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A SURE Approach for Digital Signal/Image
Deconvolution Problems

Jean-Christophe Pesquet, Amel Benazza-Benyahia, and, Caroline Chaux

Abstract—In this paper, we are interested in the classical
problem of restoring data degraded by a convolution and
the addition of a white Gaussian noise. The originality of
the proposed approach is two-fold. Firstly, we formulate the
restoration problem as a nonlinear estimation problem leading
to the minimization of a criterion derived from Stein’s unbi ased
quadratic risk estimate. Secondly, the deconvolution procedure
is performed using any analysis and synthesis frames that can
be overcomplete or not. New theoretical results concerningthe
calculation of the variance of the Stein’s risk estimate arealso
provided in this work. Simulations carried out on natural im ages
show the good performance of our method w.r.t. conventional
wavelet-based restoration methods.

I. I NTRODUCTION

It is well-known that, in many practical situations, one
may consider that there are two main sources of signal/image
degradation: a convolution often related to the bandlimited
nature of the acquisition system and a contamination by an
additive Gaussian noise which may be due to the electronics
of the recording and transmission processes. For instance,the
limited aperture of satellite cameras, the aberrations inherent to
optical systems and mechanical vibrations create a blur effect
in remote sensing images [2]. A data restoration task is usually
required to reduce these artifacts before any further processing.
Many works have been dedicated to the deconvolution of noisy
signals [3], [4], [5], [6]. Designing suitable deconvolution
methods is a challenging task, as inverse problems of practical
interest are often ill-posed. Indeed, the convolution operator is
usually non-invertible or it is ill-conditioned and its inverse is
thus very sensitive to noise. To cope with the ill-posed nature
of these problems, deconvolution methods often operate in a
transform domain, the transform being expected to make the
problem easier to solve. In pioneering works, deconvolution is
dealt with in the frequency domain, as the Fourier transform
provides a simple representation of filtering operations [7].
However, the Fourier domain has a main shortcoming: sharp
transitions in the signal (edges for images) and other localized
features do not have a sparse frequency representation. This
has motivated the use of the Wavelet Transform (WT) [8],
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[9] and its various extensions. Thanks to the good energy
compaction and decorrelation properties of the WT, simple
shrinkage operations in the wavelet domain can be successfully
applied to discard noisy coefficients [10]. To take advantage
of both transform domains, it has been suggested to combine
frequency based deconvolution approaches with wavelet-based
denoising methods, giving birth to a new class of restoration
methods. The wavelet-vaguelette method proposed in [8] is
based on an inverse filtering technique. To avoid the amplifi-
cation of the resulting colored noise component, a shrinkage
of the filtered wavelet coefficients is performed. The wavelet-
vaguelette method has been refined in [11] by adapting the
wavelet basis to the frequency response of the degradation
filter. However, the method is not appropriate for recovering
signals degraded by arbitrary convolutive operators. An alter-
native to the wavelet-vaguelette decomposition is the transform
presented by Abramovich and Silverman [9]. Similar in the
spirit to the wavelet-vaguelette deconvolution, a more com-
petitive hybrid approach called Fourier-Wavelet Regularized
Deconvolution (ForWaRD) was developed by Neelamaniet
al.: a two-stage shrinkage procedure successively operates
in the Fourier and the WT domains, which is applicable to
any invertible or non-invertible degradation kernel [12].The
optimal balance between the amount of Fourier and wavelet
regularization is derived by optimizing an approximate version
of the mean-squared error metric. A two-step procedure was
also presented by Banham and Katsaggelos which employs
a multiscale Kalman filter [13]. By following a frequency
domain approach, band-limited Meyer’s wavelets have been
used to estimate degraded signals through an elegant wavelet
restoration method called WaveD [14], [15] which is based on
minimax arguments. In [16], we have proposed an extension
of the WaveD method to the multichannel case.

Iterative wavelet-based thresholding methods relying on
variational approaches for image restoration have also been
investigated by several authors. For instance, a deconvolu-
tion method was derived under the expectation-maximization
framework in [17]. In [18], the complementarity of the wavelet
and the curvelet transforms has been exploited in a regularized
scheme involving the total variation. In [19], an objective
function including the total variation, a wavelet coefficient reg-
ularization or a mixed regularization has been considered and a
related projection-based algorithm was derived to computethe
solution. More recently, the work in [20] has been extended by
proposing a flexible convex variational framework for solving
inverse problems in which a priori information (e.g., sparsity
or probability distribution) is available about the representation
of the target solution in a frame [21]. In the same way, a
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new class of iterative shrinkage/thresholding algorithmswas
proposed in [22]. Its novelty relies on the fact that the update
equation depends on the two previous iterated values. In [23],
a fast variational deconvolution algorithm was introduced. It
consists of minimizing a quadratic data term subject to a
regularization on theℓ1-norm of the coefficients of the solution
in a Shannon wavelet basis. Recently, in [24], a two-step
decoupling scheme was presented for image deblurring. It
starts from a global linear blur compensation by a generalized
Wiener filter. Then, a nonlinear denoising is carried out by
computing the Bayes least squares Gaussian scale mixtures
estimate. Note also that an advanced restoration method was
developed in [25], which does not operate in the wavelet
domain.

In the same time, much attention was paid to Stein’s
principle [26] in order to derive estimates of the Mean-
Square Error (MSE) in statistical problems involving an ad-
ditive Gaussian noise. The key advantage of Stein’s Unbiased
Risk Estimate (SURE) is that it does not require a priori
knowledge about the statistics of the unknown data, while
yielding an expression of the MSE only depending on the
statistics of the observed data. Hence, it avoids the difficult
problem of the estimation of the hyperparameters of some
prior distribution, which classically needs to be addressed in
Bayesian approaches.1 Consequently, a SURE approach can
be applied by directly parameterizing the estimator and finding
the optimal parameters that minimize the MSE estimate. The
first efforts in this direction were performed in the contextof
denoising applications with the SUREShrink technique [10],
[27] and, the SUREVect estimate [28] in the case of multi-
channel images. More recently, in addition to the estimation
of the MSE, Luisieret al. have proposed a very appealing
structure of the denoising function consisting of a linear
combination of nonlinear elementary functions (the SURE-
Linear Expansion of Threshold or SURE-LET) [29]. Notice
that this idea was also present in some earlier works [30].
In this way, the optimization of the MSE estimate reduces to
solving a set of linear equations. Several variations of thebasic
SURE-LET method were investigated: an improvement of the
denoising performance has been achieved by accounting for
the interscale information [31] and the case of color imageshas
also been addressed [32]. Another advantage of this method is
that it remains valid when redundant multiscale representations
of the observations are considered, as the minimization of
the SURE-LET estimator can be easily carried out in the
time/space domain. A similar approach has also been adopted
by Raphan and Simoncelli [33] for denoising in redundant
multiresolution representations. Overcomplete representations
have also been successfully used for multivariate shrinkage
estimators optimized with a SURE approach operating in the
transform domain [34]. An alternative use of Stein’s principle
was made in [35] for building convex constraints in image
denoising problems.

In [36], Eldar generalized Stein’s principle to derive an MSE
estimate when the noise has an exponential distribution (see

1This does not mean that SURE approaches are superior to Bayesian
approaches, which are quite versatile.

also [37]). In addition, she investigated the problem of the
nonlinear estimation of deterministic parameters from a linear
observation model in the presence of additive noise. In the
context of deconvolution, the derived SURE was employed
to evaluate the MSE performance of solutions to regularized
objective functions. Another work in this research direction
is [38], where the risk estimate is minimized by a Monte
Carlo technique for denoising applications. A very recent work
[39] also proposes a recursive estimation of the risk when a
thresholded Landweber algorithm is employed to restore data.

In this paper, we adopt a viewpoint similar to that in [36],
[39] in the sense that, by using Stein’s principle, we obtainan
estimate of the MSE for a given class of estimators operating
in deconvolution problems. The main contribution of our work
is the derivation of the variance of the proposed quadratic risk
estimate. These results allow us to propose a novel SURE-LET
approach for data restoration which can exploit any discrete
frame representation.

The paper is organized as follows. In Section II-A, the
required background is presented and some notations are
introduced. The generic form of the estimator we consider for
restoration purposes is presented in Section II-B. In Section III,
we provide extensions of Stein’s identity which will be useful
throughout the paper. In Section IV-A we show how Stein’s
principle can be employed in a restoration framework when the
degradation system is invertible. The case of a non-invertible
system is addressed in Section IV-B. The expression of the
variance of the empirical estimate of the quadratic risk is then
derived in Section V. In Section VI, two scenarii are discussed
where the determination of the parameters minimizing the risk
estimate takes a simplified form. The structure of the proposed
SURE-LET deconvolution method is subsequently described
in Section VII and examples of its application to wavelet-based
image restoration are shown in Section VIII. Some concluding
remarks are given in Section IX.

The notations used in the paper are summarized in Table I.

II. PROBLEM STATEMENT

A. Background

We consider an unknown real-valued field whose value at
locationx ∈ D is s(x) whereD = {0, . . . , D1 − 1} × · · · ×
{0, . . . , Dd−1} with (D1, . . . , Dd) ∈ (N∗)d whereN∗ denotes
the set of positive integers. Here,s is a d-dimensional digital
random field of finite sizeD = D1 . . .Dd with finite variance.
Of pratical interest are the cases whend = 1 (temporal
signals),d = 2 (images),d = 3 (volumetric data or video
sequences) andd = 4 (3D+t data).

The field is degraded by the acquisition system with (de-
terministic) impulse responseh, and it is also corrupted by
an additive noisen, which is assumed to be independent of
the random processs. The noisen corresponds to a random
field which is assumed to be Gaussian with zero-mean and
covariance field:∀(x,y) ∈ D2, E[n(x)n(y)] = γδx−y, where
(δx)x∈Zd is the Kronecker sequence andγ > 0. In other
words, the noise is white.



3

TABLE I
NOTATIONS.

