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Abstract

We consider the problem of finding optimal time-periodic sensor schedules for estimating the state

of discrete-time dynamical systems. We assume that multiple sensors have been deployed and that the

sensors are subject to resource constraints, which limits the number of times each can be activated over

one period of the periodic schedule. We seek an algorithm that strikes a balance between estimation

accuracy and total sensor activations over one period. We make a correspondence between active sensors

and the nonzero columns of estimator gain. We formulate an optimization problem in which we minimize

the trace of the error covariance with respect to the estimator gain while simultaneously penalizing the

number of nonzero columns of the estimator gain. This optimization problem is combinatorial in nature,

and we employ the alternating direction method of multipliers (ADMM) to find its locally optimal

solutions. Numerical results and comparisons with other sensor scheduling algorithms in the literature

are provided to illustrate the effectiveness of our proposed method.
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I. INTRODUCTION

Wireless sensor networks, consisting of a large number of spatially distributed sensors, have been

used in a wide range of application areas such as environment monitoring, source localization and object

tracking [1]–[3]. In a given region of interest, sensors observe the unknown state (e.g., field intensity or

target location) which commonly evolves as part of a linear dynamical system. A fusion center receives all

the measurements and estimates the state over the entire spatial domain. However, due to the constraints

on communication bandwidth and sensor battery life, it may not be desirable to have all the sensors

report their measurements at all time instants. Therefore, the problem of sensor selection/scheduling

arises, which seeks to activate different subsets of sensors at different time instants in order to attain an

optimal tradeoff between estimation accuracy and energy use.

Over the last decade, sensor selection/scheduling problems for state estimation of linear systems have

been extensively studied in the literature [4]–[16], where several variations of the problem have been

addressed according to the types of cost functions, time horizons, heuristic algorithms, and energy and

topology constraints. Many research efforts have focused on myopic sensor scheduling [4]–[7], where

at every instant the search is for the best sensors to be activated at the next time step (as opposed to

a longer time horizon). However, myopic selection strategies get trapped in local optima and perform

poorly in some cases, such as sensor networks with sensing holes [11]. But if the length of time horizon

becomes large or infinite then finding an optimal non-myopic schedule is difficult, because the number

of sensor sequences grows prohibitively large as the time horizon grows. Therefore, some researchers

have considered the problem of periodic sensor schedules on an infinite time horizon [14]–[18].

In [12], [13], periodicity in the optimal sensor schedule was observed even for finite time horizon

problems in which a periodic schedule was not assumed a priori. A sufficient condition for the existence

of periodicity for the sensor scheduling problem over an infinite time horizon was first suggested in

[18]. Furthermore, in [14] it was proved that the optimal sensor schedule for an infinite horizon problem

can be approximated arbitrarily well by a periodic schedule with a finite period. We emphasize that the

results in [14] are nonconstructive, in the sense that it is shown that the optimal sensor schedule is time-

periodic but an algorithm for obtaining this schedule, or even the length of its period, is not provided.

Although periodicity makes infinite horizon sensor scheduling problems tractable via the design of an

optimal schedule over a finite period, it poses other challenges in problem formulation and optimization

compared to conventional sensor scheduling.

In this paper, we seek a general framework to design optimal periodic sensor schedules subject to
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measurement frequency constraints. Measurement frequency constraints imply that each sensor has a

bound on the number of times it can be active over a time period of length K. Similar constraints have

been considered in [8], [12], [19] and referred to as energy constraints, and transmission or communication

bounds. To achieve our goal, we seek an optimal dynamic estimator, in the form of a time-periodic

Kalman filter, that also respects the measurement frequency constraints. This can be interpreted as a

design problem in which both the sensor activation schedules, and the estimator gains used to combine

the sensor measurements, are jointly optimized. To allow for additional design flexibility, we introduce into

the optimization formulation sparsity-promoting penalty functions that encourage fewer measurements at

every time instant of the periodic horizon. This can be used to generate arbitrarily sparse sensor schedules

that employ a minimal number of active sensors.

The design of optimal periodic sensor schedules has been recently studied in [15]–[17]. In [15], the

authors construct the optimal periodic schedule only for two sensors. For a multiple sensor scenario,

the work of [16] studied the problem of periodic sensor scheduling by assuming the process noise to

be very small, which results in a linear matrix inequality (LMI) problem. As a consequence of the

assumption that the process noise is negligible, the ordering of the measurements does not factor into

the solution of this LMI problem. Clearly, a sensor schedule in which the order of sensor activations

is irrelevant can not be optimal for some sensor scheduling problems. For example, it was shown in

[20] that temporally staggered sensor schedules constitute the optimal sensing policy. In [17], a lower

bound on the performance of scheduling sensors over an infinite time horizon is obtained, and then an

open-loop periodic switching policy is constructed by using a doubly substochastic matrix. The authors

show that the presented switching policy achieves the best estimation performance as the period length

goes to zero (and thus sensors are switched as fast as possible). In this paper, a comparison of both the

performance and the computational complexity of our methodology with the existing work in [15]–[17]

will be provided.

The sensor scheduling framework presented in this paper relies on making a one-to-one correspondence

between every sensor and a column of the estimator gain. Namely, a sensor being off at a certain time

instant is equivalent to the corresponding column of the estimator gain being identically zero. This idea has

been exploited in our earlier work [21] on sparsity-promoting extended Kalman filtering, where sensors

are scheduled only for the next time step and have no resources constraints involved. Different from

[21], we consider a periodic sensor scheduling problem on an infinite time horizon, where measurement

frequency constraints and periodicity place further restrictions on the number of nonzero columns of the

time-periodic Kalman filter gain matrices.
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Counting and penalizing the number of nonzero columns of the estimator gain, which in this work is

performed via the use of the cardinality function, results in combinatorial optimization problems that are

intractable in general. It has been recently observed in [21]–[23] that the alternating direction method

of multipliers (ADMM) is a powerful tool for solving optimization problems that include cardinality

functions. Particularly, reference [22] considers the problem of finding optimal sparse state feedback

gains and demonstrates the effectiveness of ADMM in finding such gains. However, different from [22],

we extend the application of ADMM to account for the time periodicity. Furthermore, we incorporate

measurement frequency constraints where subtle relationships between the sparsity-promoting parameter

and the frequency parameter come into play.

The main contributions of this paper can be summarized as follows.

• We develop a general optimization framework for the joint design of optimal periodic sensor

schedules (on an infinite time horizon) and optimal estimator (Kalman filter) gain matrices.

• We demonstrate that the optimal periodic Kalman filter gain matrices should satisfy a coupled

sequence of periodic Lyapunov recursions. We introduce a new block-cyclic representation to trans-

form the coupled matrix recursions into algebraic matrix equations. In particular, this allows the

application of the efficient Anderson-Moore method in solving the optimization problem.

• Through application of the alternating direction method of multipliers, we uncover subtle relation-

ships between the frequency constraint parameter, the sparsity-promoting parameter, and the sensor

schedule.

• We present a comparison of both the performance and the computational complexity of our method-

ology with other prominent work in the literature. We demonstrate that our method performs as well

or significantly better than these works, and is computationally efficient for sensor scheduling in

problems with large-scale dynamical systems.

