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Abstract—The success of a Pull Request (PR) depends on the responsiveness of the maintainers and the contributor during the
review process. Being aware of the expected waiting times can lead to better interactions and managed expectations for both the
maintainers and the contributor. In this paper, we propose a machine-learning approach to predict the first response latency of the
maintainers following the submission of a PR, and the first response latency of the contributor after receiving the first response from the
maintainers. We curate a dataset of 20 large and popular open-source projects on GitHub and extract 21 features to characterize
projects, contributors, PRs, and review processes. Using these features, we then evaluate seven types of classifiers to identify the
best-performing models. We also conduct permutation feature importance and SHAP analyses to understand the importance and the
impact of different features on the predicted response latencies. We find that our CatBoost models are the most effective for predicting
the first response latencies of both maintainers and contributors. Compared to a dummy classifier that always returns the majority
class, these models achieved an average improvement of 29% in AUC-ROC and 51% in AUC-PR for maintainers, as well as 39% in
AUC-ROC and 89% in AUC-PR for contributors across the studied projects. The results indicate that our models can aptly predict the
first response latencies using the selected features. We also observe that PRs submitted earlier in the week, containing an average
number of commits, and with concise descriptions are more likely to receive faster first responses from the maintainers. Similarly, PRs
with a lower first response latency from maintainers, that received the first response of maintainers earlier in the week, and containing
an average number of commits tend to receive faster first responses from the contributors. Additionally, contributors with a higher
acceptance rate and a history of timely responses in the project are likely to both obtain and provide faster first responses. Moreover,
we show the effectiveness of our approach in a cross-project setting. Finally, we discuss key guidelines for maintainers, contributors,

and researchers to help facilitate the PR review process.

Index Terms—Pull request abandonment, pull-based development, modern code review, social coding, open source software.

1 INTRODUCTION

ULL-based development has become a common
Pparadigm for contributing to and reviewing code
changes in numerous open-source projects [1, 2]. Pull Re-
quests (PRs) are the driving force behind the maintenance
and evolution of these projects, encompassing everything
from bug fixes to new features. Contributors initiate this col-
laborative process by submitting a PR that proposes changes
for integration into the project. The PR then undergoes a
review process, during which the contributor revises the
changes based on feedback from the project maintainers.
This cycle repeats until the PR satisfies the maintainers’
requirements for getting merged [3, 4].

The success of the PR depends on the responsiveness of
both the maintainers and the contributor during the review
process [5, 6, 7, 8]. Timely responses from the maintainers set
a positive tone for the entire review process, increasing the
likelihood of the contributor continuing the review process
towards completion [5, 4]. Conversely, delayed responses
are often perceived as negligence, increasing the risk of
the contributor abandoning the PR [5, 6, 9]. Once the
maintainers have responded, the contributor’s promptness
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in addressing the feedback is equally crucial. Timely re-
sponses help maintain the momentum of the review process,
whereas delayed responses can cause it to stale [5, 4, 10].

Knowing the expected waiting times can lead to bet-
ter interactions and managed expectations for both sides.
Contributors, when aware of anticipated waiting times, can
adjust their schedules accordingly, reducing uncertainty and
preserving their motivation throughout the review process
[5, 7]. Maintainers, aware of possible delays in contributor
responses, can proactively offer additional support or take
action to mitigate potential blockers [5]. This awareness
also allows maintainers to better allocate their time and
resources and prioritize PR reviews [8]. Furthermore, ana-
lyzing response time trends can help projects pinpoint and
rectify bottlenecks, thereby enhancing the efficiency and
effectiveness of their PR review workflows.

The first responses are of particular importance as they
not only directly influence the duration [11, 12] and the
outcome [13, 5, 6] of the review process, but also the likeli-
hood of future contributions by the contributor [14, 11]. De-
spite the critical role of first responses, existing approaches
only aim to understand the characteristics of PRs with a
longer time to first bot or human response [11], predict the
completion time of PRs [15, 16], or devise approaches to
nudge overdue PRs [17, 18]. Our study bridges this gap
by proposing a machine learning approach to predict: (1)
the first response latency of the maintainers following the
submission of a PR, and (2) the first response latency of
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the contributor after receiving the first response from the
maintainers.

For this purpose, we start by curating a dataset of 20
popular and large open-source projects on GitHub. Next,
we extract 21 features to characterize projects, contributors,
PRs, and review processes. Using these features, we then
evaluate seven types of classifiers to identify the best-
performing models. Finally, we perform permutation fea-
ture importance [19] and SHAP [20] analyses to understand
the importance and impact of different features on the
predicted response latencies. In summary, we aim to answer
the following four research questions:

RQ1: (Maintainers) How well can we predict the first re-
sponse latency of maintainers? We find that the Cat-
Boost models outperform other models in predicting
the first response latency of maintainers, achieving
an average improvement of 29% in AUC-ROC and
51% in AUC-PR compared to a dummy classifier that
always returns the majority class across the studied
projects.

(Maintainers) What are the major predictors of the
first response latency of maintainers? We find that
PRs submitted earlier in the week, containing an av-
erage or slightly above-average number of commits
at submission, and with more concise descriptions
are more likely to get faster responses. Similarly,
contributors with a higher acceptance rate and a
history of timely responses in the project tend to
obtain quicker responses.

(Contributors) How well can we predict the first
response latency of contributors? Similar to the
first response latency of maintainers, we find that
the CatBoost models outperform other models in
predicting the first response latency of contributors,
achieving an average improvement of 39% in AUC-
ROC and 89% in AUC-PR compared to a dummy
classifier that always returns the majority class across
the studied projects.

(Contributors) What are the major predictors of the
first response latency of contributors? We find that
contributors of PRs that experienced a lower first
response latency from maintainers, PRs that received
the first response of maintainers earlier in the week,
and PRs containing an average or slightly above-
average number of commits till the first response
of maintainers are more likely to provide faster
responses. Similarly, contributors with a history of
timely responses in the project and with a higher
acceptance rate tend to give quicker responses.

RQ2:

RQ3:

RQ4:

Finally, we evaluate our approach in a cross-project set-
ting. This is especially useful for new projects with limited
historical data to build accurate models. Compared to a
dummy classifier that always returns the majority class, the
models achieve an average improvement of 33% in AUC-
ROC and 58% in AUC-PR for maintainers, as well as an
average improvement of 42% in AUC-ROC and 95% in
AUC-PR for contributors. Furthermore, we find that the
key predictors in the cross-project setting are: submission
day, number of commits, contributor acceptance rate, his-
torical maintainers responsiveness, and historical contribu-
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tor responsiveness for maintainers’ first response latency;
and first review latency, review day, historical contributor
responsiveness, number of commits, and contributor activ-
ity within the PR for contributors’ first response latency.
Finally, based on our findings, we discuss key guidelines for
maintainers, contributors, and researchers to help facilitate
the PR review process. We expect our approach to enhance
collaboration between maintainers and contributors by en-
abling them to anticipate waiting times and take proactive
actions to mitigate potential challenges during the PR re-
view process.

Our Contributions. In summary, we make the following
contributions in this paper:

o To the best of our knowledge, we are the first to pro-
pose machine learning models for classifying the first
response latency of maintainers and contributors.

e We investigate the major predictors of the first re-
sponse latency of maintainers and contributors and
discuss the impact of the features on the anticipated
waiting periods.

e To promote the reproducibility of our study and
facilitate future research on this topic, we publicly
share our scripts and dataset online at https://doi.
org/10.5281/zenodo.10119283.

Paper Organization. The rest of this paper is organized
as follows. Section 2 overviews the design of our study.
Sections 3 and 4 report the results for predicting the first re-
sponse latency of maintainers and contributors, respectively.
Section 5 evaluates our approach in a cross-project setting
and Section 6 discusses the implications of our findings.
Section 7 discusses the limitations of our study and Section 8
reviews the related work. Finally, Section 9 concludes the

paper.

2 STUuDY DESIGN

The main objective of this study is to develop machine learn-
ing models for predicting the first response latency of the
maintainers following the submission of a PR; as well as the
first response latency of the contributor after receiving the
first response from the maintainers. Additionally, we aim
to identify and discuss the impact of the key features that
significantly influence the predicted first response latency of
maintainers and contributors. In the following, we explain
the methodology and design of our study in detail.

2.1 Studied Projects

To ensure that we have enough historical data for our
study, we seek popular open-source projects with the largest
histories of pull-based development. For this purpose, we
rely on GitHub as a pioneer in supporting pull-based devel-
opment and the largest open-source ecosystem [21], which
has also been the subject of numerous code review studies
[22, 23]. To identify such projects, we use the number of
stars as a proxy for the popularity of the projects [24]
and retrieve the list of the top 1,000 most-starred projects.
Among these projects, we then select the top 20 with the
highest number of PRs. Table 1 provides an overview of the
projects that we selected for our case study. In summary,
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the selected projects have thousands of PRs (median of
42,630), thousands of stars (median of 52,226), hundreds
of contributors (median of 3,240), tens of maintainers (me-
dian of 201), and years of pull-based development history
(median of 106 months). Additionally, these projects span
multiple application domains and programming languages,
providing a more diverse selection of projects for our case
study. We collected the timeline of activities for the selected
projects on December 1st, 2022. The timeline of activities of
PRs is provided by the GitHub API [25] and includes the
details (e.g., type, actor, and time) of all the events (e.g.,
commits, comments, and resolutions) that occurred during
the lifecycle of a PR [26, 27, 28].

