
1

MoESys: A Distributed and Efficient Mixture-of-Experts
Training and Inference System for Internet Services

Dianhai Yu∗, Liang Shen∗, Hongxiang Hao, Weibao Gong, Huachao Wu, Jiang Bian, Member, IEEE,
Lirong Dai, Member, IEEE, Haoyi Xiong, Senior Member, IEEE

Abstract—While modern internet services, such as chatbots, search engines, and online advertising, demand the use of large-scale
deep neural networks (DNNs), distributed training and inference over heterogeneous computing systems are desired to facilitate these
DNN models. Mixture-of-Experts (MoE) is one the most common strategies to lower the cost of training subject to the overall size of
models/data through gating and parallelism in a divide-and-conquer fashion. While DeepSpeed [1] has made efforts in carrying out
large-scale MoE training over heterogeneous infrastructures, the efficiency of training and inference could be further improved from
several system aspects, including load balancing, communication/computation efficiency, and memory footprint limits. In this work, we
present a novel MoESys that boosts efficiency in both large-scale training and inference. Specifically, in the training procedure, the
proposed MoESys adopts an Elastic MoE training strategy with 2D prefetch and Fusion communication over Hierarchical storage, so as
to enjoy efficient parallelisms. For scalable inference in a single node, especially when the model size is larger than GPU memory,
MoESys builds the CPU-GPU memory jointly into a ring of sections to load the model, and executes the computation tasks across the
memory sections in a round-robin manner for efficient inference. We carried out extensive experiments to evaluate MoESys, where
MoESys successfully trains a Unified Feature Optimization [2] (UFO) model with a Sparsely-Gated Mixture-of-Experts model of 12B
parameters in 8 days on 48 A100 GPU cards. The comparison against the state-of-the-art shows that MoESys outperformed DeepSpeed
with 33% higher throughput (tokens per second) in training and 13% higher throughput in inference in general. Particularly, under
unbalanced MoE Tasks, e.g., UFO, MoESys achieved 64% higher throughput with 18% lower memory footprints.

Index Terms—Large Models for Internet Services, MoE, Distributed Training, Distributed Inference

✦

1 INTRODUCTION

In recent years, there has been significant evolution in
internet services, and the integration of artificial intelligence
has made deep learning models indispensable in the internet
ecosystem [3]–[6]. Particularly, large deep neural network
(DNN) models such as BERT and GPT have gained increasing
popularity due to their remarkable performance in text and
language processing applications [7], leading to the reliance
of various internet services, including chat bots, online
advertising platforms, recommender systems, search engines,
and translation tools, on these models to provide users
with the desired accuracy and customization [8]–[12]. While
the utilization of large models has significantly enhanced
the performance of internet services, it has come at the
cost of expanding the parameter scale to tens of billions,
such as the GPT-3 model with 175B parameters [13], [14],
Ernie3.0 Titan with 260B parameters [15], and Megatron-
Turing NLG with 530B parameters [16]. However, these
densely activated models necessitate abundant computing
resources and extensive training time. For instance, the
training of Megatron-Turing NLG with 530B parameters,
one of the largest densely activated models, required three
months using over 2000 NVIDIA A100 GPUs [16], making
it financially expensive and hindering the development of

This work was supported in part by (1) project CEIEC-2022-ZM02-0247 and
(2) Beijing Municipal Science and Technology Project (No. Z231100010323002)
∗The first two author contributed equally to this work. D. Yu, L. Shen, H. Hao,
W. Gong, H. Wu, J. Bian, H. Xiong are with Baidu, Inc., Beijing, China. L.
Dai is with Department of Electronic Engineering and Information Science,
University of Science and Technology of China, Heifei, China. Corresponding
author is Jiang Bian (email: jiangbian03@gmail.com).

models with even larger parameter scales. Moreover, the
inference performance of these super large-scale models
seldom meets the current industrial demands [5], [17].

Various ad-hoc strategies have been employed to improve
the efficiency of training large-scale models. One such
approach is the AIBox concept, applied specifically in the
training of Click-Through Rate (CTR) prediction models
to reduce costs. This method involves sparsifying feature
embeddings and leveraging a distributed multi-GPU setup
to over-parameterize the model [18]. AIBox primarily focuses
on certain layers for processing high-dimensional data,
with an aim to scale the model. Conversely, in the realm
of pre-trained language models, multi-task learning has
been adopted, especially for multilingual neural machine
translation [19]. Models like MT5 [20], MASSively [21],
and MultiNLI [22] differ from densely activated models
but require significant computational resources to surpass
existing benchmarks.

To address these challenges, Mixture-of-Experts (MoE)
based sparsely activated neural networks have been in-
troduced for training larger models with minimal or no
additional computational resources, while still achieving
improved training outcomes [23]–[26]. MoE architectures
activate only a subset of parameters based on the input data,
unlike densely activated models. This selective activation
results in a sub-linear increase in computational costs relative
to model size. For instance, GLaM’s largest variant [27]
possesses 1.2T parameters with 64 experts per MoE layer,
yet only activates a 95B-parameter subnet (8% of 1.2T) for
each input token. Training this model saves two-thirds of
the power required for GPT-3 (175B) [13], while halving the

ar
X

iv
:2

20
5.

10
03

4v
3 

 [
cs

.D
C

] 
 1

2 
A

ug
 2

02
4



2

computational resources needed during inference. Despite
all the benefits, MoE models still face numerous challenges
and limitations, especially in computation, communication,
and storage:

• Computation – The computation cost per GPU remains
constant in MoE models, but increases with the total
number of experts. Training performance suffers due to
expert imbalance, where some are overtrained and others
underutilized [25]. Solutions include auxiliary losses [24],
random expert selection [28], and noise in routing [25].
However, these focus more on scheduling than compu-
tation and require substantial CPU resources. Inefficient
computational task allocation and redundant operations,
like H2D and D2H transfers, reduce efficiency and increase
latency [29].

• Communication – In MoE models, imbalances in routing
strategies persist despite advanced learning methods [24],
[25], [30], [31]. Unbalanced data leads to inconsistent
progress and redundant waiting in multi-task training.
For example, the Switch Transformer model requires
four AlltoAll communications per MoE layer, leading
to performance degradation due to routing conflicts and
blocking in unknown network topologies [25].

• Storage – The memory and storage capacity limits MoE
model sizes. While dense models are constrained by
training time, MoE models scale better due to their sub-
linear computing cost increase. A dense model with 1
trillion parameters requires 3 months to train on 3072
NVIDIA A100 GPUs, but an MoE model can be trained
in weeks [14]. However, the model’s scalability depends
on device memory capacity. The differences in I/O latency
between HBM in GPUs, CPU memory, and SSDs cause
delays, necessitating efficient storage management for
sparsely activated training [32].

Our Contributions. To overcome the aforementioned chal-
lenges and limitations of MoE, we introduce a novel unified
framework MoESys, based on an open-source platform for
MoE training and inference. The non-trivial contributions in
MoESys are as follows,

• A novel distributed framework named MoESys is de-
signed, which is capable of scaling MoE models to trillions
of parameters, fully utilizes the clusters including HBM,
CPU memory and even SSDs to break the memory wall and
achieves efficient training scheduling. Notably, MoESys
incorporates advanced techniques such as 2D prefetch
scheduling and fusion communication, further enhancing
the efficiency of heterogeneous storage systems.

• A new inference method based on the ring memory
is employed by dynamic graph scheduling, which can
integrate the computation and communication as much as
possible and accelerate the inference procedure without
using additional machines for larger-scale MoE models.

• Several effective training strategies have been initially
devised in MoESys for NLP and CV tasks, aimed at scaling
up multi-task learning without requiring additional mem-
ory. These strategies include load balancing, embedding
partition, and resource-aware communication.

• We conduct comprehensive industrial-level experiments to
showcase the significant performance gain using MoESys,
where the practice in this work could benefit the future

development of large-scale MoE training and inference.
We organize the rest of this manuscript as follows. In

Section 2, we review the previous efforts on the design
of MoE. Section 3 introduces the novel design of MoESys
respectively. Additionally, we reveal details of the practical
implementation strategies adopted in MoESys in Section 4.
To demonstrate the effectiveness and efficiency of MoESys,
we conduct comprehensive experiments and analyze the
results in Section 5. Finally, we conclude this work and look
forward to the future direction in Section 6.

2 RELATED WORK

In this section, we review the relevant works in the field
from the perspectives of large models for internet services
and their training and inference systems.

2.1 Internet Services and Large Models
Large Language Models (LLMs) are revolutionizing internet
services such as search engines, chatbots, online advertising,
and cloud applications [8]–[12], [33]. Organizations are
increasingly using custom LLMs tailored to specific needs.
These domain-specific models enhance internet service qual-
ity and customer experience, being more efficient and faster
than general-purpose LLMs, particularly for applications in-
volving proprietary data. An example is BloombergGPT [34],
a custom LLM by Bloomberg, which significantly impacts on-
line finance services by rapidly evaluating financial data for
risk assessments, financial sentiment analysis, and potentially
automating accounting and auditing. Despite its large size
of 50 billion parameters, BloombergGPT avoids traditional
single-model training, favoring a Mixture-of-Experts (MoE)
system for better efficiency and effectiveness. MoE models
have shown great promise in natural language processing,
with strategies focusing on routing enhancements [28], [35]
to improve model quality and performance. Notice that, the
GLaM [27] framework demonstrates that the largest MoE
with 1.2 trillion parameters is more energy-efficient, using
only one-third of the energy required for training GPT-3.

In light of the scaling law, there’s a growing trend to
increase model sizes. MoE-based models with billions or
even trillions of parameters, like CPM-2 [36], M6-T [31], M6-
10T [37], and GLaM [27], are showing superior generalization
in language processing and multi-modal tasks. Baidu’s
UFO [2] model, another MoE-based framework, emphasizes
deployment efficiency and big data utilization. It features a
super network comprising multiple subtasks, with a routing
strategy selecting the appropriate subtask for training.