The rest of the paper is organized as follows. In Section II, we motivate the problem of periodic sensor

scheduling on an infinite time horizon. In Section III, we formulate the sparsity-promoting periodic sensor

scheduling problem. In Section IV, we invoke the ADMM method, which leads to a pair of efficiently

solvable subproblems. In Section V, we illustrate the effectiveness of our proposed approach through

examples. Finally, in Section VI we summarize our work and discusses future research directions.
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II. PERIODICITY OF INFINITE HORIZON SENSOR SCHEDULING

Consider a discrete-time linear dynamical system evolving according to the equations

xk+1 = Axk + Bwk, (1)

yk = Cxk + vk, (2)

where xk ∈ RN is the state vector at time k, yk ∈ RM is the measurement vector whose mth entry

corresponds to a scalar observation from sensor m, A, B, and C are matrices of appropriate dimensions.

The inputs wk and vk are white, Gaussian, zero-mean random vectors with covariance matrices Q

and R, respectively. Finally, we assume that (A,C) is detectable and (A,Σ) is stabilizable, where

ΣΣT = BQBT .

For ease of describing the sensor schedule, we introduce the auxiliary binary variables ζk,m ∈ {0, 1}, to

represent whether or not the mth sensor is activated at time k. The sensor schedule over an infinite time

horizon can then be denoted by µ∞ = [ζ1, ζ2, . . .], where the vector ζk = [ζk,1, . . . , ζk,M ]T indicates

which sensors are active at time k. The performance of an infinite-horizon sensor schedule is then

measured as follows [15], [16],

J(µ∞) , lim
K→∞

1

K

K∑
k=1

tr (Pk) (3)

where Pk is the estimation error covariance at time k under the sensor schedule µ∞. Due to the

combinatorial nature of the problem, it is intractable to find the optimal sensor schedule that minimizes

the cost (3) in general [16].

In [18], it was suggested that the optimal sensor schedule can be treated as a time-periodic schedule

over the infinite time horizon if the system (1)-(2) is detectable and stabilizable. Furthermore, in [14]

it was proved that the optimal sensor schedule for an infinite horizon problem can be approximated

arbitrarily well by a periodic schedule with a finite period, and that the error covariance matrix converges

to a unique limit cycle. In this case, the cost in (3) can be rewritten as

J(µK) =
1

K

K−1∑
k=0

tr (Pk) (4)

where K is the length of the period and Pk is the error covariance matrix at instant k of its limit cycle.

In this work, similar to [14]–[16], we assume the length K of the period is given. To the best knowledge

of the authors, it is still an open problem to find the optimal period length.
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III. PROBLEM FORMULATION

For the discrete-time linear dynamical system (1)–(2), we consider state estimators of the form

x̂k+1 = Ax̂k + Lk(yk −Cx̂k) = (A− LkC)x̂k + Lkyk,

where Lk is the estimator gain (also known as the observer gain [24]) at time k. In what follows we

aim to determine the matrices Lk, k = 0, 1, . . ., by solving an optimization problem that, in particular,

promotes the column sparsity of Lk. We define the estimation error covariance Pk as

Pk = E{(xk − x̂k)(xk − x̂k)
T },

where E is the expectation operator.1 It is easy to show that Pk satisfies the Lyapunov recursion

Pk+1 = (A− LkC)Pk(A− LkC)T + BQBT + LkRLTk . (5)

Finally, partitioning the matrices Lk and C into their respective columns and rows, we have

LkC =
[
Lk,1 Lk,2 . . . Lk,M

]


CT
1

CT
2

...

CT
M


= Lk,1C

T
1 + Lk,2C

T
2 + · · ·+ Lk,MCT

M , (6)

where we assume that each row of C characterizes the measurement of one sensor. Therefore, each

column of the matrix Lk can be thought of as corresponding to the measurement of a particular sensor.

In estimation and inference problems using wireless sensor networks, minimizing the energy consump-

tion of sensors is often desired [8], [19]. Therefore, we seek algorithms that schedule the turning on and

off of the sensors in order to strike a balance between energy consumption and estimation performance.

Suppose, for example, that at time step k only the νth sensor reports a measurement. In this case, it

follows from (6) that LkC = Lk,νC
T
ν , where CT

ν is the νth row of C. This can also be interpreted

as having the column vectors Lk,m equal to zero for all m 6= ν. Thus, hereafter we assume that the

measurement matrix C is constant and the scheduling of the sensors is captured by the nonzero columns

of the estimator gains Lk, in the sense that if Lk,m = 0 then at time k the mth sensor is not making a

measurement.

1In the system theory literature, x̂k and Pk are often denoted by x̂k|k−1 and Pk|k−1; here we use x̂k and Pk for simplicity

of notation.
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As stated in Sec. II, in this work we search for optimal time-periodic sensor schedules, i.e., we seek

optimal sequences {Lk}k=0,1,...,K−1 and {Pk}k=0,1,...,K−1 that satisfy

Lk+K = Lk, Pk+K = Pk, (7)

where K is a given period. Note that the choice of K is not a part of the optimization problem considered

in this paper. As suggested in [14], one possible procedure for choosing K is to find the optimal sensor

schedule for gradually-increasing values of K until the performance ceases to improve significantly.

Furthermore, the condition on the periodicity of Pk assumes that the system and estimator with Lk+K =

Lk have been running for a long time so that Pk has reached its steady-state limit cycle [14]. In this

paper, we consider k = −∞ as the initial time and without loss of generality consider the design of Lk

over the period k = 0, 1, . . . ,K − 1, when the system has statistically settled into its periodic cycle.

To incorporate the energy constraints on individual sensors over a period of length K, we consider
K−1∑
k=0

card
(
‖Lk,m‖2

)
≤ ηm, m = 1, 2, . . . ,M, (8)

where ηm denotes the measurement frequency bound. This implies that the mth sensor can make and

transmit at most ηm measurements over the period of length K. For simplicity, we assume η1 = η2 =

. . . = ηM = η. We remark that the proposed sensor scheduling methodology in this article applies equally

well to the case where the ηi are not necessarily equal to each other.

Next, we formulate the optimal periodic sensor scheduling problem considered in this work, and then

elaborate on the details of our formulation. We pose the optimal sensor scheduling problem as the

optimization problem

minimize
K−1∑
k=0

tr(Pk) + γ

K−1∑
k=0

g(Lk)

subject to


Lyapunov recursion (5) for k= 0,1, . . . ,K−1,

periodicity condition (7),

measurement frequency constraints (8),

(9)

where the matrices {Lk}k=0,··· ,K−1 are the optimization variables, card(·) denotes the cardinality function

which gives the number of nonzero elements of its (vector) argument, and

g(Lk) := card
( [
‖Lk,1‖2 ‖Lk,2‖2 · · · ‖Lk,M‖2

] )
. (10)

Therefore g(Lk) is equal to the number of nonzero columns of Lk, also referred to as the column-

cardinality of Lk. The incorporation of the sparsity-promoting term g(·) in the objective function en-

courages the use of a small subset of sensors at each time instant. The positive scalar γ characterizes
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the relative importance of the two conflicting terms in the objective, namely the relative importance of

achieving good estimation performance versus activating a small number of sensors.

Note that (9) is a combinatorial problem [25] and, for large systems, computationally intractable in

general. Motivated by [22], in the next section we employ the alternating direction method of multipliers

(ADMM) to solve (9). We demonstrate that the application of ADMM leads to a pair of efficiently

solvable subproblems.