2.2

In this study, we focus on responses from project maintain-
ers, as their deeper knowledge of the project enables them
to evaluate PRs more effectively. Following an approach
similar to Bock et al. [29], we consider developers with priv-
ileged access within the project PRs as PR maintainers. This
status not only enables them to perform key PR maintenance
tasks, but also allows them to make decisions about accept-
ing or rejecting PRs. To identify PR maintainers, we ana-
lyze each developer’s activity within the project PRs, look-
ing for any of the following privileged PR-related events
[29]: added_to_project, deployed, deployment_-
environment_changed, locked, merged, moved_-
columns_in_project, removed_from_project,
view_dismissed, unlocked, and user_blocked. In ad-
dition to these events, we consider actions such as merging
a PR using other nonstandard methods (e.g., through com-
mit messages that include keywords to resolve a PR, like
“resolves #123”) or closing someone else’s PR as privileged
events (since users can close their own PRs without requir-
ing any special access). Finally, we classify any developer
associated with any of the aforementioned actions as a PR
maintainer of the project henceforth.

Similar to [11], we define the first response of main-
tainers as the first feedback (i.e., commented, reviewed,
line—commented, and commit-commented) or resolution
(i.e., merged, closed, and reopened) by a maintainer
(excluding bots) other than the contributor after a PR is sub-
mitted. We also define the first response of contributors as
the first update (i.e., committed and head_ref_force_-
pushed), feedback (i.e., commented, reviewed, line-
commented, and commit-commented, or resolution (i.e.,
closed and reopened) by the contributor after receiving
the first response from a maintainer. We identified bots
by marking actors listed in any of the three ground-truth
datasets [30, 31, 32], as well as those with names ending in
bot or [bot]. Additionally, we manually inspected actors
with high activity levels or fast response times to detect any
potential bots that may have been overlooked.

Identification of First Responses

re—

2.3 Feature Extraction

To train machine learning models for predicting the first
response latency of either maintainers or contributors, we
need to extract a set of relevant features that can poten-
tially be predictive of their first response latencies. For this
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purpose, we consult the literature on pull-based develop-
ment [12, 13] and also draw from our previous experience
studying PR abandonment [5, 10]. As outlined in Table 2,
we extract a total of 21 features covering four different
dimensions: (i) project characteristics, (ii) contributor char-
acteristics, (iii) PR characteristics, and (iv) review process
characteristics. Features in the table are denoted by ‘M’,
‘C’, or ‘MC’, indicating their use in the models for pre-
dicting the response latency of maintainers, contributors, or
both, respectively. The features are measured using the data
available at different time points: features for predicting the
maintainer response latency are measured at the submission
time of PR, while features for predicting the contributor
response latency are measured at the time when the PR
receives its first response from a maintainer. In addition, all
measurements are based on the UTC timezone as directly
provided by the GitHub API [25]. Also, project features
(except Project Backlog) are measured over the last three
months, similar to [12, 13], to better reflect recent fluctu-
ations as a project matures. Our criteria for selecting the
features are as follows:

e Conceptual Availability: The feature should be con-
ceptually available at the time of interest. For predict-
ing the maintainer’s first response latency, the feature
should be available at the submission time of a PR;
and for predicting the contributor’s first response
latency, the feature should be available at the first
response time of maintainers. For example, we did
not include the CI execution results for predicting
the maintainer’s first response latency as they are not
available at the submission time of a PR.

e Universal Availability: The feature should be avail-
able for all PRs of the studied projects to ensure a
consistent set of features across the projects and also
to avoid requiring imputation techniques to fill in the
missing values. This is because any imputation tech-
nique inherently alters the distribution of data and
thus will reduce the interpretability of our results.
For example, we did not include the CI execution
results for predicting the contributor’s first response
latency as they are only available for some PRs and
for some projects.

o Feature Measurability: The feature should be mea-
surable using the data available through the GitHub
API [25]. For example, we did not include the num-
ber of followers because the GitHub API does not
reveal the number of followers of a user at a historical
point in time and only provides the latest count.

o Feature Non-Redundancy: The feature should not be
just another operationalization of the same concept
already included in our set of features. In cases where
several features can be combined into one feature,
we preferred to include the more generic feature. For
example, we include the number of changed lines
instead of including the number of added lines and
the number of deleted lines as two separate features.

e Measurement Accuracy: The measurement of the
feature should be accurate and should not rely on
ML models or heuristics. This is because inaccurate
values hinder the interpretability of the feature. For



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4
TABLE 1

Overview of the projects selected for our study.
Project | PRs Stars Contributors Maintainers ~ Age (Months) | Domain Language
Odoo 89,513 27,267 2,678 237 102 Business Management System JavaScript
Kubernetes 72,001 94,103 5,613 361 101 Container Orchestration System Go
Elasticsearch 60,582 61,986 3,016 299 153 Data Analytics Engine Java
PyTorch 60,072 60,605 3,610 350 75 Machine Learning Framework C++
Rust 58,563 74,949 4,566 135 149 Programming Language Rust
DefinitelyTyped | 53,843 41,717 18,980 548 121 TypeScript Type Definitions TypeScript
HomeAssistant 48,478 56,269 4,646 913 110 Home Automation System Python
Ansible 48,262 55,575 7,835 93 128 IT Automation Platform Python
CockroachDB 45884 26,127 725 203 105 Database Management System Go
Swift 45,560 61,197 1,333 230 85 Programming Language C++
Flutter 39,700 146,697 2,287 236 92 Software Development Kit Dart
Spark 38,809 34,459 3,463 80 105 Data Analytics Engine Scala
Python 37,792 49,172 3,779 104 69 Programming Language Python
Sentr 35489 32,665 834 170 146 Application Performance Monitoring  Python
PaddlePaddle 32,738 19,230 831 500 75 Machine Learning Framework C++
Godot 30,886 55,580 2,688 63 106 Game Engine C++
Rails 30,386 51,852 6,435 114 175 Web Application Framework Ruby
Grafana 30,373 52,599 2,657 199 107 Data Visualization Platform TypeScript
ClickHouse 29,820 26,262 1,377 54 77 Database Management System C++
Symfony 29,009 27,679 4,240 51 154 Web Application Framework PHP

example, we did not include the existence of @tags
as we frequently observed that @tags are used for
purposes other than tagging a user.

In the following, we explain the relevance and measure-
ment of each feature in detail.

Submission Volume. Increased PR submissions can over-
whelm maintainers, resulting in delayed response times
[8]. However, a high volume of submissions indicates an
active project, which can attract contributors and positively
influence their responsiveness. To quantify this feature, we
count the number of PRs submitted to the project over the
last three months.

Project Backlog. A sizeable backlog of unresolved PRs
could overwhelm maintainers, potentially resulting in ex-
tended response times [11, 12]. Furthermore, contributors
may perceive a substantial backlog as a sign of inattentive-
ness, which may discourage them and adversely affect their
willingness to respond promptly. To quantify this feature,
we count the number of unresolved PRs in the project.

Maintainers Availability. More available maintainers fa-
cilitate efficient workload distribution, potentially leading
to quicker response times [12, 8]. Higher availability of
maintainers indicates an actively maintained and support-
ive project, boosting contributors’ confidence and respon-
siveness. To quantify this feature, we count the number of
active maintainers in the project over the last three months.

Maintainers Responsiveness. The past responsiveness of
maintainers can serve as an indicator of their future re-
sponse times. Specifically, a history of delayed responses
may be interpreted as inattentiveness or lack of engagement,
which can demotivate contributors, subsequently dampen-
ing their responsiveness [5, 6]. To quantify this feature, we
calculate the median first response latency of maintainers
for PRs they responded to over the last three months.

Community Size. High levels of community engagement
can introduce diverse inputs and increased demands on
maintainers, potentially leading to delayed responses [12,

8]. Nevertheless, active community participation reflects a
thriving project, which can encourage prompt responses by
contributors. To quantify this feature, we count the number
of active practitioners (excluding maintainers and bots) in
the project over the last three months.

Contributor Experience. Experienced contributors tend to
submit higher-quality PRs and communicate more effec-
tively, potentially expediting responses from maintainers
[11,12]. Their familiarity with the project’s dynamics and ex-
pectations often leads to quicker responses to feedback and
revision requests [7]. To quantify this feature, we calculate
the number of PRs a contributor has previously submitted
to the project.

Contributor Performance. Contributors who consistently
have a high success rate with their submissions often pro-
duce PRs that align closely with the project’s standards,
likely receiving quicker responses from maintainers [11, 12].
On the other hand, contributors who are familiar with the
project’s expectations typically respond more promptly to
feedback [7]. To quantify this feature, we calculate the ratio
of a contributor’s successfully merged PRs to their total
submissions in the project.

Contributor Backlog. A backlog of PRs from a contributor
may suggest they are overextended or tend to submit PRs
that require extensive review, potentially leading to de-
layed responses from maintainers [5]. Additionally, having
multiple pending submissions may divide the contributor’s
attention, slowing their response times. To quantify this
feature, we count the number of a contributor’s unresolved
PRs in the project.

