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Abstract—In the context of distributed estimation, we consider
the problem of sensor collaboration, which refers to the act
of sharing measurements with neighboring sensors prior to
transmission to a fusion center. While incorporating the cost of
sensor collaboration, we aim to find optimal sparse collaboration
schemes subject to a certain information or energy constraint.
Two types of sensor collaboration problems are studied: min-
imum energy with an information constraint; and maximum
information with an energy constraint. To solve the resulting
sensor collaboration problems, we present tractable optimization
formulations and propose efficient methods which render near-
optimal solutions in numerical experiments. We also explore the
situation in which there is a cost associated with the involvement
of each sensor in the estimation scheme. In such situations, the
participating sensors must be chosen judiciously. We introduce a
unified framework to jointly design the optimal sensor selection
and collaboration schemes. For a given estimation performance,
we empirically show that there exists a trade-off between sensor
selection and sensor collaboration.

Index Terms—Distributed estimation, sensor collaboration,
sparsity, reweighted `1, alternating direction method of multi-
pliers, convex relaxation, wireless sensor networks.

I. INTRODUCTION

Wireless sensor networks, consisting of a large number of
spatially distributed sensors, have been widely used for appli-
cations such as environment monitoring, target tracking and
optimal control [1]–[3]. In this paper, we study the problem
of distributed estimation, where each sensor reports its local
observation of the phenomenon of interest and transmits a
processed message (after inter-sensor communication) to a
fusion center (FC) that determines the global estimate. The
act of inter-sensor communication is referred to as sensor
collaboration [4], where sensors are allowed to share their
raw observations with a set of neighboring nodes prior to
transmission to the FC.

In the absence of collaboration, the estimation architecture
reduces to a classical distributed estimation network, where
scaled versions of sensor measurements are transmitted using
an amplify-and-forward strategy [5]. In this setting, one of
the key problems is to design the optimal power amplifying
factors (i.e., scaling laws) to reach certain design criteria
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for performance measures, such as estimation distortion and
energy cost. Several variations of the conventional distributed
estimation problem have been addressed in the literature
depending on the quantity to be estimated (random parameter
or process) [6], [7], the type of communication (analog-based
or quantization-based) [8], [9], nature of transmission channels
(coherent or orthogonal) [10], [11] and energy constraints [12].

In the aforementioned literature [5]–[12], it is assumed that
there is no inter-sensor collaboration. In contrast, here we
study the problem of sensor collaboration, which is motivated
by a significant improvement of estimation performance result-
ing from collaboration [4]. Furthermore, in the collaborative
estimation system, we consider the energy cost for sensor
activation in order to determine the optimal subset of sensors
that communicate with the FC. We will derive optimal schemes
for sensor selection and collaboration simultaneously.

The problem of sensor collaboration was first proposed
in [4] by assuming an orthogonal multiple access channel
(MAC) setting with a fully connected network, where all
the sensors are allowed to collaborate. It was shown that
the optimal strategy is to transmit the processed signal (after
collaboration) over the best available channels with power
levels consistent with the channel qualities. In [13], [14], a
related problem on power allocation was studied for distributed
estimation in a sensor network with fixed topologies. This can
be interpreted as the problem of sensor collaboration with
given network topologies. Recently, the problem of sensor
collaboration over a coherent MAC was studied in [15], [16],
where it was observed that even a partially connected network
can yield performance close to that of a fully connected
network, and the problem of sensor collaboration for a family
of sparsely connected networks was investigated. Further, the
problem of sensor collaboration for estimating a vector of
random parameters is studied in [17]. The works [4], [13]–[17]
assumed that there is no cost associated with collaboration,
the collaboration topologies are fixed and given in advance,
and the only unknowns are the collaboration weights used to
combine sensor observations.

A more relevant reference to this work is our earlier work
[18], where the nonzero collaboration cost was taken into
account for linear coherent estimation, and a greedy algorithm
was developed for seeking the optimal collaboration topology
in energy constrained sensor networks. Compared to [18], here
we present a non-convex optimization framework to solve
the collaboration problem with nonzero collaboration cost. To
elaborate, we describe collaboration through a collaboration
matrix, in which the nonzero entries characterize the collabo-
ration topology and the values of these entries characterize
the collaboration weights. We introduce a formulation that
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simultaneously optimizes both the collaboration topology and
the collaboration weights. In contrast, the optimization in [18]
was performed in a sequential manner, where a sub-optimal
collaboration topology was first obtained, and then the optimal
collaboration weights were sought. The new formulation leads
to a more efficient allocation of energy resources as evidenced
by improved distortion performance in numerical results.

We study two types of problems while designing optimal
collaboration schemes. One is the information constrained
collaboration problem, where we minimize the energy cost
subject to an information constraint. The other is the energy
constrained collaboration problem, where the Fisher informa-
tion is maximized subject to a total energy budget. Similar
formulations have been considered for the problem of power
allocation in parameter estimation [5] and state tracking [7],
[12]. Characterization of the collaboration cost in this work in
terms of the cardinality function, leads to combinatorial opti-
mization problems. For tractability, we employ the reweighted
`1 method [19] and alternating directions method of multipli-
ers (ADMM) [20] to find a locally optimal solution for the
information constrained problem. For the energy constrained
problem, we exploit its relationship with the information
constrained problem and propose a bisection algorithm for its
solution. We empirically show that the proposed methods yield
near optimal performance.

In the existing collaborative estimation literature [15], [16],
[18] with N sensors, it has been assumed that every node
can share its information (through the act of collaboration)
with other nodes, but only M (M ≤ N ) given nodes have
the ability to communicate with the FC. This is due to the
fact that it is usually difficult to coordinate multiple sensors
for synchronized transmissions to the FC (as required for an
amplify-and-forward scheme) and it may not be possible for
all the sensors to participate in that process. In this paper, we
formalize this notion by adding a finite cost to selecting each
particular sensor for coordinated transmissions to the FC. In
this way, the total cost may be reduced if only a small number
of sensors are selected to transmit their data. For example, a
sensor which is far away from the FC may have a higher sensor
selection cost [21]. This raises some fundamental questions
that we try to answer in the second part of this paper: Which
M sensors should be selected? And what is the optimal value
of M?

It is worth mentioning that the problem of sensor selection
has been widely studied in the context of parameter/state
estimation, e.g., [22]–[27]. In [22], the sensor selection prob-
lem for parameter estimation was elegantly formulated with
the help of auxiliary Boolean variables, where each Boolean
variable determines whether or not its corresponding sensor
is selected. In [23], a sparsity-aware sensor selection problem
was introduced by minimizing the number of selected sen-
sors subject to a certain estimation quality. In [24]–[26], the
optimal sensor selection schemes were found by promoting
the sparsity of estimator gains. In [27], the design of sensor
selection scheme was transformed to the recovery of a sparse
matrix. Although both our work and the existing literature
[22]–[28] use the `0 norm and `1 relaxation in dealing with
sensor selection problems, our work is significantly different
from [22]–[28], since the sensor activation scheme is jointly

optimized with the collaboration strategy. Once the problem of
joint selection and collaboration is solved, we obtain not only
the sensor selection scheme but also the collaboration topology
and the power allocation scheme for distributed estimation. We
emphasize that the focus of the paper is on sensor collaboration
where it is employed in conjunction with sensor selection as
well as when no sensor selection is involved.

To determine the optimal sensor selection scheme in a
collaborative estimation system, we associate (a) the cost of
sensor selection with the number of nonzero rows of the
collaboration matrix (i.e., its row-sparsity), and (b) the cost
of sensor collaboration with the number of nonzero entries of
the collaboration matrix (i.e., its overall sparsity). Based on
these associations, we then present a unified framework that
jointly designs the optimal sensor selection and collaboration
schemes. It will be shown that there exists a trade-off between
sensor selection and sensor collaboration for a given estimation
performance.

In a preliminary version of this paper [29], we presented
the optimization framework for designing the optimal sensor
collaboration strategy with nonzero collaboration cost and
unknown collaboration topologies in scenarios where the set
of sensors that communicate with the FC is given in advance.
In this paper, we have three new contributions.
• We elaborate on the theoretical foundations of the pro-

posed optimization approaches in [29].
• We improve the computational efficiency of the ap-

proaches in [29] by proposing a fast algorithm to solve
the resulting optimization problem.

• The issue of sensor selection is taken into account.
We present a unified framework for the joint design of
optimal sensor selection and collaboration schemes.