Variable Definition
D set of spatial (or frequency) indices
s original signal
h impulse response of the degradation filter
n additive white Gaussian noise
r observed signal
S Fourier transform ofs
H Fourier transform ofh
R Fourier transform ofr
E(·) mean square value of the signal in argument
E[·] mathematical expectation
(ϕℓ)1≤ℓ≤L family of analysis vectors
(eϕℓ)1≤ℓ≤L family of synthesis vectors
(sℓ)1≤ℓ≤L coefficients of the decomposition ofs onto (ϕℓ)1≤ℓ≤L

Φℓ Fourier transform ofϕℓ

eΦℓ Fourier transform ofeϕℓ

Θℓ estimating function applied tosℓ
bs estimate ofs
P set of frequency indices for whichH is considered equal to 0
Q set of frequency indices for whichH takes significant values
χ threshold value in the frequency domain
s projection ofs onto the subspace whose

Fourier coefficients vanish onP
er inverse Fourier transform of the projection ofR

H

onto the subspace whose Fourier coefficients vanish onP

Km index subset for them-th subband
λ constant used in the Wiener-like filter

Thus, the observation model can be expressed as follows:

∀x ∈ D, r(x) = (h̃∗s)(x)+n(x) =
∑

y∈D

h̃(x−y)s(y)+n(x)

(1)
where (h̃(x))x∈Zd is the periodic extension of(h(x))x∈D.
It must be pointed out that (1) corresponds to a periodic
approximation of the discrete convolution (this problem can
be alleviated by making use of zero-padding techniques [40],
[41]).

A restoration method aims at estimatings based on the
observed datar. In this paper, a supervised approach is
adopted by assuming that both the degradation kernelh and
the noise varianceγ are known.

B. Considered nonlinear estimator

The proposed estimation procedure consists of first trans-
forming the observed data to some other domain (through
someanalysisvectors), performing a non-linear operation on
the so-obtained coefficients (based on anestimating function)
with parameters that must be estimated, and finally recon-
structing the estimated signal (through somesynthesisvectors).

More precisely, the discrete Fourier coefficients
(
R(p)

)
p∈D

of r are given by:

∀p ∈ D, R(p)
△
=

∑

x∈D

r(x) exp(−2πıx⊤
D

−1p) (2)

whereD = Diag(D1, . . . , Dd). In the frequency domain, (1)
becomes:

R(p) = U(p) +N(p), where U(p)
△
=H(p)S(p) (3)

and, the coefficientsS(p) andN(p) are obtained by expres-
sions similar to (2).

Let (ϕℓ)1≤ℓ≤L be a family of L ∈ N∗ analysis vectors
of RD1×···×Dd . Thus, every signalr of RD1×···×Dd can be
decomposed as:

∀ℓ ∈ {1, . . . , L}, rℓ = 〈r, ϕℓ〉 =
∑

x∈D

r(x)ϕℓ(x), (4)

the operator〈·, ·〉 designating the Euclidean inner product of
RD1×···×Dd . According to Plancherel’s formula, the coeffi-
cients of the decomposition ofr onto this family are given
by

∀ℓ ∈ {1, . . . , L}, rℓ =
1

D

∑

p∈D

R(p)
(
Φℓ(p)

)∗
, (5)

whereΦℓ(p) is a discrete Fourier coefficient ofϕℓ and (·)∗
denotes the complex conjugation. Let us now define, for every
ℓ ∈ {1, . . . , L}, an estimating functionΘℓ : R → R (the choice
of this function will be discussed in Section VII-B), so that

ŝℓ = Θℓ

(
rℓ
)
. (6)

We will use as an estimate ofs(x),

ŝ(x) =

L∑

ℓ=1

ŝℓ ϕ̃ℓ(x) (7)

where (ϕ̃ℓ)1≤ℓ≤L is a family of synthesis vectors of
RD1×···×Dd . Equivalently, the estimate ofS is given by:

Ŝ(p) =

L∑

ℓ=1

ŝℓ Φ̃ℓ(p) (8)
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where Φ̃ℓ(p) is a discrete Fourier coefficient of̃ϕℓ. It must
be pointed out that our formulation is quite general. Different
analysis/synthesis families can be used. These families may
be overcomplete (which implies thatL > D) or not.

III. STEIN-LIKE IDENTITIES

Stein’s principle will play a central role in the evaluation
of the mean square estimation error of the proposed estimator.
We first recall the standard form of Stein’s principle:

Proposition 1. [26] Let Θ: R → R be a continuous, almost
everywhere differentiable function. Letη be a real-valued zero-
mean Gaussian random variable with varianceσ2 and υ be
a real-valued random variable which is independent ofη. Let
ρ = υ + η and assume that

• ∀τ ∈ R, lim|ζ|→∞ Θ(τ + ζ) exp
(
− ζ2

2σ2

)
= 0,

• E[(Θ(ρ))2] < ∞ and E[|Θ′(ρ)|] < ∞ whereΘ′ is the
derivative ofΘ.

Then,
E[Θ(ρ)η] = σ2

E[Θ′(ρ)]. (9)

We now derive extended forms of the above formula (see
Appendix A) which will be useful in the remainder of this
paper:

Proposition 2. LetΘi : R → R with i ∈ {1, 2} be continuous,
almost everywhere differentiable functions. Let(η1, η2, η̃1, η̃2)
be a real-valued zero-mean Gaussian vector and(υ1, υ2)
be a real-valued random vector which is independent of
(η1, η2, η̃1, η̃2). Let ρi = υi + ηi wherei ∈ {1, 2} and assume
that

(i) ∀α ∈ R∗, ∀τ ∈ R, lim|ζ|→∞ Θi(τ+ζ)ζ
2 exp

(
− ζ2

2α2

)
=

0,
(ii) E[|Θi(ρi)|3] <∞,
(iii) E[|Θ′

i(ρi)|3] <∞ whereΘ′
i is the derivative ofΘi.

Then,

E[Θ1(ρ1)η̃1] =E[Θ′
1(ρ1)]E[η1η̃1] (10)

E[Θ1(ρ1)η̃1η̃2] =E[Θ′
1(ρ1)η̃2]E[η1η̃1]

+ E[Θ1(ρ1)]E[η̃1η̃2] (11)

E[Θ1(ρ1)η̃1η̃
2
2 ] =E[Θ′

1(ρ1)η̃
2
2 ]E[η1η̃1] + 2E[Θ′

1(ρ1)]

× E[η̃1η̃2]E[η̃2η1]. (12)

E[Θ1(ρ1)Θ2(ρ2)η̃1η̃2] =E[Θ1(ρ1)Θ2(ρ2)]E[η̃1η̃2]

+ E[Θ′
1(ρ1)Θ2(ρ2)η̃2]E[η1η̃1]

+ E[Θ1(ρ1)Θ
′
2(ρ2)η̃1]E[η2η̃2]

+ E[Θ′
1(ρ1)Θ

′
2(ρ2)](E[η1η̃2]E[η2η̃1]

− E[η1η̃1]E[η2η̃2]). (13)

Note that Proposition 2 obviously is applicable when
(υ1, υ2) is deterministic.

IV. U SE OFSTEIN’ S PRINCIPLE

A. Case of invertible degradation systems

In this section, we come back to the deconvolution problem
and develop an unbiased estimate of the quadratic risk:

E(ŝ− s) =
1

D

∑

x∈D

(
s(x) − ŝ(x)

)2
(14)

which will be useful to optimize a parametric form of the esti-
mator from the observed data. For this purpose, the following
assumption is made:

Assumption 1.
(i) The degradation filter is such that, for everyp ∈ D,

H(p) 6= 0.
(ii) For every ℓ in {1, . . . , L}, Θℓ is a continuous, almost

everywhere differentiable function such that

(a) ∀α ∈ R∗,∀τ ∈ R,

lim
|ζ|→∞

Θℓ(τ + ζ)ζ2 exp(− ζ2

2α2
) = 0,

(b) E[|Θℓ(rℓ)|3] < ∞ and E[|Θ′
ℓ(rℓ)|3] < ∞ where

Θ′
ℓ is the derivative ofΘℓ.

Under this assumption, the degradation model can be re-
expressed ass(x) = r̃(x)− ñ(x) wherer̃ andñ are the fields
whose discrete Fourier coefficients are

R̃(p) =
R(p)

H(p)
, Ñ(p) =

N(p)

H(p)
. (15)

Thus, since the noise has been assumed spatially white, it is
easy to show that

∀(p,p′) ∈ D2, E
[
Ñ(p)

(
N(p′)

)∗]
=

γD

H(p)
δp−p′ (16)

E
[
Ñ(p)

(
Ñ(p′)

)∗]
=

γD

|H(p)|2 δp−p′

(17)

andE
[
Ñ(p)

(
S(p′)

)∗]
= 0. The latter relation shows that̃n

ands are uncorrelated fields.
We are now able to state the following result (see Appendix

B):

Proposition 3. The mean square error on each frequency
component is such that, for everyp ∈ D,

E[|Ŝ(p)− S(p)|2] = E[|Ŝ(p)− R̃(p)|2]− γD

|H(p)|2

+ 2γ

L∑

ℓ=1

E[Θ′
ℓ(rℓ)] Re

{Φℓ(p)
(
Φ̃ℓ(p)

)∗

H(p)

}
(18)

and, the global mean square estimation error can be expressed
as

E[E(ŝ− s)] = E[E(ŝ− r̃)] + ∆ (19)

∆ =
γ

D

(
2

L∑

ℓ=1

E[Θ′
ℓ(rℓ)]γℓ −

∑

p∈D

|H(p)|−2
)

(20)

where(γℓ)1≤ℓ≤L is the real-valued cross-correlation sequence
defined by: for allℓ ∈ {1, . . . , L},

γℓ =
1

D

∑

p∈D

Φℓ(p)
(
Φ̃ℓ(p)

)∗

H(p)
. (21)

B. Case of non-invertible degradation systems

Assumption 1(i) expresses the fact that the degradation filter
is invertible. Let us now examine how this assumption can be
relaxed.
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We denote byP the set of indices for which the frequency
responseH vanishes:

P = {p ∈ D | H(p) = 0}. (22)

It is then clear that the components ofS(p) with p ∈ P,
are unobservable. The observable part of the signals thus
corresponds to the projections = Π

(
s
)

of s onto the subspace
of RD1×···×Dd of the fields whose discrete Fourier coefficients
vanish onP. In the Fourier domain, the projectorΠ is therefore
defined by

∀p ∈ D, S(p) =

{
S(p) if p 6∈ P

0 if p ∈ P.
(23)

In this context, it is judicious to restrict the summation in(5)
to Q = D\P so as to limit the influence of the noise present in
the unobservable part ofs. This leads to the following modified
expression of the coefficientsrℓ:

rℓ =
1

D

∑

p∈Q

R(p)
(
Φℓ(p)

)∗
= 〈r, ϕℓ〉 (24)

wherer = Π
(
r
)
. The second step in the estimation procedure

(Eq. (6)) is kept unchanged. For the last step, we impose the
following structure to the estimator:

ŝ(x) = Π
( L∑

ℓ=1

ŝℓ ϕ̃ℓ(x)
)
=

L∑

ℓ=1

ŝℓ ϕ̃ℓ
(x) (25)

whereϕ̃
ℓ
= Π(ϕ̃ℓ). We will also replace Assumption 1(i) by

the following less restrictive one:

Assumption 2. The setQ is nonempty.