IV. OPTIMAL PERIODIC SENSOR SCHEDULING USING ADMM

In this section, we apply ADMM to the sensor scheduling problem (9). Our treatment uses ideas

introduced in [22], where ADMM was used for the identification of optimal sparse state-feedback gains.

We extend the framework of [22] to account for the time periodicity of the estimator gains, their sparsity

across both space and time, and the addition of measurement frequency constraints on individual sensors.

We begin by reformulating the optimization problem in (9) in a way that lends itself to the application

of ADMM. For Pk that satisfies the Lyapunov recursion in (5), it is easy to show that

Pk = BQBT + Lk−1RLTk−1

+

−∞∑
n=k−1

(A− Lk−1C) · · · (A− LnC)

· (BQBT + Ln−1RLTn−1)

· (A− LnC)T · · · (A− Lk−1C)T .

Invoking the periodicity of Lk, tr(Pk) can be expressed as a function fk of {Lk}k=0,··· ,K−1 so that the

optimization problem (9) can be rewritten as

minimize
K−1∑
k=0

fk(L0, · · · ,LK−1) + γ

K−1∑
k=0

g(Lk)

subject to
K−1∑
k=0

card
(
‖Lk,m‖2

)
≤ η, m = 1, 2, . . . ,M.

We next introduce the indicator function corresponding to the constraint set of the above optimization

problem as [23]

I({Lk}) =


0 if

∑K−1
k=0 card

(
‖Lk,m‖2

)
≤ η

for m = 1, 2, . . . ,M,

+∞ otherwise,

(11)
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where for notational simplicity we have used, and henceforth will continue to use, {·} instead of

{·}k=0,...,K−1. Incorporating the indicator function into the objective function, problem (9) is equivalent

to the unconstrained optimization problem

minimize
K−1∑
k=0

fk({Lk}) + γ

K−1∑
k=0

g(Lk) + I({Lk}).

Finally, we introduce the new set of variables {Gk}, together with the new set of constraints Lk = Gk,

k = 0, 1, . . . ,K − 1, and formulate

minimize
K−1∑
k=0

fk({Lk}) + γ

K−1∑
k=0

g(Gk) + I({Gk})

subject to Lk = Gk, k = 0, 1, . . . ,K − 1,

(12)

which is now in a form suitable for the application of ADMM.

The augmented Lagrangian [22], [26] corresponding to optimization problem (12) is given by

L ({Lk}, {Gk}, {Λk})

=

K−1∑
k=0

fk({Lk}) + γ

K−1∑
k=0

g(Gk) + I({Gk})

+

K−1∑
k=0

tr[Λk(Lk −Gk)] +
ρ

2

K−1∑
k=0

||Lk −Gk||2F , (13)

where the matrices {Λk} are the Lagrange multipliers (also referred to as the dual variables), the scalar

ρ > 0 is a penalty weight, and ‖ · ‖F denotes the Frobenius norm of a matrix, ‖X‖2F = tr(XTX). The

ADMM algorithm can be described as follows [26]. For i = 0, 1, . . ., we iteratively execute the following

three steps

{Li+1
k } := arg min

{Lk}
L ({Lk}, {Gi

k}, {Λi
k}), (14)

{Gi+1
k } := arg min

{Gk}
L ({Li+1

k }, {Gk}, {Λi
k}), (15)

Λi+1
k := Λi

k + ρ(Li+1
k −Gi+1

k ), k = 0, 1, . . . ,K−1, (16)

until both of the conditions
∑K−1

k=0 ‖L
i+1
k −Gi+1

k ‖F ≤ ε, and
∑K−1

k=0 ‖G
i+1
k −Gi

k‖F ≤ ε are satisfied.

The rationale behind using ADMM can be described as follows [22]. The original nonconvex optimiza-

tion problem (9) is difficult to solve due to the nondifferentiability of the sparsity-promoting function

g. By defining the new set of variables {Gk}, we effectively separate the original problem into an “L-

minimization” step (14) and a “G-minimization” step (15), of which the former can be addressed using

variational methods and descent algorithms and the latter can be solved analytically.



10

We summarize our proposed method on periodic sensor scheduling in Algorithm 1. In the subsections

that follow, we will elaborate on each of the steps involved in the implementation of Algorithm 1 and

the execution of the minimization problems (14) and (15).

Algorithm 1 ADMM-based sensor scheduling algorithm

1: Require: Choose ρ, ε. Initialize ADMM using {Λ0
k} = {G0

k} = {0} and {L0
k} from (27).

2: for i = 0, 1, . . . do

3: Obtain {Li+1
k } using Algorithms 2-3.

4: Obtain {Gi+1
k } using Algorithm 4.

5: Obtain {Λi+1
k } using Λi+1

k = Λi
k + ρ(Li+1

k −Gi+1
k ), k = 0, 1, . . . ,K − 1.

6: until
∑K−1

k=0 ‖L
i+1
k −Gi+1

k ‖F ≤ ε and∑K−1
k=0 ‖G

i+1
k −Gi

k‖F ≤ ε.

7: end for

A. L-minimization using the Anderson-Moore method

In this section, we apply the Anderson-Moore method to the L-minimization step (14). The Anderson-

Moore method is an iterative technique for solving systems of coupled matrix equations efficiently. We

refer the reader to [22] for a more detailed discussion of its applications and related references. In what

follows, we extend the approach of [22] to account for the periodicity of the sensor schedule.

Completing the squares with respect to {Lk} in the augmented Lagrangian (13), the L-minimization

step in (14) can be expressed as [22], [26]

minimize
K−1∑
k=0

fk({Lk}) +

K−1∑
k=0

ρ

2
||Lk −Ui

k||2F (17)

where Ui
k := Gi

k − (1/ρ)Λi
k for k = 0, 1, . . . ,K − 1. For notational simplicity, henceforth we will use

Uk instead of Ui
k, where i indicates the iteration index. We bring attention to the fact that, by defining

the indicator function I in (11) and then splitting the optimization variables in (12), we have effectively

removed both sparsity penalties and energy constraints from the variables {Lk} in the L-minimization

problem (17). This is a key advantage of applying ADMM to the sensor scheduling problem.
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Recalling the definition of fk, problem (17) can be equivalently written as

minimize φ({Lk}) :=

K−1∑
k=0

tr(Pk) +

K−1∑
k=0

ρ

2
||Lk −Uk||2F

subject to


Lyapunov recursion (5) for k = 0, 1, . . . ,K−1,

periodicity condition (7).

Proposition 1: The necessary conditions for the optimality of a sequence {Lk} can be expressed as

the set of coupled matrix recursions

Pk+1 = (A− LkC)Pk(A− LkC)T + BQBT + LkRLTk

Vk = (A− LkC)TVk+1(A− LkC) + I

0 = 2Vk+1LkR− 2Vk+1(A− LkC)PkC
T+ ρ(Lk −Uk)

for k = 0, . . . ,K − 1, where Uk := Gi
k − (1/ρ)Λi

k and LK = L0, PK = P0. The expression on the

right of the last equation is the gradient of φ with respect to Lk.