The rest of the paper is organized as follows. In Sec-
tion II, we introduce the collaborative estimation system. In
Section III, we formulate the information and energy con-
strained sensor collaboration problems with non-zero collab-
oration cost. In Section IV, we develop efficient approaches
to solve the information constrained collaboration problem.
In Section V, the energy constrained collaboration problem
is studied. In Section VI, we investigate the issue of sensor
selection. In Section VII, we demonstrate the effectiveness of
our proposed framework through numerical examples. Finally,
in Section VIII we summarize our work and discuss future
research directions.

II. PRELIMINARIES: A MODEL FOR SENSOR
COLLABORATION

In this section, we introduce a distributed estimation system
that involves inter-sensor collaboration. We assume that the
task of the sensor network is to estimate a random parameter
θ, which follows a Gaussian distribution with zero mean and
variance η2. In the estimation system, sensors first report their
raw measurements via a linear sensing model. Then, individual
sensors can update their observations through spatial col-
laboration, which refers to (linearly) combining observations
from other sensors. The updated measurements are transmitted
through a coherent MAC. Finally, the FC determines a global
estimate of θ by using a linear estimator. We show the
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collaborative estimation system in Fig. 1, and in what follows
we elaborate on each of its parts.
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Fig. 1: Collaborative estimation architecture showing the sensor
measurements, transmitted signals, and the received signal at FC.

The linear sensing model is given by

x = h̃θ + ε, (1)

where x = [x1, . . . , xN ]T denotes the vector of measurements
from N sensors, h̃ is the vector of observation gains with
known second order statistics E[h̃] = h and cov(h̃) = Σh,
and ε represents the vector of zero-mean Gaussian noise with
cov(ε) = Σε.

The sensor collaboration process is described by

z = Wx, (2)

where z ∈ RN denotes the message after collaboration, and
W ∈ RN×N is the collaboration matrix that contains weights
used to combine sensor measurements. In (2), we assume
that sharing of an observation is realized through a reliable
(noiseless) communication link that consumes power Cmn,
regardless of its implementation. And the matrix C ∈ RN×N
describing all the collaboration costs among various sensors
is assumed to be known in advance. The focus of the present
work is on the conceptual aspects of sensor collaboration and
not the details of its physical implementation. The proposed
ideal and relatively simple collaboration model enables us to
readily obtain explicit expressions for the transmission cost
and the estimation distortion.

After sensor collaboration, the message z is transmitted to
the FC through a coherent MAC, so that the received signal
is a coherent sum [10]

y = g̃T z + ς, (3)

where g̃ is the vector of channel gains with known second
order statistics E[g̃] = g and cov(g̃) = Σg , and ς is a zero-
mean Gaussian noise with variance ξ2.

The transmission cost is given by the energy required for
transmitting the message z in (2), namely,

TW = Eθ,h̃,ε[z
T z] = E[xTWTWx] = E[tr(WxxTWT )].

From (1), we obtain that

Σx := Eθ,h̃,ε[xxT ] = Σε + η2(hhT + Σh). (4)

Thus, the transmission cost can be written as

TW = tr[WΣxW
T ]. (5)

We assume that the FC knows the second-order statistics
of the observation gain, information gain, and additive noises,
and that the corresponding variance and covariance matrices
are invertible.

To estimate the random parameter θ, we consider the linear
minimum mean square error (LMMSE) estimator [30]

θ̂ = aLMMSEy, (6)

where aLMMSE is determined by the minimum mean square error
criterion. From the theory of linear Bayesian estimators [30],
we can readily obtain aLMMSE and the corresponding estimation
distortion

aLMMSE = arg min
a

E[(θ − ay)2] =
E[yθ]

E[y2]
, and (7a)

DW = E[(θ − aLMMSEy)2] = η2 − (E[yθ])2

E[y2]
. (7b)

In (7), substituting (2) and (3), we obtain

E[y2] =E[g̃TWxxTWT g̃] + ξ2

=E[tr(g̃g̃TWxxTWT )] = tr[Σg̃WΣxW
T ], (8)

where Σg̃ := E[g̃g̃T ] = ggT + Σg , and Σx is given by (4).
Moreover, it is easy to show that

E[yθ] = η2gTWh. (9)

Now, the coefficient of LMMSE estimator aLMMSE and the corre-
sponding estimation distortion DW are determined according
to (7), (8) and (9).

We define an equivalent Fisher information JW which is
monotonically related to DW,

JW :=
1

DW
− 1

η2

=
(gTWh)2

tr[Σg̃WΣxWT ]− η2(gTWh)2 + ξ2
, (10)

For convenience, we often express the estimation distortion
(7b) as a function of the Fisher information

DW :=
η2

1 + η2JW
. (11)

III. OPTIMAL SPARSE SENSOR COLLABORATION

In this section, we first make an association between the
collaboration topology and the sparsity structure of the collab-
oration matrix W. We then define the collaboration cost and
sensor selection cost with the help of the cardinality function
(also known as the `0 norm). For simplicity of presentation,
we concatenate the elements of W into a vector form, and
present two formulations of collaboration problems (without
the cost of sensor selection). By further incorporating the cost
of sensor selection, we formulate an optimization problem for
the joint design of optimal sensor selection and collaboration
schemes.

Recalling the collaboration matrix W in (2), we note that
the nonzero entries of W correspond to the active collabora-
tion links among sensors. For example, Wmn = 0 indicates
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the absence of a collaboration link from the nth sensor to
the mth sensor, where Wmn is the (m,n)th entry of W.
Conversely, Wmn 6= 0 signifies that the nth sensor shares its
observation with the mth sensor. Thus, the sparsity structure
of W characterizes the collaboration topology.

For a given collaboration topology, the collaboration cost
is given by

QW =

N∑
m=1

N∑
n=1

Cmncard(Wmn). (12)

where Cmn is the cost of sharing an observation from the nth
sensor to the mth sensor. Note that Cnn = 0, since each node
can collaborate with itself at no cost. To account for an active
collaboration link, we use the cardinality function

card(Wmn) =

{
0 Wmn = 0
1 Wmn 6= 0.

(13)

Next, we define the sensor selection/activation cost. Parti-
tioning the matrix W rowwise, the linear spatial collaboration
process (2) can be written as

z1
z2
...
zN

 = Wx =


ωT1
ωT2

...
ωTN

x, (14)

where ωTn is the nth row vector of W. It is clear from (14) that
the non-zero rows of W characterize the selected sensors that
communicate with the FC. Suppose, for example, that only the
nth sensor communicates with the FC. In this case, it follows
from (14) that zn = ωTnx and ωm = 0 for m 6= n. The
goal of sensor selection is to find the best subset of sensors,
i.e., M nodes out of a total of N sensor nodes (M ≤ N ), to
communicate with the FC. This is in contrast with the existing
work [15], [16], [18], where the M communicating nodes are
selected a priori.

The sensor selection cost can be defined through the row-
wise cardinality of W

SW =

N∑
n=1

dn card(‖ωn‖2), (15)

where d = [d1, d2, . . . , dN ]T is a given vector of sensor
selection cost, and ‖ · ‖2 denotes the Euclidean norm (also
known as `2 norm). In (15), the use of `2 norm is motivated
by the problem of group Lasso [31], which uses `2 norm to
promote the group-sparsity of a vector.

Note that both the expressions of transmission cost (5) and
Fisher information (10) involve a quadratic matrix function1

[32]. For simplicity of presentation, we convert the quadratic
matrix function to a quadratic vector function, where the
elements of W are concatenated into its row-wise vector w.
Specifically, the vector w is given by

w=[w1, w2, . . . , wL]T, wl = Wmlnl
, (16)

1A quadratic matrix function is a function f : Rn×r → R of the form
f(X) = tr(XTAX) + 2 tr(BTX) + c, where A ∈ Rn is a symmetric
matrix, B ∈ Rn×r and c ∈ R.

where L = N2, ml = d lN e, nl = l − (d lN e − 1)N and dxe
is the ceiling function that yields the smallest integer not less
than x.

As shown in Appendix A, the expressions of transmission
cost (5), Fisher information (10), collaboration cost (12), and
selection cost (15) can be converted into functions of the
collaboration vector w,

T (w) = wTΩTw, (17a)

J(w) =
wTΩJNw

wTΩJDw + ξ2
, (17b)

Q(w) =

L∑
l=1

cl card(wl), (17c)

S(w) =

N∑
n=1

dn card(‖wGn
‖2), (17d)

where the matrices ΩT, ΩJN, ΩJD are all symmetric posi-
tive semidefinite and defined in Appendix A, cl is the lth
entry of c that is the row-wise vector of the known cost
matrix C, and Gn is an index set such that wGn =
[w(n−1)N+1, w(n−1)N+2, . . . , wnN ]T for n = 1, 2, . . . , N . It
is clear from (14) and (17d) that the row-sparsity of W is
precisely characterized by the group-sparsity of w over the
index sets {Gn}n=1,2,...,N .