Under this condition and Assumption 1(ii), an extended
form of Proposition 3 is the following:

Proposition 4. The mean square error on each frequency
component is given, for everyp ∈ Q, by (18). The global
mean square estimation error can be expressed as

E[E(ŝ− s)] = E[E(s− s)] + E[E(ŝ− r̃)] + ∆ (26)

∆ =
γ

D

(
2

L∑

ℓ=1

E[Θ′
ℓ(rℓ)]γℓ −

∑

p∈Q

|H(p)|−2
)
. (27)

Hereabove,̃r denotes the 2D field with Fourier coefficients

R̃(p) =





R(p)

H(p)
if p ∈ Q

0 otherwise,
(28)

and, the real-valued cross-correlation sequence(γℓ)1≤ℓ≤L

becomes:

γℓ =
1

D

∑

p∈Q

Φℓ(p)
(
Φ̃ℓ(p))

∗

H(p)
. (29)

Proof: The proof that (18) holds for everyp ∈ Q is
identical to that in Proposition 3. The global MSE can be
decomposed as the sum of the errors on its unobservable
and observable parts, respectively. Using the orthogonality
property for the projection operatorΠ, the corresponding
quadratic risk is given by:E(ŝ − s) = E(s − s) + E(ŝ − s).

It remains now to express the mean square estimation error
E[E(ŝ−s)] on the observable part. This is done quite similarly
to the end of the proof of Proposition 3.

Remark 1.
(i) Assume that the functionss and h share the same

frequency band in the sense that, for allp 6∈ Q,
S(p) = 0. Let us also assume that, for everyp ∈ Q,
H(p) = 1. This typically corresponds to a denoising
problems for a signal with frequency bandQ. Then,
sinces = s and r̃ = r, (26) becomes

E[E(ŝ− s)] = E[E(ŝ− r)]

+
γ

D

(
2

L∑

ℓ=1

E[Θ′
ℓ(rℓ)]〈ϕℓ, ϕ̃ℓ

〉 − card(Q)
)
, (30)

where card(Q) denotes the cardinality ofQ. In the
case whend = 2 (images) andQ = D, the resulting
expression is identical to the one which has been derived
in [29] for denoising problems.

(ii) Proposition 4 remains valid for more general choices
of the setP than (22). In particular, (26) and (27) are
unchanged if

P = {p ∈ D | |H(p)| ≤ χ} (31)

whereχ ≥ 0, provided that the complementary setQ

satisfies Assumption 2.
(iii) It is possible to give an alternative proof of(26)-(27)

by applying Proposition 1 in [36].

V. EMPIRICAL ESTIMATION OF THE RISK

Under the assumptions of the previous section, we are now
interested in the estimation of the “observable” part of therisk
in (26), that isEo = E(ŝ − s), from the observed fieldr. As
shown by Proposition 4, an unbiased estimator ofEo is

Êo = E(ŝ− r̃) + ∆̂ (32)

where

∆̂ =
γ

D

(
2

L∑

ℓ=1

Θ′
ℓ(rℓ)γℓ −

∑

p∈Q

|H(p)|−2
)
. (33)

We will study in more detail the statistical behaviour of this
estimator by considering the difference:

Eo − Êo =
2

D

∑

x∈D

(
ŝ(x)− s(x)

)
ñ(x)− E(ñ)− ∆̂. (34)

More precisely, by making use of Proposition 2, the variance
of this term can be derived (see Appendix C).

Proposition 5. The variance of the estimate of the observable
part of the quadratic risk is given by

Var[Eo − Êo] =
4γ

D
E[E(ŝH − r̃H)]

+
4γ2

D2

L∑

ℓ=1

L∑

i=1

E[Θ′
ℓ(rℓ)Θ

′
i(ri)]γℓ,iγi,ℓ−

2γ2

D2

∑

p∈Q

1

|H(p)|4

(35)
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where r̃H is the field with discrete Fourier coefficients given
by

R̃H(p) =





R̃(p)

H(p)
if p ∈ Q

0 otherwise,
(36)

ŝH is similarly defined from̂s and,

∀(ℓ, i) ∈ {1, . . . , L}2, γℓ,i =
1

D

∑

p∈Q

Φℓ(p)
(
Φ̃i(p)

)∗

H(p)
.

(37)

Remark 2.
(i) Eq. (35) suggests that caution should be taken in re-

lying on the unbiased risk estimate when|H(p)| takes
small values. Indeed, the terms in the expression of the
variance involve divisions byH(p) and may therefore
become of high magnitude, in this case.

(ii) An alternative statement of Proposition 5 is to say that

4γ

D
E(ŝH − r̃H) +

4γ2

D2

L∑

ℓ=1

L∑

i=1

Θ′
ℓ(rℓ)Θ

′
i(ri)γℓ,iγi,ℓ

− 2γ2

D2

∑

p∈Q

|H(p)|−4

is an unbiased estimate ofVar[Eo − Êo].

VI. CASE STUDY

It is important to emphasize that the proposed restoration
framework presents various degrees of freedom. Firstly, it
is possible to choose redundant or non redundant analy-
sis/synthesis families. In Section VI-A, we will show that
in the case of orthonormal synthesis families, the estimator
design can be split into several simpler optimization proce-
dures. Secondly, any structure of the estimator can be virtu-
ally considered. Of particular interest are restoration methods
involving Linear Expansion of Threshold (LET) functions,
which are investigated in Section VI-B. As already mentioned,
the latter estimators have been successfully used in denoising
problems [29].

A. Use of orthonormal synthesis families

We now examine the case when(ϕ̃
ℓ
)1≤ℓ≤L is an orthonor-

mal basis ofΠ(RD1×···×Dd) (thus,L = card(Q)). This arises,
in particular, when(ϕ̃ℓ)1≤ℓ≤L is an orthonormal basis of
RD1×···×Dd and the degradation system is invertible (Q = D).
Then, due to the orthogonality of the functions(ϕ̃

ℓ
)1≤ℓ≤L,

the unbiased estimate of the risk in (26) can be rewritten as
E(s− s) + Êo = E(s− s) +D−1

∑L
ℓ=1(ŝℓ − r̃ℓ)

2 + ∆̂, where
r̃ℓ = 〈r̃, ϕ̃ℓ〉. Thanks to (33), the observable part of the risk
estimate can be expressed as

Êo =
1

D

L∑

ℓ=1

(ŝℓ− r̃ℓ)2+
2γ

D

L∑

ℓ=1

Θ′
ℓ(rℓ)γℓ−

γ

D

∑

p∈Q

|H(p)|−2.

(38)
where

(
γℓ
)
1≤ℓ≤L

is given by (29).

Let us now assume that the coefficients(rℓ)1≤ℓ≤L are
classified according toM ∈ N∗ distinct nonempty index
subsetsKm, m ∈ {1, . . . ,M}. We have thenL =

∑M
m=1Km

where, for everym ∈ {1, . . . ,M}, Km = card(Km). For
instance, for a wavelet decomposition, these subsets may
correspond to the subbands associated with the different res-
olution levels, orientations,... In addition, consider that, for
everym ∈ {1, . . . ,M}, the estimating functions

(
Θℓ

)
ℓ∈Km

belong to a given class of parametric functions and they are
characterized by a vector parameteram. The same estimating
function is thus employed for a given subsetKm of indices.
Then, it can be noticed that the criterion to be minimized in
(38) is the sum ofM partial MSEs corresponding to each
subsetKm. Consequently, we can separately adjust the vector
am, for everym ∈ {1, . . . ,M}, so as to minimize

∑

ℓ∈Km

(
Θℓ(rℓ)− r̃ℓ

)2
+ 2γ

∑

ℓ∈Km

Θ′
ℓ(rℓ)γℓ. (39)

B. Example of LET functions

As in the previous section, we assume that the coefficients
(rℓ)1≤ℓ≤L as defined in (24) are classified according to
M ∈ N∗ distinct index subsetsKm, m ∈ {1, . . . ,M}. Within
each classKm, a LET estimating function is built from a
linear combination ofIm ∈ N∗ given functionsfm,i : R → R

applied torℓ. So, for everym ∈ {1, . . . ,M} andℓ ∈ Km, the
estimator takes the form:

Θℓ(rℓ) =

Im∑

i=1

am,i fm,i(rℓ) (40)

where(am,i)1≤i≤Im are scalar real-valued weighting factors.
We deduce from (25) that the estimate can be expressed as

ŝ(x) =

M∑

m=1

Im∑

i=1

am,i βm,i
(x) (41)

where

β
m,i

(x) =
∑

ℓ∈Km

fm,i(rℓ)ϕ̃ℓ
(x). (42)

Then, the problem of optimizing the estimator boils down to
the determination of the weightsam,i which minimize the
unbiased risk estimate. According to (32) and (33), this is
equivalent to minimizeE(ŝ−r̃)+ 2γ

D

∑M
m=1

∑
ℓ∈Km

Θ′
ℓ(rℓ)γℓ,

where
(
γℓ
)
1≤ℓ≤L

is given by (29). From (41), it can be
deduced that this amounts to minimizing:

M∑

m0=1

Im0∑

i0=1

am0,i0

M∑

m=1

Im∑

i=1

am,i〈βm0,i0
, β

m,i
〉

− 2

M∑

m0=1

Im0∑

i0=1

am0,i0〈βm0,i0
, r̃〉

+ 2γ

M∑

m0=1

∑

ℓ∈Km0

Im0∑

i0=1

am0,i0f
′
m0,i0(rℓ) γℓ.
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This minimization can be easily shown to yield the following
set of linear equations:

∀m0 ∈ {1, . . . ,M}, ∀i0 ∈ {1, . . . , Im0
},

M∑

m=1

Im∑

i=1

〈β
m0,i0

, β
m,i

〉 am,i

= 〈β
m0,i0

, r̃〉 − γ
∑

ℓ∈Km0

f ′
m0,i0(rℓ) γℓ. (43)

VII. PARAMETER CHOICE

A. Choice of analysis/synthesis functions

Using the same notations as in Section VI, let{Km, 1 ≤
m ≤ M} be a partition of{1, . . . , L}. Consider now a
frame ofRD1×···×Dd ,

(
(ψm,kℓ

)ℓ∈Km

)
1≤m≤M

, where, for ev-
erym ∈ {1, . . . ,M}, ψm,0 is some field inRD1×···×Dd and,
for every ℓ ∈ Km, ψm,kℓ

denotes itskℓ-periodically shifted
version wherekℓ is some shift value inD. Notice that, by
appropriately choosing the sets(Km)1≤m≤M , any frame of
RD1×···×Dd can be written under this form but that it is mostly
useful to describe periodic wavelet bases, wavelet packets[43],
mirror wavelet bases [11], redundant/undecimated wavelet
representations as well as related frames [44], [45], [46],[47].
For example, for a classical 1D periodic wavelet basis,M − 1
represents the number of resolution levels and, for everyℓ in
subbandKm at resolution levelm ∈ {1, . . . ,M−1}, the shift
parameterkℓ is a multiple of2m (KM being here the index
subset related to the approximation subband).