2.2 MoE Training and Inference Systems
The rising popularity of the Mixture of Experts (MoE)
training approach has led to the release of several open-
source MoE training frameworks and systems by various
scientific research bodies and corporations. DeepSpeed-MoE
integrates multiple distributed parallel techniques like data
parallelism and tensor slicing to effectively utilize MoE
parallelism, allowing for the training of larger models. It
also introduces PR-MoE, a new sparsely activated model for
MoE inference, and employs model compression to reduce
model sizes, alongside an efficient communication strategy to



3

improve latency [38], [39]. FastMoE, another distributed MoE
training system, offers a user-friendly hierarchical interface
and straightforward guidelines for integrating Megatron-
LM and Transformer-XL with data and tensor slicing paral-
lelism [29], [40], [41]. Unlike DeepSpeed, FastMoE focuses on
reducing network traffic through an advanced optimization
method. The INFMoE inference system suggests an optimal
computation sequence and parameter offloading using a
greedy algorithm to address workload imbalances and
minimize the impact of data movement, especially when
offloading to CPUs, while maintaining computational effi-
ciency [36]. Fairseq-MoE is a framework tailored for training
custom models in areas like summarization, translation, and
language modeling. Tutel enhances Fairseq’s communication
and computation capabilities, leading to a performance
boost of around 40%. Notably, these improvements in Tutel
have been incorporated into DeepSpeed for MoE model
training [42]–[44].

Furthermore, model scale and data size are two crucial
factors that significantly impact the performance and effec-
tiveness of model training. However, exploring further in
this field poses a substantial challenge for scientific institu-
tions and enterprises due to the enormous computational
and storage resource requirements involved. To address
this challenge, the design of sparsely activated model has
emerged in recent years and gained traction in the industry.
Unlike densely activated models that involve computing
all parameters, the sparsely activated model dynamically
selects a subset of parameters for training based on the input
data. This approach enables linear parameter scaling without
increasing the computational workload, thus making larger
models built on the Mixture-of-Experts (MoE) architecture
more feasible and efficient.

3 MOESYS DESIGN

MoESys is an innovative system for distributed training
and inference, utilizing a Mixture-of-Experts architecture to
enhance scalability and efficiency. Its main objective is to
adhere to predefined memory latency goals while operating
within existing storage limits. A notable advancement in this
area is DeepSpeed’s Zero-infinity approach [45], which has
successfully trained a model with over 30 trillion parameters
using 512 V100 GPUs across NVIDIA DGX-2 nodes. This
pioneering technique circumvents memory bottlenecks by
fully exploiting a range of storage mediums, such as High
Bandwidth Memory (HBM) in GPUs, CPU memory, and
SSDs. This enables the training of exceptionally large models
on singular devices. To refine storage use and boost train-
ing efficacy, both the Zero strategy [45] and a parameter
prefetching method are implemented. However, there is
a need to consider the reduced longevity and diminished
performance of SSDs when near maximum capacity [46].
Moreover, DeepSpeed’s current prefetching approach does
not accommodate the heterogeneity of parameters specific
to the Mixture-of-Experts design. MoESys addresses these
issues by introducing an innovative prefetching scheduling
technique. This method enhances both training and inference
by tailoring to the distinct attributes of various parameters,
effectively leveraging multi-tiered storage solutions to opti-
mize system performance.

3.1 Overall Design of Architecture

MoESys employs a two-phase approach, namely the training
phase and the inference phase, as illustrated in Figure 1. Dur-
ing the training phase, large-scale models are trained offline
utilizing a variety of strategies. Once the model convergence
is achieved, the parameters are saved for future use. On
the other hand, the inference phase involves deploying the
trained model to the cloud through graph optimization and
pruning operations. This deployment facilitates convenient
query services for users.

G
ra

p
h
 O

p
ti
m

iz
e
r

SE-MoE

Hierarchical Storage

2D Prefetch Scheduling

MoE Network

SE-MoE

Training Phase

Metadata
Store

R
in

g
-
M

e
m

o
ry

  
S
c
h
e
d
u
li
n
g

Serving

AI Cloud

Request/Response

Request/Response

API 

interface

Deployment

Inference Phase

Fig. 1: MoESys’s architecture diagram

3.2 Training Phase

To enhance the efficiency of MoE training and address issues
pertaining to Solid-State Drives (SSDs) and scheduling in the
context of training large-scale models, a novel approach has
been introduced [47]. In this method, MoE model parameters
are divided into two categories according to their activation
characteristics. Parameters in the first category are sparsely
activated during training, such as those in the switching
feed-forward network (FFN) layer, while the second category
includes densely activated parameters, like those in the multi-
head attention layer. Given that sparse parameters, which
form a substantial part of the MoE model, may surpass
GPU storage capacities, MoESys has restructured the MoE
training system architecture, as shown in Figure 2. This
restructure utilizes a variety of storage mediums to meet the
memory demands of both sparse and dense parameters.
To counteract the performance issues arising from data
transfer across different storage types, a new technique
termed 2D prefetch scheduling has been implemented. The
following sections will delve into a comprehensive discussion
of our training framework, concentrating specifically on two
principal components: Hierarchical Storage and 2D Prefetch
Scheduling.

3.2.1 Hierarchical Storage
In the context of large-scale Mixture-of-Experts (MoE) mod-
els, the increasing scale of parameters has led to storage
becoming a significant bottleneck in model training. Typically,
the stored parameter states consist of three components: train-
able parameters, parameter gradients, and corresponding
optimizer states. Considering the different storage media
available, the storage devices can be classified into three
categories: GPU-Node, CPU-Node, and SSD-Node. Since
dense parameters are extensively utilized for computation
and do not occupy the majority of storage space, their
parameter states are stored exclusively on the GPU-Node
to minimize data movement. In contrast, sparse parameters,
which are selectively activated during training and consume



4

data 0

Gating

data 1

Gating

Auto topology communication

Auto topology communication

Transformer

Block

Transformer

Block

data 2

Gating

data 3

Gating

Transformer

Block

Transformer

Block

Dense Backbone Dense Backbone Dense Backbone Dense Backbone

Sparse Sparse Sparse Sparse

Dense

BackBone

SSD - Sparse States

Memory

Prefetch

Prefetch

SparseCache Optimize

Materialize

Transfer

Communicate

Dense

...

Prefetch

Transfer

PCIe

NVLink

Fig. 2: Overall MoE training: This is an example of the MoE training with four devices. In accordance with the parameter state
property of the MoE model, the parameter states are stored in both GPUs and SSDs. With this heterogeneous storage setup,
we can effectively utilize the NVLink and PCIe bandwidth concurrently, leveraging their capabilities in two dimensions.

a significant amount of storage space compared to dense
parameters, have their parameter states stored on the SSD-
Node and are transferred to the GPU-Node when required
for calculations. By strategically allocating the corresponding
parameter states to hierarchical storage based on the compu-
tational and storage characteristics of parameters, the storage
capacity of devices can be maximally utilized.

In light of the constraints posed by storage nodes, this
work introduces a set of theoretical formulas to articulate
the correlation between various storage devices and the
storage requirements of parameter states when utilizing
the ADAM optimizer [48]. Typically, each storage device is
configured with eight GPUs. We denote the aggregate count
of dense and sparse parameters as D and S respectively,
and L as the total number of MoE layers. The capacities of
SSD memory, CPU memory, and GPU memory in a single
device are represented by MSSD, MCPU , and MGPU , in
that order. Moreover, N signifies the quantity of devices.
We also introduce a variable, α, to quantify the likelihood
of activation of sparse parameters during training, with α
ranging between 0 and 1.

For the GPU-Node, it stores the dense parameter states
used in forward propagation (FWD), backward propaga-
tion (BWD), and parameter updating. This includes pa-
rameters such as param fp16, grad fp16, master param
fp32, momentum fp32, variance fp32, with a total size of
2D + 2D + 4D + 4D + 4D = 16D bytes. Furthermore, it
accommodates sparse parameters and their corresponding
gradients, with a size of 4αS/L bytes, accounting for the
selective activation of sparse parameters. The CPU-Node
serves as a cache to hold high-frequency sparse parameter
states, occupying 16αS bytes. Lastly, the SSD-Node stores
all sparse parameter states on the device, including master
param fp32, momentum fp32, and variance fp32, with a size
of 12S bytes.

GPU-Node : 16D + 4αS/L ≤ MGPU ·N
CPU-Node : 16αS ≤ MCPU ·N
SSD-Node : 12S ≤ MSSD ·N

(1)

The scale of the entire MoE model:

P = S +D (2)

The storage mechanism for sparse parameters typically
involves saving them on SSDs. Nonetheless, SSDs encounter
limitations due to their flash media, limited PCIe band-
width, and constraints of the NVMe protocol. These factors
contribute to increased latency and a restricted number of
erasures, posing challenges in MoE training scenarios that re-
quire frequent write operations. To address these challenges,
we turn our focus to Intel Optane Persistent Memory (Optane
PMem) [49], an innovative storage medium that merges
the benefits of byte-level addressing, similar to DRAM,
with the long-term storage ability of SSDs. Optane PMem
is connected to the CPU’s integrated memory controller
(IMC) via the DIMM (Dual Inline Memory Module) interface
and communicates using DDR-T, a protocol developed for
DDR4’s electrical/mechanical interface. This configuration
allows for byte-level addressing through CPU commands,
enhancing bandwidth and decreasing latency. Significantly,
Optane PMem functions in two modes: memory mode and
AppDirect mode. For our specific requirement of storing
parameter files on Optane PMem, we choose the AppDirect
mode and set the namespace to FSDAX. By exploiting
the features of Ext4, direct load and store operations are
possible, circumventing both the CPU’s page cache and the
kernel, which facilitates seamless data transfer free from
interruptions or context switches.