Based on the transmission cost T (w), collaboration cost
Q(w), and performance measure J(w), we first pose the
sensor collaboration problems by disregarding the cost of
sensor selection and assuming that all N sensors are active.
• Information constrained sensor collaboration

minimize
w

P (w)

subject to J(w) ≥ J̌ ,
(P1)

where
P (w) := T (w) +Q(w),

and J̌ > 0 is a given information threshold.
• Energy constrained sensor collaboration

maximize
w

J(w)

subject to P (w) ≤ P̂ ,
(P2)

where P̂ > 0 is a given energy budget.
Next, we incorporate the sensor selection cost S(w) in

(17d), and pose the optimization problem for the joint design
of optimal sensor selection and collaboration schemes.
• Joint sensor selection and collaboration

minimize
w

P (w) + S(w)

subject to J(w) ≥ J̌ .
(P3)

In (P3), we minimize the total energy cost subject to an infor-
mation constraint. This formulation is motivated by scenarios
where saving energy is the major goal in the context of sensor
selection [33]. Problem (P3) is of a similar form as (P1) except
for the incorporation of sensor selection cost. However, we
will show that the presence of the sensor selection cost makes
finding the solution of (P3) more challenging; see Sec. VI for
details.
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In (P1)-(P3), the cardinality function, which appears in
Q(w) and S(w), promotes the sparsity of w, and therefore
the sparsity of W. Thus, we refer to (P1)-(P3) as sparsity-
aware sensor collaboration problems. It is worth mentioning
that the proposed sensor collaboration problems are solved
in a centralized manner at the FC, whereas the inter-sensor
collaboration occurs in a distributed way and among sensors.
We also note that (P1)-(P3) are nonconvex optimization
problems due to the presence of the cardinality function and
the nonconvexity of the expression for the Fisher information
(see Remark 1). In the following sections, we will elaborate
on the optimization approaches for solving (P1)-(P3).

IV. INFORMATION CONSTRAINED SENSOR
COLLABORATION

In this section, we relax the original information constrained
problem (P1) by using an iterative reweighted `1 minimization
method. This results in an `1 optimization problem, which can
be efficiently solved by ADMM.

Due to the presence of the cardinality function, problem
(P1) is combinatorial in nature. A state-of-the-art method for
solving (P1) is to replace the cardinality function (also referred
to as the `0 norm) with a weighted `1 norm [19]. This leads
to the following optimization problem

minimize
w

wTΩTw + ‖ΩCw‖1
subject to wT (J̌ΩJD −ΩJN)w + J̌ξ2 ≤ 0,

(18)

where ΩC = diag(αt1c1, α
t
2c2, . . . , α

t
LcL), and {αtl}l=1,2,...,L

denote the weights assigned for entries of an `1 norm at the tth
iteration in Algorithm 1. If αl = 1 for all l ∈ {1, 2, . . . , L},
we recover the standard unweighted `1 norm. Since the `0
norm only counts the number of nonzero entries of a vector,
the use of the `1 norm for approximating the `0 norm has the
disadvantage that the amplitudes of the nonzero entries come
into play. To compensate for the amplitude of nonzero entries,
we iteratively normalize the entries of the argument of the
`1 norm, to make this norm a better proxy for the `0 norm.
We summarize the reweighted `1 method for solving (P1) in
Algorithm 1.

Algorithm 1 Reweighted `1 method for solving (P1)

Require: given ε > 0 and εrw > 0. Set α0
l = 1 for l =

1, . . . , L and ΩC = diag(α0
1c1, α

0
2c2, . . . , α

0
LcL).

1: for t = 0, 1, . . . do
2: solve problem (18) to obtain solution

wt = [wt1, w
t
2, . . . , w

t
L]T .

3: update the weights αt+1
l =

1

|wtl |+ ε
and

ΩC = diag(αt+1
1 c1, α

t+1
2 c2, . . . , α

t+1
L cL).

4: if ‖wt+1 −wt‖2 < εrw, quit.
5: end for

Reference [19] shows that much of the benefit of using the
reweighted `1 method is gained from its first few iterations. In
Step 3 of Algorithm 1, the positive scalar ε is a small number
which insures that the denominator is always nonzero, and
helps the convergence of Algorithm 1; for example, if wtl → 0,
the weight αt+1

l converges to 1
ε .

Remark 1: In (18), the inequality constraint is equivalent
to the information inequality in (P1). According to Lemma 2
in Appendix B, we obtain that the matrix J̌ΩJD − ΩJN is
not positive semidefinite. Indeed, if the matrix J̌ΩJD − ΩJN

was positive semidefinite, problem (18) would have an empty
feasible set.

Given {αtl}l=1,...,L, problem (18) is a nonconvex optimiza-
tion problem, and its objective function is not differentiable.
In what follows, we will employ ADMM to find its locally
optimal solutions.

Alternating Direction Method of Multipliers
In our earlier work [29], we have applied ADMM to solve

problem (18). ADMM is an optimization method well-suited
for problems that involve sparsity-inducing regularizers (e.g.,
cardinality function or `1 norm) [20], [34]. The major advan-
tage of ADMM is that it allows us to split the optimization
problem (18) into a nonconvex quadratic program with only
one quadratic constraint (QP1QC) and an unconstrained `1
norm optimization problem, of which the former can be solved
efficiently and the latter analytically. When applied to a non-
convex problem such as (18), ADMM is not guaranteed to
converge and yields locally optimal solutions when it does
[20]. However, we have found ADMM to both converge
and yield satisfactory results for (18). Indeed, our numerical
observations agree with the literature [20], [26], [34] that
demonstrates the power and utility of ADMM in solving
nonconvex optimization problems.

We begin by reformulating the optimization problem (18)
in a way that lends itself to the application of ADMM,

minimize
w,v

wTΩTw + ‖ΩCv‖1 + I(w)

subject to w = v,
(19)

where we introduce the indicator function I(w)

I(w) =

{
0 if wT (J̌ΩJD −ΩJN)w + Jξ2 ≤ 0
∞ otherwise. (20)

The augmented Lagrangian of (19) is given by

L(w,v,χ) = wTΩTw + ‖ΩCv‖1 + I(w)

+ χT (w − v) +
ρ

2
‖w − v‖22, (21)

where the vector χ is the Lagrangian multiplier, and the scalar
ρ > 0 is a penalty weight. The ADMM algorithm iteratively
executes the following three steps [20] for k = 1, 2, . . .

wk+1 = arg min
w

L(w,vk,χk), (22)

vk+1 = arg min
v

L(wk+1,v,χk), (23)

χk+1 = χk + ρ(wk+1 − vk+1), (24)

until ‖wk+1−vk+1‖2 ≤ εad and ‖vk+1−vk‖2 ≤ εad, where
εad is a stopping tolerance.

It is clear from ADMM steps (22)-(23) that the original
non-differentiable problem can be effectively separated into
a ‘w-minimization’ subproblem (22) and a ‘v-minimization’
subproblem (23), of which the former can be treated as a
nonconvex QP1QC and the latter can be solved analytically. In
the subsections that follow, we will elaborate on the execution
of the minimization problems (22) and (23).
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1) w-minimization step: Completing the squares with re-
spect to w in (21), the w-minimization step (22) is given by

minimize
w

wTΩTw + ρ
2‖w − a‖22

subject to wT (J̌ΩJD −ΩJN)w + J̌ξ2 ≤ 0,
(25)

where we have applied the definition of I(w) in (20), and
a := vk − 1/ρχk. Problem (25) is a nonconvex QP1QC.
To seek the global minimizer of a nonconvex QP1QC, an
approach based on semidefinite program (SDP) relaxation has
been used in [29]. However, computing solutions to SDP
problems becomes inefficient for problems with hundreds
or thousands of variables. Therefore, we develop a faster
approach by exploiting the KKT conditions of (25). This is
presented in Prop. 1.