A possible choice for the analysis family(ϕℓ)1≤ℓ≤L is then
obtained by setting

∀m ∈ {1, . . . ,M}, ∀ℓ ∈ Km, ∀p ∈ D,

Φℓ(p) = G(p)Ψm,kℓ
(p)

= exp(−2πıkℓ
⊤
D

−1p)G(p)Ψm,0(p)
(44)

whereG(p) typically corresponds to the frequency response
of an “inverse” of the degradation filter. It can be noticed
that a similar choice is made in the WaveD estimator [14] by
setting, for everyp ∈ Q, G(p) = 1/

(
H(p)

)∗
(starting from a

dyadic Meyer wavelet basis). By analogy with Wiener filtering
techniques, a more general form for the frequency response of
this filter can be chosen:

G(p) =
H(p)

|H(p)|2 + λ
(45)

where λ ≥ 0. Note that, due to (44), the computation of
the coefficients(rℓ)1≤ℓ≤L amounts to the computation of the
frame coefficients:

∀m ∈ {1, . . . ,M}, ∀ℓ ∈ Km, rℓ = 〈ř, ψm,kℓ
〉 (46)

whereř is the field with discrete Fourier coefficients

Ř(p) =

{(
G(p)

)∗
R(p) if p ∈ Q

0 otherwise.
(47)

Concerning the associated synthesis family
(ϕ̃ℓ)1≤ℓ≤L, we simply choose the dual synthesis

frame of
(
(ψm,kℓ

)ℓ∈Km

)
1≤m≤M

which, with a slight
abuse of notation, will be assumed of the form:(
(ϕ̃m,kℓ

)ℓ∈Km

)
1≤m≤M

where, for everyℓ ∈ Km, ϕ̃m,kℓ

denotes thekℓ-periodically shifted version ofϕ̃m,0. So,
basically the restoration method can be summarized by Fig.
1.

With these choices, it can be deduced from (29) that

∀m ∈ {1, . . . ,M}, ∀ℓ ∈ Km,

γℓ =
1

D

∑

p∈Q

Ψm,0(p)
(
Φ̃m,0(p)

)∗

|H(p)|2 + λ
. (48)

This shows that onlyM values ofγℓ need to be computed
(instead ofL). Similarly, simplified forms of the constants
(γℓ,i)1≤ℓ,i≤L and(κℓ)1≤ℓ≤L as defined by (37) and (124) can
be easily obtained.

B. Choice of estimating functions

We will employ LET estimating functions due to the sim-
plicity of their optimization, as explained in Section VI-B.
More precisely, the following two possible forms will be
investigated in this work:

• nonlinear estimating function in [29]: we setIm = 2,
take forfm,1 the identity function and choose

∀ρ ∈ R, fm,2(ρ) =

(
1− exp

(
− ρ8

(ωσm)8

))
ρ (49)

where ω ∈]0,∞[ and σm is the standard deviation
of (nℓ)ℓ∈Km

. According to (120) and (44), we have,
for any ℓ ∈ Km, σ2

m = γD−1
∑

p∈Q |Φℓ(p)|2 =
γD−1

∑
p∈Q |G(p)|2|Ψm,0(p)|2.

• nonlinear estimating function in [30]: again, we setIm =
2, and take forfm,1 the identity function but, we choose:

∀ρ ∈ R,

fm,2(ρ) =

(
tanh

(ρ+ ξσm
ω′σm

)
− tanh

(ρ− ξσm
ω′σm

))
ρ

(50)

where (ξ, ω′) ∈]0,∞[2 and σm is defined as for the
previous estimating function.

VIII. E XPERIMENTAL RESULTS

A. Simulation context

In our experiments, the test data set contains six 8-bit images
of size 512× 512 which are displayed in Fig. 2. Different
convolutions have been applied: (i)5 × 5 and7 × 7 uniform
blurs, (ii) Gaussian blur with standard deviationσh equal to
2, (iii) cosine blur defined by:∀(p1, p2) ∈ {0, . . . , D1 − 1}×
{0, . . . , D2 − 1}, H(p1, p2) = H1(p1)H2(p2) where

∀i ∈ {1, 2},

Hi(pi) =





1 if 0 ≤ pi ≤ FcDi

cos
(π(pi − FcDi)

(1− 2Fc)Di

)
if FcDi ≤ pi ≤ Di/2

(
Hi(Di − pi)

)∗
otherwise

(51)
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Fig. 1. Restoration method.

with Fc ∈ [0, 1/2), (iv) Dirac (the restoration problem then re-
duces to a denoising problem) and, realizations of a zero-mean
white Gaussian noise have been added to the blurred images.
The noise varianceγ is chosen so that the averaged blurred
signal to noise ratioBSNR reaches a given target value, where

BSNR
△
=10 log10

(
‖ h̃ ∗ s ‖2 /(Dγ)

)
. The performance of a

restoration method is measured by the averaged Signal to

Noise Ratio: SNR
△
=10 log10

(
Ê[s2]/Ê[(s− ŝ)2]

)
where Ê

denotes the spatial average operator. In our simulations, we
have chosen the setP as given by (31) where the threshold
value χ is automatically adjusted so as to secure a reliable
estimation of the risk while maximizing the size of the setQ.
In practice,χ has been set, through a dichotomic search, to
the smallest positive value such thatÊo > 10

√
Vmax, where

Vmax is an upper bound ofVar[Eo − Êo]. This bound has
been derived from (35) under some simplifying assumptions
aiming at facilitating its computation. In an empirical manner,
the parameterλ in (45) has been chosen proportional to the
ratio of the noise variance to the variance of the blurred
image, by takingλ = 3γ/(Ê[r2] − (Ê[r])2 − γ). The other
parameters of the method have been set toω = 3 in (49) and
(ξ, ω′) = (3.5, 2.25) in (50).

To validate our approach, we have made comparisons with
state-of-the-art wavelet-based restoration methods and some
other restoration approaches. For all these methods, symlet-
8 wavelet decompositions performed over 4 resolution levels
have been used [42]. The first approach is the ForWaRD
method2 which employs a translation invariant wavelet repre-
sentation [48], [49]. The ForWaRD estimator has been applied
with an optimized value of the regularization parameter. The
same translation invariant wavelet decomposition is used for
the proposed SURE-based method. The second method we
have tested is the TwIST3 algorithm [22] considering a total
variation penalization term. The third approach is the varia-
tional method in [21, Section 6] (which extends the method

2A Matlab toolbox can be downloaded from
http://www.dsp.rice.edu/software/ward.shtml.

3A Matlab toolbox can be downloaded from
http://www.lx.it.pt/∼bioucas/code.htm.

in [20]) where we use a tight wavelet frame consisting of
the union of four shifted orthonormal wavelet decompositions.
The shift parameters are(0, 0), (1, 0), (0, 1) and (1, 1). We
have also included in our comparisons the results obtained with
the classical Wiener filter and with a least squares optimization
approach using a Laplacian regularization operator.4

B. Numerical results

Table II provides the values of the SNR achieved by the
different considered techniques for several values of the BSNR
and a given form of blur (uniform5 × 5) on the six test
images. All the provided quantitative results are median values
computed over 10 noise realizations. It can be observed that,
whatever the considered image is, SURE-based restoration
methods generally lead to significant gains w.r.t. the other
approaches, especially for low BSNRs. Furthermore, the two
kinds of nonlinear estimating function which have been eval-
uated lead to almost identical results. It can also be noticed
that the ForWaRD and TwIST methods perform quite well
in terms of MSE for high BSNR. However, by examining
more carefully the restored images, it can be seen that these
methods may better recover uniform areas, at the expense of
a loss of some detail information which is better preserved by
the considered SURE-based method. This behaviour is visible
on Fig. 3 where the proposed approach allows us to better
recover Barbara’s stripe trouser.

Table III provides the SNRs obtained with the different
techniques for several values of theBSNR and various blurs
on Tunis image (see Fig. 2 (e)). The reported results allow usto
confirm the good performance of SURE-based methods. The
lower performance of the wavelet-based variational approach
may be related to the fact that it requires the estimation of
the hyperparameters of the prior distribution of the wavelet
coefficients. This estimation has been performed by a max-
imum likelihood approach which is suboptimal in terms of
mean square restoration error. The results at the bottom-
right of Table III are in agreement with those in [29], [33]

4We use the implementations of these methods provided in the Matlab
Image Processing Toolbox, assuming that the noise level is known.
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(a) Lena (b) Barbara (c) Marseille (d) Boat (e) Tunis (f) Tiffany

Fig. 2. Original images: (a) Lena, (b) Barbara, (c) Marseille, (d) Boat, (e) Tunis and (f) Tiffany.

showing the outperformance of LET estimators for denoising
problems. The poorer results obtained with ForWaRD in this
case indicate that this method is tailored for deconvolution
problems.

In the previous experiments, for all the considered methods,
the noise varianceγ was assumed to be known. Table IV
gives the SNR values obtained with the different techniques
for several noise levels and various blurs on Tunis image,
when the noise variance is estimated via the classical median
absolute deviation (MAD) wavelet estimator [50, p. 447]. One
can observe that the results are close to the case when the
noise variance is known, except when the problem reduces
to a denoising problem associated with a high BSNR. In this
case indeed, the MAD estimator does not provide a precise
estimation of the noise variance. However, the restoration
results are still satisfactory.

IX. CONCLUSIONS

In this paper, we have addressed the problem of recovering
data degraded by a convolution and the addition of a white
Gaussian noise. We have adopted a hybrid approach that com-
bines frequency and multiscale analyses. By formulating the
underlying deconvolution problem as a nonlinear estimation
problem, we have shown that the involved criterion to be
optimized can be deduced from Stein’s unbiased quadratic risk
estimate. In this context, attention must be paid to the variance
of the risk estimate. The expression of this variance has been
derived in this paper.