Proof: See appendix A. �

Due to their coupling, it is a difficult exercise to solve the above set of matrix equations. We thus

employ the Anderson-Moore method [22], [27], which is an efficient technique for iteratively solving

systems of coupled Lyapunov and Sylvester equations. We note, however, that the set of matrix equations

given in the proposition include (periodic) Lyapunov recursions rather than (time-independent) Lyapunov

equations. We next apply what can be thought of as a lifting procedure [28] to take the periodicity out of

these equations and place them in a form appropriate for the application of the Anderson-Moore method.

Let T denote the following permutation matrix in block-cyclic form [29]

T :=


0 I

I
. . .
. . . . . .

I 0
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where I is a N ×N identity matrix, and define

L := T diag{Lk} =


0 LK−1

L0

. . . . . .

LK−2 0

 ,

P := diag{Pk}, V := diag{Vk}, U := T diag{Uk},

Q := diag{Q}, R := diag{R}, I := diag{I},

A := T diag{A}, B := diag{B}, C := diag{C}.

In the sequel, we do not distinguish between the sequence {Lk} and its cyclic form L, and will alternate

between the two representations as needed. The recursive equations in the statement of Proposition 1 can

now be rewritten in the time-independent form

P = (A−LC)P(A−LC)T + BQBT + LRLT (18)

V = (A−LC)TV(A−LC) + I (19)

0 = 2VLR− 2V(A−LC)PCT + ρ(L− U) (20)

Furthermore, defining

∇Φ := T diag{∇Lk
φ} =


0 ∇LK−1

φ

∇L0
φ

. . .

. . . . . .

∇LK−2
φ 0


it can be shown that

∇Φ = 2VLR− 2V(A−LC)PCT + ρ(L− U), (21)

i.e., the right side of (20) gives the gradient direction for L, or equivalently the gradient direction for

each Lk, k = 0, 1, . . . ,K − 1.

We briefly describe the implementation of the Anderson-Moore method as follows. For each iteration

of this method, we first keep the value of L fixed and solve (18) and (19) for P and V , then keep P and

V fixed and solve (20) for a new value Lnew of L. Proposition 2 shows that the difference L̃ := Lnew−L

between the values of L over two consecutive iterations constitutes a descent direction for φ({Lk}); see

[22], [27] for related results. We employ a line search [25] to determine the step-size s in L+sL̃ in order
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to accelerate the convergence to a stationary point of φ. We also assume that there always exists an L

that satisfies the measurement frequency constraint and for which the spectrum of A−LC is contained

inside the open unit disk; we elaborate on this condition in Section IV-C. These assumptions guarantee

the existence of unique positive definite solutions P and V to Equations (18) and (19) [30].

Proposition 2: The difference L̃ := Lnew −L constitutes a descent direction for φ({Lk}),

〈∇Φ, L̃〉 < 0, (22)

where 〈∇Φ, L̃〉 := tr(∇ΦT L̃) =
∑K−1

k=0 tr(∇Lk
φTLk). Moreover, 〈∇Φ(L), L̃〉 = 0 if and only if L is

a stationary point of Φ, i.e., ∇Φ(L) = 0.

Proof: The proof is similar to [31, Prop. 1] and omitted for brevity. �

We summarize the Anderson-Moore method for solving the L-minimization step in Algorithm 2. This

algorithm calls on the Armijo rule [32], given in Algorithm 3, to update L.

Algorithm 2 L-minimization step (14), in the ith iteration of ADMM, using Anderson-Moore

1: If i = 0, choose L0 from (27). If i ≥ 1, set L0 equal to solution of (14) from previous ADMM

iteration.

2: for t = 0, 1, . . . do

3: Set L = Lt and solve (18), (19) to find P t, V t.

4: Set V = V t, P = P t and solve (20) to find L̄t.

5: Compute L̃t = L̄t −Lt and update Lt+1 = Lt + stL̃t, where st given by Armijo rule (see

Algorithm 3).

6: until ‖∇Φ(Lt)‖ < ε.

7: end for

Algorithm 3 Armijo rule for choosing step-size st

1: Set st = 1 and choose α, β ∈ (0, 1).

2: repeat

3: st = βst,

4: until φ(Lt + stL̃t) < φ(Lt) + α st tr
(
∇Φ(Lt)T L̃t

)
.
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B. G-minimization

In this section, we consider the G-minimization step (15) and demonstrate that it can be solved

analytically. In what follows, we extend the approach of [22] to account for the periodicity and energy

constraints in the sensor schedule.

Completing the squares with respect to {Gk} in the augmented Lagrangian (13), the G-minimization

step in (15) can be expressed as [22], [26]

minimize γ

K−1∑
k=0

g(Gk) +
ρ

2

K−1∑
k=0

||Gk − Sik||2F

subject to
K−1∑
k=0

card
(
‖Gk,m‖2

)
≤ η, m = 1, 2, . . . ,M,

where Sik := Li+1
k + (1/ρ)Λi

k for k = 0, 1, . . . ,K − 1. For notational simplicity, henceforth we will

use Sk instead of Sik, where i indicates the iteration index. Recalling the definition of g from (10), and

replacing ||Gk − Sk||2F with
∑M

m=1 ‖Gk,m − Sk,m‖22 yields the equivalent optimization problem

minimize ψ({Gk}) :=

M∑
m=1

(K−1∑
k=0

γ card
(
‖Gk,m‖2

)
+

K−1∑
k=0

ρ

2
‖Gk,m − Sk,m‖22

)
subject to

K−1∑
k=0

card
(
‖Gk,m‖2

)
≤ η, m = 1, 2, . . . ,M,

where we have exploited the column-wise separability of g(·) and that of the Frobenius norm.

We form the matrix Gm by picking out the mth column from each of the matrices in the set {Gk} and

stacking them, Gm :=
[
G0,m G1,m · · · GK−1,m

]
. Then the G-minimization problem decomposes

into the subproblems

minimize ψm(Gm) :=

K−1∑
k=0

γ card
(
‖Gk,m‖2

)
+

K−1∑
k=0

ρ

2
‖Gk,m − Sk,m‖22

subject to
K−1∑
k=0

card
(
‖Gk,m‖2

)
≤ η,

(23)

which can be solved separately for m = 1, 2, . . . ,M .

To solve problem (23) we rewrite the feasible set F of (23), F =
{
Gm :

∑K−1
k=0 card

(
‖Gk,m‖2

)
≤ η
}
,

as the union F = F0 ∪ F1 ∪ · · · ∪ Fη of the smaller sets Fq, q = 0, . . . , η,

Fq =
{
Gm :

K−1∑
k=0

card
(
‖Gk,m‖2

)
= q
}
.
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Let Gqm denote a solution of
minimize ψm(Gm)

subject to Gm ∈ Fq.
(24)

Then a minimizer of (23) can be obtained by comparing ψm(Gqm) for q = 0, . . . , η and choosing the one

with the least value. The above procedure, together with finding the solution of (24), is made precise by

the following proposition.

Proposition 3: The solution of (23) is obtained by solving the sequence of minimization problems

(24) for q = 0, 1, . . . ,min{η, κ}, κ =
∑K−1

k=0 card
(
‖Sk,m‖2

)
. Furthermore, the solution of (24) is given

by

Gk,m =


Sk,m ||Sk,m||2 ≥ ||[Sm]q||2 and q 6= 0,

0 otherwise,

for k = 0, 1, · · · ,K − 1, where Sk := Li+1
k + (1/ρ)Λi

k, Sm := [S0,m, · · · ,SK−1,m], [Sm]q denotes the

qth largest column of Sm in the 2-norm sense, and Gk,m, Sk,m denote the mth columns of Gk, Sk,

respectively.