Proposition 1: The KKT-based solution of problem (25) is
given by

wk+1 = Ω̃
− 1

2
T Uu,

where Ω̃T := ΩT + ρ
2I, U is an orthogonal matrix that satisfies

the eigenvalue decomposition

1

J̌ξ2
Ω̃
− 1

2
T (J̌ΩJD −ΩJN)Ω̃

− 1
2

T = UΛUT , (26)

and u is given by{
u = −g if gTΛg + 1 ≤ 0
u = −(I + µ0Λ)−1g otherwise. (27)

In (27), g := −ρ2UT Ω̃
− 1

2
T a, and µ0 is a positive root of the

equation in µ

f(µ) :=

L∑
l=1

λlg
2
l

(µλl + 1)2
+ 1 = 0, (28)

where gl is the lth element of g, and λl is the lth diagonal
entry of Λ.
Proof: See Appendix C, in which letting A0 = Ω̃T , b0 =
−ρ2a, A1 = J̌ΩJD − ΩJN, b1 = 0 and r1 = J̌ξ2, we can
obtain the results given in Prop. 1. �

The rationale behind deriving the eigenvalue decomposition
(26) is that by introducing u = UT Ω̃

1
2
T w, problem (25) can

be transformed to

minimize
u

uTu + 2uTg

subject to uTΛu + 1 ≤ 0.
(29)

The benefit of this reformulation is that the KKT conditions of
(29) are more compact and easily solved, since Λ is a diagonal
matrix and its inversion is tractable. The KKT conditions of
(29) are precisely depicted by (27) and (28). We note that
solutions of (28) can be found by using the MATLAB function
fminbnd or by using Newton’s method.

In general, Eq. (28) is a high-order polynomial function and
it is very difficult to obtain all the positive roots. However,
we have observed that numerical searches over small targeted
intervals yields satisfactory results. One such interval is given
by Lemma 3, and the other is demonstrated in Remark 2
below. If we find multiple positive roots, we select the one
corresponding to the lowest objective value of the nonconvex
QP1QC (25).

Lemma 3: The function f(µ) is monotonically decreasing
on the interval (0,− 1

λ1
) and the positive root of f(µ) = 0

is unique when f(0) > 0, where λ1 represents the unique
negative eigenvalue in {λl}l=1,2,...,L.

Proof: See Appendix D. �
Remark 2: Motivated by Lemma 3, one may inquire about

the monotonicity of f(µ) over the interval µ ∈ (− 1
λ1
,∞). In

Appendix D, we show that the sign of the first-order derivative
of f(µ) is difficult to determine from (55) and (56). And our
numerical results show that there may exist other positive roots
over the interval (− 1

λ1
,∞).

In general, we cannot guarantee global optimality for so-
lutions found through KKT, since KKT conditions constitute
only necessary conditions for optimality in nonconvex prob-
lems [35]. However, our extensive numerical results show that
numerical search over several small intervals works effectively
for finding the positive roots of Eq. (28) and the ADMM
algorithm always converges to a near-optimal solution of the
information constrained collaboration problem.

2) v-minimization step: Completing the squares with re-
spect to v in (21), the v-minimization step (23) becomes

minimize
v

‖ΩCv‖1 + ρ
2‖v − b‖22, (30)

where b := 1
ρχ

k + wk+1. The solution of (30) is given by
soft thresholding [34]

vl =

{
(1− αt

lcl
ρ|bl| )bl |bl| >

αt
lcl
ρ

0 |bl| ≤ αt
lcl
ρ

(31)

for l = 1, 2, . . . , L, where vl denotes the lth element of the
vector v.

3) Initialization: To initialize ADMM we require a feasible
vector. It has been shown in Theorem 1 (see Appendix B) that
the optimal collaboration vector for a fully-connected network
with an information threshold J̌ is a feasible vector for (18).
Thus, we choose v0 = w0 and w0 = w̃, where w̃ is given
by (49a).

4) Complexity Analysis: To solve the information con-
strained collaboration problem (P1), the iterative reweighted
`1 method (Algorithm 1) is used as the outer loop, and the
ADMM algorithm constitutes the inner loop. It is often the
case that the iterative reweighted `1 method converges within
a few iterations [19], [25], [26], [36]. Moreover, it has been
shown in [20] that the ADMM algorithm typically requires
a few tens of iterations for converging with modest accuracy.
At each iteration, the major cost is associated with solving the
KKT conditions in the w-minimization step. The complexity of
obtaining a KKT-based solution is given by O(L3) [37], since
the complexity of the eigenvalue decomposition dominates that
of Newton’s method.

V. ENERGY CONSTRAINED SENSOR COLLABORATION

In this section, we first explore the correspondence between
the energy constrained collaboration problem and the infor-
mation constrained problem. With the help of this correspon-
dence, we propose a bisection algorithm to solve the energy
constrained problem.
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According to (17a), (17b) and (17c), the energy constrained
sensor collaboration problem (P2) can be written as

maximize
w

wTΩJNw

wTΩJDw + ξ2

subject to wTΩTw+
∑L
l=1cl card(wl) ≤ P̂ .

Compared to the information constrained problem (P1), prob-
lem (P2) is more involved due to the nonconvex objective
function and the cardinality function in the inequality con-
straint. Even if we replace the cardinality function with its `1
norm relaxation, the resulting `1 optimization problem is still
difficult, since the feasibility of the relaxed constraint does not
guarantee the feasibility of the original problem (P2).

However, if the collaboration topology is given, the collab-
oration cost

∑L
l=1 cl card(wl) is a constant and the constraint

in (P2) becomes a homogeneous quadratic constraint (i.e., no
linear term with respect to w is involved). In this case, problem
(P2) can be solved by [18, Theorem 1].

In Prop 2, we present the relationship between the energy
constrained problem (P2) and the information constrained
problem (P1). Motivated by this relationship, we then take
advantage of the solution of (P1) to obtain the collaboration
topology for (P2). This idea will be elaborated on later.

Proposition 2: Consider the two problems (P1) and (P2)

minimize
w

P (w)

subject to J(w) ≥ J̌
and

maximize
w

J(w)

subject to P (w) ≤ P̂ ,

where the optimal solutions are denoted by w1 and w2,
respectively. If J̌ = J(w2), then w1 = w2; If P̂ = P (w1),
then w2 = w1.
Proof: See Appendix E. �

Prop. 2 implies that the solution of the energy constrained
problem (P2) can be obtained by seeking the global minimizer
of the information constrained problem (P1), if the informa-
tion threshold in (P1) is set by using the optimal value of (P2).
However, this methodology is intractable in practice since the
optimal value of (P2) is unknown in advance, and the globally
optimal solution of problem (P1) may not be found using
reweighted `1-based methods.

Instead of deriving the solution of (P2) from (P1), we
can infer the collaboration topology of the energy constrained
problem (P2) from the sparsity structure of the solution to
the information constrained problem (P1) using a bisection
algorithm. According to Lemma 1 in Appendix B, the ob-
jective function of (P2) (in terms of Fisher information)
is bounded over an interval [0, J0). And there is a one-to-
one correspondence between the value of Fisher information
evaluated at the optimal solution of (P2) and energy budget
P̂ . Therefore we perform a bisection algorithm on the interval,
and then solve the information constrained problem to obtain
the resulting energy cost and collaboration topology. The
procedure terminates if the resulting energy cost is close to
the energy budget P̂ . We summarize the bisection algorithm
in Algorithm 2.

We remark that the collaboration topology obtained in
Step 2 of Algorithm 2 is not globally optimal. However, we
have observed that for the information constrained sensor
collaboration (P1), the value of energy cost P is monotonically
related to the value of desired estimation distortion; see Fig. 2

Algorithm 2 Bisection algorithm for seeking the optimal
collaboration topology of (P2)

Require: given εbi > 0, J = 0 and J = J0.
1: repeat J̌ = J+J

2

2: for a given J̌ , solve (P1) using Algorithm 1 to obtain
the collaboration topology (in terms of the sparsity
structure of w) and the resulting energy cost P .

3: if P < P̂ then J = J̌
4: else J = J̌
5: end if
6: until J − J < εbi or |P̂ − P | < εbi

for an example. Therefore, the proposed bisection algorithm
converges in practice and at most requires dlog2(J/εbi)e
iterations. Once the bisection procedure terminates, we obtain
a locally optimal collaboration topology for (P2). Given this
topology, the energy constrained problem (P2) becomes a
problem with a quadratic constraint and an objective that is
a ratio of homogeneous quadratic functions, whose analytical
solution is given by [18, Theorem 1]. Through the aforemen-
tioned procedure, we obtain a locally optimal solution to
problem (P2).

VI. JOINT SENSOR SELECTION AND COLLABORATION

In this section, we study the problem of the joint design
of optimal sensor selection and collaboration schemes, which
we formulated in (P3). Similar to solving the information
constrained collaboration problem (P1), we first relax the
original problem to a nonconvex `1 optimization problem.
However, in contrast to Section IV, we observe that ADMM
fails to converge (a possible reason is explored later). To
circumvent this, we adopt an iterative method to solve the
nonconvex `1 optimization problem.