The flexibility of the proposed recovery approach must
be emphasized. Redundant or non-redundant data represen-
tations can be employed as well as various combinations of
linear/nonlinear estimates. Based on a specific choice of the
wavelet representation and particular forms of the estimator
structure, experiments have been conducted on a set of images,
illustrating the good performance of the proposed approach.
In our future work, we plan to further improve this restoration
method by considering more sophisticated forms of the estima-
tor, for example, by taking into account multiscale or spatial
dependencies as proposed in [32], [34] for denoising problems.
Furthermore, it seems interesting to extend this work to the
case of multicomponent data by accounting for the cross-
channel correlations.

APPENDIX A
PROOF OFPROPOSITION2

We first notice that Assumption (ii) is a sufficient condition
for the existence of the left hand-side terms of (10)-(13) since,

by Hölder’s inequality,

E[|Θ1(ρ1)η̃1|] ≤E[|Θ1(ρ1)|3]1/3E[|η̃1|3/2]2/3 (52)

E[|Θ1(ρ1)η̃1η̃2|] ≤E[|Θ1(ρ1)|3]1/3E[|η̃1η̃2|3/2]2/3
(53)

E[|Θ1(ρ1)η̃1|η̃22 ] ≤E[|Θ1(ρ1)|3]1/3E[|η̃1|3/2|η̃2|3]2/3
(54)

E[|Θ1(ρ1)Θ1(ρ2)η̃1η̃2|] ≤E[|Θ1(ρ1)|3]1/3E[|Θ1(ρ2)|3]1/3

× E[|η̃1η̃2|3]1/3. (55)

We can decomposẽηi with i ∈ {1, 2} as follows:

η̃i = aiη1 + η̌i (56)

whereai is the mean-square prediction coefficient given by

σ2ai = E[η1η̃i] (57)

with σ2 = E[η21 ] and,η̌i is the associated zero-mean prediction
error which is independent ofυ1 andη1.5 We deduce that

E[Θ1(ρ1)η̃1] = a1E[Θ1(ρ1)η1]. (58)

We can invoke Stein’s principle to expressE[Θ1(ρ1)η1], pro-
vided that the assumptions in Proposition 1 are satisfied. To
check these assumptions, we remark that, for everyτ ∈ R,
when|ζ| is large enough,|Θ1(τ +ζ)| exp

(
− ζ2

2σ2

)
≤ |Θ1(τ +

ζ)|ζ2 exp
(
− ζ2

2σ2

)
, which, owing to Assumption (i), implies

that lim|ζ|→∞ Θ1(τ + ζ) exp
(
− ζ2

2σ2

)
= 0. In addition,

from Jensen’s inequality and Assumption (ii),E[|Θ′
1(ρ1)|] ≤

E[|Θ′
1(ρ1)|3]1/3 < ∞. Consequently, (9) combined with (57)

can be applied to simplify (58), so allowing us to obtain (10).
Let us next prove (11). From (56), we get:

E[Θ1(ρ1)η̃1η̃2] =a1a2E[Θ1(ρ1)η
2
1 ] + a1E[Θ1(ρ1)η1]E[η̌2]

+ a2E[Θ1(ρ1)η1]E[η̌1] + E[Θ1(ρ1)]E[η̌1η̌2]

=a1a2E[Θ1(ρ1)η
2
1 ] + E[Θ1(ρ1)]E[η̌1η̌2] (59)

where we have used in the first equality the fact that(η̌1, η̌2) is
independent of(η1, υ1) and, in the second one, that it is zero-
mean. Then, by making use of the orthogonality relation:

E[η̃1η̃2] = a1a2σ
2 + E[η̌1η̌2] (60)

we have

E[Θ1(ρ1)η̃1η̃2] =a1a2
(
E[Θ1(ρ1)η

2
1 ]− σ2

E[Θ1(ρ1)]
)

+ E[Θ1(ρ1)]E[η̃1η̃2]. (61)

5Recall that(η1, eη1, eη2) is zero-mean Gaussian.
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TABLE II
RESTORATION RESULTS FOR A5× 5 UNIFORM BLUR: INITIAL SNR (SNR i) AND SNROBTAINED WITH OUR APPROACH USING THE NONLINEAR

FUNCTION IN (49) (SNR b), OUR APPROACH USING THE NONLINEAR FUNCTION IN(50) (SNR s), FORWARD (SNR f ), TWIST (SNR t), THE
WAVELET-BASED VARIATIONAL APPROACH (SNR v), THE WIENER FILTER (SNR w) AND THE REGULARIZED QUADRATIC METHOD (SNR r).

Image BSNR 10 15 20 25 30 Image BSNR 10 15 20 25 30

SNR i 9.796 14.26 17.89 20.21 21.31 SNR i 9.713 14.03 17.39 19.39 20.28
SNR b 19.98 21.36 22.43 23.48 24.62 SNR b 19.09 20.27 21.31 22.37 23.59
SNR s 19.93 21.29 22.39 23.45 24.58 SNR s 19.05 20.22 21.27 22.36 23.57

Lena SNR f 18.27 20.04 21.36 23.35 24.63 Boat SNR f 16.75 19.05 20.68 22.14 23.49
SNR t 19.52 21.17 22.79 23.90 24.91 SNR t 18.29 19.67 21.09 22.35 23.80
SNR v 17.91 20.01 21.34 22.41 23.42 SNR v 14.37 17.46 19.31 20.54 21.88
SNR w 15.82 19.69 21.54 22.23 22.46 SNR w 15.80 19.19 20.56 21.02 21.17
SNR r 18.70 20.06 21.25 22.18 22.43 SNR r 18.18 19.31 20.35 20.96 21.15

SNR i 9.366 13.10 15.54 16.72 17.17 SNR i 9.713 14.03 17.37 19.36 20.24
SNR b 17.02 17.54 18.05 18.79 19.75 SNR b 18.63 19.73 20.75 21.72 22.66
SNR s 16.99 17.52 18.06 18.77 19.63 SNR s 18.62 19.73 20.73 21.70 22.66

Barbara SNR f 16.14 17.04 17.62 18.56 19.49 Tunis SNR f 16.57 18.54 19.99 21.20 22.29
SNR t 16.74 17.45 17.95 18.38 19.07 SNR t 18.03 18.94 20.35 21.50 22.56
SNR v 16.41 17.26 17.76 18.32 18.94 SNR v 17.45 18.73 19.60 20.54 21.56
SNR w 14.53 16.92 17.78 18.02 18.10 SNR w 15.80 19.07 20.37 20.79 20.92
SNR r 16.53 17.11 17.58 17.92 18.10 SNR r 18.13 19.20 20.17 20.76 20.91

SNR i 8.926 11.93 13.57 14.25 14.49 SNR i 9.923 14.73 19.15 22.72 24.95
SNR b 13.92 15.12 16.21 17.27 18.46 SNR b 24.18 25.28 26.13 26.92 28.09
SNR s 13.93 15.12 16.21 17.28 18.48 SNR s 24.16 25.24 26.11 26.92 28.09

Marseille SNR f 13.10 14.42 15.75 17.00 18.32 Tiffany SNR f 17.93 21.72 23.67 26.53 28.12
SNR t 12.74 14.19 15.52 16.87 18.36 SNR t 23.08 25.17 26.23 27.20 27.85
SNR v 13.57 14.99 16.12 16.92 17.66 SNR v 21.81 24.47 25.63 26.44 27.46
SNR w 12.60 14.70 15.53 15.81 15.90 SNR w 18.01 23.13 25.48 26.28 26.53
SNR r 13.25 14.43 15.45 15.78 15.90 SNR r 23.65 24.60 25.42 26.12 26.44

(a) (b)

(c) (d) (e)

Fig. 3. Zooms on Barbara image,BSNR = 25 dB; (a) Original, (b) Degraded, (c) Restored with ForWaRD, (d) Restored with TwIST and (e) Restored
with the proposed method using (50).

In addition, by integration by parts, the conditional expectation
w.r.t. υ1 given by

∀τ, E[Θ1(ρ1)η
2
1 | υ1 = τ ] =

1√
2πσ

∫ ∞

−∞

Θ1(τ + ζ)ζ2 exp
(
− ζ2

2σ2

)
dζ (62)

can be reexpressed as

E[Θ1(ρ1)η
2
1 | υ1 = τ ]

=
σ√
2π

(
lim

ζ→−∞
Θ1(τ + ζ)ζ exp

(
− ζ2

2σ2

)

− lim
ζ→∞

Θ1(τ + ζ)ζ exp
(
− ζ2

2σ2

)

+

∫ ∞

−∞

(
Θ1(τ + ζ) + Θ′

1(τ + ζ)ζ
)
exp

(
− ζ2

2σ2

)
dζ

)
.

(63)
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TABLE III
TUNIS IMAGE RESTORATION FOR VARIOUS BLURS.

Blur BSNR 10 15 20 25 30 Blur BSNR 10 15 20 25 30

SNR i 9.662 13.86 17.01 18.80 19.56 SNR i 9.577 13.64 16.56 18.13 18.77
SNR b 18.16 19.11 20.00 20.83 21.57 SNR b 18.06 18.87 19.57 20.30 21.14

Gaussian SNR s 18.16 19.10 19.99 20.81 21.56 Uniform SNR s 18.05 18.86 19.57 20.29 21.14
σh = 2 SNR f 17.52 18.57 19.61 20.57 21.43 7× 7 SNR f 16.54 18.02 19.15 20.10 20.97

SNR t 17.12 18.32 19.47 20.40 21.33 SNR t 17.39 18.21 19.22 20.04 20.94
SNR v 17.39 18.98 19.84 20.63 21.45 SNR v 17.39 18.81 19.53 20.27 21.13
SNR w 16.24 18.70 19.49 19.57 19.62 SNR w 16.06 18.45 19.11 19.28 19.33
SNR r 17.73 18.63 19.35 19.57 19.62 SNR r 17.64 18.50 19.09 19.26 19.33

SNR i 9.971 14.87 19.57 23.74 26.83 SNR i 10.00 15.00 20.00 25.00 30.00
SNR b 19.82 21.87 24.05 26.16 27.99 SNR b 19.97 22.30 25.05 28.25 31.97

Cosine SNR s 19.82 21.85 24.02 26.13 27.98 SNR s 19.96 22.27 25.02 28.20 31.91
Fc = 3/32 SNR f 17.94 19.85 22.48 24.79 26.82 Dirac SNR f 5.701 11.68 19.10 25.96 31.41

SNR t 18.52 21.18 23.81 25.94 27.78 SNR t 19.82 22.03 24.27 27.18 31.00
SNR v 18.30 21.17 23.45 25.61 27.41 SNR v 18.10 21.02 23.44 26.58 30.18
SNR w 12.63 17.50 21.98 25.61 27.89 SNR w 10.42 15.13 20.04 25.01 30.00
SNR r 19.23 21.03 23.00 25.03 27.04 SNR r 19.39 21.37 23.76 26.58 29.91

TABLE IV
TUNIS IMAGE RESTORATION FOR VARIOUS BLURS WHEN THE NOISE VARIANCE IS ESTIMATED WITH THE MAD ESTIMATOR.