Proof: See Appendix B. �

We note that problem (23) can be solved via a sequence of equality constrained problems (24) whose

analytical solution is determined by Proposition 3. However, instead of solving min{η, κ} + 1 equality

constrained problems, it is shown in Proposition 4 that the solution of the G-minimization problem (23)

is determined by the magnitude of the sparsity-promoting parameter γ.

Proposition 4: The solution Gm of (23) is determined by solving one subproblem (24) based on the

value of γ,

Gm =



G0
m

ρ
2‖[Sm]1‖22 < γ

G1
m

ρ
2‖[Sm]2‖22 < γ ≤ ρ

2‖[Sm]1‖22
...

...

Gmin{η,κ}
m γ ≤ ρ

2‖[Sm]min{η,κ}‖22

(25)

where Gqm denotes a solution of (24) with q = 0, 1, . . . ,min{η, κ}, and κ and [Sm]q are defined as in

Proposition 3.

Proof: See Appendix C. �

It is clear from Proposition 4 that the parameter γ governs the column-sparsity of Gm. For example,

Gm becomes the zero matrix as γ → ∞, which corresponds to the scenario in which all sensors are

always inactive.
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To reiterate, in order to solve the G-minimization problem (15), we first decompose it into the

M subproblems (23) with separate optimization variables {Gm}m=1,...,M . Each inequality constrained

subproblem (23) is then solved via Proposition 4, in which the solution of the equality constrained problem

(24) is determined by Proposition 3. We summarize this procedure in Algorithm 4.

Algorithm 4 G-minimization step (15)

1: Given η and Sk = Li+1
k + 1/ρΛi

k, set

κ =
∑K−1

k=0 card
(
‖Sk,m‖2

)
.

2: for m = 1, . . . ,M do

3: Set Sm = [S0,m, · · · ,SK−1,m].

4: Solve (23) using Prop. 4 to obtain Gm = Gqm, where Gqm is determined from Prop. 3.

5: end for

6: Use {Gm}m=1,...,M to construct {Gk}k=0,1,...,K−1.

C. Convergence & Initialization of ADMM-based periodic sensor scheduling

The solution of ADMM for a nonconvex problem generally yields a locally optimal point, and in general

depends on the parameter ρ and the initial values of {Lk} and {Gk} [26]. In fact for a nonconvex problem,

such as the one considered here, even the convergence of ADMM is not guaranteed [26]. Our numerical

experiments and those in other works such as [22] demonstrate that ADMM indeed works well when the

value of ρ is chosen to be large. However, very large values of ρ make the Frobenius norm dominate the

augmented Lagrangian (13) and thus lead to less emphasis on minimizing the estimation error. In order

to select an appropriate value of ρ, certain extensions (e.g., varying penalty parameter) of the classical

ADMM algorithm have been explored. The reader is referred to [26, Sec. 3].

To initialize the estimator gain {Lk}, we start with a feasible initializing sensor schedule. Such a

schedule can be expressed in terms of the observation matrices over one period, namely, C(k) =

[ζk,1C1, . . . , ζk,MCM ]T for k = 0, 1, . . . ,K−1, where the binary variable ζk,m indicates whether or not

the mth sensor is active at time k. Note that the periodic sensor schedule {C(k)} uniquely determines

the limit cycle of the periodic error covariance matrix [14]. We express the periodic sensor schedule



17

{C(k)} in cyclic form

C0 :=T diag{C(k)}=


0 C(K − 1)

C(0)

. . . . . .

C(K − 2) 0

 ,

and solve the following algebraic Riccati equation for the cyclic form of {Pk}

P = Q + APAT −APC0T (C0PC0T + R)−1C0PA−1, (26)

where P , Q, A and R have the same definitions as in Sec. IV-A. The Riccati equation (26) gives the

optimal periodic estimator gain corresponding to a discrete-time system with given periodic observation

matrices {C(k)}. Once the solution of (26) is found, the corresponding estimator gain in cyclic form is

given by [24]

L0 = APC0T (C0PC0T + R)−1T 0, (27)

where T 0 has the same block-cyclic form of T but is instead formed using M×M identity matrices.

It is not difficult to show that the matrix L0 in (27) has the same sparsity pattern as C0. Thus, the

sequence {L0
k} obtained from L0 respects the energy constraints and can be used to initialize ADMM.

Furthermore, we assume that (C0,A) is observable, which guarantees that the spectrum of A − L0C0

is contained inside the open unit disk and thus the initializing estimator gains {L0
k} will be stabilizing.

Finally, for simplicity {Gk} is initialized to Gk = 0, k = 0, 1, . . . ,K − 1.

D. Complexity analysis

It has been shown that ADMM typically takes a few tens of iterations to converge with modest

accuracy for many applications [21]–[23], [26], [27]. The computational complexity of each iteration of

ADMM is dominated by the L-minimization step, since the analytical solution of the G-minimization

step can be directly obtained and the dual update is calculated by matrix addition. For the L-minimization

subproblem, the descent Anderson-Moore method requires the solutions of two Lyapunov equations (18)-

(19) and one Sylvester equation (20) at each iteration. To solve them, the Bartels-Stewart method [33]

yields the complexity O(K3N3+K3M3+K3MN2+K3NM2), where K is the length of the period, M

is the number of sensors and N is the dimension of the state vector. We also note that the convergence

of the Anderson-Moore method is guaranteed by Prop. 2, and it typically requires a small number of

iterations because of the implementation of the Armijo rule.
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For additional perspective, we compare the computational complexity of our proposed methodology

to a periodic sensor scheduling problem that is solved by semidefinite programming (SDP), for example

as done in [16]. The complexity of SDP is approximated by O(a2b2.5 + ab3.5) [34], where a and b

denote the number of optimization variables and the size of the semidefinite matrix, respectively. For the

linear matrix inequality (LMI) problem proposed in [16], the computation complexity is determined by

a = N(N + 1)/2 +M and b = (K + 1)N +M . Thus, problems involving large-scale dynamical system

with many state variables, result in large SDPs with computation complexity O(N6.5). It can be seen

that our approach reduces the computational complexity by a factor of N3.5 compared to the LMI-based

method of [16].

V. EXAMPLE: FIELD ESTIMATION OF A SPATIALLY EXTENDED SYSTEM

In order to demonstrate the effectiveness of our proposed periodic sensor scheduling algorithm, we

consider the example of field monitoring. In this problem, sensors are deployed on a rectangular region

to estimate the state of a diffusion process described by the partial differential equation [8], [19]

∂ξ(s, t)

∂t
= ∇2ξ(s, t) (28a)

with Dirichlet boundary conditions

ξ(s, · ) = 0 s ∈ ∂D (28b)

where ξ(s, t) denotes the field (or state) value at location s and time t, ∇2 denotes the Laplace operator,

and ∂D denotes the boundary of a rectangular region of interest D.