3.2.2 2D Prefetch Scheduling
The implementation of hierarchical storage for the preser-
vation of both sparse and dense parameter states in MoE
training introduces considerable time overhead due to the
necessity of transferring these states across various devices.



5

To mitigate this, a 2D prefetch scheduling strategy is pro-
posed, allowing for the simultaneous processing of dense
and sparse schedules during MoE training. This strategy
facilitates the concurrent computation of parameters with
the scheduling procedure.

In greater detail, this strategy, particularly when applied
to the dense parameter subset as defined by the ZeRO-3
strategy, enables prefetching of the entire dense parameter set
post inter-rank communication along the horizontal axis, uti-
lizing the rapid transfer speeds of NVLink. This approach is
instrumental in achieving data parallelism, as demonstrated
in Algorithm 1. In this methodology, prefetching occurs
alongside the computation and communication processes
of the current layer. To be more specific, while the ith

layer undergoes computation and communication, prefetch
scheduling for the (i+1)th layer’s parameters is conducted in
parallel. This simultaneous prefetching approach guarantees
the readiness of parameters for the subsequent layer when
required, significantly reducing idle times and boosting
overall computational efficiency.

Algorithm 1: Scheduling on Dense Parameters

1 d
′

i: Dense parameter state slices in ith layer
2 di: total dense parameters in ith layer

3 Function DenseSchedule(i):
4 Get dense parameters in ith layer dslice
5 d = AllGather(d

′

i)
6 End Function

In a similar vein, the prefetching of sparse parameters
takes place through the PCIe bandwidth in the vertical dimen-
sion of the device. Given that sparse parameters are stored in
SSDs, we mitigate access to SSDs for sparse parameter states
by implementing a cache mechanism in the CPU memory,
akin to the LFU (Least Frequently Used) mechanism [50].
CPU caches are responsible for storing selectively activated
sparse parameter states used in FWD/BWD calculations and
parameter updates. When a prefetch request is received, it is
prioritized to retrieve the requested sparse parameters from
the CPU caches. If these parameters are not found in the
CPU caches, they are subsequently retrieved from the SSDs.
Moreover, when the CPU caches become full or when the
sparse parameter update cycle period is reached, the sparse
parameter states from the CPU caches are used to update the
corresponding parameter states on the SSDs.

As the CPU memory on each machine only caches
frequently activated sparse parameters, we only need to
prefetch the parameters of one or more expert layers, which
are cached in the CPU memory, to the corresponding GPU
memory in advance. By prefetching parameters in advance,
the waiting time for computation can be significantly reduced.
From a global perspective, by utilizing the bandwidth of
NVLink and PCIe in two dimensions, we can simultaneously
prefetch dense and sparse parameters, effectively reducing
the scheduling gap caused by heterogeneous storage and
greatly enhancing training efficiency. In the following sec-
tions, we present a detailed explanation of the CPU cache
mechanism, as depicted in Algorithm 2. Additionally, we
maintain historical hit information for each sparse parameter,

Algorithm 2: Scheduling on Sparse Parameters

1 Parameters:
2 ps: sparse parameter states in ith layer
3 cachescpu: CPU caches
4 CPUsize: the maximum capacity of the CPU caches to

store sparse parameter states
5 hits: the frequency of hits for a specific sparse parameter in

the hash table
6 threshold: hit threshold
7 β: attenuation coefficient
8 K : the step size of moving average
9 steps = 0: cycle steps

10 acccaches = 0: cumulative caches

11 Function SparseSchedule(i):
12 if ps in cachescpu then
13 Get ps from cachescpu
14 hits[ps] += 1
15 else if acccaches + 1 < CPUsize then
16 hits[ps] = 1
17 acccaches += 1
18 Fetch ps from SSDs to cachescpu
19 else
20 foreach pa in hits do
21 hita = hits[pa]
22 if hita ≥ threshold and

min(hits.values()) == hita then
23 Update the states of pa on SSDs
24 Delete the states of pa in cachescpu
25 Delete hits[pa]
26 Fetch ps from SSDs to cachescpu
27 steps += 1
28 if steps == K then
29 hits · β ▷ moving average

30 steps = 0
31 ps −→ GPU ▷ transfer ps to the corresponding GPU

32 End Function

which is recorded in a hash table referred to as hits.
Specifically, if a parameter ps is requested and has been
used in the previous FWD, we increment its count in the hits
table. When the CPU caches have reached their maximum
capacity, we update the sparse parameter states with the
lowest hit frequency that surpasses the hit threshold.

In the MoE model training, each node determines whether
to activate its experts in the next iteration based on the
recorded expert selection results and the maintained experts’
information. If activation is needed, further decisions are
made based on the historical hit information recorded in a
hash table to determine whether to send prefetch requests.
Firstly, to avoid introducing additional CPU operations
before sending prefetch requests, it is essential to place
the hash table that records historical hit information on
the GPU Node. Since each node only stores a portion of
the sparse parameters in the SSD (not the full set), it is
only necessary to maintain historical hit information for the
corresponding sparse parameters. This approach distributes
the GPU space cost across all computing nodes, making it
negligible. Secondly, the process of selecting experts by the



6

Gate network inherently requires All-to-All communication
to synchronize the selection results across each node in the
Expert Parallelism Group. The prefetch scheduling simply
reuses the results of this All-to-All communication, so no
additional communication operations are introduced. Addi-
tionally, the time complexity of a hash table is O(1), meaning
each prefetch operation involving searches, insertions, or
deletions can be completed in constant time, thus not
introducing additional computational costs.

The distinct and non-interfering characteristics of dense
and sparse parameters in the model facilitate the simulta-
neous implementation of prefetch strategies. This approach
optimally leverages the bandwidth capacities of both NVLink
and PCIe. While the GPU is engaged in prefetching the
parameter state for the upcoming layer, it can also simultane-
ously execute computations for the current layer. This dual-
operation mode efficiently combines the tasks of computation
and parameter readiness.

3.3 Inference Phase
Numerous studies [27], [43] have demonstrated that Mixture-
of-Experts (MoE) models exhibit significantly higher training
efficiency compared to dense models. However, during
inference, the presence of numerous parameters, many
of which are ineffective, poses a challenge of increased
storage requirements compared to dense models. Knowl-
edge distillation [25], [51]–[53] has emerged as a popular
approach for reducing model size while preserving accuracy.
In this context, DeepSpeed [39] has proposed the Mixture-
of-Students (MoS) architecture to enhance the accuracy of
the student models. Specifically, to achieve low latency and
high throughput at a large scale for MoE models, various
parallelism techniques have been devised [39], including
expert-slicing, expert parallelism, tensor-slicing, and others.
However, the inference of MoE models at an unprecedented
scale often neglects the consideration of multiple storage
devices when the number of machines is limited.

In the following subsections, we present the approach
adopted by MoESys to achieve high efficiency throughout
the training and inference deployment. We optimize the
graph training process and propose innovations in the MoE
inference architecture based on ring memory. This archi-
tecture addresses the memory wall challenge and ensures
optimal performance to the greatest extent possible.

3.3.1 Graph Optimization
The training phase of MoESys incorporates dynamic graph
training, which offers significant advantages in terms of
debugging and flexibility. In contrast, for enhanced stability
and efficiency, the inference and deployment stages utilize
a static graph. Figure 3 illustrates the overall process of
inference, which comprises six key steps:
• Graph Fusion – The original graph is merged with the

corresponding distributed strategy to accommodate ultra-
large-scale distributed training. This step involves elimi-
nating parameter redundancy.

• Distillation and Compression – The numerous experts in
the teacher network are compressed through distillation
and compression techniques, resulting in a student net-
work with fewer experts.

...

Graph Fusion Graph Conversion

Graph Segmentation  Optimization

✂️


Distillation

Compression

Distributed Graph

Original Graph

Optimized Graph

Fused Graph Pruning Graph

Deployment

Static Graph

Fig. 3: Inference Pipeline in MoE.

• Graph Conversion – The dynamic graph is converted
into a static graph to enable subsequent optimization and
deployment processes. Due to space limit, we introduce
the detailed strategy of conversion in the external link1.

• Graph Segmentation – Based on available inference re-
sources and specific requirements, a rational distributed
strategy is chosen either manually or automatically to
partition the static graph into multiple distributed sub-
graphs. Additional communication is added as needed.

• Optimization – Pertinent Intermediate Representation (IR)
Pass optimizations, such as kernel fusion, are applied to
the distributed sub-graphs to further improve inference
performance.

• Deployment – The optimized sub-graphs are deployed on
servers to provide efficient and reliable services.

It is important to note that MoESys combines highly op-
timized transformers and MoE-related kernels. We leverage
optimized methods, such as Fused Multi-head Attention,
which have been successfully employed in NVIDIA’s BERT
implementation for MLPerf 1.1 [54]. These optimizations
effectively reduce kernel launch time. For the MoE model, we
have developed unique kernels to improve H2D/D2H (Host-
to-Device/Device-to-Host) transfer time by utilizing CUDA
Pinned Memory and customizing AlltoAll communication.
Our aim is to minimize the number of layer transitions as
much as possible. The details of these optimizations and
their impact on the performance of MoESys are presented
and discussed in Section 5.4.

3.3.2 Ring Memory Offloading
In order to facilitate the inference of large-scale MoE models
with limited resources, it is essential to employ an offload-
ing strategy to address the storage challenge. However,
the speed of data movement often becomes a limiting
factor for inference performance. Consequently, numerous
methods aim to conceal the impact of data movement
by maximizing the overlap between data movement and
inference calculations, thereby reducing the waiting time for
calculations. In this work, we propose a dynamic scheduling
strategy for offloading sparse parameters, specifically expert

1. https://www.paddlepaddle.org.cn/documentation/docs/en/
guides/jit/basic_usage_en.html

https://www.paddlepaddle.org.cn/documentation/docs/en/guides/jit/basic_usage_en.html
https://www.paddlepaddle.org.cn/documentation/docs/en/guides/jit/basic_usage_en.html


7

...