Contributor Responsiveness. The past responsiveness of
a contributor can serve as an indicator of their future re-
sponse times. Previous timely responses not only exhibit
commitment but also foster a cycle of timely feedback from
maintainers [5, 6]. To quantify this feature, we calculate the
median latency of the contributor’s first responses in prior
PRs within the project.
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TABLE 2
Features extracted to predict the first response latency of maintainers (M) and contributors (C).
Dimension | Feature Description | Model
Submission Volume Number of submitted PRs to the project over the last 3 months MC
Project Backlog Number of unresolved PRs in the project MC
Project Maintainers Availability Number of active maintainers in the project over the last 3 months MC
Maintainers Responsiveness =~ Median first response latency of the maintainers over the last 3 months MC
Community Size Number of active community members in the project over the last 3 months MC
Contributor Experience Number of prior PRs by the contributor MC
Contributor Contributor Performance Ratio of the merged PRs of the contributor MC
Contributor Backlog Number of unresolved PRs by the contributor MC
Contributor Responsiveness =~ Median first response latency of the contributor in prior PRs MC
Description Length Number of words in the title and description of the PR MC
Commits Number of commits in the PR MC
Pull Request Changed Lines Number of changed lines in the PR MC
1 Changed Files Number of changed files in the PR MC
Submission Day Weekday of the submission time of the PR M
Submission Hour Hour of the submission time of the PR M
Review Day Weekday of the first response of the maintainer C
Review Hour Hour of the first response of the maintainer C
Review Process | Review Latency First response latency of the maintainer in the PR C
Contributor Activity Number of events by the contributor in the PR C
Participants Activity Number of events by the participants in the PR C
Bots Activity Number of events by the bots in the PR C

Description Length. A description that is both detailed and
concise can significantly aid maintainers in evaluating the
proposed changes, potentially resulting in faster response
times [11, 12]. A clear description may also minimize the
need for further clarification or modifications, allowing
contributors to promptly and efficiently address feedback
from maintainers [7]. To quantify this feature, we count the
number of words in both the title and description of the PR.

Commits. PRs with fewer commits often facilitate a
smoother review process, leading to quicker responses from
maintainers [11, 12]. On the other hand, contributors who
craft meaningful commits are also likely more motivated
and attentive to feedback, resulting in prompt responses [7].
To quantify this feature, we count the number of commits
submitted to the PR.

Changed Lines. PRs with extensive changes are often more
difficult and time-consuming for maintainers to review,
leading to delayed responses [11, 12]. Contributors of such
PRs also typically need more time to address the changes
requested by the maintainers [7]. To quantify this feature,
we count the number of lines that have been changed in the
commits included in the PR.

Changed Files. PRs that touch multiple files require the
reviewer to go through changes across different files, which
could extend the time it takes for maintainers to respond
[11, 12]. Similar to PRs with many changed lines, those
that change many files often reflect a significant effort by
contributors, making them more eager to respond to feed-
back. However, addressing feedback on multiple files may
take contributors more time [7]. To quantify this feature, we
count the number of files changed in the PR’s commits.

Submission Day. PRs submitted closer to weekends tend
to receive slower responses due to reduced activity from
maintainers compared to normal working days [33, 8]. To

quantify this feature, we record the day of the week on
which the PR is submitted.

Submission Hour. Similar to submission day, PRs submit-
ted during the usual working or active hours of maintainers
tend to receive quicker responses. In contrast, those submit-
ted outside of these hours might face delays, as maintainers
may not be readily available or active [8]. To quantify this
feature, we record the hour on which the PR is submitted.

Review Day. Similar to PR submission day, reviews con-
ducted on weekdays might align more closely with the
schedules of contributors who approach their work on the
project professionally, encouraging timely responses [8]. To
quantify this feature, we record the day of the week when
the maintainer’s first response is submitted.

Review Hour. If the review hour aligns with contributors’
usual active hours, it improves the chances that the contrib-
utor respond more promptly [8]. To quantify this feature, we
record the hour of the maintainer’s first response to the PR.

Review Latency. Prior studies show that the first response
latency of maintainers is directly correlated with the total
duration of the PR review process [11, 12]. Timely responses
from maintainers enhance contributors’ engagement with
the project [7]. However, delays in reviews can lead to frus-
tration and potential PR abandonment [5, 6, 9]. To quantify
this feature, we measure the time it takes for maintainers to
issue their first response to a PR in hours.

Contributor Activity. The level of activity exhibited by a
contributor during the review process can be a sign of their
engagement and dedication to the PR, which often correlates
with quicker responsiveness to feedback [6]. To quantify
this feature, we count the number of events initiated by the
contributor following the PR’s submission.

Participants Activity. The level of activity from participants,
excluding maintainers and bots, during the review process
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indicates the community’s interest and engagement with a
specific PR. When a PR attracts attention and constructive
comments from the community, it tends to encourage and
motivate contributors to respond more quickly [6]. To quan-
tify this feature, we count the number of events initiated by
these participants following the PR’s submission.

Bots Activity. Bots play an essential role in facilitating the
review process by automating repetitive tasks. However,
excessive or inappropriate bot activity disrupts contributors,
potentially impeding their responsiveness and engagement
[34, 35, 10]. To quantify this feature, we count the number of
events triggered by bots after the submission of the PR.

2.4 Data Preprocessing

In the following, we explain how we preprocess the dataset
before constructing our models.

Data Filtering. We exclude PRs submitted by bots to avoid
skewing response latency data. Bots typically receive differ-
ent treatment from maintainers, leading to unusual response
patterns [36]. This can misrepresent the typical response
dynamics between human maintainers and contributors as
bot interactions do not mirror human behavior.

Feature Correlation Analysis. The presence of multi-
collinearity [37] can adversely affect both the performance
and interpretability of machine learning models [38]. To mit-
igate this issue, we identify highly correlated features using
the Spearman rank correlation test [39] as a nonparametric
test that does not require normally distributed data. Then,
we conduct the analysis on the entire dataset to ensure that
the identified correlations are consistent across all the stud-
ied projects. For strongly correlated features with |p| > 0.6
(as suggested by [40]), we keep the feature that we believe
could be more practical and useful to the stakeholders of
our models (i.e., project maintainers and contributors). In
the following, we explain the rationale for our selections
among each set of strongly correlated features:

e Submission Volume and Maintainers Availability:
We selected maintainers availability because projects
have more direct control over the availability of
maintainers compared to the external nature of sub-
mission volumes.

e Contributor Experience and Contributor Perfor-
mance: We selected contributor performance (ie.,
ratio of the merged PRs of the contributor) because
it provides a direct measure of quality over quantity,
thereby minimizing potential bias against newer con-
tributors who may have previously submitted fewer
PRs but have a high success rate.

e Commits, Changed Lines, and Changed Files: We
selected the number of commits because it is a more
consistent measure of PR complexity and is less
prone to extreme values compared to the number of
changed lines or files, which can vary significantly
depending on the nature of proposed changes.

Feature Transformation. Skewed data can negatively im-
pact machine learning models that expect normally dis-
tributed data. To address this issue, we apply log trans-
formation [41] to the features using log(x + 1). For models
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other than tree-based ones, where having a comparable scale
for features is crucial for optimal performance, we further
standardize the features using the Z-score normalization
[41] technique to achieve a distribution with a mean of zero
and a standard deviation of one.

2.5 Model Construction and Evaluation

We build and validate various machine learning models that
use the extracted features for predicting the first response
latency of maintainers and contributors. The models classify
the response times into one of the following three classes: 1)
within 1 day, 2) 1 day to 1 week, 3) more than 1 week. This
classification scheme is adapted from the study conducted
by Hasan et al. [11], which categorized the response times
into four groups: 1) within 1 day, 2) 1 day to 1 week, 3)
1 week to 1 month, and 4) more than 1 month. However,
we combined the last two categories since PRs with first
responses of more than one month are rare in our dataset
(less than 2% for either of first maintainers and contributors
responses in most of our studied projects). The distribution
of the first response latency of maintainers and contributors
across the studied projects can be found in Appendix.

We experiment with various classifier models to identify
which ones most accurately predict the first response latency
of maintainers and contributors across the studied projects.
The selected models include CatBoost (CB) [42], K-Nearest
Neighbors (KNN), Logistic Regression (LR), Naive Bayes
(NB), Neural Network (NN), Random Forest (RF), and
Support Vector Machine (SVM). CatBoost is recommended
for multiclass imbalanced datasets [43]. Other models are
also popular in the software engineering literature [44, 45].
For each project, we train two distinct models using the
corresponding selected features: one focusing on the first
response latency of maintainers and another on the first
response latency of contributors. To evaluate the perfor-
mance of our models, we use Time Series cross-validation.
This technique is a variation of K-Fold cross-validation that
takes into account the temporal nature of our data, thus
preventing future information from leaking to training sets.
In each split, the first k folds serve as the training set and
the (k + 1)-th fold serves as the test set. To measure the
performance of the models, we rely on the following two
threshold-independent metrics that are commonly used to
evaluate model performance in the presence of an imbal-
anced dataset [46]:

e AUC-ROC: This metric measures the area under
the Receiver Operating Characteristic (ROC) curve
[47], which plots the true positive rate against the
false positive rate at different thresholds. AUC-ROC
values range from 0 to 1, with a value greater than
0.5 indicating that the model performs better than a
no-skill classifier.

o AUC-PR: This metric measures the area under the
Precision-Recall (PR) curve [48], which plots the pre-
cision against the recall across different thresholds.
AUC-PR also ranges from 0 to 1. However, the per-
formance of a no-skill classifier is determined by the
class distribution.