Using the reweighted `1 minimization method, we replace
the cardinality function with the weighted `1 norm, which
yields the following `1 optimization problem at each reweight-
ing iteration

minimize
w

wTΩTw + ‖Ω̃Cw‖1 +

N∑
n=1

d̃n‖wGn‖2

subject to wT (J̌ΩJD −ΩJN)w + J̌ξ2 ≤ 0,

(32)

where Ω̃C := diag(τ t1c1, τ
t
2c2, . . . , τ

t
LcL), d̃n := δtndn, τ tl and

δtn are the positive weights with respect to wl and wGn
at the

reweighting iteration t, respectively. Let the solution of (32) be
wt, then the weights τ t+1

l and δt+1
n for the next reweighting

iteration are updated as

τ t+1
l =

1

|wtl |+ ε
, δt+1

n =
1

‖wt
Gn
‖2 + ε

,

where we recall that ε is a small positive number that insures
a nonzero denominator.

A. Convex restriction

Problem (32) is a nonconvex optimization problem. Similar
to our approach in Section IV to find solutions of (18), one
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can use ADMM to split (32) into a nonconvex QP1QC (w-
minimization step) and an unconstrained optimization problem
with an objective function composed of `1 and `2 norms (v-
minimization step), where the latter can be solved analytically.
However, our numerical examples show that the resulting
ADMM algorithm fails to converge. Note that in the w-
minimization step, the sensor selection cost is excluded and
each sensor collaborates with itself at no cost. Therefore,
to achieve an information threshold, there exist scenarios in
which the collaboration matrix yields nonzero diagonal entries.
This implies that the w-minimization step does not produce
group-sparse solutions (i.e., row-wise sparse collaboration
matrices). However, the v-minimization step always leads to
group-sparse solutions. The mismatched sparsity structures of
solutions in the subproblems of ADMM cause the issue of
nonconvergence, which we circumvent by using a linearization
method to convexify the optimization problem.

A linearization method is introduced in [38] for solving
the nonconvex quadratically constrained quadratic program
(QCQP) by linearizing the nonconvex parts of quadratic con-
straints, thus rendering a convex QCQP. In (32), the nonconvex
constraint is given by

wT J̌ΩJDw + J̌ξ2 ≤ wTΩJNw, (33)

where ΩJD and ΩJN are positive semidefinite; see (46)-(48). We
linearize the right hand side of (33) around a feasible point β

wT J̌ΩJDw + J̌ξ2 ≤ βTΩJNβ + 2βTΩJN(w − β). (34)

Note that the right hand side of (34) is an affine lower bound
on the convex function wTΩJNw. This implies that the set of
w that satisfy (34) is a strict subset of the set of w that satisfy
(33).

By replacing (33) with (34), we obtain a ‘restricted’ convex
version of problem (32)

minimize
w

ϕ(w) := wTΩTw +‖Ω̃Cw‖1 +

N∑
n=1

d̃n‖wGn
‖2

subject to wT Ω̃JDw− 2β̃Tw+ γ̃ ≤0,
(35)

where Ω̃JD := J̌ΩJD, β̃ := ΩJNβ, and γ̃ := βTΩJNβ + J̌ξ2.
Different from (33), the inequality constraint in (35) no
longer represents the information inequality but becomes a
convex quadratic constraint. Since problem (35) is convex,
the convergence of ADMM is now guaranteed [20]. And the
optimal value of (35) yields an upper bound on that of (32).

We summarize the linearization method in Algorithm 3. In
the following subsection, we will elaborate on the imple-
mentation of ADMM in Step 3 of Algorithm 3. We remark
that the convergence of Algorithm 3 is guaranteed [38], since
Algorithm 3 starts from a feasible point w0 that satisfies (33)
and at each iteration, we solve a linearized convex problem
with a smaller feasible set which contains the linearization
point (i.e., the solution at the previous iteration). In other
words, for a given linearization point β = ws−1, we always
obtain a new feasible point ws with a lower or equal objective
value at each iteration. Finally, we note that the iterative
algorithm can be initialized at w̃, which is given by (49a).

Algorithm 3 Linearization method on solving (32)

Require: given εli > 0 and w0 = w̃.
1: for iteration s = 1, 2, . . . do
2: set β = ws−1.
3: solve (35) for the solution ws by using Algorithm 4.
4: until ‖ϕ(ws)− ϕ(ws−1)‖ < εli.
5: end for

B. Solution via ADMM

Similar to (19) in Sec. IV, we introduce the auxiliary vari-
able v to replace w in the `1 and `2 norms in (35) while adding
the constraint w = v, and split problem (35) into a sequence
of subproblems as in (22)-(24). However, compared to Sec. IV,
the current ADMM algorithm yields different subproblems due
to the presence of the `2 norm in the objective function and
the convexification in the constraint.

1) w-minimization step: According to (22), the w-
minimization step is given by

minimize
w

wT Ω̃Tw − ρaTw

subject to wT Ω̃JDw−2β̃Tw+ γ̃ ≤0,
(36)

where Ω̃T = ΩT + ρ
2I, a = vk−1/ρχk, vk and χk denote the

value of v and χ at the kth iteration of ADMM, and χ is the
dual variable. Note that different from problem (25), problem
(36) is a convex QCQP, which can be efficiently solved.

To solve the convex QCQP (36), the complexity of using
interior-point method in standard solvers is roughly O(L3.5)
[39]. To reduce the computational complexity, we can derive
the KKT-based solution of (36). Since problem (36) is con-
vex, KKT conditions are both necessary and sufficient for
optimality. Similar to Prop. 1, we can apply the eigenvalue
decomposition technique to simplify (36) and find its solution.
This is summarized in Prop. 3.

Proposition 3: The optimal solution of problem (36) is
given by

wk+1 = Ω̃
− 1

2
T Uu,

where U is given by the following eigenvalue decomposition

1

γ̃
Ω̃
− 1

2
T Ω̃JDΩ̃

− 1
2

T = UΛUT ,

and u is given by{
u = −g if gTΛg + 2gTe + 1 ≤ 0
u = −(I + µ1Λ)−1(g + µ1e) otherwise.

(37)

In (37), g = −ρUT Ω̃
− 1

2
T a/2, e = −UT Ω̃

− 1
2

T β̃/γ̃, µ1 is the
positive root of the equation in µ

L∑
l=1

(λlgl − el)2

λl(1 + µλl)2
−

L∑
l=1

e2l
λl

+ 1 = 0,

el and gl are the lth elements of e and g, respectively, and λl
is the lth diagonal entry of Λ.
Proof: See Appendix C, in which letting A0 = Ω̃T,b0 = −ρ2a,
A1 = Ω̃JD, b1 = −β̃ and r1 = γ̃, we obtain the result in
Prop. 3. �
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We remark that Prop. 3 is similar to Prop. 1 except for the
presence of e and positive eigenvalues {λl}l=1,2,...,L. These
difference are caused by the convex restriction of (32).

2) v-minimization step: According to (23), the v-
minimization step is given by

minimize
v

‖Ω̃Cv‖1 +

N∑
n=1

d̃n‖vGn
‖2 +

ρ

2
‖v − b‖22, (38)

where b = wk+1 + 1/ρχk.
We recall that Ω̃C defined in (32) is a diagonal matrix. Let

the vector f be composed of the diagonal entries of Ω̃C. We
then define a sequence of diagonal matrices Fn := diag(fGn

)
for n = 1, 2, . . . , N , where fGn

is a vector composed of those
entries of f whose indices belong to the set Gn. Since the index
sets {Gn}j=1,2,...,N are disjoint, problem (38) can be decom-
posed into a sequence of subproblems for n = 1, 2, . . . , N ,

minimize
vGn

‖FnvGn
‖1+d̃n‖vGn

‖2+
ρ

2
‖vGn

− bGn
‖22. (39)

Problem (39) can be solved analytically via the following
proposition.

Proposition 4: The minimizer of (39) is given by

vGn
=

 (1− d̃n
ρ‖ν‖2 )ν ‖ν‖2 ≥ d̃n

ρ

0 ‖ν‖2 < d̃n
ρ ,

(40)

where ν = sgn(bGn
) � max(|bGn

| − 1
ρ fGn

, 0), the operator
sgn(·) is defined in a componentwise fashion as

sgn(x) =

 1 x > 0
0 x = 0
−1 x < 0,

� denotes the point-wise product, and the operator max(x,y)
returns a vector whose entries are the pointwise maximum of
the entries of x and y.
Proof: The main idea of the proof, motivated by [40, Theo-
rem 1], is to study the subgradient of a nonsmooth objective
function. However, for problem (39), we require to exploit
its particular features: weighted `1 norm ‖Ω̃Cv‖1, and disjoint
sub-vectors {vGn

}n=1,2,...,N . See Appendix F for the complete
proof. �

In Algorithm 4, we present our proposed ADMM algorithm
for solving (35).