SSD-Memory

1

2 3

4
S_0 S_1 S_N-1...

CPU-Memory

P_0 P_1

...P_
K-

1

...
P_i

Dense buffer

GPU-Memory

i-th Layer

Dense Parameters

Sparse Parameters

Fig. 5: The scheduling and timeline of the ring memory
offloading process can be summarized into the following
essential steps: 1 Load N copies of parameters from files
in SSD memory, 2 Load K copies of parameters from CPU
memory, 3 Execute the computation for the i-th layer, 4
Release the i-th parameter and trigger asynchronous copy
process to replace Pi with SK+i.

parameters in the MoE model. The objective is to maintain
efficient performance by concurrently moving parameters
from CPU memory while performing inference computations
in GPU memory. By overlapping these operations, we aim to
minimize the overall latency and enhance the efficiency of
the inference process.

The structure of the MoE model during its inference
stage, illustrated in Figure 4, demonstrates a layer-specific
independence of parameters, reminiscent of the switch
transformer architecture [25]. This design feature enables
the staggering of computation and offloading tasks, thereby
facilitating their concurrent execution. Considering an MoE
inference model comprising N decoder layers, each layer’s
expert parameters are replicated N times and stored on
the CPU device. Concurrently, other parameters, such as
embeddings, are maintained within the dense buffer of the
GPU device. In addition, K replicas of the expert parameters
are also cached within the GPU device.

Embedding

Layer

Self-attention

Layer

Switching

FFN Layer

... Loss Layer

N decoder layers

Layer 0 Layer N-1

Dense Parameters

Sparse Parameters

Fig. 4: Switching Layers in MoE Inference Model.

As depicted in Figure 5, upon completion of the computa-
tion pertaining to the i-th layer, the corresponding parameter
Pi in the GPU memory can be released. Concurrently, the
SK+i expert parameter of the (K + i)-th layer can be
asynchronously loaded from the CPU memory to occupy
the previously utilized space by Pi. This procedure, referred
to as calculation-released-load, facilitates the maintenance
of a fixed number of K expert parameter duplicates on the
GPU device. These duplicates are stored in the ring memory,

thereby mitigating memory fragmentation. By leveraging
distinct CUDA streams, the expert loading from the CPU
and the computation process can be partially overlapped.
Moreover, by ensuring a substantial ring memory size and
incorporating a greater number of decoder layers in the MoE
inference model, the level of overlap can be significantly
optimized. For an evaluation of the inference performance
using the ring memory approach, please consult Section 5.4.

4 IMPLEMENTATION STRATEGIES

The distinctive architecture of the MoE model gives rise
to inherent challenges in both the training and inference
processes. In order to tackle the issue of load imbalance
caused by uneven input data, we have devised the Elas-
tic MoE Training approach. Furthermore, recognizing the
significant involvement of cross-machine communication in
MoE, we have delved into Resource-aware Communication
techniques to enhance efficiency across diverse clusters.
Lastly, to overcome storage limitations stemming from the
use of oversized vocabularies in various tasks, we have
developed and implemented a novel embedding partition
method within the framework of data parallelism, distinct
from the approach employed in tensor-slicing parallelism.

4.1 Elastic MoE Training

Load imbalance significantly influences training efficiency,
especially in multi-task training scenarios employing the
MoE framework. A prominent instance of this is seen in the
UFO task, where the differential input data volumes across
various tasks lead to unequal computation durations, thus
exacerbating load imbalances. This discrepancy manifests in
two primary forms: one, the breaching of memory capacity
limits due to the processing of disproportionately large
batch sizes by individual task nodes, a consequence of
aggregating data from other nodes; and two, the retardation
of synchronous communication caused by the lag of the
slowest node. This phenomenon, known as the "Cask Effect"
[55], results in reduced computational efficiency.

To tackle these challenges, we implement the elastic MoE
training method, which dynamically adjusts the number of
training nodes to ensure load balance based on the estimated
workload of each task. In practical terms, for lighter tasks,
combining multiple nodes proves more resource-efficient, as
long as storage capacity is not a limiting factor (see Figure 6b).
Conversely, for heavier tasks, we introduce additional nodes
to distribute the workload across more computing resources.
Simultaneously, we partition the input data of heavy-duty
tasks to achieve load balance and employ data parallelism
to ensure parameter synchronization (see Figure 6c). These
elastic training approaches effectively mitigate performance
degradation resulting from load imbalance. You can find
detailed performance comparisons in Section 5.3.

In elastic training, load imbalance often leads to situations
where some devices are idle, waiting for others to complete
their computations, creating what is known as "bubbles."
These bubbles not only reduce computational efficiency but
also increase training costs. To address this, we have intro-
duced a method of scaling up or down the computational
devices dynamically. This method aims to reduce waiting



8

1:1:2

Rank-0 Rank-1 Rank-2

(a) Original

2:2

Rank-0 Rank-1

(b) Scale down

1:1:1:1

Rank-0 Rank-1 Rank-2 Rank-3

(c) Scale up

Fig. 6: Different methods supported by elastic MoE training:
(a) the original training with load imbalance, in which the
ratio of each node data quantity is 1:1:2; (b) combining
multiple nodes with light-duty tasks, in which the ratio
of each node data quantity is 2:2; (c) adding extra nodes to
handle heavy-duty tasks, in which the ratio of each node
data quantity is 1:1:1:1.

times and enhance the FLOPS (floating-point operations
per second) utilization rate per device, thereby boosting the
throughput (tokens/s/card) of each compute device. The
decision to scale up or down should be based on specific
training requirements and cost considerations:
• Upscaling: When there is a need to increase the overall

end-to-end throughput, we typically scale up by adding
more compute devices. This reduces the total training time
for the model.

• Downscaling: In situations where resources are con-
strained, and cost control is crucial, we opt for downscaling
by reducing the number of compute devices, thereby
lowering the cost of training the model.

Irrespective of the scaling direction, both methods effectively
enhance the FLOPS utilization rate, reduce idle waiting times
for compute devices, and decrease the overall "bubble" time
during training.

4.2 Resource-Aware Communication
In the process of training and inference of the MoE model, a
significant volume of AlltoAll communication is necessitated
between devices in the context of expert parallelism. This
communication procedure has the potential to become a
performance bottleneck, as multiple instances of AlltoAll
communication may contend for the finite network resources
concurrently. Upon analysis of network topologies in typical
clusters, it is observed that data interaction across clusters
exhibits relatively slower transmission speeds compared to
interactions within a single cluster. This disparity arises from
factors such as congested message pathways and higher
traffic costs associated with inter-cluster communication.

②

LE 1

SP 1 SP 2 SP (q-1)

③
④

SP q··· SP 1 SP 2 SP (q-1) SP q······

LE m··· LE 1 LE m··· LE 1 LE m···

③ ④ ⑤

LE 1 LE m······

m x

n x

original routing of data movement
optimized routing of data movement

···
m x

NIC 1 NIC 2 NIC (n-1) NIC n···

GPU 1

GPU 6

NV
Link

②

GPU 7

①

GPU 0

①

GPU 1

GPU 6

NV
Link

GPU 7

GPU 0

···
p x··· ···

Node 1

Cluster  A

NIC 1 NIC 2 NIC (n-1) NIC n···

GPU 1

GPU 6

NV
Link

GPU 7

GPU 0

GPU 1

GPU 6

NV
Link

GPU 7

⑥

⑤

GPU 0

···
p x··· ···

Node 2

Cluster  B

Fig. 7: Network topology and message pathways for data
movement

By utilizing NVLink, intra-node communication incurs
minimal time and resource overhead as it avoids traversing
any Network Interface Cards (NICs) or switches. However,
inter-node communication within a cluster or across clus-
ters necessitates traversing a congested message path that
involves NICs and switches [56], resulting in increased time
consumption for traffic scheduling. Consider a network
consisting of m clusters and p nodes that share a common
set of NICs within each cluster. The leaf switches (LE) and
spin switches (SP) are organized into n and m groups,
respectively. As depicted in Figure 7, the leaf switches of
the i-th group establish direct connections only to NICs with
a rank of i from different clusters. The spin switches facilitate
communication between leaf switches. It is important to note
that the bandwidth of the spin switch is lower than that of the
leaf switch. Hence, it is preferable to maximize the utilization
of the leaf switch for data exchange, aiming for improved
performance. For instance, let us consider a scenario where all
GPU0s are connected to NIC1 and all GPU7s are connected
to NICn. We observe that data movement between GPU0
of Node1 in Cluster A and GPU7 of Node2 in Cluster
B traverses the switch routing path [LE1, SPq, LE1] as
indicated by the red lines. This incurs higher communication
costs and the potential for resource contention with other
interactions. An alternative approach involves a two-step
process: first, transferring data from GPU0 to GPU7 within
Node1 using NVLink, and then performing cross-cluster
communication between the corresponding pair of NICs
with rank 7, without crossing any switches except LE1. This
is depicted by the blue lines. Such an approach enables the
optimal utilization of NVSwitch bandwidth and enhances
network traffic optimization.