These metrics provide a comprehensive assessment of
model discriminative capability across various probability
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thresholds, allowing for a robust and generalized evalua-
tion of performance. To measure these metrics, we adopt
the One-vs-Rest (OvR) approach [49] commonly used for
evaluating multiclass classifiers [50]. This approach decom-
poses the multiclass classification problem into multiple
binary classification problems, each focusing on a single
class against all others. The metrics are then computed
for each binary problem and averaged (macro) to provide
an aggregated overview of the model’s capability across
different classes. Using this approach, we can perform a
detailed evaluation of the model’s capability to distinguish
each class, ensuring that the model is not biased towards
any particular class and can perform well across all classes.
Finally, we calculate the relative improvement compared
to a dummy classifier that always returns the majority
class as our baseline (as implemented in scikit-learn).
To identify the best-performing models, we rely on the
nonparametric Scott-Knott ESD test [51]. This is a multiple
comparison approach that leverages hierarchical clustering
to partition the set of median values of techniques into
statistically distinct groups with non-negligible differences.

2.6 Model Analysis

To compare the relative importance of different features, we
perform permutation feature importance analysis [19, 52]
for each project. This approach permutes a feature to break
the association between the feature and the outcome (i.e.,
the response latency). The importance of the feature is then
measured by how much error the permutated data intro-
duces compared to the original error (i.e., loss in AUC-ROC
in our case). Therefore, the most important features have
the largest impact on the performance of our models and
thus are more useful for making accurate predictions. After
calculating the importance of each feature in each project,
we apply the nonparametric Scott-Knott ESD test [51] to ob-
tain the ranking of each feature. To understand the impact of
each feature on the model’s predictions, we employ SHapley
Additive exPlanation analysis (SHAP) [20, 52]. We calculate
the SHAP values for each project and then aggregate the
results to gain a holistic understanding of the impact of a
feature across all the studied projects.

3 MAINTAINER RESPONSE LATENCY

In this section, we aim to understand if we can accurately
predict the first response latency of maintainers following
the submission of a PR. Then, we want to identify and dis-
cuss the impact of the most important features in accurately
predicting the first response latency of maintainers across
the studied projects.

3.1 RQ1: How well can we predict the first response
latency of maintainers?

Table 3 and Table 4 compare the performance of various
models for predicting the first response latency of maintain-
ers in terms of the AUC-ROC and AUC-PR metrics, respec-
tively. The best-performing models according to the Scott-
Knott ESD test are highlighted in bold. It is worth noting
that multiple models may be identified as best-performing
when the difference in their performance is not statistically
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significant. From the tables, we find that the CB model
consistently outperforms all other models in every project
in both AUC-ROC and AUC-PR. Compared to the baseline
(i.e.,, a dummy classifier that always returns the majority
class), the CB model achieves considerable improvements,
with increases ranging from 16% to 45% in AUC-ROC and
from 20% to 118% in AUC-PR across different projects. The
precision and recall scores of the CB model for different
projects can be found in Appendix.

To understand the factors contributing to the misclas-
sification of the first response latency of maintainers, we
manually examined the misclassified PRs by the CB model.
The most important reason is that the predictions are based
on the data available up until the time of PR submission.
However, there are various post-submission factors that
affect how long it takes for maintainers to respond. For
example, if a PR fails Continuous Integration (CI) tests,
maintainers usually wait for the errors to be fixed before
starting the review [5, 6]. Furthermore, the presence of bot-
generated responses is known to prolong the first response
latency of maintainers [11].

The CB model can predict the first response latency
of maintainers with an average improvement of 29%
in AUC-ROC and 51% in AUC-PR compared to a
dummy classifier that always returns the majority
class.

3.2 RQ2: What are the major predictors of the first
response latency of maintainers?

To conduct this analysis, we use the CB models due to their
superior performance. Figure 1 overviews the rankings of
different features based on their importance in accurately
predicting the first response latency of maintainers across
the studied projects. From the figure, we observe that Sub-
mission Day, Commits, Contributor Performance, Description
Length, and Contributor Responsiveness are the top five most
important features. This observation implies that the char-
acteristics of PRs and contributors have a greater influence
on how quickly maintainers provide their first response
compared to project characteristics. We were surprised by
this observation, as we expected that at least historical
maintainer responsiveness to be a key predictor of future
response times.

Figure 2 illustrates the impact of the top five most
important features on the probability of receiving the first
maintainer response on the same day of submitting a PR. We
observe that PRs submitted earlier in the week, containing
an average or slightly above-average number of commits at
submission, and with more concise descriptions are more
likely to get faster responses. Similarly, contributors with
a higher acceptance rate and a history of timely responses
in the project tend to obtain quicker responses. However, it
is concerning that inexperienced contributors are prone to
encounter delays in receiving feedback. This lack of timely
responsiveness from maintainers is frequently cited as a
key reason why contributors, especially novice or casual
contributors, may abandon their PRs [5, 6, 9] and even cease
further contributing to the project [14, 53].
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TABLE 3
AUC-ROC of different models for predicting the first response latency of maintainers across the studied projects.

Project

B

KNN

LR

NB

NN

RF

SVM

Odoo
Kubernetes
Elasticsearch
PyTorch

Rust
DefinitelyTyped
HomeAssistant
Ansible
CockroachDB
Swift

Flutter

Spark

Python

Sentr;
PaddlePaddle
Godot

Rails

Grafana
ClickHouse
Symfony

0.65 (+31%)
0.63 (+25%)
0.67 (+33%)
0.64 (+29%)
0.59 (+19%)
0.58 (+16%)
0.69 (+38%)
0.61 (+23%)
0.67 (+35%)
0.63 (+27%)
0.71 (+42%)
0.65 (+30%)
0.62 (+24%)
0.72 (+45%)
0.62 (+24%)
0.62 (+24%)
0.64 (+28%)
0.69 (+38%)
0.63 (+25%)
0.62 (+24%)

0.59 (+18%)
0.56 (+12%)
0.58 (+15%)
0.57 (+14%)
0.53 (+6%)
0.54 (+9%)
0.59 (+19%)
0.56 (+12%)
0.58 (+15%)
0.55 (+10%)
0.61 (+23%)
0.57 (+13%)
0.55 (+10%)
0.60 (+19%)
0.56 (+11%)
0.55 (+11%)
0.57 (+13%)
0.59 (+19%)
0.55 (+10%)
0.54 (+8%)

0.63 (+26%)
0.62 (+24%)
0.63 (+25%)
0.61 (+23%)
0.59 (+18%)
0.58 (+16%)
0.63 (+26%)
0.60 (+20%)
0.66 (+32%)
0.61 (+21%)
0.67 (+35%)
0.61 (+22%)
0.60 (+20%)
0.66 (+31%)
0.59 (+18%)
0.62 (+24%)
0.64 (+27%)
0.65 (+31%)
0.57 (+14%)
0.62 (+23%)

0.62 (+24%)
0.60 (+19%)
0.61 (+22%)
0.62 (+24%)
0.58 (+15%)
0.55 (+10%)
0.61 (+22%)
0.57 (+15%)
0.63 (+25%)
0.59 (+19%)
0.64 (+29%)
0.59 (+18%)
0.57 (+15%)
0.68 (+36%)
0.60 (+19%)
0.60 (+20%)
0.60 (+20%)
0.65 (+31%)
0.58 (+15%)
0.60 (+20%)

0.64 (+28%)
0.61 (+22%)
0.64 (+29%)
0.62 (+25%)
0.57 (+15%)
0.56 (+11%)
0.67 (+34%)
0.60 (+20%)
0.64 (+27%)
0.62 (+23%)
0.67 (+35%)
0.62 (+24%)
0.60 (+19%)
0.69 (+38%)
0.60 (+21%)
0.60 (+21%)
0.63 (+25%)
0.67 (+35%)
0.60 (+20%)
0.60 (+19%)

0.60 (+20%)
0.56 (+12%)
0.56 (+12%)
0.57 (+14%)
0.52 (+4%)
0.55 (+10%)
0.57 (+15%)
0.57 (+14%)
0.58 (+15%)
0.54 (+7%)
0.61 (+22%)
0.56 (+12%)
0.56 (+12%)
0.57 (+14%)
0.55 (+11%)
0.54 (+9%)
0.53 (+6%)
0.58 (+15%)
0.56 (+11%)
0.52 (+3%)

0.63 (+26%)
0.58 (+16%)
0.57 (+15%)
0.59 (+18%)
0.53 (+7%)
0.57 (+13%)
0.59 (+18%)
0.60 (+20%)
0.57 (+14%)
0.55 (+9%)
0.64 (+28%)
0.57 (+14%)
0.59 (+18%)
0.61 (+21%)
0.58 (+15%)
0.57 (+13%)
0.57 (+15%)
0.60 (+20%)
0.57 (+14%)
0.54 (+9%)

Average

| 0.64 (+29%)

0.57 (+13%)

0.62 (+24%)

0.60 (+21%)

0.62 (+25%)

0.56 (+12%)

0.58 (+16%)

Values in parentheses show the percentage improvement compared to the baseline.

TABLE 4
AUC-PR of different models for predicting the first response latency of maintainers across the studied projects.