We consider a spatially-discretized approximation of (28) and our aim is to estimate the state over

the entire discrete lattice using a small number of sensors; see Fig. 1 for an example. With an abuse of

notation, a simple discrete approximation of (28) can be generated by setting [8]

∇2ξ(s, t)
∣∣
s=(i,j)

≈ ξ(i+ 1, j, t)− 2ξ(i, j, t) + ξ(i− 1, j, t)

h2

+
ξ(i, j + 1, t)− 2ξ(i, j, t) + ξ(i, j − 1, t)

h2
, (29)

for i = 0, 1, . . . , `h and j = 0, 1, . . . , `v, where `h+2 and `v+2 are the width and length of a rectangular

region, respectively; for example, `h = `v = 4 in Fig. 1. In (29), h denotes the physical distance between

the lattice points, and ξ(−1, j, t) = ξ(`h + 1, j, t) = ξ(i,−1, t) = ξ(i, `v + 1, t) = 0 for all indices i, j

and time t.

From (28) and (29), we can obtain the evolution equations d
dtx(t) = A∆x(t), where x(t) ∈ RN ,

N = (`h + 1)×(`v + 1), denotes the state vector x(t) = [ξ(0, 0, t), ξ(0, 1, t), . . . , ξ(`h, `v, t)]
T , and A∆
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Fig. 1: M = 10 sensors deployed in a 6× 6 region.

can be directly computed from (29). Finally, applying a discretization in time and introducing process

noise (i.e., a spatio-temporal random field) into the evolution yields

xk+1 = Axk + wk.

Here, xk is the state vector, wk is a white Gaussian process with zero mean and covariance matrix Q,

A is the system transition matrix A = eA∆T , and T is the temporal sampling interval.

We assume that M sensors, M < N , are deployed and make measurements of the state according to

yk = Cxk + vk,

where yk ∈ RM is the measurement vector, vk denotes the measurement noise which is a white Gaussian

process with zero mean and covariance matrix R, and C is the M×N observation matrix. For example,

the case where the mth row of C contains only one nonzero entry equal to 1 corresponds to the scenario

in which the mth entry of yk represents measurements of the field at the location of the mth sensor.

We consider an instance in which M = 10 sensors are deployed to monitor N = 25 field points

shown in Fig. 1. We assume that each sensor can be selected at most η times, η ∈ {1, . . . , 10}, during

any period of length K = 10. Furthermore, we select T = 0.5, Q = 0.25 I, and R = I. The ADMM

stopping tolerance is ε = 10−3. In our computations, ADMM converges for ρ ≥ 10 and the required

number of ADMM iterations is approximately 20.

In Fig. 2, for our approach we present the estimation performance, namely the cumulative traces of

error covariance matrices over one period, respectively as a function of the cumulative column-cardinality

of {Lk} and the measurement frequency bound η. In the left plot, we fix η = 5 and vary γ, which results
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Fig. 2: Estimation performance obtained from our approach. Left plot: Tradeoff between estimation performance

and total number of sensors (in terms of column-cardinality of {Lk}) for a fixed η = 5; Right plot: Estimation

performance as a function of measurement frequency bound η.

in changes in the column-cardinality of {Lk} and renders the trade-off curve between the conflicting

objectives of good estimation performance and minimal sensor usage. Numerical results demonstrate that

as the column-cardinality of {Lk} increases and more sensors are activated, the estimation performance

improves. In the right plot, we observe that the estimation performance is improved by increasing η.

This is not surprising, as a larger value of η allows the (most informative) sensors to be active more

frequently.
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Fig. 3: Performance comparison of random schedules versus our proposed schedule.
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Next, we compare the estimation performance of our approach to that of random scheduling, where

the latter method refers to randomly selected sensor schedules that satisfy the measurement frequency

constraint and have the same total number of active sensors over one period as the schedule obtained

from our approach. The performance of the random strategy is taken to be the average of the traces of

error covariance matrices over 500 simulation trials. In Fig. 3, the estimation performance is presented

as a function of the measurement frequency bound η for three different values of the sparsity-promoting

parameter γ = 0, 0.1, 0.15. Numerical results show that our approach significantly outperforms the random

strategy for γ = 0.1, 0.15, as the former approach takes into account sensor activations over both time and

space. For γ = 0 there is no penalty on sensor activations, and to achieve the best estimation performance

every sensor is active η times per period (i.e., all sensors attain their measurement frequency bound). As

a consequence, the performance gap between our approach and that of the random strategy is not as large

for γ = 0 as it is for γ > 0. In our numerical experiments for smaller versions of this example, where

exhaustive searches are feasible, we observed that our proposed method yields sensor schedules that are

identical or close in performance to the globally optimal schedule found via an exhaustive search.

In Fig. 4, we use ADMM to obtain the sensor schedule over a time period of length K = 10 for

γ ∈ {0, 0.1, 0.15} and η ∈ {1, 5, 8}; the subplots represent increasing values of γ from left to right

and increasing values of η from top to bottom. In each subplot, the horizontal axis represents discrete

time, the vertical axis represents sensor indices, and circles represent activated sensors. We also observe

that sensors selected at two consecutive time instances tend to be spatially distant from each other. For

example, at time instants t = 1, 2, 3, the active sensors are 6, 9, 4, respectively.

In Figs. 4-(I-a), (I-b), and (I-c), we assume η = 1 and vary the magnitude of the sparsity-promoting

parameter γ. As seen in Fig. 4-(I-a), for γ = 0 every sensor is selected exactly once over K = 10 time

steps. Figs. 4-(I-b) and (I-c) demonstrate that fewer sensors are selected as γ is further increased. This is

to be expected, as the value of γ in (9) determines our emphasis on the column-cardinality of {Lk}.

In Figs. 4-(I-c), (II-c), and (III-c) for γ = 0.15 we compare the optimal time-periodic schedules for

different values of the frequency bound η = 1, 5, 8. Numerical results show that for γ = 0.15 the 6th

and 7th sensor are selected. To justify this selection, we note that these two sensors are located close to

the center of the spatial region D; see Fig. 1. Although we consider a random Gaussian field, the states

at the boundary ∂D are forced to take the value zero and the states closest to the center of D are subject

to the largest uncertainty. Therefore, from the perspective of entropy, the measurements taken from the

sensors 6 and 7 are the most informative for the purpose of field estimation. As we increase η, we allow

such informative sensors to be active more frequently.
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Fig. 4: I- Sensor scheduling schemes with measurement frequency bound η = 1: (I-a) γ = 0, (I-b) γ = 0.1,

(I-c) γ = 0.15. II- Sensor scheduling schemes with measurement frequency bound η = 5: (II-a) γ = 0, (II-b)

γ = 0.1, (II-c) γ = 0.15. III- Sensor scheduling schemes with measurement frequency bound η = 8: (III-a)

γ = 0, (III-b) γ = 0.1, (III-c) γ = 0.15.

Moreover, the sensor schedule in Fig. 4-(II-c) verifies the optimality of the uniform staggered sensing

schedule for two sensors, a sensing strategy whose optimality was proven in [20] and [15, Proposition

5.2]. In addition, although the periodicity of the sensor schedule was a priori fixed at the value K = 10,

as η increases numerical results demonstrate repetitive patterns in the optimal sensor schedule. As seen

in Figs. 4-(II-c) and (III-c), for η = 5 and η = 8 the sensor schedule repeats itself five times over 10 time

steps and two times over 10 time steps, respectively. This indicates that the value of the sensing period
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K can be made smaller than 10.