Hence, the speed at which data is exchanged between
GPUs of the same rank within a node surpasses that of GPUs
with different ranks within the same node. To leverage the
network topology’s characteristics, we propose an optimized
approach for Hierarchical AlltoAll communication that takes
into account the available resources during both training
and inference. As depicted in Figure 8, to avoid cross-
node communication involving GPUs of different ranks, we
initially utilize intra-node AlltoAll communication through



9

A B C D

A B C D

A B C D

A B C D

A C A C

B D B D

A C A C

B D B D

A A A A

B B B B

C C C C

D D D D

Rank-0

Rank-1

Rank-2

Rank-3

AlltoAll

AlltoAll

AlltoAll

Node-1

Node-2

AlltoAll

Node-1 Node-1

Node-2 Node-2

Fig. 8: Hierarchical AlltoAll

NVSwitch connections to collect the data. Afterward, we
group GPUs with identical ranks for inter-node AlltoAll
communication, allowing communication across machines
without incurring unnecessary costs related to crossing
different channels.

Furthermore, this approach enhances peer-to-peer com-
munication between nodes by a factor of p, where p denotes
the number of GPUs within a single node. This increase in
inter-node communication capacity enables the optimal uti-
lization of inter-node bandwidth. In contrast to DeepSpeed’s
AlltoAll design [39], which is primarily aimed at addressing
the issue of small per-port communication volumes in
all-to-all communication through a layered approach for
tensor fusion to facilitate larger packet communication, our
approach is specifically tailored to the network topology of
our experimental cluster. We concentrate on maximizing the
utilization of NVLink connections and mitigating network
congestion. Therefore, our Hierarchical AlltoAll structure
is a direct response to our specific network topology and
would adapt if the cluster’s topology were to change. This
distinction underscores the customization of our method to
our particular hardware and network architecture, which
differs from the more generalized approach adopted by
DeepSpeed.

4.3 Embedding Partition in Data Parallelism

In the context of ultra-large-scale model training, the em-
bedding table often constitutes the largest parameter set
within the entire model, thereby necessitating restrictions
on its storage due to the model’s scale. Numerous stud-
ies have focused on researching embedding partitioning
techniques. For instance, Megatron [40] has successfully
employed column-wise partitioning of the embedding table
in tensor-slicing parallelism to reduce training memory
requirements. Additionally, EmbRace [57] has proposed a
column-wise partitioning approach within the embedding
table to achieve more balanced communication. However, an
efficient processing method for handling embedding parti-
tioning in scenarios where the input data for each process is
inconsistent remains elusive. In such cases, ensuring efficient
processing becomes challenging due to the varying nature of
the inputs across different devices.

In this study, our primary focus is on addressing the
challenge of embedding partitioning within the context of
data parallelism, as illustrated in Figure 9. To elaborate,
when we consider an embedding table with dimensions
[V,H] being distributed among N training processes, we
employ a column-wise partitioning scheme. This scheme
assigns a [V, H

N ] shard to each worker. Consequently, each
training process possesses an embedding representation that

Setences_0

Tokens

Convert

Embedding
Output

DNN Network

Setences_1

Tokens

Convert

Embedding
Output

DNN Network

Embedding

Embedding

All2All

All2All

Process-0 Process-1

(a) Forward stage

Process-0 Process-1

AllReduce

Embedding
Output Grad

Embedding
Output Grad

DNN Grad NetWork DNN Grad NetWork

Optimize

Embedding
Grad

Embedding
Grad

All2All

Embedding

Optimize

Embedding

(b) Backward and optimization stage

Fig. 9: Example data flow of Embedding Partition in data
parallelism. The embedding table is column-wise partitioned
among processes. In the forward stage, AlltoAll communi-
cation is called twice: one is for exchanging input data and
another is for exchanging embedding lookup results. In the
backward stage, AlltoAll is called once to swap the gradient
of the embedding table and using the gradients updates the
embedding table.

pertains only to a subset of the vocabulary. As a result,
before querying the embedding table, the input data of each
process must be exchanged with other processes through
AlltoAll communication. This exchange allows the acquisi-
tion of embedding results corresponding to the local partial
vocabulary. Subsequently, to obtain accurate results for the
input data processed by each worker, the embedding results
are exchanged once more through AlltoAll communication,
effectively serving as the inverse procedure of the previous
communication step. It is essential to note that during the
backward stage, the gradient information also needs to be
exchanged to recover the embedding table gradient.

In contrast to the traditional embedding sharding ap-
proach [58], which is similar to tensor model parallelism
and partitions along the vocabulary dimension, our method
is specifically designed for data parallelism. Given that
each GPU card processes different data, sharding along the
vocabulary dimension is not feasible. Instead, we employ
sharding along the hidden_size dimension of the vocabulary,
ensuring that each computing device can access the complete
vocabulary. Additionally, we utilize AlltoAll communication
to complete the hidden layer, accommodating the varying
data inputs across devices.

Significantly, this approach effectively reduces the stor-
age requirements of the embedding table within the data
parallelism framework. It achieves this by introducing only
three instances of AlltoAll communication and eliminating
the need for AllReduce synchronization for embedding table
gradients in data parallelism.

5 EXPERIMENT

In this section, we present a comprehensive experimental
evaluation of MoE models using the proposed MoESys



10

system. Our evaluation focuses on both training and in-
ference aspects of the MoE models. In the training phase,
we assess the efficiency of the MoE-based GPT model across
different configurations. For the inference phase, we ana-
lyze the performance of the ring memory-based offloading
strategy, considering various model sizes. Moreover, we
investigate several efficient methods implemented in the
MoESys system, including the widely-used UFO model. It is
important to note that our results reporting disregards the
performance of the individual models themselves. This is
because the converged models, whether based on baseline
MoEs or utilizing MoESys, achieve comparable performance
levels. Hence, our evaluation primarily focuses on the efficacy
and efficiency of the proposed MoESys system.

5.1 Platform
MoESys is implemented based on the PaddleFleetX [59]
architecture of PaddlePaddle. After some fundamental per-
formance optimizations, PaddleFleetX demonstrates certain
performance advantages over other standard models. For
a more direct comparison, we would like to highlight the
performance comparison between Paddle and Megatron as of
March 2023. This comparison provides valuable insights into
how PaddleFleetX, and by extension MoESys, stands in rela-
tion to other prominent frameworks in terms of efficiency and
effectiveness. Please refer to Table 1 for detailed comparative
data. The experimental data demonstrates PaddleFleetX’s
enhanced performance over Megatron-LM across several
model configurations, with a notable throughput superiority
that ranges from a substantial 14.2% for smaller models
(0.35 billion parameters) to a marginal 0.4% for the extensive
175 billion parameter models. This improved throughput
is consistent despite marginal differences in memory usage
where Megatron-LM occasionally leads, particularly with
smaller models. PaddleFleetX also showcases a more effi-
cient utilization of GPU resources, as evidenced by higher
TFLOPS/s per GPU and a closer approach to the theoretical
peak FLOP/s utilization across varying model sizes.

5.2 Large-Scale MoE Training
We conducted training experiments using GPT models based
on the MoE architecture, leveraging A100 GPUs (80 GB),
and employing a combination of data parallelism and expert
parallelism. In the MoE system, there are two main parts:
the Dense parameters (Backbone) and the Sparse parameters
(Expert). The Dense part employs data parallelism, meaning
that different input data is processed in parallel. After the
backward computation is complete, the Dense parameters
are synchronized through Allreduce communication. On the
other hand, the Sparse parameter part involves expert paral-
lelism. Here, routing communication between experts is used
to send the required data to the designated compute devices.
This is accomplished through AlltoAll communication. The
backward pass also utilizes AlltoAll communication for gra-
dient synchronization. This approach allows us to efficiently
leverage both data and expert parallelism, optimizing the
performance of the MoE system. The evaluation of these
models was performed using Gshard [60] and top1-gating
metrics. Specifically, we utilized pure fp16 precision and the
AdamW [61] optimizer during the training process.

Compared to the high precision FP32 method, there are
two lower precision training approaches: "AMP" (Automatic
Mixed Precision) and "pure fp16". Unlike AMP, pure fp16
is a commonly used, faster training method. This method
is well-established and has been applied in model training,
for example in Megatron and DeepSpeed. Our approach is
consistent with the methods used in Megatron/DeepSpeed.
The term "pure" in "pure fp16" is in contrast to AMP,
meaning that all model parameters in pure fp16 training
are of fp16 type. However, it’s important to note that not
all operations are computed in fp16. Certain operations,
like softmax, use fp32 for computation. We also employ
techniques like MasterWeight to mitigate the impact of
lower precision training on model accuracy. Our use of
pure fp16 in the experiments is a standard practice, and
we maintain this strategy consistently when comparing with
other frameworks.

Table 2 presents the throughput results for different
configurations. The table lists the parameter sizes (Parameters
(B) in billions) in ascending order from top to bottom,
while keeping the number of attention heads (Attention
heads), hidden layer size (Hidden size), vocabulary size (Vocab
size), and number of layers (Layers) constant. Consequently,
the number of experts (Experts), GPUs (GPUs), and batch
size (Batch size) increase twofold. Both DeepSpeed and
our proposed MoESys exhibit training speeds that double
accordingly. It is worth noting that the first line of the table
represents the performance on a single node equipped with
eight GPUs, while the subsequent lines depict results for
multi-node scenarios.

Our observations indicate that, compared to the state-
of-the-art MoE system, DeepSpeed 2, MoESys achieves
approximately a 28% speedup in single-node training and at
least a 33% speedup in multi-node training for MoE models
with over 100 billion parameters. Furthermore, MoESys
reduces the GPU memory usage of each rank by nearly
12 GB. Therefore, in large-scale MoE training, our proposed
MoESys system demonstrates comparable training speeds
while consuming relatively less memory compared to the
benchmark model, DeepSpeed.

5.3 Ablation Study in MoE Training

The experimental evaluation in this section highlights the
benefits of efficient implementation strategies on a large-
scale model, as discussed in Section 4. Each of these strategies
is evaluated independently and compared against tradi-
tional/baseline methods.

5.3.1 Elastic MoE Training
In order to assess the efficiency of elastic MoE training, we
conducted experiments using the UFO [2] model, which is
based on the MoE architecture and trained on A100 GPUs
with 80 GB of memory. We designed four tasks with batch
sizes of 512, 256, 128, and 128, respectively, to simulate an
imbalanced training process.