Blur BSNR 10 15 20 25 30 Blur BSNR 10 15 20 25 30

SNR i 9.662 13.86 17.01 18.80 19.56 SNR i 9.577 13.64 16.56 18.13 18.77
Gaussian SNR b 18.16 19.12 20.00 20.82 21.57 Uniform SNR b 18.05 18.87 19.57 20.30 21.15
σh = 2 SNR s 18.15 19.11 19.99 20.81 21.56 7× 7 SNR s 18.05 18.86 19.57 20.30 21.15

SNR i 9.971 14.87 19.57 23.74 26.83 SNR i 10.00 15.00 20.00 25.00 30.00
Cosine SNR b 19.82 21.87 24.05 26.15 27.99 Dirac SNR b 19.97 22.28 24.96 27.87 30.79

Fc = 3/32 SNR s 19.81 21.85 24.02 26.12 27.97 SNR s 19.96 22.26 24.92 27.83 30.77

The existence of the latter integral is secured for almost every
value τ that can be taken byυ1, thanks to Assumptions (ii)
and (iii) and, the fact that, ifµ denotes the probability measure
of υ1,

∫∫

R2

∣∣Θ1(υ1 + τ) + Θ′
1(υ1 + τ)ζ

∣∣ exp
(
− ζ2

2σ2

)
dζdµ(τ)

=E[|Θ1(ρ1) + Θ′
1(ρ1)η1|]

≤E[|Θ1(ρ1)|] + E[|Θ′
1(ρ1)η1|]

≤E[|Θ1(ρ1)|3]1/3 + E[|Θ′
1(ρ1)|3]1/3E[|η1|3/2]2/3 <∞.

(64)

Since, for everyτ ∈ R, when |ζ| is large enough,|Θ1(τ +

ζ)ζ| exp
(
− ζ2

2σ2

)
≤ |Θ1(τ + ζ)|ζ2 exp

(
− ζ2

2σ2

)
, Assumption

(i) implies that lim|ζ|→∞Θ1(τ + ζ)ζ exp
(
− ζ2

2σ2

)
= 0. By

using this property, we deduce from (63) thatE[Θ1(ρ1)η
2
1 |

υ1] = σ2
(
E[Θ1(υ1+η1) | υ1]+E[Θ′

1(υ1+η1)η1 | υ1]
)
, which

yields

E[Θ1(ρ1)η
2
1 ] = σ2

(
E[Θ1(ρ1)] + E[Θ′

1(ρ1)η1]
)
. (65)

By inserting this equation in (61), we find that
E[Θ1(ρ1)η̃1η̃2] = a1a2σ

2
E[Θ′

1(ρ1)η1] + E[Θ1(ρ1)]E[η̃1η̃2].
Formula (11) straightforwardly follows by noticing that,
according to (56) and (57),E[Θ′

1(ρ1)η̃2]E[η1η̃1] =
a1a2σ

2
E[Θ′

1(ρ1)η1]. Consider now (12). By using (56)
and the independence between(η̌1, η̌2) and (η1, υ1), we can

write

E[Θ1(ρ1)η̃1η̃
2
2 ]

=a1a
2
2E[Θ1(ρ1)η

3
1 ] + 2a1a2E[Θ1(ρ1)η

2
1 ]E[η̌2]

+ a1E[Θ1(ρ1)η1]E[η̌
2
2 ] + a22E[Θ1(ρ1)η

2
1 ]E[η̌1]

+ 2a2E[Θ1(ρ1)η1]E[η̌1η̌2] + E[Θ1(ρ1)]E[η̌1η̌
2
2 ]

=a1a
2
2E[Θ1(ρ1)η

3
1 ] + E[Θ1(ρ1)η1]

(
a1E[η̌

2
2 ] + 2a2E[η̌1η̌2]

)

(66)

where the latter equality stems from the symmetry of the
probability distribution of(η̌1, η̌2). Taking into account the
relationE[η̃22 ] = a22σ

2 + E[η̌22 ] and (60), we get

E[Θ1(ρ1)η̃1η̃
2
2 ] =a1a

2
2

(
E[Θ1(ρ1)η

3
1 ]− 3σ2

E[Θ1(ρ1)η1]
)

+ E[Θ1(ρ1)η1]
(
a1E[η̃

2
2 ] + 2a2E[η̃1η̃2]

)
.

(67)

Let us now focus our attention onE[Θ1(ρ1)η
3
1 ]. Since As-

sumptions (ii) and (iii) imply that

E[|2Θ1(ρ1)η1+Θ′
1(ρ1)η

2
1 |] ≤ 2E[|Θ1(ρ1)|3]1/3E[|η1|3/2]2/3

+ E[|Θ′
1(ρ1)|3]1/3E[|η1|3]2/3 <∞ (68)

and Assumption (i) holds, we can proceed by integration by
parts, similarly to the proof of (65) to show that

E[Θ1(ρ1)η
3
1 ] = σ2

(
2E[Θ1(ρ1)η1] + E[Θ′

1(ρ1)η
2
1 ]
)
. (69)

Thus, (66) reads

E[Θ1(ρ1)η̃1η̃
2
2 ] =a1a

2
2σ

2
E[Θ′

1(ρ1)η
2
1 ] + E[Θ1(ρ1)η1]

×
(
a1E[η̃

2
2 ]− a1a

2
2σ

2 + 2a2E[η̃1η̃2]
)

(70)
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which, by using (9), can also be reexpressed as

E[Θ1(ρ1)η̃1η̃
2
2 ] =a1a

2
2σ

2
E[Θ′

1(ρ1)η
2
1 ] + σ2

E[Θ′
1(ρ1)]

×
(
a1E[η̃

2
2 ]− a1a

2
2σ

2 + 2a2E[η̃1η̃2]
)
.
(71)

In turn, we have

E[Θ′
1(ρ1)η̃

2
2 ] =a

2
2E[Θ

′
1(ρ1)η

2
1 ] + 2a2E[Θ

′
1(ρ1)η1]E[η̌2]

+ E[Θ′
1(ρ1)]E[η̌

2
2 ]

=a22E[Θ
′
1(ρ1)η

2
1 ] + E[Θ′

1(ρ1)]
(
E[η̃22 ]− a22σ

2
)

(72)

which, by using (57), leads to

E[Θ′
1(ρ1)η̃

2
2 ]E[η1η̃1] =a1a

2
2σ

2
E[Θ′

1(ρ1)η
2
1 ]

+ σ2
E[Θ′

1(ρ1)]a1
(
E[η̃22 ]− a22σ

2
)
.

(73)

From the difference of (71) and (73), we derive that

E[Θ1(ρ1)η̃1η̃
2
2 ] =E[Θ′

1(ρ1)η̃
2
2 ]E[η1η̃1]

+ 2a2σ
2
E[Θ′

1(ρ1)]E[η̃1η̃2] (74)

which, by using again (57), yields (12).
Finally, we will prove Formula (13). We decomposeη̃1 as

follows:

η̃1 = b η̃2 + η̃⊥1 where b σ̃2 = E[η̃1η̃2], (75)

σ̃2 = E[η̃22 ] and, η̃1
⊥ is independent of(η̃2, υ1, υ2). This

allows us to write

E[Θ1(ρ1)Θ2(ρ2)η̃1η̃2] = bE[Θ1(ρ1)Θ2(ρ2)η̃
2
2 ]

+ E[Θ1(ρ1)Θ2(ρ2)η̃
⊥
1 η̃2]. (76)

Let us first calculateE[Θ1(ρ1)Θ(ρ2)η̃
2
2 ]. For i ∈ {1, 2},

consider the decomposition:

ηi = ciη̃2 + η⊥i (77)

where ciσ̃2 = E[ηiη̃2] and, η̃2, (η⊥1 , η
⊥
2 ) and (υ1, υ2) are

independent. We have then

E[Θ1(ρ1)Θ2(ρ2)η̃
2
2 | η⊥1 , η⊥2 , υ1, υ2]

=
1√
2πσ̃

∫ ∞

−∞

Θ1(υ1 + c1ζ + η⊥1 )Θ2(υ2 + c2ζ + η⊥2 )

× ζ2 exp
(
− ζ2

2σ̃2

)
dζ. (78)

It can be noticed that

E[|Θ1(ρ1)Θ2(ρ2) + (c1Θ
′
1(ρ1)Θ2(ρ2) + c2Θ1(ρ1)Θ

′
2(ρ2)) η̃2|]

≤ E[|Θ1(ρ1)|3]1/3E[|Θ2(ρ2)|3]1/3 + |c1|
(
E[|Θ′

1(ρ1)|3]1/3

× E[|Θ2(ρ2)|3]1/3 + |c2|E[|Θ1(ρ1)|3]1/3E[|Θ′
2(ρ2))|3]1/3

)

× E[|η̃2|3]1/3 <∞ (79)

and, for every(τ1, τ2) ∈ R2, lim|ζ|→∞ Θ1(τ1 + c1ζ)Θ2(τ2 +

c2ζ)ζ exp
(
− ζ2

2eσ2

)
= 0 since, for|ζ| large enough,

c21c
2
2|Θ1(τ1 + c1ζ)Θ2(τ2 + c2ζ)ζ| exp

(
− ζ2

2σ̃2

)

≤ |Θ1(τ1 + c1ζ)|(c1ζ)2 exp
(
− ζ2

4σ̃2

)

× |Θ2(τ2 + c2ζ)|(c2ζ)2 exp
(
− ζ2

4σ̃2

)
(80)

and Assumption (i) holds. We can therefore deduce, by in-
tegrating by parts in (78) and taking the expectation w.r.t.
(η⊥1 , η

⊥
2 , υ1, υ2), that

E[Θ1(ρ1)Θ2(ρ2)η̃
2
2 ]

=σ̃2
(
E[Θ1(ρ1)Θ2(ρ2)] + c1E[Θ

′
1(ρ1)Θ2(ρ2) η̃2]