Project \ CB KNN LR NB NN RF SVM

Odoo 0.48 (+45%) 040 (+21%) 0.4 (+34%) 043 (+30%) 046 (+39%) 040 (+19%) 0.45 (+34%)
Kubernetes 0.42 (+34%) 037 (+11%) 042 (+35%) 0.40 (+25%) 041 (+28%)  0.36 (+10%)  0.39 (+21%)
Elasticsearch 0.44 (+58%)  0.37 (+17%) 041 (+44%) 039 (+37%) 042 (+49%) 037 (+15%)  0.38 (+25%)
PyTorch 0.44 (+43%) 037 (+15%) 041 (+33%) 041 (+32%) 042 (+36%) 037 (+13%)  0.40 (+28%)
Rust 0.38 (+30%)  0.35 (+6%) 037 (+25%) 037 (+21%) 037 (+21%)  0.34 (+4%)  0.35 (+12%)
DefinitelyTyped | 0.41 (+20%) 036 (+9%) 040 (+21%) 037 (+10%) 039 (+15%)  0.36 (+8%)  0.39 (+16%)
HomeAssistant | 0.42 (+79%)  0.37 (+25%) 0.38 (+45%) 0.38 (+35%) 041 (+67%)  0.36 (+22%)  0.37 (+39%)
Ansible 043 (+33%)  0.38 (+13%) 041 (+26%) 039 (+17%) 042 (+27%) 037 (+12%)  0.42 (+27%)
CockroachDB 0.42 (+67%)  0.37 (+19%) 042 (+62%) 039 (+44%) 041 (+48%) 037 (+19%)  0.38 (+35%)
Swift 0.40 (+50%) 035 (+13%)  0.38 (+36%) 0.37 (+24%)  0.38 (+41%)  0.35(+9%)  0.35 (+20%)
Flutter 0.47 (+76%) 040 (+32%)  0.44 (+60%) 041 (+47%) 045 (+63%)  0.39 (+29%)  0.43 (+52%)
Spark 0.42 (+52%) 036 (+17%)  0.39 (+31%) 0.38 (+23%)  0.40 (+39%)  0.36 (+13%)  0.37 (+24%)
Python 0.41 (+30%)  0.36 (+10%)  0.40 (+26%) 038 (+19%) 040 (+24%) 037 (+12%)  0.40 (+23%)
Sentry 045 (+118%) 037 (+31%) 041 (+83%) 0.0 (+71%) 0.42 (+105%) 037 (+26%)  0.38 (+57%)
PaddlePaddle 0.42 (+37%) 037 (+15%) 039 (+29%) 0.39 (+28%) 040 (+31%)  0.36 (+10%)  0.39 (+25%)
Godot 0.41 (+35%) 036 (+12%) 040 (+31%)  0.39 (+24%)  0.40 (+29%)  0.35 (+8%)  0.37 (+18%)
Rails 0.40 (+43%)  0.36 (+13%)  0.40 (+42%) 038 (+25%)  0.39 (+34%)  0.34 (+8%)  0.36 (+21%)
Grafana 0.45 (+82%)  0.38 (+26%)  0.42 (+66%) 041 (+57%) 043 (+72%) 037 (+20%)  0.39 (+44%)
ClickHouse 0.41 (+43%)  0.36 (+12%) 038 (+23%) 038 (+26%) 040 (+35%) 036 (+11%)  0.38 (+27%)
Symfony 0.39 (+39%)  0.35(+10%) 0.38 (+38%) 0.38 (+27%)  0.37 (+28%)  0.34 (+5%)  0.35 (+19%)
Average | 042 (+51%) 037 (+16%) 040 (+39%) 039 (+31%) 041 (+41%) 036 (+14%) 0.38 (+28%)

Values in parentheses show the percentage improvement compared to the baseline.
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Fig. 2. Impact of the top 5 most important features on the prediction
of the first response latency of maintainers across the studied projects.
Wider violins indicate higher density and more frequent values.

The Submission Day, Commits, Contributor Performance,
Description Length, and Contributor Responsiveness have
the most influence on the first response latency of
maintainers.

4 CONTRIBUTOR RESPONSE LATENCY

In this section, we aim to understand if we can accurately
predict the first response latency of the contributor of a PR
after receiving the first response from the maintainers. Then,
we want to identify and discuss the impact of the most
important features in accurately predicting the first response
latency of contributors across the studied projects.

4.1 RQ3: How well can we predict the first response
latency of contributors?

Table 5 and Table 6 compare the performance of various
models for predicting the first response latency of contribu-
tors in terms of the AUC-ROC and AUC-PR metrics, respec-
tively. The best-performing models according to the Scott-
Knott ESD test are highlighted in bold. It is worth noting
that multiple models may be identified as best-performing
when the difference in their performance is not statistically
significant. From the tables, we find that similar to the
first response latency of maintainers (see Section 3), the CB
model continues to demonstrate superior performance in
both AUC-ROC and AUC-PR across all projects. Compared
to the baseline (i.e., a dummy classifier that always re-
turns the majority class), the CB model achieves significant
improvements, with increases ranging from 24% to 50%
in AUC-ROC and from 39% to 153% in AUC-PR across
different projects. The precision and recall scores of the CB
model for different projects can be found in Appendix.

To understand the factors contributing to the misclas-
sification of the first response latency of contributors, we
manually examined the misclassified PRs by the CB model.
We find that the quality of feedback and the extent of
requested changes also influence how long it takes for
contributors to respond after the feedback. This observation
aligns with prior findings in the literature that emphasize
the importance of quality review comments from the main-
tainers [4, 54].

The CB model can predict the first response latency
of contributors with an average improvement of 39%
in AUC-ROC and 89% in AUC-PR compared to a
dummy classifier that always returns the majority
class.
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4.2 RQ4: What are the major predictors of the first
response latency of contributors?

To conduct this analysis, we use the CB models due to their
superior performance. Figure 3 overviews the rankings of
different features based on their importance in accurately
predicting the first response latency of contributors across
the studied projects. From the figure, we observe that Review
Latency, Review Day, Contributor Responsiveness, Commits,
and Contributor Performance are the top five most important
features. This observation highlights the great influence of
the characteristics of the review process and contributors on
how quickly the contributors first respond.

Figure 4 illustrates the impact of the top five most im-
portant features on the probability of contributors replying
on the same day they receive the first maintainers response.
We observe that lower latency in the first maintainer re-
sponse correlates with a quicker subsequent response from
the contributor. In other words, contributors tend to reply
late if they have experienced delayed responses, leading
to a cascade effect in the review process. Notably, the first
response latency of maintainers not only affects the contrib-
utor responsiveness but is also known to directly impact the
duration [11, 12] and the outcome [13, 5, 6] of the PR, as well
as the likelihood of future contributions by the contributor
to the project [14, 11]. Furthermore, we find contributors of
PRs that received the first response of maintainers earlier
in the week, and contributors of PRs containing an average
or slightly above-average number of commits till the first
response of maintainers are more likely to provide faster
responses. Similarly, contributors with a history of timely
responses in the project and with a higher acceptance rate
tend to give quicker responses.

The Review Latency, Review Day, Contributor Respon-
siveness, Commits, and Contributor Performance have
the most influence on the first response latency of
contributors.

5 CROSS-PROJECT SETTING

Building accurate predictive models for new projects is often
challenging due to the limited historical data available.
However, one way to overcome this challenge is through
cross-project prediction, which enables such projects to
leverage the insights and patterns observed in older, well-
established projects. To evaluate the effectiveness of this
approach, for each studied project, we train a CB model (as it
has shown superior performance in our previous analyses)
on all other projects and then test on that project.

Table 7 compares the performance of various models
in predicting the first response latency of maintainers and
contributors in a cross-project setting in terms of the AUC-
ROC and AUC-PR metrics, respectively. The precision and
recall scores of the CB model for different projects can
also be found in Appendix. We observe that the models
for predicting the maintainers response latency achieve
improvements ranging from 22% to 58% in AUC-ROC and
from 28% to 122% in AUC-PR. The models for predicting the
contributors response latency also demonstrate improve-
ments ranging from 26% to 56% in AUC-ROC and from 35%
to 149% in AUC-PR. The results indicate that our approach
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TABLE 5
AUC-ROC of different models for predicting the first response latency of contributors across the studied projects.