Following the elastic sparse training methodology out-
lined in Section 4.1, we adjusted the overall training work-
load by adding additional computing nodes. Specifically,

2. https://github.com/microsoft/Megatron-DeepSpeed

https://github.com/microsoft/Megatron-DeepSpeed


11

TABLE 1: The standard model’s performance on the established baselines.
Parameters
(Billions)

Hidden
size

Layers
Attention

heads
GPUs

Data
parallel

Group
sharded
parallel

Tensor
parallel

Pipeline
parallel

Batch
size

PaddleFleetX
(vs Megatron-LM )

Difference
of

throughput
Throughput

(tokens/s)
Memory

usage (MB)
TFLOPS/s
per GPU

Theoratical
peak FLOP/s (%)

0.35 1024 24 16 8 8 1 1 1 64
291,585

(255,401)
31,919

(33,217)
102
(89)

32.7%
(28.5%)

+14.2%

1.3 2048 24 16 8 8 1 1 1 64
115,682

(109,537)
39,775

(39,537)
150

(142)
48.1%

(45.5%)
+5.6%

6.7 4096 32 32 16 1 16 1 1 128
44,605

(39,936)
35,442

(35,403)
149

(116)
47.8%

(43.0%)
+11.7%

175 12288 96 96 128 1 1 8 16 1536
14,634

(14,571)
34,912

(34,708)
160

(159)
51.3%

(50.9%)
+0.4%

TABLE 2: Results for large-scale MoE training on GPT models with different configurations.

Parameters(B)
Attention

heads
Hidden

size
Vocab

size
Layers Experts GPUs

Batch
size

Speed(tokens/s) Memory(GB)
DeepSpeed MoESys DeepSpeed MoESys

13.9

64 4096 50304 12

8 8 8 24165 31085 68.9 56.8
26.8 16 16 16 43691 59136 66.2 53.9
52.6 32 32 32 82957 113456 66.8 54.5
104.1 64 64 64 157728 209970 66.3 54.4
207.2 128 128 128 283706 376968 66.4 54.3

TABLE 3: Results for elastic MoE training with multiple tasks.

Task number Parameters(M)
Total

batch size
Batch size
per task

GPUs
GPUs

per task
Total Speed
(samples/s)

Speed per GPU
(samples/s)

Load imbalanced
4 83 1024 512/256/128/128

4 1/1/1/1 250.4 62.6
Load balanced 8 4/2/1/1 591.9 74.0

we allocated 4 GPUs for Task-1 and 2 GPUs for Task-
2. To ensure fairness, we calculated the average speed of
each GPU to mitigate the impact of increasing the number
of nodes. The results, as presented in Table 3, indicate
that compared to the Load imbalanced configuration, the
Load balanced configuration achieved an approximate 18.2%
improvement in throughput per GPU. It is important to
note that the Load balanced approach was derived from our
designed elastic MoE training, and the results highlight its
effectiveness and efficiency, respectively.

Furthermore, we applied a task-based MoE load balanc-
ing mechanism to the training of the billion-scale visual
model VIMER-UFO 2.0. This approach supports dynamic
expansion of task numbers and parallel training of multiple
tasks and multiple experts. Under the same experimental
environment (32x A100 80GB GPUs), we achieved a training
performance of 697 images per second. This represents a
significant improvement in throughput by 64% compared to
425 images per second using the Pytorch v1.10 framework.
Additionally, the memory footprint was reduced to 45 GB
per GPU, a decrease of 18%.

5.3.2 Resource-Aware Communication
In this subsection, we conducted training of MoE models on
different numbers of nodes and with varying model sizes to
demonstrate the potential benefits of the MoESys designs.
The results are presented using a stacked bar chart, which
illustrates the time consumption for key components of the
training process: 1) the forward stage (FWD), 2) the backward
stage (BWD), 3) the optimization stage (OPT), and 4) the
communication stage. Specifically, we compare the proposed
Hierarchical AlltoAll approach to the baseline AlltoAll method
in the communication stage, while keeping other components
constant across the different settings.

As depicted in Figure 10, the first three components
(green and pink bars) show similar performance between
the AlltoAll baseline and Hierarchical AlltoAll across all
parameter sizes. The performance gaps are primarily caused

26.9B 32.4B 40.4B
Parameter size

0

200

400

600

800

1000

1200

1400

1600

Ti
m

e 
/m

s

FWD + BWD
OPT
AlltoAll
Hierarchical AlltoAll

(a) 2 nodes with 16 GPUs

53.8B 64.6B 80.7B
Parameter size

0

250

500

750

1000

1250

1500

1750

Ti
m

e 
/m

s

FWD + BWD
OPT
AlltoAll
Hierarchical AlltoAll

(b) 4 nodes with 32 GPUs
Fig. 10: MoE Training Time Breakdown

by the two top bars (purple for AlltoAll baseline and yellow
for Hierarchical AlltoAll) representing the communication
stage. It is evident that with the adoption of Hierarchical
AlltoAll in MoESys, the computation time does not in-
crease significantly, while the communication time decreases
dramatically. Furthermore, as the model parameter size
increases, the efficiency gap in communication becomes
more significant between AlltoAll and hierarchical AlltoAll.
This indicates that the proposed MoESys can amplify the
performance improvement in communication when dealing
with large-scale models. This effect is evident by observing
the gap between the purple and yellow bars from left to right
along the horizontal axis.

For the most substantial improvement observed in the
experiment, which involved a MoE model with 80.7 billion
parameters across four nodes with 32 GPUs, the overall
end-to-end training performance improved by 10.3%. Addi-
tionally, the communication stage achieved a 15.5% speedup
using the Hierarchical AlltoAll strategy.

5.3.3 Embedding Partition in Data Parallelism
To assess the performance of embedding partition in data
parallelism, we conducted training of a MoE model on a
dataset with an extremely large vocabulary. The ablation
study included a baseline approach using the non-segment



12

TABLE 4: Performance of the Embedding Partition in Data Parallelism.
Batch
size

GPUs Experts
Vocab

size
Hidden

size
Parameter(M) Memory (GB) Speed (tokens/s)

Baseline Embedding Partition Baseline Embedding Partition

8 8 4 50304
2048 72 4.68 2.43 289452 300451
4096 180 7.51 4.67 152144 167352
8192 400 15.81 8.63 80421 91687

8 8 8 50304
2048 100 7.46 5.78 144159 150161
4096 300 12.80 9.70 86237 95890
8192 700 27.80 20.49 40605 46938

8 8 16 50304
2048 227 18.55 15.73 53428 55725
4096 781 31.41 27.98 26321 29047
8192 1320 63.25 55.75 12065 13902

TABLE 5: Performance comparison among the proposed strategies.
Batch
size

Vocab
size

Layers
Hidden

size
Experts Peak Memory (GB) Speed per GPU (tokens/s)

Baseline
Elastic

Training
Resource-Aware
Communication

Embedding
Partition

Baseline
Elastic

Training
Resource-Aware
Communication

Embedding
Partition

8 50304 12 2048 8 28 23 28 25 30604 35194 33664 31033

embedding strategy, while the remaining settings remained
consistent with MoESys. The results in Table 4 demon-
strate that the embedding partition strategy within a single
machine effectively reduces GPU memory consumption
when processing vocabularies of large sizes. The study
maintains a constant batch size and number of GPUs but
varies the number of experts, hidden size, and parameter
magnitude. Embedding partitioning consistently exhibits
significant reductions in memory usage (e.g., a drop from
15.81 GB to 8.63 GB with 4 experts and hidden size 8192) and
enhancements in processing speed (as seen with the increase
from 80421 to 91687 tokens/s for the same configuration).
These improvements are maintained across various model
complexities, indicated by varying numbers of parameters
and experts, suggesting that embedding partitioning pro-
vides a scalable solution for optimizing large-scale neural
networks in data-parallel scenarios.

5.3.4 Cross-wise Comparison
In order to determine the dominant strategy and its contribu-
tion to the overall performance gain in the MoESys system,
we conducted a cross-wise comparison among the proposed
strategies. While we have individually showcased the per-
formance gains of each strategy compared to the baselines,
their relative performance among each other requires further
investigation. We are particularly interested in identifying
the strategy that is most dominant and contributes the most
to the MoESys system. To conduct this comparison, we
performed experiments measuring the peak memory usage
and average computation speed on the GPU in parallel. The
results are summarized in Table 5. The baseline refers to
the MoE without any of the proposed strategies, and as
expected, it exhibits the highest peak memory consumption
and the lowest computation speed. Among the proposed
strategies, Elastic Training shows the least peak memory
occupancy, while the Hierarchical AlltoAll strategy (utilized
for resource-aware communication) consumes relatively
more peak memory. Regarding GPU computation speed,
Elastic Training again outperforms the other three strategies.

As shown in Fig. 11 directly, compared to a baseline
scenario with no optimizations, our elastic training strategy
shows the most significant improvements in terms of peak
memory usage and GPU computation speed, contributing

greatly to overall performance enhancement. Additionally,
the topology-aware hierarchical AllToAll strategy and the DP-
Embedding sharding strategy also contribute to a noticeable
proportion of performance improvement in MoESys.

5.4 MoE Inference

The inference experiments consist of two parts: the first part
evaluates the performance of the MoE inference system using
different models with varying numbers of parameters (in the
billions), while the second part assesses the effectiveness of
the offloading strategy proposed in Section 3.3.2.

5.4.1 Effectiveness

TABLE 6: Performance of MoE inference.