+ c2E[Θ1(ρ1)Θ
′
2(ρ2) η̃2]

)

=σ̃2
E[Θ1(ρ1)Θ2(ρ2)] + E[Θ′

1(ρ1)Θ2(ρ2) η̃2]E[η1η̃2]

+ E[Θ1(ρ1)Θ
′
2(ρ2) η̃2]E[η2η̃2]. (81)

Let us now calculateE[Θ1(ρ1)Θ2(ρ2)η̃
⊥
1 η̃2]. We have, fori ∈

{1, 2}, ηi = čiη̃
⊥
1 + η̌⊥i , where

čiE[(η̃
⊥
1 )

2] = E[ηiη̃
⊥
1 ] (82)

and,η̃⊥1 is independent of(η̃2, η̌⊥1 , η̌
⊥
2 , υ1, υ2). By proceeding

similarly to the proof of (81), we get

E[Θ1(ρ1)Θ2(ρ2)η̃
⊥
1 | η̃2, η̌⊥1 , η̌⊥2 ] = E[(η̃⊥1 )2]

×
(
č1E[Θ

′
1(ρ1)Θ2(ρ2) | η̃2, η̌⊥1 , η̌⊥2 ]

+ č2E[Θ1(ρ1)Θ
′
2(ρ2) | η̃2, η̌⊥1 , η̌⊥2 ]

)
(83)

which, owing to (82), allows us to write

E[Θ1(ρ1)Θ2(ρ2)η̃
⊥
1 η̃2] =E[Θ′

1(ρ1)Θ2(ρ2)η̃2]E[η1η̃
⊥
1 ]

+ E[Θ1(ρ1)Θ
′
2(ρ2)η̃2]E[η2η̃

⊥
1 ].

(84)

On the other hand, from (75), we deduce that, fori ∈ {1, 2},
E[ηiη̃

⊥
1 ] = E[ηiη̃1]− bE[ηiη̃2], so yielding

E[Θ1(ρ1)Θ2(ρ2)η̃
⊥
1 η̃2] =E[Θ′

1(ρ1)Θ2(ρ2)η̃2]E[η1η̃1]

+ E[Θ1(ρ1)Θ
′
2(ρ2)η̃2]E[η2η̃1]

− b
(
E[Θ′

1(ρ1)Θ2(ρ2)η̃2]E[η1η̃2]

+ E[Θ1(ρ1)Θ
′
2(ρ2)η̃2]E[η2η̃2]

)
.

(85)

Altogether, (76), (75), (81) and (85) lead to

E[Θ1(ρ1)Θ2(ρ2)η̃1η̃2] = E[Θ1(ρ1)Θ2(ρ2)]E[η̃1η̃2]

+E[Θ′
1(ρ1)Θ2(ρ2)η̃2]E[η1η̃1]+E[Θ1(ρ1)Θ

′
2(ρ2)η̃2]E[η2η̃1].

(86)

In order to obtain a more symmetric expression, let us
now look at the differenceE[Θ1(ρ1)Θ

′
2(ρ2)η̃2]E[η2η̃1] −

E[Θ1(ρ1)Θ
′
2(ρ2)η̃1]E[η2η̃2] = E[Θ1(ρ1)Θ

′
2(ρ2)η̃12] where

η̃12 = E[η2η̃1]η̃2−E[η2η̃2]η̃1. Sinceη̃12 is a linear combination
of η̃1 and η̃2 and, E[η2η̃12] = 0, η̃12 is independent of
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(η2, υ1, υ2). Similarly to the derivation of Formula (10), it
can be deduced that

E[Θ1(ρ1)Θ
′
2(ρ2)η̃12 | η2, υ1, υ2]

=E[Θ1(ρ1)Θ
′
2(υ2 + η2)η̃12 | η2, υ1, υ2]

=E[Θ1(ρ1)η̃12 | η2, υ1, υ2] Θ′
2(υ2 + η2)

=E[Θ′
1(ρ1) | η2, υ1, υ2]E[η1η̃12] Θ′

2(ρ2) (87)

which leads to

E[Θ1(ρ1)Θ
′
2(ρ2)η̃2]E[η2η̃1]− E[Θ1(ρ1)Θ

′
2(ρ2)η̃1]E[η2η̃2]

=E[Θ1(ρ1)Θ
′
2(ρ2)η̃12] = E[Θ′

1(ρ1)Θ
′
2(ρ2)]E[η1η̃12]

=E[Θ′
1(ρ1)Θ

′
2(ρ2)](E[η1η̃2]E[η2η̃1]− E[η1η̃1]E[η2η̃2]). (88)

Eq. (13) is then derived by combining (86) with (88).

APPENDIX B
PROOF OFPROPOSITION3

We have, for everyp ∈ D,

E[|R̃(p)|2] = E[|S(p)|2]+E[|Ñ(p)|2]+2Re{E[Ñ(p)
(
S(p)

)∗
]}.

(89)
Since ñ and s are uncorrelated, this yields
E[|S(p)|2] = E[|R̃(p)|2] − E[|Ñ(p)|2]. In addition, we have
E[S(p)

(
Ŝ(p)

)∗
] = E[R̃(p)

(
Ŝ(p)

)∗
]− E[Ñ(p)

(
Ŝ(p)

)∗
]. The

previous two equations show that

∀p ∈ D, E[|Ŝ(p)− S(p)|2] = E[|Ŝ(p)− R̃(p)|2]
−E[|Ñ(p)|2] + 2Re{E[Ñ(p)

(
Ŝ(p)

)∗
]}. (90)

Moreover, using (17), the second term in the right-hand side
of (90) is

E[|Ñ(p)|2] = γD

|H(p)|2 . (91)

On the other hand, according to (8), the last term in the right-
hand side of (90) is such that

E[Ñ(p)
(
Ŝ(p)

)∗
] =

∑

x∈D

L∑

ℓ=1

E[ŝℓ ñ(x)]

× exp(−2πıx⊤
D

−1p)
(
Φ̃ℓ(p)

)∗
. (92)

Furthermore, we know from (6) that̂sℓ = Θℓ(uℓ+nℓ), where

nℓ = 〈n, ϕℓ〉, uℓ = 〈u, ϕℓ〉 (93)

and, u is the field in RD1×···×Dd whose discrete Fourier
coefficients are given by (3). From (93) as well as the
assumptions made on the noisen corrupting the data, it is
clear that

(
nℓ, ñ(x)

)
is a zero-mean Gaussian vector which is

independent ofuℓ. Thus, by using (10) in Proposition 2, we
obtain:

E[ŝℓñ(x)] = E[Θ′
ℓ(rℓ)]E[nℓ ñ(x)]. (94)

Let us now calculateE[nℓ ñ(x)]. Using (93) and (16), we get

E[nℓ ñ(x)] =
∑

y∈D

E[ñ(x)n(y)]ϕℓ(y)

=
∑

(p′,p′′)∈D2

E
[
Ñ(p′)

(
N(p′′)

)∗]
exp(2πıx⊤

D
−1p′)

Φℓ(p
′′)

D2

=
γ

D

∑

p′∈D

Φℓ(p
′)

H(p′)
exp(2πıx⊤

D
−1p′). (95)

Combining this equation with (92) and (94) yields

E[Ñ(p)
(
Ŝ(p)

)∗
] = γ

L∑

ℓ=1

E[Θ′
ℓ(rℓ)]

Φℓ(p)
(
Φ̃ℓ(p)

)∗

H(p)
. (96)

Gathering now (90), (91) and (96), (18) is obtained.
From Parseval’s formula, the global MSE can be expressed

as
D E[E(ŝ− s)] =

1

D

∑

p∈D

E[|S(p)− Ŝ(p)|2]. (97)

The above equation together with (18) show that (19) holds
with

D∆ = γ
(
2

L∑

ℓ=1

E[Θ′
ℓ(rℓ)] Re{γℓ} −

∑

p∈D

|H(p)|−2
)
. (98)

Furthermore, by defining

∀ℓ ∈ {1, . . . , L}, ñℓ = 〈ñ, ϕ̃ℓ〉 (99)

and using (16), it can be noticed that

E[nℓ ñℓ] =
∑

(x,y)∈D2

E[ñ(y)n(x)]ϕ̃ℓ(y)ϕℓ(x)

=
1

D2

∑

(p,p′)∈D2

E
[
Ñ(p)

(
N(p′)

)∗](
Φ̃ℓ(p)

)∗
Φℓ(p

′)

=
γ

D

∑

p∈D

Φℓ(p)
(
Φ̃ℓ(p)

)∗

H(p)
= γγℓ. (100)

Hence, as claimed in the last part of our statements,(γℓ)1≤ℓ≤L

is real-valued since it is the cross-correlation of a real-valued
sequence.

APPENDIX C
PROOF OFPROPOSITION5

By using (25), we have
∑

x∈D ŝ(x) ñ(x) =
∑L

ℓ=1 ŝℓ ñℓ,
whereñℓ has been here redefined as

ñℓ = 〈ñ, ϕ̃
ℓ
〉. (101)

In addition, E(ñ) = D−2
∑

p∈Q |N(p)|2/|H(p)|2. This al-

lows us to rewrite (34) asEo − Êo = −2A−B + 2C, where

A =
1

D

∑

x∈D

s(x) ñ(x) (102)

B =
1

D

∑

x∈D

(
ñ(x)

)2 − γ

D

∑

p∈Q

|H(p)|−2

=
1

D

∑

p∈Q

|N(p)|2/D − γ

|H(p)|2 (103)

C =
1

D

L∑

ℓ=1

(
ŝℓ ñℓ −Θ′

ℓ(rℓ)γγℓ
)
. (104)

The variance of the error in the estimation of the risk is thus
given by

Var[Eo−Êo] = E[(Eo−Êo)2] = 4E[A2]+4E[AB]−8E[AC]

+ E[B2]− 4E[BC] + 4E[C2]. (105)
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We will now calculate each of the terms in the right hand-side
term of the above expression to determine the variance.

• Due to the independence ofs and n, the first term to
calculate is equal to

E[A2] =
1

D4

∑

(p,p′)∈Q2

E[S(p)
(
S(p′)

)∗
]E[Ñ(p)

(
Ñ(p′)

)∗
].

(106)
By using (17), this expression simplifies as

E[A2] =
γ

D3

∑

p∈Q

E[|S(p)|2]
|H(p)|2 . (107)

• The second term cancels. Indeed, sincen and hencẽn
are zero-mean,

E[AB] =
1

D2

∑

(x,x′)∈D2

E[s(x)]E[ñ(x)
(
ñ(x′))2]. (108)

and, since(ñ(x), ñ(x′)) is zero-mean Gaussian, it has a
symmetric distribution andE[ñ(x)

(
ñ(x′))2] = 0.

