C. Abah, A. L. Orekhov, G. L. Johnston, P. Yin, H. Choset, and
N. Simaan, “A multi-modal sensor array for safe human-robot interaction
and mapping,” in 2019 International Conference on Robotics and
Automation (ICRA), 2019, pp. 3768–3774.

[51] J. P. Merlet, “Jacobian, manipulability, condition number, and accuracy
of parallel robots,” Journal of Mechanical Design, vol. 128, no. 1, pp.
199–206, Jun. 2005.

Andrew L. Orekhov received the B.S. degree in
mechanical engineering from the University of Ten-
nessee, Knoxville, TN, in 2016, and the Ph.D. in
mechanical engineering from Vanderbilt University,
Nashville, TN, in 2022. He is currently a Postdoc-
toral Fellow in the Robotics Institute at Carnegie
Mellon University and his research interests include
design, modeling, and control of continuum ma-
nipulators and snake robots. He received the NSF
Graduate Research Fellowship in 2016.

Elan Z. Ahronovich received his B.S. degree in
biological sciences from the Ohio State University,
Columbus, OH, USA, in 2014 and his B.S. degree
in mechanical engineering from Virginia Polytech-
nic Institute and State University, Blacksburg, VA,
USA, in 2019. His current research interests include
collaborative surgical robotics and soft continuum
manipulators.

Nabil Simaan (F’20) received his Ph.D. degree in
mechanical engineering from the Technion—Israel
Institute of Technology, Haifa, Israel, in 2002. Dur-
ing 2003, he was a Postdoctoral Research Scien-
tist at Johns Hopkins University National Science
Foundation (NSF) ERC-CISST. In 2005, he joined
Columbia University, New York, NY. In 2009 he
received the NSF Career award for young inves-
tigators to design new algorithms and robots for
safe interaction with the anatomy. In Fall 2010 he
joined Vanderbilt University. In 2020 he was named

an IEEE Fellow for contributions to dexterous continuum robotics. In 2021
he was elected Fellow of the ASME for contributions to continuum and
soft robotics for surgery. His research interests include medical robotics,
kinematics, robot modeling and control and human-robot interaction.


	I Introduction
	II Lie Group Kinematic Formulation
	II-A Central Backbone Kinematics
	II-B Modal Shape Basis with Chebyshev Polynomials
	II-C General String Routing Kinematics
	II-D Solving for the Modal Coefficients
	II-E Configuration Space Jacobian
	II-F Body Jacobian

	III String Routing Optimization
	IV Planar Case Study
	V Robots with High Torsional Stiffness and Constant Pitch String Paths
	V-A Kinematic model for torsionally stiff continuum robots
	V-B Experimental validation on a collaborative continuum robot module

	VI Sensing Torsional Deflections with  Helical String Paths
	VII Conclusions
	References
	Biographies
	Andrew L. Orekhov
	Elan Z. Ahronovich
	Nabil Simaan