Parameters(B) GPUs
Batch
size

Speed(tokens/s)
DeepSpeed MoESys

10.0 1 1 4303 4551
106.5 8 8 27215 29681
209.6 16 16 35310 40059

Inference tasks typically require less memory compared to
training tasks in many scenarios. Consequently, it is feasible
to perform downstream tasks using a single GPU with a
10-billion-parameter MoE model. To evaluate the inference
performance of large-scale MoE models, we conducted
experiments on a text generation task. The results presented
in Table 6 indicate that MoESys achieves approximately
13% faster inference speed compared to DeepSpeed for MoE
models with over 200 billion parameters. This considerable
performance improvement underscores the effectiveness of
MoESys in the inference process.

5.4.2 Ring Memory Offloading
We conducted experiments to evaluate the inference perfor-
mance of the expert offloading strategy using ring memory
on a system equipped with 16 A100(40G) GPUs. The exper-
iment focused on a MoE model with 32 experts and 58.2
billion parameters. We measured the time consumed for
computation in GPU memory as well as the movement of
experts between CPU and GPU memory. Figure 12 illustrates
the results, indicating that the performance of the overlapped
MoE inference system remains largely unaffected by CPU



13

offloading. The findings demonstrate that this strategy
achieves a favorable balance between computation and
data movement. Additionally, it enables the MoE inference
systems to reduce GPU memory consumption by at least 30%
compared to inference without ring memory offloading.

Baseline Elastic
Training

Resource-Aware
Communication

Embedding
Partition

20000

22500

25000

27500

30000

32500

35000

37500

40000

To
ke

ns
/s

Speed Per GPU (left)

20

22

24

26

28

30

G
ig

ab
yt

e 
(G

B
)

Peak Memory (right)

Fig. 11: Cross-wise compari-
son among proposed strate-
gies.

Baseline Elastic
Training

Resource-Aware
Communication

Embedding
Partition

20000

22500

25000

27500

30000

32500

35000

37500

40000

To
ke

ns
/s

Speed Per GPU (left)

20

22

24

26

28

30

G
ig

ab
yt

e 
(G

B
)

Peak Memory (right)

Fig. 12: Evaluation of MoE
inference with and without
overlapping offloading.

5.5 Summary

The aforementioned experiments comprehensively examine
the efficiency and efficacy of the proposed designs within
the MoESys systems. Particularly, when applied to large-
scale deep learning models such as the GPT series, MoESys
exhibits superior performance in terms of training and infer-
ence speed, as well as memory consumption, in comparison
to the established benchmark DeepSpeed. As an industrially-
relevant MoE system, MoESys is demonstrated to further
enhance the development of distributed MoE designs in
practical real-world applications.

6 CONCLUSION AND FUTURE WORKS

To address the needs of modern internet services that
demand the use of large-scale DNNs, we have presented
MoESys, a novel training and inference system based on
MoE that boosts efficiency in both large-scale training and
inference. Our proposed system adopts an elastic training
strategy with 2D prefetch and fusion communication over
hierarchical storage for efficient parallelisms. For scalable
inference in a single node, MoESys builds CPU-GPU memory
jointly into a ring of sections and executes computation
tasks across memory sections in a round-robin manner. Our
experiments demonstrate that MoESys achieves superior
performance compared to the state-of-the-art DeepSpeed, out-
performing DeepSpeed by 33% in training throughput and
13% in inference throughput, with 64% higher throughput
and 18% lower memory footprints under MoE tasks based
on large language models and foundation vision models.

Our future work focuses on developing a unified sparse
training and inference system that considers parameter-
server and scheduling across multiple dimensions, exploring
efficient methods for sparse training within the MoESys
framework, and enhancing our system collaboration with
resource platforms for sustainable research. We also aim
to implement a comprehensive evaluation framework that
accurately assesses the comparative performance of diverse
parallel computing strategies in a way that is fair, informative,
and contributes constructively to the field of scalable machine
learning architectures.

REFERENCES

[1] J. Rasley, S. Rajbhandari, O. Ruwase, and Y. He, “Deepspeed:
System optimizations enable training deep learning models with
over 100 billion parameters,” in SIGKDD, 2020, pp. 3505–3506.

[2] L. Zhang, Y. Luo, Y. Bai, B. Du, and L.-Y. Duan, “Federated learning
for non-iid data via unified feature learning and optimization
objective alignment,” in Proceedings of the IEEE/CVF international
conference on computer vision, 2021, pp. 4420–4428.

[3] F. Al-Doghman, N. Moustafa, I. Khalil, Z. Tari, and A. Zomaya,
“Ai-enabled secure microservices in edge computing: opportunities
and challenges,” IEEE Transactions on Services Computing, 2022.

[4] J. Bian, J. Huang, S. Ji, Y. Liao, X. Li, Q. Wang, J. Zhoy, Y. Wang,
and D. Dou, “Feynman: Federated advertising for ecosystems-
oriented mobile apps recommendation,” IEEE Transactions on
Service Computing, 2023.

[5] H. Liu, Q. Gao, J. Li, X. Liao, H. Xiong, G. Chen, W. Wang,
G. Yang, Z. Zha, D. Dong et al., “Jizhi: A fast and cost-effective
model-as-a-service system for web-scale online inference at baidu,”
in Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, 2021, pp. 3289–3298.

[6] J. Bian, H. Xiong, Z. Wang, J. Zhou, S. Ji, H. Chen, D. Zhang,
and D. Dou, “Afcs: Aggregation-free spatial-temporal mobile
community sensing,” IEEE Transactions on Mobile Computing, 2022.

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-
training of deep bidirectional transformers for language under-
standing,” arXiv preprint arXiv:1810.04805, 2018.

[8] J. Bian, J. Huang, S. Ji, Y. Liao, X. Li, Q. Wang, J. Zhou, D. Dou,
Y. Wang, and H. Xiong, “Feynman: Federated learning-based
advertising for ecosystems-oriented mobile apps recommendation,”
IEEE Transactions on Services Computing, 2023.

[9] Z. Cui, X. Xu, X. Fei, X. Cai, Y. Cao, W. Zhang, and J. Chen,
“Personalized recommendation system based on collaborative
filtering for iot scenarios,” IEEE Transactions on Services Computing,
vol. 13, no. 4, pp. 685–695, 2020.

[10] C. Zhang, J. Zhou, X. Zang, Q. Xu, L. Yin, X. He, L. Liu, H. Xiong,
and D. Dou, “Chase: Commonsense-enriched advertising on search
engine with explicit knowledge,” in Proceedings of the 30th ACM
International Conference on Information & Knowledge Management,
2021, pp. 4352–4361.

[11] L. Zou, S. Zhang, H. Cai, D. Ma, S. Cheng, S. Wang, D. Shi, Z. Cheng,
and D. Yin, “Pre-trained language model based ranking in baidu
search,” in Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, 2021, pp. 4014–4022.

[12] Q. Liu, Y. Tian, J. Wu, T. Peng, and G. Wang, “Enabling verifiable
and dynamic ranked search over outsourced data,” IEEE Transac-
tions on Services Computing, vol. 15, no. 1, pp. 69–82, 2019.

[13] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language
models are few-shot learners,” Advances in neural information
processing systems, vol. 33, pp. 1877–1901, 2020.

[14] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary,
V. Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catan-
zaro et al., “Efficient large-scale language model training on gpu
clusters using megatron-lm,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2021, pp. 1–15.

[15] S. Wang, Y. Sun, Y. Xiang, Z. Wu, S. Ding, W. Gong, S. Feng,
J. Shang, Y. Zhao, C. Pang et al., “Ernie 3.0 titan: Exploring larger-
scale knowledge enhanced pre-training for language understanding
and generation,” arXiv preprint arXiv:2112.12731, 2021.

[16] S. Smith, M. Patwary, B. Norick, P. LeGresley, S. Rajbhandari,
J. Casper, Z. Liu, S. Prabhumoye, G. Zerveas, V. Korthikanti
et al., “Using deepspeed and megatron to train megatron-turing
nlg 530b, a large-scale generative language model,” arXiv preprint
arXiv:2201.11990, 2022.

[17] S. Wang, Y. Zheng, and X. Jia, “Secgnn: Privacy-preserving graph
neural network training and inference as a cloud service,” IEEE
Transactions on Services Computing, 2023.

[18] W. Zhao, D. Xie, R. Jia, Y. Qian, R. Ding, M. Sun, and P. Li,
“Distributed hierarchical gpu parameter server for massive scale
deep learning ads systems,” Proceedings of Machine Learning and
Systems, vol. 2, pp. 412–428, 2020.

[19] R. Caruana, “Multitask learning,” Machine learning, vol. 28, no. 1,
pp. 41–75, 1997.

[20] L. Xue, N. Constant, A. Roberts, M. Kale, R. Al-Rfou, A. Siddhant,
A. Barua, and C. Raffel, “mT5: A massively multilingual pre-trained
text-to-text transformer,” in Proceedings of the 2021 Conference of the



14

North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Jun. 2021, pp. 483–498.

[21] R. Aharoni, M. Johnson, and O. Firat, “Massively multilingual
neural machine translation,” in Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers). Minneapolis, Minnesota: Association for Computational
Linguistics, Jun. 2019, pp. 3874–3884.

[22] Y. Wang, C. Zhai, and H. Hassan, “Multi-task learning for mul-
tilingual neural machine translation,” in Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing
(EMNLP). Online: Association for Computational Linguistics,
Nov. 2020, pp. 1022–1034.

[23] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton,
and J. Dean, “Outrageously large neural networks: The sparsely-
gated mixture-of-experts layer,” arXiv preprint arXiv:1701.06538.

[24] D. Lepikhin, H. Lee, Y. Xu, D. Chen, O. Firat, Y. Huang, M. Krikun,
N. Shazeer, and Z. Chen, “Gshard: Scaling giant models with
conditional computation and automatic sharding,” arXiv preprint
arXiv:2006.16668, 2020.

[25] W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling
to trillion parameter models with simple and efficient sparsity,”
arXiv preprint arXiv:2101.03961.