Comparison with existing methods

In this subsection, we compare the performance of our approach with that of methods proposed in

[15]–[17] and an exhaustive search that enumerates all possible measurement sequences. For tractability

in the exhaustive search, we consider a small random field where N = 4 and R = I. The values of

other system parameters K, M , T and Q are specified in the following numerical examples. Also we

set γ = 0 to make our approach comparable to the existing methods in [15]–[17]. The ADMM stopping

tolerance is chosen as ε = 10−3.
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Fig. 5: The periodic sensor schedule of two sensors with K = 7.

In Fig. 5, we study a numerical example stated in [15] and present the sensor schedules obtained from

our approach with K = 7, M = 2, T = 0.5, Q = 0.25I, η1 +η2 = 7 and η1 ∈ {1, 2, 3}. We observe that

the sensor with smaller value of measurement frequency bound (in the present example, this corresponds

to sensor one with η1 ∈ {1, 2, 3}) is scheduled as temporally uniformly as possible; the resulting periodic

sensor schedules are in agreement with those obtained in [15, Prop. 5.2].

In Fig. 6, we compare the performance of our approach with the periodic sensor scheduling method

in [16]; each plot in Fig. 6 represents the gap between the approach being considered and the globally

optimal sensor schedule as a function of the process noise variance q, with K = M = 4, T = 0.5, and

Q = qI. We recall that the periodic sensor scheduling problem in [16] is formulated under the assumption

of negligible process noise, and is solved using linear matrix inequalities (LMIs). The assumption that

process noise is negligible results in the insensitivity of the performance objective to the order in which
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Fig. 6: Performance gaps of the method in [16] and our approach with respect to the optimal schedule.

sensors are activated. This assumption holds for deep space applications considered in [18], but is not a

practical assumption in general. Fig. 6 demonstrates that for small values of q, our approach and that of

[16] yield very similar performance. However, for q > 0.1 our approach results in significant improvement

in estimation performance. That is due to the fact that our optimization procedure takes into account the

temporal ordering of sensor measurements.

In Fig. 7, we compare the performance of our proposed sensor scheduling approach and the periodic

switching policy of [17], where M = 4 and Q = 0.25I. In Fig. 7-(a), each plot represents the gap

between the approach being considered and the globally optimal sensor schedule for different values

of the sampling interval T , where K = 4, and T denotes the sampling time used to discretize the

continuous-time system in (28). Since K is the period in discrete time, the period length in continuous

time is given by ε = KT . Simulation results show that both of the sensor scheduling methods achieve

the performance of the globally optimal sensor schedule as T → 0. This is due to the fact that ε → 0

while T → 0. And it has been shown in [17] that the best estimation performance is attained by using

a periodic switching policy as ε → 0 (and thus sensors are switched as fast as possible). However,

as T increases, our approach outperforms the periodic switching policy significantly, which indicates

that the sensor schedules obtained from the method of [17] are inappropriate for scheduling sensors for

discrete-time systems with moderate sampling rates.

In Fig. 7-(b), we use the periodic switching policy of [17] to obtain the optimal sensor schedule and

compare its performance with our approach for the fixed sampling interval T = 0.5 and different values



25

10
−3

10
−2

1

2

3

4

5

6

7

8

9

10

x 10
−3

Sampling Interval T

T
ra

ce
 o

f E
st

im
at

io
n 

E
rr

or
 C

ov
ar

ia
nc

e

 

 

Performance Gap for the Periodic
Switching Policy of [19]

Performance Gap for Our Approach

(a)

3 4 5 6 7 8 9
8.8

8.9

9

9.1

9.2

9.3

9.4

9.5

Period Length K

T
ra

ce
 o

f A
ve

ra
ge

d 
E

st
im

at
io

n 
E

rr
or

 C
ov

ar
ia

nc
e

 

 

Our Approach
Periodic Switching Policy of [19]

(b)

Fig. 7: Performance comparison with the periodic switching policy of [17]: a) Performance gaps of the periodic

switching policy of [17] and our approach with respect to the optimal schedule; b) Performance comparison

between our approach and the periodic switching policy of [17] for different values of period lengths.

of K. Fig. 7-(b) demonstrates that the periodic switching policy of [17] loses optimality as K increases.

This is not surprising, since the optimality of the periodic switching policy is only guaranteed as the

period length goes to zero. Therefore, to schedule sensors on a discrete-time system with a moderate

sampling interval, such as T = 0.5 in the present example, our approach achieves better estimation

performance than the periodic switching policy of [17].
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VI. CONCLUSION

In this paper, we studied the problem of sensor scheduling for linear dynamical systems. We proposed

an algorithm that determines optimal time-periodic sensor schedules. In order to strike a balance between

estimation accuracy and the number of sensor activations, the optimization problem aims to minimize the

trace of the estimation error covariance matrices while penalizing the number of nonzero columns of the

estimator gains. We employed ADMM, which allows the optimization problem to be decomposed into

subproblems that can either be solved efficiently using iterative numerical methods or solved analytically

to obtain exact solutions. Our results showed that our approach outperforms previously available periodic

sensor scheduling algorithms.

In this paper, we assumed that the period length of the periodic sensor schedule is fixed and is not

an optimization variable. This leaves open the question of how to find the optimal period. Also, we

characterized the sensor energy cost in terms of the number of times each sensor can be activated

over a period. In future work, instead of a “hard” constraint on the measurement frequency bound,

we could consider more practical energy models to take into account the cost of repetitively selecting

the informative sensors. Furthermore, in order to reduce the computation burden of the fusion center,

developing a decentralized architecture where ADMM can be carried out in a distributed way and by the

sensors themselves is another future research direction.

APPENDIX A

PROOF OF PROPOSITION 1

The optimization problem (17) is equivalent to

minimize φ({Lk}) =

K−1∑
k=0

tr(Pk) +
ρ

2

K−1∑
k=0

tr[(Lk −Uk)
T (Lk −Uk)]

subject to Pk+1 = (A− LkC)Pk(A− LkC)T + BQBT + LkRLTk .

(L-Φ)

To find the necessary conditions for optimality, we find the gradient of φ and set ∇Lk
φ = 0 for k =

0, 1, · · · ,K − 1.

We begin by assuming an incremental change in the unknown variables {Lk} and finding the resulting

incremental change to the value of the objective. Replacing Lk with Lk + δLk and φ with φ+ δφ in the

objective function of (L-Φ) and collecting first order variation terms on both sides, we obtain

δφ =

K−1∑
k=0

tr(δPk) +
ρ

2

K−1∑
k=0

tr[(Lk −Uk)
T δLk + δLTk (Lk −Uk)].



27

We note that for δLk to constitute a legitimate variation of Lk, it has to satisfy the periodicity property

δLk+K = δLk. Similarly, replacing Lk with Lk + δLk and Pk with Pk + δPk in the constraint equation

of (L-Φ) and collecting first-order variation terms on both sides, we obtain

δPk+1 = (A− LkC)δPk(A− LkC)T + δMk,

where

δMk = −δLkCPk(A− LkC)T − (A− LkC)PkC
T δLTk + δLkRLTk + LkR δLTk .

The difficulty with finding the gradient of φ from the above equation is the dependence of δφ on δPk,

with the dependence of δPk on δLk being through a Lyapunov recursion. In what follows, we aim to

express
∑K−1

k=0 tr(δPk) in terms of {δLk}.