• The calculation of the third term is a bit more involved.
We have

E[AC] =
1

D2

∑

x∈D

L∑

ℓ=1

(
E[s(x)ŝℓ ñℓ ñ(x)]

− E[s(x)Θ′
ℓ(rℓ)ñ(x)]γγℓ

)
. (109)

In order to find a tractable expression of
E[s(x)ŝℓ ñℓ ñ(x)] with ℓ ∈ {1, . . . , L}, we will
first consider the following conditional expectation w.r.t.
s: E[s(x)ŝℓ ñℓ ñ(x) | s] = s(x)E[Θ(rℓ)ñℓ ñ(x) | s].
According to Formula (11) in Proposition 2,6

E[Θ(rℓ)ñℓ ñ(x) | s] =E[Θ′
ℓ(rℓ)ñ(x) | s]E[nℓ ñℓ]

+ E[Θℓ(rℓ) | s]E[ñℓ ñ(x)] (110)

which, by using (100), allows us to deduce that

E[s(x)Θ(rℓ)ñℓ ñ(x)] = E[s(x)Θ′
ℓ(rℓ)ñ(x)] γγℓ

+ E[s(x)Θℓ(rℓ)]E[ñℓ ñ(x)]. (111)

This shows that (109) can be simplified as follows:

E[AC] =
1

D2

∑

x∈D

L∑

ℓ=1

E[s(x)Θℓ(rℓ)]E[ñℓ ñ(x)]. (112)

Furthermore, according to (17) and (101), we have

E[ñℓ ñ(x)] =
1

D2

∑

(p,p′)∈Q2

E[Ñ(p)
(
Ñ(p′)

)∗
]
(
Φ̃ℓ(p)

)∗

× exp(−2πıx⊤
D

−1p′)

=
γ

D

∑

p∈Q

(
Φ̃ℓ(p)

)∗

|H(p)|2 exp(−2πıx⊤
D

−1p).

(113)

6Proposition 2 is applicable to the calculation of the conditional expectation
since conditioning w.r.t.s amounts to fixinguℓ (see the remark at the end of
Section III).

This yields

E[AC] =
γ

D3

∑

p∈Q

L∑

ℓ=1

(
Φ̃ℓ(p)

)∗

|H(p)|2 E[S(p)Θℓ(rℓ)]

=
γ

D3

∑

p∈Q

E[S(p)
(
Ŝ(p)

)∗
]

|H(p)|2 . (114)

• The calculation of the fourth term is more classical since
|N(p)|2/D is thep bin of the periodogram [51] of the
Gaussian white noisen. More precisely, since|N(p)|2/D
is an unbiased estimate ofγ,

E[B2] =
1

D4

∑

(p,p′)∈Q2

Cov(|N(p)|2, |N(p′)|2)
|H(p)|2|H(p′)|2 . (115)

In the above summation, we know that, ifp 6= p′ andp 6=
D1 − p′ with 1 = (1, . . . , 1)⊤ ∈ Rd, N(p) andN(p′)
are independent and thus,Cov(|N(p)|2, |N(p′)|2) = 0.
On the other hand, ifp = p′ or p = D1 − p′, then
Cov(|N(p)|2, |N(p′)|2) = E[|N(p)|4]− γ2D2. Let

S =
{
p = (p1, . . . , pd)

⊤ ∈ D |
∀i ∈ {1, . . . , d}, pi ∈ {0, Di/2}

}
. (116)

If p ∈ S, thenN(p) is a zero-mean Gaussian real random
variable andE[|N(p)|4] = 3E

[(
N(p)

)2]2
= 3γ2D2.

Otherwise,N(p) a zero-mean Gaussian circular com-
plex random variable andE[|N(p)|4] = 2E[|N(p)|2]2
= 2γ2D2. It can be deduced that

E[B2] =
1

D4


 ∑

p∈Q∩S

Var[
(
N(p)

)2
]

|H(p)|4

+
∑

p∈Q∩(D\S)

(
Var[

∣∣N(p)
∣∣2]

|H(p)|4

+
Cov(|N(p)|2, |N(D1− p)|2)

|H(p)|2|H(D1− p)|2
))

=
1

D4


 ∑

p∈Q∩S

2γ2D2

|H(p)|4

+
∑

p∈Q∩(D\S)

( γ2D2

|H(p)|4 +
γ2D2

|H(p)|4
)



=
2γ2

D2

∑

p∈Q

1

|H(p)|4 . (117)

• Let us now turn our attention to the fifth term. According
to (10) and the definition ofγℓ in (100), for everyℓ ∈
{1, . . . , L}, ŝℓ ñℓ−Θ′

ℓ(rℓ)γγℓ is zero-mean and we have
then

E[BC] =
1

D2

∑

x∈D

L∑

ℓ=1

(
E[ŝℓ ñℓ

(
ñ(x)

)2
]

− E[Θ′
ℓ(rℓ)

(
ñ(x)

)2
]γγℓ

)
. (118)
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By applying now Formula (12) in Proposition 2, we have,
for everyℓ ∈ {1, . . . , L},

E[ŝℓ ñℓ

(
ñ(x)

)2
]− E[Θ′

ℓ(rℓ)
(
ñ(x)

)2
]γγℓ

=E[Θℓ(rℓ) ñℓ

(
ñ(x)

)2
]− E[Θ′

ℓ(rℓ)
(
ñ(x)

)2
]E[nℓ ñℓ]

=2E[Θ′
ℓ(rℓ)]E[ñℓ ñ(x)]E[ñ(x)nℓ] (119)

where, in compliance with (24),nℓ is now given by

nℓ = 〈n, ϕℓ〉. (120)

Furthermore, similarly to (95), we have

E[ñ(x)nℓ] =
1

D2

∑

(p,p′)∈Q2

E[Ñ(p)
(
N(p′)

)∗
]Φℓ(p

′)

× exp(2πıx⊤
D

−1p)

=
γ

D

∑

p′∈Q

Φℓ(p
′)

H(p′)
exp(2πıx⊤

D
−1p′).

(121)

Altogether, (113), (119) and (121) yield

E[ŝℓ ñℓ

(
ñ(x)

)2
]− E[Θ′

ℓ(rℓ)
(
ñ(x)

)2
]γγℓ

=
2γ2

D2
E[Θ′

ℓ(rℓ)]
∑

(p,p′)∈Q2

Φℓ(p
′)
(
Φ̃ℓ(p)

)∗

H(p′)|H(p)|2

× exp
(
2πıx⊤

D
−1(p′ − p)

)
. (122)

Hence, (118) can be reexpressed as

E[BC] =
2γ2

D2

L∑

ℓ=1

E[Θ′
ℓ(rℓ)]κℓ (123)

where

κℓ =
1

D

∑

p∈Q

Φℓ(p)
(
Φ̃ℓ(p)

)∗

H(p)|H(p)|2 . (124)

• Let us now consider the last term

E[C2] =
1

D2

L∑

ℓ=1

L∑

i=1

(
E[ŝℓŝiñℓñi]−E[ŝiΘ

′
ℓ(rℓ) ñi]γγℓ

− E[ŝℓΘ
′
i(ri) ñℓ]γγi + E[Θ′

ℓ(rℓ)Θ
′
i(ri)]γ

2γℓγi
)
. (125)

Appealing to Formula (13) in Proposition 2 and (100),
we have

E[Θℓ(rℓ)Θi(ri)ñℓñi]

=E[Θℓ(rℓ)Θi(ri)]E[ñℓñi] + E[Θ′
ℓ(rℓ)Θi(ri)ñi]γγℓ

+ E[Θℓ(rℓ)Θ
′
i(ri)ñℓ]γγi + E[Θ′

ℓ(rℓ)Θ
′
i(ri)]

× (E[niñℓ]E[ηℓñi]− γ2γℓγi). (126)

This allows us to simplify (125) as follows:

E[C2] =
1

D2

L∑

ℓ=1

L∑

i=1

(
E[ŝℓŝi]E[ñℓñi]

+ E[Θ′
ℓ(rℓ)Θ

′
i(ri)]E[niñℓ]E[ηℓñi]

)
. (127)

Furthermore, according to (17), (101), (16) and (120), we
have

E[ñℓñi] =
1

D2

∑

(p,p′)∈Q2

E[Ñ(p)
(
Ñ(p′)

)∗
]
(
Φ̃ℓ(p)

)∗
Φ̃i(p

′)

=
γ

D

∑

p∈Q

(
Φ̃ℓ(p)

)∗
Φ̃i(p)

|H(p)|2 (128)

and

E[nℓñi] =
1

D2

∑

(p,p′)∈Q2

E[Ñ(p)
(
N(p′)

)∗
]Φℓ(p

′)
(
Φ̃i(p)

)∗

= γγℓ,i (129)

where the expression ofγℓ,i is given by (37). Hence, by
using (128)-(129), (127) can be rewritten as

E[C2] =
γ

D3

∑

p∈Q

E[|Ŝ(p)|2]
|H(p)|2

+
γ2

D2

L∑

ℓ=1

L∑

i=1

E[Θ′
ℓ(rℓ)Θ

′
i(ri)]γℓ,iγi,ℓ. (130)

• In conclusion, we deduce from (105), (107), (114), (117),
(123) and (130) that

Var[Eo − Êo] =
4γ

D3

∑

p∈Q

E[|Ŝ(p)− S(p)|2]
|H(p)|2

+
4γ2

D2

( L∑

ℓ=1

L∑

i=1

E[Θ′
ℓ(rℓ)Θ

′
i(ri)]γℓ,iγi,ℓ

− 2
L∑

ℓ=1

E[Θ′
ℓ(rℓ)]κℓ +

1

2

∑

p∈Q

1

|H(p)|4
)
. (131)

By exploiting now (18) (see Proposition 4) and noticing
that (κℓ)1≤ℓ≤L is real-valued, this expression can be
simplified as follows:

Var[Eo − Êo] =
4γ

D3

∑

p∈Q

E[|Ŝ(p) − R̃(p)|2]
|H(p)|2

+
4γ2

D2

L∑

ℓ=1

L∑

i=1

E[Θ′
ℓ(rℓ)Θ

′
i(ri)]γℓ,iγi,ℓ

− 2γ2

D2

∑

p∈Q

1

|H(p)|4 . (132)

Eq. (35) follows by using Parseval’s formula.
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