[26] A. Shah, R. Ganesan, S. Jajodia, H. Cam, and S. Hutchinson,
“A novel team formation framework based on performance in
a cybersecurity operations center,” IEEE Transactions on Services
Computing, 2023.

[27] N. Du, Y. Huang, A. M. Dai, S. Tong, D. Lepikhin, Y. Xu, M. Krikun,
Y. Zhou, A. W. Yu, O. Firat et al., “Glam: Efficient scaling of language
models with mixture-of-experts,” arXiv preprint arXiv:2112.06905.

[28] S. Zuo, X. Liu, J. Jiao, Y. J. Kim, H. Hassan, R. Zhang, T. Zhao,
and J. Gao, “Taming sparsely activated transformer with stochastic
experts,” arXiv preprint arXiv:2110.04260, 2021.

[29] J. He, J. Qiu, A. Zeng, Z. Yang, J. Zhai, and J. Tang, “Fastmoe: A fast
mixture-of-expert training system,” arXiv preprint arXiv:2103.13262.

[30] A. Yazdinejad, R. M. Parizi, A. Dehghantanha, Q. Zhang, and K.-
K. R. Choo, “An energy-efficient sdn controller architecture for
iot networks with blockchain-based security,” IEEE Transactions on
Services Computing, vol. 13, no. 4, pp. 625–638, 2020.

[31] A. Yang, J. Lin, R. Men, C. Zhou, L. Jiang, X. Jia, A. Wang, J. Zhang,
J. Wang, Y. Li et al., “M6-t: Exploring sparse expert models and
beyond,” arXiv preprint arXiv:2105.15082, 2021.

[32] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco,
“Gpus and the future of parallel computing,” IEEE micro, vol. 31,
no. 5, pp. 7–17, 2011.

[33] X. Liu, S. X. Sun, and G. Huang, “Decentralized services computing
paradigm for blockchain-based data governance: Programmability,
interoperability, and intelligence,” IEEE Transactions on Services
Computing, vol. 13, no. 2, pp. 343–355, 2019.

[34] S. Wu, O. Irsoy, S. Lu, V. Dabravolski, M. Dredze, S. Gehrmann,
P. Kambadur, D. Rosenberg, and G. Mann, “Bloomberggpt: A large
language model for finance,” arXiv preprint arXiv:2303.17564, 2023.

[35] M. Lewis, S. Bhosale, T. Dettmers, N. Goyal, and L. Zettlemoyer,
“Base layers: Simplifying training of large, sparse models,” in
International Conference on Machine Learning. PMLR, 2021, pp.
6265–6274.

[36] Z. Zhang, Y. Gu, X. Han, S. Chen, C. Xiao, Z. Sun, Y. Yao, F. Qi,
J. Guan, P. Ke et al., “Cpm-2: Large-scale cost-effective pre-trained
language models,” AI Open, vol. 2, pp. 216–224, 2021.

[37] J. Lin, A. Yang, J. Bai, C. Zhou, L. Jiang, X. Jia, A. Wang, J. Zhang,
Y. Li, W. Lin et al., “M6-10t: A sharing-delinking paradigm
for efficient multi-trillion parameter pretraining,” arXiv preprint
arXiv:2110.03888, 2021.

[38] Y. J. Kim, A. A. Awan, A. Muzio, A. F. C. Salinas, L. Lu, A. Hendy,
S. Rajbhandari, Y. He, and H. H. Awadalla, “Scalable and efficient
moe training for multitask multilingual models,” arXiv preprint
arXiv:2109.10465, 2021.

[39] S. Rajbhandari, C. Li, Z. Yao, M. Zhang, R. Y. Aminabadi, A. A.
Awan, J. Rasley, and Y. He, “Deepspeed-moe: Advancing mixture-
of-experts inference and training to power next-generation ai scale,”
arXiv preprint arXiv:2201.05596, 2022.

[40] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper,
and B. Catanzaro, “Megatron-lm: Training multi-billion param-
eter language models using model parallelism,” arXiv preprint
arXiv:1909.08053, 2019.

[41] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov,
“Transformer-xl: Attentive language models beyond a fixed-length
context,” arXiv preprint arXiv:1901.02860, 2019.

[42] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier,
and M. Auli, “fairseq: A fast, extensible toolkit for sequence
modeling,” in Proceedings of NAACL-HLT 2019: Demonstrations,
2019.

[43] M. Artetxe, S. Bhosale, N. Goyal, T. Mihaylov, M. Ott, S. Shleifer,
X. V. Lin, J. Du, S. Iyer, R. Pasunuru et al., “Efficient large scale
language modeling with mixtures of experts,” arXiv preprint, 2021.

[44] Microsoft, “Tutel: An efficient mixture-of-experts implementation
for large dnn model training,” https://www.microsoft.com/
en-us/research/blog/tutel-an-efficient-mixture-of-experts-
implementation-for-large-dnn-model-training/, 2021.

[45] S. Rajbhandari, O. Ruwase, J. Rasley, S. Smith, and Y. He, “Zero-
infinity: Breaking the gpu memory wall for extreme scale deep
learning,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2021, pp.
1–14.

[46] wikipedia, “Solid-state drive,” https://en.wikipedia.org/wiki/
Solid-state_drive, 2022.

[47] S. Tang, B. He, C. Yu, Y. Li, and K. Li, “A survey on spark ecosystem:
Big data processing infrastructure, machine learning, and applica-
tions,” IEEE Transactions on Knowledge and Data Engineering, vol. 34,
no. 1, pp. 71–91, 2020.

[48] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

[49] Intel, “Memory optimized for data-centric workloads,”
https://www.intel.cn/content/www/cn/zh/architecture-
and-technology/optane-dc-persistent-memory.html, 2018.

[50] L. B. Sokolinsky, “Lfu-k: An effective buffer management replace-
ment algorithm,” in International Conference on Database Systems for
Advanced Applications. Springer, 2004, pp. 670–681.

[51] Q. Huang, Z. Yuan, Z. Xing, Z. Zuo, C. Wang, and X. Xia, “1+
1>2: Programming know-what and know-how knowledge fusion,
semantic enrichment and coherent application,” IEEE Transactions
on Services Computing, 2022.

[52] S. Shleifer and A. M. Rush, “Pre-trained summarization distillation,”
arXiv preprint arXiv:2010.13002, 2020.

[53] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter,” arXiv preprint
arXiv:1910.01108, 2019.

[54] P. Mattson, C. Cheng, G. Diamos, C. Coleman, P. Micikevicius,
D. Patterson, H. Tang, G.-Y. Wei, P. Bailis, V. Bittorf et al., “Mlperf
training benchmark,” Proceedings of Machine Learning and Systems,
vol. 2, pp. 336–349, 2020.

[55] X. Chen, M. Zhao, X. Yang, Z. Li, Y. Liu, Z. Li, and Y. Liu, “The
cask effect of multi-source content delivery: Measurement and
mitigation,” in 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2019, pp. 261–270.

[56] Z. Ling, J. Luo, W. Yu, M. Yang, and X. Fu, “Extensive analysis and
large-scale empirical evaluation of tor bridge discovery,” in 2012
Proceedings IEEE INFOCOM. IEEE, 2012, pp. 2381–2389.

[57] S. Li, Z. Lai, D. Li, X. Ye, and Y. Duan, “Embrace: Accelerating
sparse communication for distributed training of nlp neural
networks,” arXiv preprint arXiv:2110.09132, 2021.

[58] D. Mudigere, Y. Hao, J. Huang, Z. Jia, A. Tulloch, S. Sridharan,
X. Liu, M. Ozdal, J. Nie, J. Park et al., “Software-hardware co-design
for fast and scalable training of deep learning recommendation
models,” in Proceedings of the 49th Annual International Symposium
on Computer Architecture, 2022, pp. 993–1011.

[59] P. Contributors, “Paddlefleetx: An easy-to-use and high-
performance one-stop tool for deep learning,” https://github.com/
PaddlePaddle/PaddleFleetX, 2022.

[60] S. Gross, M. Ranzato, and A. Szlam, “Hard mixtures of experts for
large scale weakly supervised vision,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp.
6865–6873.

[61] I. Loshchilov and F. Hutter, “Decoupled weight decay regulariza-
tion,” in International Conference on Learning Representations, 2018.

https://www.microsoft.com/en-us/research/blog/tutel-an-efficient-mixture-of-experts-implementation-for-large-dnn-model-training/
https://www.microsoft.com/en-us/research/blog/tutel-an-efficient-mixture-of-experts-implementation-for-large-dnn-model-training/
https://www.microsoft.com/en-us/research/blog/tutel-an-efficient-mixture-of-experts-implementation-for-large-dnn-model-training/
https://en.wikipedia.org/wiki/Solid-state_drive
https://en.wikipedia.org/wiki/Solid-state_drive
https://www.intel.cn/content/www/cn/zh/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.cn/content/www/cn/zh/architecture-and-technology/optane-dc-persistent-memory.html
https://github.com/PaddlePaddle/PaddleFleetX
https://github.com/PaddlePaddle/PaddleFleetX

	Introduction
	Related Work
	Internet Services and Large Models
	MoE Training and Inference Systems

	MoESys Design
	Overall Design of Architecture
	Training Phase
	Hierarchical Storage
	2D Prefetch Scheduling

	Inference Phase
	Graph Optimization
	Ring Memory Offloading


	Implementation strategies
	Elastic MoE Training
	Resource-Aware Communication
	Embedding Partition in Data Parallelism

	Experiment
	Platform
	Large-Scale MoE Training
	Ablation Study in MoE Training
	Elastic MoE Training
	Resource-Aware Communication
	Embedding Partition in Data Parallelism
	Cross-wise Comparison

	MoE Inference
	Effectiveness
	Ring Memory Offloading

	Summary

	Conclusion and Future Works
	References