Project \ CB KNN LR NB NN RF SVM

Odoo 0.66 (+32%) 055 (+11%)  0.64 (+28%)  0.62 (+24%)  0.62 (+24%)  0.57 (+13%)  0.59 (+19%)
Kubernetes 0.68 (+37%) 058 (+16%)  0.68 (+35%)  0.64 (+27%)  0.65 (+30%)  0.59 (+17%)  0.61 (+21%)
Elasticsearch 0.74 (+48%) 059 (+18%) 071 (+41%)  0.67 (+35%) 0.69 (+38%) 0.58 (+16%)  0.60 (+21%)
PyTorch 0.68 (+35%) 058 (+15%) 0.67 (+33%)  0.64 (+29%)  0.64 (+28%)  0.58 (+16%)  0.60 (+20%)
Rust 0.64 (+28%) 056 (+12%)  0.64 (+28%)  0.62 (+23%) 0.61 (+21%) 0.56 (+12%)  0.55 (+11%)
DefinitelyTyped | 0.62 (+24%) 055 (+10%) 0.61 (+21%) 059 (+18%) 0.60 (+21%)  0.54 (+8%)  0.56 (+11%)
HomeAssistant | 0.75 (+49%)  0.62 (+23%)  0.72 (+44%)  0.68 (+36%) 0.71 (+43%)  0.58 (+15%)  0.58 (+17%)
Ansible 0.66 (+32%) 058 (+17%)  0.66 (+33%)  0.61 (+22%)  0.64 (+27%) 057 (+15%)  0.61 (+22%)
CockroachDB 0.72 (+44%) 058 (+15%) 071 (+41%)  0.66 (+32%)  0.66 (+31%)  0.57 (+14%)  0.58 (+16%)
Swift 0.72 (+44%) 058 (+16%) 0.69 (+38%)  0.68 (+35%) 0.67 (+34%)  0.56 (+12%)  0.59 (+19%)
Flutter 0.72 (+44%) 059 (+17%)  0.69 (+37%)  0.62 (+23%)  0.65 (+30%)  0.56 (+13%)  0.60 (+20%)
Spark 0.73 (+45%) 059 (+18%)  0.70 (+40%) 0.69 (+38%)  0.68 (+36%)  0.57 (+14%)  0.61 (+21%)
Python 0.68 (+35%) 058 (+15%) 0.67 (+33%)  0.66 (+31%) 0.65 (+31%)  0.54 (+9%)  0.58 (+16%)
Sentry 0.74 (+49%) 058 (+17%)  0.69 (+38%) 0.66 (+33%)  0.69 (+38%)  0.58 (+16%)  0.60 (+20%)
PaddlePaddle | 0.67 (+35%) 055 (+10%) 0.64 (+28%) 0.62 (+24%)  0.61 (+22%)  0.55 (+10%)  0.56 (+12%)
Godot 0.67 (+35%) 059 (+18%)  0.68 (+35%)  0.66 (+32%)  0.66 (+31%)  0.56 (+12%)  0.61 (+23%)
Rails 0.68 (+36%) 057 (+13%)  0.67 (+33%)  0.62 (+25%)  0.62 (+24%)  0.55 (+10%)  0.58 (+15%)
Grafana 0.75 (+50%)  0.60 (+21%)  0.71 (+42%)  0.70 (+40%) 0.71 (+41%)  0.59 (+17%)  0.60 (+20%)
ClickHouse 0.70 (+41%) 057 (+14%)  0.69 (+38%)  0.64 (+28%) 0.67 (+34%) 057 (+13%)  0.59 (+19%)
Symfony 0.68 (+36%) 057 (+15%)  0.68 (+35%)  0.66 (+31%)  0.64 (+29%) 0.5 (+11%)  0.59 (+18%)
Average | 0.69 (+39%) 058 (+16%) 0.68 (+35%)  0.65 (+29%)  0.65 (+31%)  0.57 (+13%)  0.59 (+18%)

Values in parentheses show the percentage improvement compared to the baseline.

TABLE 6
AUC-PR of different models for predicting the first response latency of contributors across the studied projects.

Project \ CB KNN LR NB NN RF SVM

Odoo 0.44 (+58%)  0.36 (+12%)  0.42 (+49%) 040 (+35%) 041 (+39%) 037 (+15%)  0.39 (+34%)
Kubernetes 0.45 (+62%)  0.37 (+19%)  0.44 (+60%) 041 (+40%) 043 (+48%) 0.38 (+20%)  0.40 (+37%)
Elasticsearch 0.46 (+142%) 037 (+28%)  0.43 (+112%) 040 (+72%) 042 (+97%)  0.37 (+32%)  0.38 (+58%)
PyTorch 0.45 (+70%)  0.37 (+19%)  0.43 (+60%) 041 (+45%) 042 (+55%) 0.37 (+20%)  0.40 (+39%)
Rust 0.41 (+46%)  0.36 (+14%)  0.41 (+52%)  0.39 (+35%) 0.39 (+36%) 0.36 (+13%)  0.36 (+22%)
DefinitelyTyped | 0.40 (+39%) 036 (+13%) 039 (+31%)  0.38 (+23%) 0.39 (+34%)  0.35 (+9%)  0.37 (+20%)
HomeAssistant | 0.44 (+112%)  0.37 (+36%) 043 (+102%) 041 (+73%) 042 (+93%) 037 (+29%)  0.38 (+48%)
Ansible 0.45 (+51%)  0.38 (+21%)  0.45 (+50%) 041 (+32%) 042 (+40%) 037 (+16%) 0.41 (+34%)
CockroachDB 043 (+95%)  0.36 (+21%)  0.42 (+96%)  0.39 (+52%) 039 (+61%) 0.36 (+25%)  0.37 (+38%)
Swift 043 (+108%)  0.36 (+24%)  0.41 (+100%) 0.39 (+69%) 040 (+72%) 0.36 (+31%)  0.37 (+54%)
Flutter 0.44 (+141%)  0.37 (+30%)  0.42 (+124%)  0.38 (+50%) 0.40 (+68%) 0.36 (+42%)  0.38 (+50%)
Spark 045 (+106%)  0.37 (+27%)  0.44 (+104%) 042 (+75%) 042 (+77%) 0.37 (+24%)  0.39 (+59%)
Python 0.42 (+63%)  0.36 (+20%)  0.42 (+65%) 040 (+51%) 041 (+56%) 0.35 (+12%)  0.38 (+37%)
Sentry 0.46 (+153%)  0.36 (+21%) 042 (+121%)  0.38 (+64%) 041 (+87%) 0.38 (+45%)  0.37 (+48%)
PaddlePaddle 041 (+76%)  0.35 (+14%) 039 (+66%)  0.38 (+47%) 0.38 (+50%) 0.35 (+19%)  0.36 (+30%)
Godot 0.42 (+63%)  0.37 (+26%)  0.42 (+65%) 040 (+52%) 041 (+62%) 0.36 (+20%)  0.39 (+46%)
Rails 041 (+76%)  0.36 (+20%)  0.41 (+74%)  0.38 (+47%) 038 (+50%) 0.36 (+22%)  0.37 (+40%)
Grafana 0.44 (+120%)  0.37 (+30%) 0.43 (+115%) 040 (+79%) 041 (+91%) 0.37 (+29%)  0.37 (+51%)
ClickHouse 0.46 (+114%)  0.37 (+34%) 045 (+115%) 040 (+52%) 043 (+93%) 0.37 (+34%)  0.39 (+66%)
Symfony 0.42 (+78%)  0.36 (+24%)  0.41 (+77%)  0.39 (+50%) 040 (+57%) 0.36 (+25%) 0.38 (+46%)
Average | 043 (+89%) 036 (+23%) 042 (+82%)  0.40 (+52%) 0.41 (+63%) 036 (+24%) 0.38 (+43%)

Values in parentheses show the percentage improvement compared to the baseline.
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Fig. 4. Impact of the top 5 most important features on the prediction
of the first response latency of contributors across the studied projects.
Wider violins indicate higher density and more frequent values.

can be effective for predicting both the first response latency
of maintainers and the first response latency of contributors
in a cross-project setting.

Furthermore, we find that Submission Day, Commits,
Contributor Performance, Maintainers Responsiveness, and Con-
tributor Responsiveness are the major predictors of the first
response latency of maintainers in our cross-project models
(see Appendix). Compared to our project-specific analy-
sis of maintainers’ response latencies (RQ2), Maintainers
Responsiveness now replaces Description Length as the 4th
most important feature, with Description Length now ranked
6th and Maintainers Responsiveness previously ranked 9th.
The increased importance of Maintainers Responsiveness (i.e.,
median first response latency of the maintainers over the last
3 months) in our cross-project models may be attributed to
the higher variation in this feature’s values when using data
from other projects for training. In contrast, project-specific
models, which use data from only a given project, typically
exhibit a lower variation of this feature. We also observe
that Review Latency, Review Day, Contributor Responsiveness,
Commits, and Contributor Activity are the major predictors
of the first response latency of contributors in our cross-
project models (see Appendix). Compared to our project-
specific analysis of contributors” response latencies (RQ4),
Contributor Activity ranks as the 5th most important feature
in our cross-project analysis, whereas it was ranked 6th
in the project-specific analysis. Similarly, Contributor Perfor-
mance, previously ranked 5th in the project-specific analysis,
is now ranked 6th. This indicates that the key predictors of
contributors’ response latencies are quite similar in both our
project-specific and cross-project models.

6 IMPLICATIONS

In the following, we discuss key guidelines for maintainers,
contributors, and researchers to help facilitate the PR review
process.

6.1 Implications for Contributors

Our findings on the response latency of maintainers (RQ2)
suggest several strategies for contributors to improve their
chances of receiving faster feedback from maintainers. First,
the timing of PR submissions is crucial. We recommend that
contributors submit their PRs on weekdays, ideally earlier
in the week, to take advantage of the potentially higher
availability of maintainers during this period. In addition,
the complexity of PRs is important. We recommend that
contributors ensure their PRs are substantial enough to war-
rant attention but not so large as to deter maintainers from
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TABLE 7
Performance of the models for predicting the first response latency of
maintainers and contributors in a cross-project setting.