Algorithm 4 Solving problem (35) via ADMM

Require: given ρ, εad, χ0 = 0 and w0 = v0 = w̃.
1: for k = 0, 1, . . . do
2: obtain wk+1 from a standard QCQP solver or Prop. 3.
3: obtain vk+1=[(vk+1

G1
)T ,. . . ,(vk+1

GN
)T ]T from Prop. 4.

4: update dual variable χk+1 = χk + ρ(wk+1 − vk+1).
5: until ‖wk+1 − vk+1‖2 ≤ εad, ‖vk+1 − vk‖2 ≤ εad.
6: end for

To summarize, for solving the original problem (P3) we first
replace the cardinality function with the weighted `1 norm,
which yields the nonconvex problem (32). We then use the
linearization method to convexify (32). The resulting convex
problem (35) is solved by ADMM as outlined in Algorithm 4.

VII. NUMERICAL RESULTS

In this section, we will illustrate the performance of our
proposed sparsity-aware sensor collaboration methods through
numerical examples. The estimation system considered here
is shown in Fig.1, where for simplicity, we assume that the
channel gain and uncertainties are such that the network is
homogeneous and equicorrelated. As in [18, Example 3], we
denote the expected observation and channel gains by h0 and
g0, the observation and channel gain uncertainties by αh and
αg , the measurement noise variance and correlation by ζ2 and
ρcorr, and thereby assume h = h0

√
αh1, Σh = h20(1− αh)I,

Σε = ζ2[(1− ρcorr)I + ρcorr11T ],
g = g0

√
αg1, Σg = g20(1− αg)I.

(41)

Note that channel gains can also be calculated based on path
loss models [41] but we chose the homogeneous model for the
sake of simplicity. The collaboration cost matrix C is given
by

Cmn = αc‖sm − sn‖2 (42)

for m,n = 1, 2, . . . , N , where αc is a positive parameter and
sn denotes the location of sensor n. The vector of sensor
selection cost d is give by

dn = αs‖sn − sfc‖2 (43)

for n = 1, 2, . . . , N , where αs is a positive parameter and sfc
denotes the location of the FC.

In our experiments, unless specified otherwise, we shall
assume that h0 = g0 = 1, αh = αg = 0.7, ρcorr = 0.5,
ξ2 = ζ2 = 1, η2 = 0.1, and αc = αs = 0.01. The FC
and N sensors are randomly deployed on a 10 × 10 grid,
where the value of N will be specified in different examples.
While employing the proposed optimization methods, we
select ρ ≥ 20 in ADMM, ε = 10−3 in the reweighted `1
method and εrw = εbi = εli = εad = 10−3 for the stop-
ping tolerance. In our numerical examples, the reweighted `1
method (Algorithm 1), the bisection algorithm (Algorithm 2)
and the linearization method (Algorithm 3) converge within
10 iterations. For ADMM, the required number of iterations
is less than 100.

For a better depiction of estimation performance, since
D0 < Dw ≤ η2 (see Lemma 1 in Appendix B), we display
the normalized distortion

Dnorm :=
D(w)−D0

η2 −D0
∈ (0, 1], (44)

where D(w) defined in (11) is monotonically related to the
value of Fisher information, and D0 is the minimum estimation
distortion given by Lemma 1. Further to characterize the num-
ber of established collaboration links, we define the percentage
of collaboration links

Perw :=

∑L
l=1 card(wl)−N

L−N
× 100 (%), (45)

where L = N2 is the dimension of w, and Perw belongs
to [0, 100%]. When Perw = 0, the network operates in a
distributed manner (i.e., only the diagonal entries of W are
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Fig. 3: Information constrained collaboration for different values of collaboration cost parameter αc as Dnorm ∈ {0.05, 0.1, 0.2}: (a) percentage of
collaboration links, (b) transmission cost, (c) trade-off between collaboration links and transmission cost.
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Fig. 2: Performance evaluation for information constrained sensor collabo-
ration.

nonzero). When Perw = 100%, the network is fully-connected
(i.e., W has no zero entries).

In Fig. 2, we present results when we apply the reweighted
`1-based ADMM algorithm to solve the information con-
strained problem (P1). For comparison, we also show the
results of using an exhaustive search that enumerates all pos-
sible sensor collaboration schemes, where for the tractability

of an exhaustive search, we consider a small sized sensor
network with N = 5. In the top subplot of Fig. 2, we
present the minimum energy cost as a function of Dnorm.
We can see that the energy cost and estimation distortion is
monotonically related, and the proposed approach assures near
optimal performance compared to the results of exhaustive
search. In the bottom subplot, we show the number of active
collaboration links as a function of normalized distortion.
Note that a larger estimation distortion corresponds to fewer
collaboration links.

In Fig. 3, we solve the information constrained problem
for a relatively large network with N = 10 nodes, and
present the number of collaboration links and the required
transmission cost as a function of the collaboration cost
parameter αc for different values of estimation distortion
Dnorm ∈ {0.05, 0.1, 0.2}. Fig. 3-(a) shows that the number of
collaboration links increases as αc decreases. This is expected,
since a smaller value of αc corresponds to a smaller cost of
sensor collaboration, and thus encourages a larger number of
collaboration links to be established. If we fix the value of
αc, we also observe that the number of collaboration links
increases as Dnorm decreases. This is consistent with the
results in the bottom subplot of Fig 2. We show the specific
collaboration topologies that correspond to the marked values
of αc in Fig. 4. These will be discussed in detail later.

Fig. 3-(b) shows that the transmission cost increases as
αc increases for a given estimation distortion. Note that a
larger value of αc indicates a higher cost of sensor collabora-
tion. Therefore, to achieve a certain estimation performance,
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more transmission cost would be consumed instead of sensor
collaboration. This implies that the transmission cost and
collaboration cost are two conflicting terms. As we continue
to increase αc, the transmission cost converges to a fixed value
for a given Dnorm. This is because the network topology
cannot be changed any further (converges to the distributed
network), where the transmission cost is deterministic for the
given topology and distortion.

Fig. 3-(c) shows the trade-off between the number of collab-
oration links and the consumed transmission cost by varying
the parameter αc. One interesting observation is that the
transmission cost ceases to decrease significantly when over
50% collaboration links are established. The reason is that the
transmission cost is characterized by the magnitude of nonzero
entries in w, which has very small increment as the number
of active links is relatively large.

In Fig. 4, we present the collaboration topologies obtained
from solutions of the information constrained problem (with
Dnorm = 0.2) by varying the parameter of collaboration cost
αc; see the labeled points in Fig. 3-(a). In each subplot, the
solid lines with arrows represent the collaboration links among
local sensors. For example in Fig. 4-(a), the line from sensor
1 to sensor 4 indicates that sensor 1 shares its observation
with sensor 4. Fig. 4-(a) shows that the nearest neighboring
sensors collaborate initially because of the lower collaboration
cost. We continue to decrease αc, Fig. 4-(c) and (d) show that
more collaboration links are established, and sensors tends to
collaborate over the entire spatial field rather than aggregating
in a small neighbourhood.
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Fig. 5: Transmission cost and collaboration link percentage versus the ratio
of measurement noise power and channel noise power.

In Fig. 5, we solve the information constrained problem with
N = 10 and Dnorm ∈ {0.05, 0.08, 0.1} to demonstrate the
power allocation schemes when the ratio ζ2

ξ2 of measurement
noise power to channel noise power varies. In the top plots
of Fig. 5, we present the transmission cost which is normal-
ized over the obtained total energy cost. Given a value of
Dnorm, we observe that when the measurement noise power
is much less than the channel noise power, the transmission

cost dominates the total energy cost since transmission over
noisy channels requires more transmission power. Conversely,
when the measurement noise power is much larger than the
channel noise power, most of the energy is allocated for sensor
collaboration. This is because the act of sensor collaboration
can be regarded as a kind of local averaging that effectively
reduces the measurement uncertainty at each node. If we fix
the ratio of noise power ζ2

ξ2 , we note that to improve the
estimation performance, more transmission and collaboration
power are consumed.
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Fig. 6: Performance evaluation for energy constrained sensor collaboration.
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Fig. 7: Performance evaluation of sensor selection and collaboration.