It is easy to see that

δPk= δMk−1 +

−∞∑
n=k−1

(A− Lk−1C) · · · (A− LnC) · δMn−1 · (A− LnC)T · · · (A− Lk−1C)T .

Taking the trace of both sides of the equation and summing over k, we have
K−1∑
k=0

tr(δPk) =

K−1∑
k=0

tr(δMk−1) +

K−1∑
k=0

−∞∑
n=k−1

tr[(A− LnC)T · · · (A− Lk−1C)T

(A− Lk−1C) · · · (A− LnC)δMn−1],

where we have used the property of the trace to change the order of the terms inside the square brackets.

Now exploiting the periodicity properties Lk+K = Lk, δLk+K = δLk, Pk+K = Pk, which also imply

the periodicity δMk+K = δMk of {δMk}, the double sum in the last equation above can be rewritten

to give
K−1∑
k=0

tr(δPk) =

K−1∑
n=0

tr{[I +

+∞∑
k=n+1

(A−LnC)T · · ·(A−Lk−1C)T I(A− Lk−1C) · · · (A− LnC)]δMn−1}.

To help with the simplification of the above sums, we define the new matrix variable Vn as

Vn = I +

+∞∑
k=n+1

(A− LnC)T · · · (A− Lk−1C)T I(A− Lk−1C) · · · (A− LnC).

It can be seen that {Vn} is periodic, Vn+K = Vn, and satisfies

Vn = (A− LnC)TVn+1(A− LnC) + I.

Returning to
∑K−1

k=0 tr(δPk) and using the definition of Vn, we obtain
K−1∑
k=0

tr(δPk) =

K−1∑
n=0

tr(VnδMn−1) =

K−1∑
n=0

tr(Vn+1δMn),
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where the last equality results from the periodicity of {Vn} and {δMn}. Recalling that δMn can be

written explicity in terms of {δLk}, we have thus achieved our goal of expressing
∑K−1

k=0 tr(δPk) in

terms of {δLk}. We next carry out the last step required to find the gradient of φ.

Replacing
∑K−1

k=0 tr(δPk) with
∑K−1

k=0 tr(Vk+1δMk) in the expression for δφ, and using the definition

of δMk, we obtain

δφ =

K−1∑
k=0

tr(Vk+1δMk) +
ρ

2

K−1∑
k=0

tr[(Lk −Uk)
T δLk + δLTk (Lk −Uk)]

=2

K−1∑
k=0

tr[−CPk(A− LkC)TVk+1δLk+RLTkVk+1δLk] + ρ

K−1∑
k=0

tr[(Lk −Uk)
T δLk],

where we have used the properties of the trace to arrive at the last equality. Thus

∇Lk
φ = [−2CPk(A− LkC)TVk+1 +RLTkVk+1 +ρ(Lk −Uk)

T ]T .

Setting ∇Lk
φ = 0 gives the necessary condition for optimality

0 = −2Vk+1(A− LkC)PkC
T + 2Vk+1LkR + ρ(Lk −Uk),

where Pk and Vk satisfy the recursion euqations

Pk+1 = (A− LkC)Pk(A− LkC)T + BQBT + LkRLTk

Vk = (A− LkC)TVk+1(A− LkC) + I.

The proof is now complete. �

APPENDIX B

PROOF OF PROPOSITION 3

Problem (24) is equivalent to

minimize ψm(Gm) :=

K−1∑
k=0

γ card
(
‖Gk,m‖2

)
+

K−1∑
k=0

ρ

2
‖Gk,m − Sk,m‖22

subject to
K−1∑
k=0

card
(
‖Gk,m‖2

)
= q, q ∈ {0, . . . , η}

where Gm := [G0,m, · · · ,GK−1,m]. Similar to Gm, we form the matrix Sm by picking out the mth

column from each of the matrices in the set {Sk} and stacking them to obtain Sm := [S0,m, · · · ,SK−1,m].

We define κ :=
∑K−1

k=0 card
(
‖Sk,m‖2

)
, which gives the column-cardinality of Sm.

It can be shown that if q = κ then the minimizer Gκm of problem (24) is Sm, and ψm(Gκm) = γκ. If

q > κ, we have ψm(Gm) > ψm(Gκm) for arbitrary values of Gm ∈ Fq since ψm(Gm) = γq+ρ
2‖Gm−Sm‖

2
F
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which is greater than ψm(Gκm) = γκ. Therefore, the solution of (23) is only determined by solving the

sequence of minimization problems (24) for q = 0, 1, . . . ,min{η, κ} rather than q = 0, 1, · · · , η.

For a given q ∈ {0, 1,min{η, κ}}, problem (24) can be written as

minimize
Gm

K−1∑
k=0

ρ

2
||Gk,m − Sk,m||22

subject to
K−1∑
k=0

card
(
‖Gk,m‖2

)
= q.

For q = 0, the minimizer Gqm of the optimization problem is 0. For q 6= 0, it was demonstrated in

[23, Appendix B] that the solution is obtained by projecting the minimizer (Gm = Sm) of the objective

function onto the constraint set
∑K−1

k=0 card
(
‖Gk,m‖2

)
= q. This gives

Gk,m =

 Sk,m ||Sk,m||2 ≥ ||[Sm]q||2
0 ||Sk,m||2 < ||[Sm]q||2

, (30)

for k = 0, 1, · · · ,K − 1, where [Sm]q is the qth largest column of Sm in the 2-norm sense. The proof

is now complete. �

APPENDIX C

PROOF OF PROPOSITION 4

According to Prop. 3, substituting the minimizer Gqm of problem (24) into its objective function yields

ψm(Gqm) =

K−1∑
k=0

ρ

2
‖Gk,m − Sk,m‖22 +

K−1∑
k=0

γcard (‖Gk,m‖2)

=

K−1∑
k=0
k/∈χq

ρ

2
‖Sk,m‖22 + γq,

where Sk,m denotes the mth column of Sk, χq is a set that is composed by indices of the first q largest

columns of Sm (refer to Appendix B) in the 2-norm sense, and χ0 = ∅. We have

ψm(Gqm)− ψm(Gq+1
m ) =

ρ

2
‖[Sm]q+1‖22 − γ (31)

for q = 0, 1, . . . ,min{η, κ}−1, where [Sm]q+1 denotes the (q+1)th largest column of Sm in the 2-norm

sense.

Since [Sm]1 ≥ [Sm]2 ≥ · · · ≥ [Sm]min{η,κ}, for γ ∈ (ρ2‖[Sm]1‖22,∞) equation (31) yields ψm(G0
m)−

ψm(G1
m) < 0 and ψm(Gqm) − ψm(Gq+1

m ) < 0 for other q ∈ {1, . . . ,min{η, κ} − 1}. Therefore, the

minimizer of (23) is given by G0
m. Similarly, for γ ∈ (ρ2‖[Sm]q+1‖22,

ρ
2‖[Sm]q‖22] equation (31) yields

ψm(Gl−1
m )−ψm(Glm) ≥ 0 for l = 1, . . . , q, and ψm(Glm)−ψm(Gl+1

m ) < 0 for l = q, . . . ,min{η, κ} − 1.
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Therefore, the minimizer of (23) is given by Gqm. Finally, we can write the solution of (23) in the form

given in the statement of Prop. 4. The proof is now complete. �
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