Maintainers Contributors

Project AUC-ROC AUC-PR AUC-ROC AUC-PR

Odoo 0.64 (+28%)  0.46 (+37%) | 0.66 (+32%)  0.44 (+57%)
Kubernetes 0.68 (+36%)  0.45 (+50%) | 0.70 (+40%)  0.46 (+73%)
Elasticsearch 0.67 (+35%) 0.44 (+61%) 0.74 (+49%)  0.46 (+133%)
PyTorch 0.66 (+33%)  0.45 (+50%) | 0.70 (+40%)  0.46 (+71%)
Rust 0.64 (+29%)  0.40 (+48%) | 0.67 (+35%)  0.43 (+65%)
DefinitelyTyped | 0.61 (+22%)  0.43 (+28%) | 0.63 (+26%)  0.41 (+35%)
HomeAssistant 0.65 (+30%) 0.39 (+55%) 0.74 (+48%)  0.44 (+106%)
Ansible 0.64 (+28%)  0.45 (+38%) | 0.69 (+39%)  0.47 (+69%)
CockroachDB 0.74 (+49%)  0.45 (+100%) | 0.74 (+48%) 0.44 (+121%)
Swift 0.68 (+35%)  0.41 (+63%) | 0.73 (+46%)  0.43 (+111%)
Flutter 0.79 (+58%)  0.50 (+122%) | 0.78 (+56%)  0.46 (+149%)
Spark 0.67 (+34%)  0.44 (+61%) | 0.73 (+46%) 0.46 (+111%)
Python 0.61 (+22%)  0.41 (+29%) | 0.69 (+39%)  0.43 (+66%)
Sentry 0.71 (+42%)  0.44 (+107%) | 0.74 (+47%)  0.44 (+140%)
PaddlePaddle 0.65 (+31%)  0.43 (+43%) | 0.67 (+33%)  0.40 (+72%)
Godot 0.63 (+27%)  0.41 (+35%) | 0.68 (+37%)  0.42 (+69%)
Rails 0.66 (+33%) 043 (+64%) | 0.71 (+43%) 0.4 (+101%)
Grafana 0.70 (+40%)  0.45 (+77%) | 0.76 (+52%)  0.45 (+136%)
ClickHouse 0.62 (+24%) 040 (+35%) | 0.72 (+44%)  0.48 (+122%)
Symfony 0.64 (+28%)  0.41 (+53%) | 0.70 (+40%)  0.42 (+85%)
Average | 0.67 (+33%) 043 (+58%) | 0.71 (+42%)  0.44 (+95%)

Values in parentheses show the percentage improvement compared to the
baseline.

engaging promptly. Furthermore, the quality of PR descrip-
tions matters. We recommend that contributors strive to
write succinct descriptions to make it easier for maintainers
to understand and evaluate the proposed changes. Lastly,
our findings suggest that the track record of contributors
also appears to play a significant role. Therefore, we recom-
mend that contributors maintain a history of timely interac-
tions and successful contributions to increase the likelihood
of quick feedback. Over time, such consistent performance
can build a reputation that potentially encourages faster and
more favorable responses from maintainers.

6.2

Our findings on the response latency of contributors (RQ4)
suggest several strategies for maintainers to facilitate the
PR review process. First, the first response latency of main-
tainers is crucial, as delayed responses are very likely to
trigger a cascading effect that adversely impacts the entire
review process. We recommend that maintainers strive to
provide timely responses to set a positive tone and sustain
the momentum of the review process. In addition, the tim-
ing of review comments is important. We recommend that
maintainers submit their feedback on weekdays, especially
earlier in the week. Furthermore, our findings suggest that
maintainers seem to favor contributors with a history of
successful contributions within the project. It is important
for maintainers to be mindful of the potential demotivating
effects of delayed responses on less experienced contribu-
tors. Being more responsive toward novice or casual con-
tributors can encourage their continued participation and
foster a more inclusive and collaborative environment.

Implications for Maintainers

6.3

A promising direction for future work is the development of
a comprehensive approach based on our proposed models.
This approach would not only predict anticipated waiting

Implications for Researchers
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times but also explain the specific reasons for predicted
delays using techniques such as LIME (Local Interpretable
Model-agnostic Explanations [55]). Most importantly, the
approach should extend beyond diagnostics to intervention,
by proactively providing customized recommendations to
minimize potential waiting times. This feature would en-
hance the practicality and relevance of the approach in real-
world scenarios. A crucial aspect of this work is the em-
pirical evaluation of the approach. This evaluation should
assess the impact of the approach on enhancing collabora-
tion and productivity among maintainers and contributors.
Key metrics for this assessment can include the decrease
in response times, the increase in PR success rates, and the
overall satisfaction of all parties involved.

7 LIMITATIONS

In this section, we discuss threats to the validity of our study.

Internal Validity. The first threat relates to the completeness
of our features. To mitigate this threat, we consulted the
literature on pull-based development [12, 13] and also drew
from our previous experience studying PR abandonment
[5, 10]. Nonetheless, there may be other features that we did
not consider or that are challenging to quantify, such as code
quality, feedback quality, and PR urgency, which potentially
have a stronger association with the response latencies.
The second threat relates to the choice of classifiers. To
mitigate this threat, we employed seven different classifiers
commonly used in the software engineering literature. Cat-
Boost is also acclaimed for its effectiveness with multi-class
imbalanced datasets, making it particularly suitable for our
study. The third threat relates to the completeness of our
maintainer identification approach. To mitigate this threat,
we considered not only developers who have previously
merged a PR or closed someone else’s PR but also those who
performed any of the privileged PR-related events identified
by Bock et al. [29] as maintainers. The fourth threat relates to
the completeness of our bot detection approach. To mitigate
this threat, we manually examined actors with high activity
levels or fast response times and added them to our bot
list accordingly. The fifth threat relates to our reliance on
GitHub usernames to differentiate between different actors
in PRs. In cases where a contributor uses multiple accounts,
our measurement of contributor features and the first re-
sponse latency of contributors can be impacted. Similarly,
when a maintainer uses multiple accounts, our approach
identifies only the account that has previously performed
a privileged event as a maintainer, which can affect our
measurements for project features and the first response
latency of maintainers. To further improve the robustness of
our approach, we recommend that future work investigate
techniques for correcting such developer identity errors by
cross-referencing multiple identity information beyond just
usernames [56]. The sixth threat relates to all timestamps
being standardized to UTC as provided by the GitHub
API. This may not accurately reflect the working hours of
developers in different time zones, potentially affecting the
interpretation of temporal features like Submission Hour and
Review Hour. To address this limitation, we recommend that
future work explore methods to accurately extract the local
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time zones of developers at each specific event throughout
a project’s history.

External Validity. Our study is based on 20 large and pop-
ular open-source projects on GitHub. Although we believe
these projects are more likely to benefit from our approach
due to their higher activity levels, we recognize that they
cannot represent the entire open-source ecosystem, espe-
cially smaller projects. In other words, the studied projects
may not represent other open-source projects with differ-
ent sizes, maturity, popularity, workload, dynamics, social
structures, and development practices. Still, we evaluated
our approach in a cross-project setting to demonstrate its
effectiveness across different projects. Future research can
replicate our approach using a more diverse selection of
projects.

8 RELATED WORK

In the following, we first overview the studies on the first
response latency of PRs before moving on to the studies on
the review duration and outcome of PRs. Finally, we review
the studies on the reasons, consequences, and solutions to
PR abandonment.

Studies on First Response Latency. Hasan et al. [11] is
the first to conduct an exploratory study on the time-to-
first-response of bots and humans in PRs. They found that
first responses in PRs are often generated by bots. They
also observed that complex PRs with lengthy descriptions
and inexperienced contributors with less communicative
attitudes tend to experience longer delays in receiving the
first human response. Kudrjavets et al. [57] reported the
waiting time from the proposal of code changes until the
first response as nonproductive time that negatively affects
code velocity. While these studies focus on understanding the
first response latency in PRs, our work specifically predicts the
first response latency of maintainers following the submission of
a PR. Besides, we also predict the first response latency of the
contributor of a PR after receiving the first response from the
maintainers.

Studies on Review Duration and Outcome. The literature
has extensively studied the influence of various technical
and social factors [58, 59, 60, 61, 62, 63], as well as various
personal and demographic factors [64, 65, 66, 67, 68, 69, 70]
on the review duration and outcome of PRs. Recently,
Zhang et al. [12] conducted a large-scale empirical study
to understand how a range of factors, identified through a
systematic literature review, can explain the latency of PRs
under different scenarios. They found that the description
length is the most influential factor when PRs are submitted.
When closing PRs, using CI tools, or when the contributor
and the integrator differ, the presence of comments is the
most influential factor. When comments are present, the
latency of the first comment is the most influential.

Zhang et al. [13] also conducted a similar comprehen-
sive empirical study to investigate how a range of factors,
identified through a systematic literature review, can explain
the decision of PRs under different scenarios. Most notably,
they found that the area hotness of PR is influential only
in the early stage of project development and becomes less
influential as projects mature. While these studies investigated
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what factors influence the review duration and outcome of PRs,
our work focuses on predicting the first response latency of
maintainers and contributors.

Studies on PR Abandonment. PR abandonment leads to a
significant loss of time and effort for both contributors and
maintainers, while simultaneously adding to the complexity
of project management and maintenance tasks. Li et al.
[6] found that the primary reasons for PR abandonment
are a lack of responsiveness from maintainers and a lack
of time or interest from contributors. Furthermore, they
reported that abandoned PRs lead to clutter in the lists of
PRs, wasted review resources, additional work required for
proper closure, delayed integration of interdependent PRs,
duplication of PRs, disruption of project milestones, and
ultimately the potential to leave a negative impression on
the community.

Khatoonabadi et al. [5] also studied the influence of
various factors characterizing PRs, contributors, review pro-
cesses, and projects on PR abandonment. They found that
complex PRs, PRs from novice contributors, and PRs with
long discussions are more likely to get abandoned. They
also observed that the obstacles faced by the contributors
and the hurdles imposed by the maintainers during the
review process of PRs are the most frequent reasons for PR
abandonment.