In Fig. 6, we employ the proposed bisection algorithm to
solve the energy constrained problem (P2). We present the
obtained estimation distortion and number of collaboration
links as functions of the energy budget with N = 10. For
comparison, we also show the results of using the greedy
method in [18] and the normalized distortion of using cen-
tralized estimation, in which the sensor measurements are
received at the FC in a lossless manner by disregarding
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channel fading and noise. As we can see, the method in [18]
yields worse estimation performance than our approach, even
though its resulting number of collaboration links is larger.
This indicates that compared to the number of collaboration
links, the optimality of collaboration topology has a more
significant impact on the estimation performance. Moreover
when the energy budget increases, the estimation distortion
converges to zero and the network tends to perform in a fully-
connected manner. We further note that Dnorm for centralized
estimation is negative, which implies that the centralized
estimation scheme outperforms the proposed distributed es-
timation scheme. This is because the former excludes channel
impairments, such as fading and noise.
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Fig. 8: Trade-off between collaboration links and selected sensors.

In Fig. 7, we employ the convex restriction based ADMM
method to solve problem (P3) for joint sensor selection and
collaboration. We show the resulting energy cost, number
of collaboration links and selected sensors as functions of
estimation distortion Dnorm. For comparison, we also present
the optimal results obtained from an exhaustive search, where
N = 5 sensors are assumed in this example. We observe that
the proposed approach assures near optimal performance for
all values of Dnorm. Moreover, the energy cost, number of
collaboration links and selected sensors increases as Dnorm

decreases, since a smaller estimation distortion enforces more
collaboration links and activated sensors.

In Fig. 8, we present the trade-offs between the established
collaboration links and selected sensors that communicate with
the FC. These trade-offs are achieved by fixing αc = 0.1 and
varying the parameter of sensor selection cost αs for Dnorm =
0.3, 0.5 and 0.7. We fix Dnorm and decrease αs, which leads
to an increase in the number of selected sensors, meanwhile,
the number of collaboration links decreases. That is because
to achieve a given estimation distortion, less collaboration
links are required if more sensors are selected to communicate
with the FC. If we fix the number of collaboration links,
the number of selected sensors increases as Dnorm decreases,
since a smaller Dnorm enforces more activated sensors. For the
marked points as Dnorm = 0.7, we show the specific sensor
collaboration and selection schemes in Fig. 9, where the solid
line with an arrow represents the collaboration link between

two sensors, and the dashed line from one sensor to the FC
signifies that this sensor is selected to communicate with the
FC. Clearly, more collaboration links are established as fewer
sensors are selected to communicate with the FC.

VIII. CONCLUSION

In this paper, we studied the problem of sensor collaboration
with nonzero collaboration cost for distributed estimation over
a coherent MAC. By making a one-to-one correspondence
between the collaboration topology and the sparsity structure
of collaboration matrix, the sensor collaboration problems
can be interpreted as sparsity-aware optimization problems.
In particular, we studied two types of sensor collaboration
problems: information constrained problem and energy con-
strained problem, where we employed the reweighted `1-
based ADMM and the bisection algorithm to find their locally
optimal solutions. Further, we investigated the issue of sensor
selection in the proposed collaborative estimation system,
where the optimal sensor collaboration and selection schemes
can be designed jointly through the entry- and group-level
sparsity of the collaboration vector. We empirically showed
that there exists a trade-off between sensor collaboration and
sensor selection.

In this paper, we assumed that a random parameter was
estimated at one snapshot. In future work, we will explore
the problem of state tracking for a dynamical system. Also,
we will generalize the procedure of sensor collaboration by
incorporating the additive noise, and develop a distributed
algorithm for sensor collaboration. Lastly, since sensors may
have individual power budgets, we will consider the collabo-
ration problem with individual power constraints.

APPENDIX A
QUADRATIC FUNCTIONS TRANSFORMATION

According to [18, Sec. III], it is straightforward to derive
the quadratic vector functions (17a) and (17b) and the corre-
sponding coefficient matrices are given by

ΩT = IN ⊗Σx, IN is the N ×N identity matrix, (46)

ΩJN = GhhTGT , [G]l,n =

{
gml

n = nl,
0 otherwise, (47)

ΩJD = G(Σε + η2Σh)GT+η2HΣgH
T+η2Σg ⊗Σh

+Σg ⊗Σε, H = IN ⊗ h, (48)

where ⊗ denotes the Kronecker product, Σx is defined in (4),
and (ml, nl) is given by (16). It is clear from (46)-(48) that ΩT,
ΩJN, and ΩJD are all symmetric positive semidefinite matrices,
and ΩJN is of rank one.

APPENDIX B
REVIEW OF [18, THEOREM 1] FOR SENSOR

COLLABORATION WITH GIVEN TOPOLOGIES

It has been shown in [18] that the sensor collaboration prob-
lems with given collaboration topologies can be solved analyt-
ically, since the collaboration cost Q(w) =

∑L
l=1 clcard(wl)

is a constant, and (P1) and (P2) become problems with
homogeneous quadratic functions, in which no linear term with
respect to w is involved. The solutions of (P1) and (P2) for
a fully-connected network are shown in Theorem 1.
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Fig. 9: Network topologies for Dnorm = 0.7 and αs = 0.02, 0.15 and 0.65.

Theorem 1 [18, Theorem 1]: For a fully-connected net-
work, the optimal values (P̃ and J∗) and solutions (w̃ and
w∗) of (P1) and (P2) are given by

P̃ = λposmin

(
ΩT,−ΩJD +

ΩJN

J̌

)
ξ2 + 1T c

w̃ =

√
P̃ − 1T c

ṽTΩTṽ
ṽ,

(49a)

and


J∗ = λmax

(
ΩJN,ΩJD +

ξ2ΩT

P̂ − 1T c

)
w∗ =

√
P̂ − 1T c

(v∗)TΩTv∗
v∗,

(49b)

where λposmin(A,B) and λmax(A,B) denote the minimum
positive eigenvalue and the maximum eigenvalue of the gen-
eralized eigenvalue problem Av = λBv, respectively, and ṽ
and v∗ are the corresponding eigenvectors. �

It is clear from (49b) that the optimal Fisher information is
upper bounded by J0 := λmax(ΩJN,ΩJD) as P → +∞. This
implies that to guarantee the feasibility of (P1), the informa-
tion threshold J̌ must lie in the interval [0, J0). Accordingly,
the estimation distortion in (11) belongs to (D0, η

2], where
D0 = η2/(1 + η2J0) denotes the minimum distortion, and
η2 signifies the maximum distortion which is determined by
the prior information of θ. We summarize the boundedness of
Fisher information and estimation distortion in Lemma 1.

Lemma 1: For problems (P1) and (P2), the values of
Fisher information and estimation distortion are bounded as
J(w) ∈ [0, J0) and D(w) ∈ (D0, η

2], respectively, where
J0 = λmax(ΩJN,ΩJD), D0 = η2/(1 + η2J0), and η2 is the
variance of the random parameter to be estimated.

For a given J̌ ∈ [0, J0), we demonstrate in Lemma 2 that
the matrix J̌ΩJD −ΩJN is not positive semidefinite.

Lemma 2: Given J̌ ∈ [0, J0), the matrix J̌ΩJD−ΩJN is not
positive semidefinite.

Proof: Since J0 = λmax(ΩJN,ΩJD), there exists an eigenvec-
tor v0 such that ΩJNv0 = J0ΩJDv0, which yields vT0 ΩJNv0 =
vT0 J0ΩJDv0. Since J̌ ∈ [0, J0), we obtain vT0 ΩJNv0 >
vT0 J̌ΩJDv0, namely, vT0 (J̌ΩJD − ΩJN)v0 < 0. Therefore, we
find a vector v0 such that vT0 (J̌ΩJD − ΩJN)v0 < 0. Namely,
J̌ΩJD −ΩJN is not positive semidefinite. �

APPENDIX C
THE KKT-BASED SOLUTION FOR A QP1QC

To prove the Prop. 1 or 3, we consider a more general case
of QP1QC

minimize
w

wTA0w + 2bT0 w

subject to wTA1w + 2bT1 w + r1 ≤ 0,
(50)

where A0 is a symmetric positive definite matrix, and A1 is
a symmetric matrix.

Upon defining P := 1
r1

A
− 1

2
0 A1A

− 1
2

0 , we obtain the eigen-
value decomposition of P

P = UΛUT ,

where U is an orthogonal matrix that includes the eigenvectors
of P, and Λ is a diagonal matrix that includes the eigenvalues
of P.

Let u := UTA
1
2
0 w, g := UTA

− 1
2

0 b0 and e := UTA
− 1

2
0

b1

r1
,

then problem (50) can be written as

minimize
u

uTu + 2uTg

subject to uTΛu + 2uTe + 1 ≤ 0.
(51)

The rationale behind using the eigenvalue decomposition tech-
nique to reformulate (50) is that the KKT conditions of (51)
are more compact and easily solved since Λ is a diagonal
matrix.

We demonstrate the KKT conditions for problem (51).
Primal feasibility: uTΛu + 2uTe + 1 ≤ 0.
Dual feasibility: µ ≥ 0, where µ is the dual variable.
Complementary slackness: µ(uTΛu + 2uTe + 1) = 0.
Stationary of the Lagrangian: u = −(I + µΛ)−1(g + µe).
If µ = 0, we have

u = −g, (52)

where uTΛu + 2uTe + 1 ≤ 0.
If µ > 0, eliminating u by substituting stationary condition

into complementary slackness, we have

(g + µe)T (I + µΛ)−1Λ(I + µΛ)−1(g + µe)

− 2(g + µe)T (I + µΛ)−1e + 1 = 0.

Since Λ is a diagonal matrix, we finally obtain that
L∑
l=1

(
λl(µel + gl)

2

(µλl + 1)2
− 2el(µel + gl)

µλl + 1

)
+ 1 = 0, (53)
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where λl is the lth diagonal element of Λ.
If λl > 0 for l = 1, 2, . . . , L and thus A1 is positive definite,

Eq. (53) can be simplified as
L∑
l=1

{[√
λl(µel + gl)

1 + µλl
− el√

λl

]2
− e2l
λl

}
+ 1

=

L∑
l=1

(λlgl − el)2

λl(1 + µλl)2
−

L∑
l=1

e2l
λl

+ 1 = 0. (54)

In (54), the function (λlgl−el)2
λl(1+µλl)2

is monotonically decreasing
with respect to µ when µ > 0. This implies that there exists
only one positive root for f(µ) = 0 if µ > 0 satisfies KKT
condition. The proof is now complete. �

APPENDIX D
PROOF OF LEMMA 3

We recall that the eigenvalues {λl}l=1,2,...,L in (26) are
obtained from the eigenvalue decomposition of the positive
definite matrix ΩJD modified by the rank one matrix ΩJN.
Then it can be concluded that there exists only one negative
eigenvalue in {λl}l=1,2,...,L [42, Sec. 5].

Without loss of generality, we assume that λ1 < 0 < λ2 ≤
λ3 < . . . < λN , where the case of λl = 0 (l > 1) is excluded
since it is trivial to obtain that λlg

2
l

(µλl+1)2 = 0 in (28). Given
− 1
λ1
> 0 > − 1

λL
≥ . . . ≥ − 1

λ3
≥ − 1

λ2
, we have f(− 1

λ1
) →

−∞ and f(− 1
λl

)→∞ for l = 2, 3, . . . , L.
Next, we take the first-order derivative of f(µ), which yields

df(µ)

dµ
=

L∑
l=1

[−2λ2l g
2
l (1 + µλl)

−3]. (55)

When µ ∈ (0,− 1
λ1

), we have

1 + µλ1 > 0, and 1 + µλl > 0 for i = 2, 3, . . . , L.

From (55) we obtain df(µ)
dµ ≤ 0. Therefore, f(µ) is monoton-

ically decreasing as µ ∈ (0,− 1
λ1

). Together with f(− 1
λ1

) →
−∞ and f(− 1

λL
) → ∞, we conclude that there exists only

one positive root of f(µ) = 0 if f(0) > 0.
When µ ∈ (− 1

λ1
,∞), we have

1 + µλ1 < 0, and 1 + µλl > 0 for i = 2, 3, . . . , L. (56)

It is clear from (55) that the sign of df(µ)
dµ is difficult to

determine since −2λ21g
2
1(1 + µλ1)−3 > 0 and −2λ2l g

2
l (1 +

µλl)
−3 < 0 for l = 2, 3, . . . , L. Therefore, the function f(µ)

may not be monotonic, and the number of positive roots of
f(µ) = 0 is uncertain. The proof is now complete. �

APPENDIX E
PROOF OF PROPOSITION 2

From (17b), (17a) and (17c), we have

J(w) =
wTΩJNw

wTΩJDw + ξ2
,

and

P (w) = wTΩTw +

L∑
l=1

cl card(wl).

Setting w = cŵ for some fixed vector ŵ, J(w) and P (w)
are strictly increasing functions of c when c > 1, and strictly
decreasing functions of c when c < 1. Thus, the optimality is
achieved for (P1) or (P2) when the inequality constraints are
satisfied with equality.

Given the energy budget P̂ , we have P (w2) = P̂ , where w2

is the optimal solution of the energy constrained problem (P2).
Our goal is to show w2 is also a solution of the information
constrained problem (P1) when J̌ = J(w2).

If w2 is not the solution of (P1), we assume a better solution
w′2 such that P (w′2) < P (w2). Since P (·) strictly increases
as multiplying the optimization variables by a scalar c > 1,
there exists a scalar c > 1 such that

P (w′2) < P (cw′2) ≤ P (w2). (57)

On the other hand, since J(·) strictly increases as multi-
plying the optimization variables by a scalar c > 1, we have
J(cw′2) > J(w′2). Further, because w′2 is a feasible vector for
(P1), we have J(w′2) ≥ J̌ , where recalling that J̌ = J(w2).
We can then conclude that

J(cw′2) > J(w′2) ≥ J(w2). (58)

From (57) and P (w2) = P̂ , we obtain that P (cw′2) ≤ P ,
which implies cw′2 is a feasible point for (P2). From (58), we
have J(cw′2) > J(w2), which implies cw′2 yields a higher
objective value of (P2) than w2. This contradicts to the fact
that w2 is the optimal solution of (P2). Therefore, we can
conclude that w2 is the solution of (P1).

On the other hand, if w1 is the solution of (P1), it is similar
to prove that w1 is the solution of (P2) when P̂ = P (w1).
The proof is now complete. �

APPENDIX F
PROOF OF PROPOSITION 4

For notational convenience, we define κ1 := 1
ρ , κ2 := d̃n

ρ

and hκ1
κ2

(vGn) := κ1‖FnvGn‖1+κ2‖vGn‖2. Then problem (39)
can be written as

minimize
vGn

φκ1
κ2

(vGn
) := hκ1

κ2
(vGn

) + 1
2‖vGn

− bGn
‖22. (59)

Let v∗Gn
be the unique minimizer of the following problem

minimize
vGn

h0κ2
(vGn) + 1

2‖vGn − ν‖22, (60)

where ν = sgn(bGn)�max(|bGn | − κ1fGn , 0).
We aim to show v∗Gn

is also the minimizer of problem (59).
The optimality of v∗Gn

for problem (60) yields

0 ∈ v∗Gn
− ν + ∂h0κ2

(v∗Gn
), (61)

where ∂h0κ2
(·) denotes the subgradient of h0κ2

(·). We then
derive the subgradient of φκ1

κ2
(vGn

) at v∗Gn

∂φκ1
κ2

(v∗Gn
)=v∗Gn

−bGn
+κ1FnSGN(v∗Gn

)+∂h0κ2
(v∗Gn

), (62)

where SGN(·) is defined in a component-wise fashion

SGN(x) =

 {1} x > 0
[−1, 1] x = 0
{−1} x < 0

for ∀x ∈ R.
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The definition of ν = sgn(bGn
) � max(|bGn

| − κ1fGn
, 0)

implies

νi =


[bGn

]i − κ1 [fGn
]i [bGn

]i > κ1[fGn
]i

0 |[bGn
]i| ≤ κ1 [fGn

]i
[bGn ]i + κ1 [fGn ]i [bGn ]i < −κ1 [fGn ]i ,

(63)

where [x]i denotes the ith entry of a vector x.
From (63), we have ν ∈ bGn −κ1FnSGN(ν). Since v∗Gn

is
the minimizer of problem (60), according to [40, Lemma 1],
we can obtain that SGN(ν) ⊆ SGN(v∗Gn

). Thus,

ν ∈ bGn
− κ1FnSGN(v∗Gn

). (64)

Combining (61) and (64), we obtain that

0 ∈ v∗Gn
− bGn + κ1FnSGN(v∗Gn

) + ∂h0κ2
(v∗Gn

),

which implies that 0 ∈ ∂φκ1
κ2

(v∗Gn
) from (62). Thus, v∗Gn

is the
minimizer of problem (59).

Finally, the closed form of v∗Gn
in problem (60) is given by

a block soft thresholding operator [43]

v∗Gn
=

{
(1− κ2

‖ν‖2 )ν ‖ν‖2 ≥ κ2
0 ‖ν‖2 < κ2.

Now, the proof is complete. �
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