To deal with abandoned PRs, Stale bot was released in
2017 to automatically triage abandoned issues and PRs and
is adopted by many open-source projects [71, 72, 73]. How-
ever, studies [74, 75, 76, 77, 78] have mentioned that Stale
bot introduces noise and friction for both the contributors
and the maintainers. Khatoonabadi et al. [10] conducted an
empirical study to understand the helpfulness of Stale bot
in the context of pull-based development. They found that
Stale bot can help projects deal with a backlog of unresolved
PRs and also improve the review process of PRs. However,
the adoption of Stale bot can negatively affect the contrib-
utors (especially novice or casual contributors) in a project.
While these studies investigated the reasons and consequences of
PR abandonment and the helpfulness of Stale bot as a common
solution to abandoned PRs, our work focuses on predicting the
first response latency of maintainers and contributors to facilitate
collaboration between maintainers and contributors during the
review process of PRs.

9 CONCLUSION

The objective of this paper was to develop the first machine-
learning approach for predicting the latency of both main-
tainers’ first response following a PR submission and the
contributor’s first response after receiving the first main-
tainer feedback. We curated a dataset of 20 large and pop-
ular open-source projects on GitHub and extracted 21 fea-
tures characterizing projects, contributors, PRs, and review
processes. The analyses demonstrated the effectiveness of
our approach in predicting the first response latency of
maintainers and contributors both in project-specific and
cross-project settings. Furthermore, the findings highlighted
the significant influence of the timing of submissions and
feedback, the complexity of changes, and the track record
of contributors on the response latencies. By providing
estimated waiting times, our approach can help open-source
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projects facilitate collaboration between their maintainers
and contributors by enabling them to anticipate and address
potential delays proactively during PR review process.
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APPENDIX
TABLE 8
Distribution of the first response latency of maintainers and contributors across the studied projects.
Maintainers Contributors
Project Within 1 Day 1 Day to 1 Week More than 1 Week  #PRs | Within1Day 1 Dayto1Week More than 1 Week # PRs
Odoo 47.3% 21.4% 31.3% 38,105 72.2% 17.8% 10.1% 21,498
Kubernetes 65.5% 21.4% 13.1% 59,172 72.6% 17.8% 9.6% 41,729
Elasticsearch 73.0% 19.4% 7.6% 40,646 82.8% 13.3% 4.0% 37,132
PyTorch 66.2% 24.3% 9.5% 43,787 73.0% 19.5% 7.5% 29,806
Rust 75.9% 17.5% 6.6% 45,943 75.5% 17.6% 6.9% 29,085
DefinitelyTyped 40.1% 42.6% 17.3% 42,617 72.7% 19.3% 8.0% 13,585
HomeAssistant 80.6% 13.3% 6.1% 44,333 82.5% 11.9% 5.6% 23,942
Ansible 53.2% 24.1% 22.8% 36,521 69.0% 17.1% 13.9% 17,086
CockroachDB 80.7% 15.5% 3.8% 41,677 86.6% 10.3% 3.2% 40,631
Swift 81.8% 13.0% 5.2% 29,138 85.7% 10.3% 4.0% 22,397
Flutter 77.1% 15.6% 7.4% 24,503 84.1% 11.8% 4.1% 20,629
Spark 71.3% 18.8% 9.9% 29,999 80.2% 14.9% 4.9% 24,041
Python 64.4% 16.5% 19.2% 17,759 79.9% 11.9% 8.1% 11,649
Sentry 83.8% 13.4% 2.9% 33,020 86.2% 11.3% 2.4% 31,616
PaddlePaddle 62.0% 29.3% 8.7% 26,155 84.2% 12.4% 3.4% 18,711
Godot 68.4% 16.3% 15.3% 27,307 81.2% 10.6% 8.2% 12,664
Rails 78.5% 10.9% 10.6% 27,693 83.7% 9.9% 6.4% 14,387
Grafana 75.6% 17.8% 6.6% 23,116 84.2% 11.8% 3.9% 18,436
ClickHouse 68.5% 21.7% 9.8% 15,058 75.2% 18.6% 6.2% 7,823
Symfony 77.6% 14.9% 7.5% 25,582 82.8% 11.6% 5.7% 15,034
TABLE 9

Precison and recall scores of CatBoost models for predicting the first response latency of maintainers and contributors across the studied projects.

Maintainers Contributors

Project Precision Recall | Precision Recall

Odoo 0.48 (+208%) 0.46 (+37%) | 0.46 (+92%)  0.41 (+23%)
Kubernetes 043 (+105%)  0.40 (+20%) | 0.46 (+94%)  0.42 (+25%)
Elasticsearch 0.45 (+83%)  0.39 (+18%) | 0.53 (+91%)  0.41 (+22%)
PyTorch 044 (+106%) 040 (+21%) | 0.47 (+96%)  0.40 (+21%)
Rust 0.39 (+55%) 0.36 (+7%) 0.43 (+71%)  0.37 (+12%)
DefinitelyTyped | 0.40 (+206%)  0.38 (+15%) | 0.40 (+66%)  0.38 (+13%)
HomeAssistant 0.45 (+68%)  0.38 (+13%) | 0.47 (+70%)  0.39 (+17%)
Ansible 045 (+162%) 042 (+25%) | 0.45 (+99%)  0.42 (+26%)
CockroachDB 0.44 (+69%)  0.39 (+17%) | 0.47 (+64%)  0.40 (+19%)
Swift 043 (+57%) 037 (+12%) | 0.46 (+62%)  0.40 (+20%)
Flutter 0.47 (+86%)  0.44 (+31%) | 047 (+71%)  0.41 (+23%)
Spark 045 (+85%)  0.38 (+14%) | 0.49 (+82%)  0.40 (+19%)
Python 0.41 (+92%) 040 (+19%) | 0.43 (+61%)  0.38 (+15%)
Sentry 048 (+70%) 041 (+23%) | 0.54 (+87%)  0.42 (+25%)
PaddlePaddle 042 (+111%)  0.39 (+17%) | 0.43 (+52%)  0.38 (+13%)
Godot 042 (+81%)  0.38 (+14%) | 0.44 (+62%)  0.40 (+19%)
Rails 0.41 (+56%)  0.37 (+10%) | 0.44 (+57%)  0.37 (+11%)
Grafana 048 (+88%)  0.41 (+23%) | 0.45 (+58%)  0.39 (+18%)
ClickHouse 0.43 (+90%)  0.40 (+19%) | 0.50 (+100%)  0.42 (+25%)
Symfony 0.40 (+53%) 0.36 (+8%) 043 (+59%)  0.39 (+16%)
Average | 044 (+97%) 039 (+18%) | 0.46 (+75%)  0.40 (+19%)

Values in parentheses show the percentage improvement compared to the
baseline.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Rank

TABLE 10

18

Precison and recall scores of CatBoost models for predicting the first response latency of maintainers and contributors in a cross-project setting.

Project

Precision

Maintainers

Recall

Contributors

| Precision

Recall

Odoo
Kubernetes
Elasticsearch
PyTorch

Rust
DefinitelyTyped
HomeAssistant
Ansible
CockroachDB
Swift

Flutter

Spark

Python

Sentry
PaddlePaddle
Godot

Rails

Grafana
ClickHouse
Symfony

0.46 (+188%)
0.46 (+109%)
0.53 (+121%)
0.50 (+127%)
0.43 (+72%)
0.44 (+238%)
0.35 (+30%)
0.47 (+161%)
0.45 (+67%)
0.49 (+81%)
0.41 (+58%)
0.52 (+117%)
0.48 (+129%)
0.81 (+189%)
0.45 (+114%)
0.40 (+74%)
0.66 (+154%)
0.51 (+104%)
0.33 (+43%)
0.55 (+112%)

0.41 (+24%)
0.40 (+21%)
0.34 (+3%)
0.37 (+12%)
0.34 (+3%)
0.38 (+15%)
0.35 (+6%)
0.40 (+21%)
0.36 (+9%)
0.39 (+18%)
0.34 (+3%)
0.35 (+6%)
0.34 (+3%)
0.34 (+3%)
0.36 (+9%)
0.34 (+3%)
0.35 (+6%)
0.34 (+3%)
0.34 (+3%)
0.34 (+3%)

0.48 (+100%)
0.49 (+104%)
0.60 (+114%)
0.56 (+133%)
0.47 (+88%)
0.42 (+75%)
0.51 (+89%)
0.53 (+130%)
0.53 (+83%)
041 (+41%)
0.49 (+75%)
0.54 (+100%)
0.45 (+67%)
0.62 (+114%)
0.38 (+36%)
0.44 (+63%)
0.53 (+89%)
0.57 (+104%)
0.63 (+152%)
0.44 (+57%)

0.37 (+12%)
0.35 (+6%)
0.35 (+6%)
0.35 (+6%)
0.35 (+6%)
0.36 (+9%)
0.35 (+6%)
0.38 (+15%)
0.36 (+9%)
0.36 (+9%)
0.36 (+9%)
0.35 (+6%)
0.36 (+9%)
0.34 (+3%)
0.35 (+6%)
0.35 (+6%)
0.36 (+9%)
0.34 (+3%)
0.35 (+6%)
0.34 (+3%)

Average

| 0.49 (+114%)

0.36 (+9%)

0.50 (+91%)

0.35 (+7%)

Values in parentheses show the percentage improvement compared to the

baseline.
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