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Asymptotic Parameter Tracking Performance
with Measurement Data of 1-bit Resolution

Manuel Stein, Alexander Kürzl, Amine Mezghani and Josef A. Nossek

Abstract—The problem of signal parameter estimation and
tracking with measurement data of low resolution is considered.
In comparison to an ideal receiver with infinite receive resolution,
the performance loss of a simplistic receiver with 1-bit resolution
is investigated. For the case where the measurement data is
preprocessed by a symmetric hard-limiting device with 1-bit
output, it is well-understood that the performance for low
SNR channel parameter estimation degrades moderately by 2/π
(−1.96 dB). Here we show that the 1-bit quantization loss can be
significantly smaller if information about the temporal evolution
of the channel parameters is taken into account in the form of
a state-space model. By the analysis of a Bayesian bound for
the achievable tracking performance, we attain the result that
the quantization loss in dB is in general smaller by a factor of
two if the channel evolution is slow. For the low SNR regime,
this is equivalent to a reduced loss of

√
2/π (−0.98 dB). By

simulating non-linear filtering algorithms for a satellite-based
ranging application and a UWB channel estimation problem,
both with low-complexity 1-bit analog-to-digital converter (ADC)
at the receiver, we verify that the analytical characterization of
the tracking error is accurate. This shows that the performance
loss due to observations with low amplitude resolution can, in
practice, be much less pronounced than indicated by classical
results. Finally, we discuss the implication of the result for
medium SNR applications like channel estimation in the context
of mobile wireless communications.

Index Terms—parameter estimation, tracking, hard-limiter, 1-
bit ADC, channel estimation, ranging

I. INTRODUCTION

WHEN analyzing parameter estimation methods and al-
gorithms in the context of statistical signal processing,

it is often assumed that the digital measurement data is
available with high resolution. Therefore, quantization effects
can be neglected in the underlying model and an ideal system
with infinite amplitude resolution is usually assumed for
the analytical characterization of the receiver. However, in
practice, the hardware complexity and the power dissipation of
the required ADC scales exponentially O(2b) with the number
of resolution bits b. Consequently, high resolution ADCs are
expensive to build and are power consuming during system
operation. Further, the speed of the temporal sampling process
is limited when operating at high resolution [1]. A work-
around to this unattractive property of high resolution signal
processing systems is to adapt the estimation and tracking
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algorithms intentionally to measurements of low resolution.
This allows us to use an ADC of low complexity, have
a small production cost and moderate power consumption,
or to perform sampling at high rates. In the extreme case,
the conversion from the analog to the digital domain is
performed by a symmetric hard-limiter, providing a digital
measurement output with 1-bit resolution. For such an ADC
device, the circuit design becomes trivial. It can be realized
by a single comparator element with zero threshold voltage.
Further, this extreme approach has the advantage that low-
level digital signal processing operations, which involve the
binary receive data, can be carried out hardware-efficiently by
using 1-bit arithmetics. Nevertheless, due to the strong non-
linearity, the conceptual simplicity of low-resolution analog-
to-digital conversion comes with a significant performance
loss. The focus of this work is to characterize the performance
gap between a simplistic signal processing system with 1-bit
measurement data and an ideal receiver with infinite resolution
in the context of signal parameter estimation and tracking.

A. Related work

An interesting and long-standing result in statistical signal
processing with quantized receive data [2] is, that for low
SNR applications, the performance loss associated with 1-
bit hard-limiting is moderate with 2/π (−1.96 dB) [3]. Due
to the attractive simplicity of ADCs with 1-bit amplitude
resolution, a variety of works [4], [5], [6], [7] have analyzed
the loss associated with this non-linear operation in the context
of signal parameter estimation. Focusing on the problem of
reliable communication over a noisy channel, the work [8]
establishes the theoretical limit of the transmission rate with
a 1-bit ADC at the receiver. Another line of works studies
different methods aiming at the reduction of the 1-bit quanti-
zation loss. In [9], [10], [11], [12], the possibility to increase
the temporal sampling rate with 1-bit ADC is discussed in
the context of communication theory, while [13] takes into
account the optimization of the hard-limiting threshold. In
[14], the quantization threshold is adaptively adjusted, whereas
[15] and [16] consider the method of dithering for signal
parameter estimation from quantized data. In contrast, [17]
analyzes the benefit of dithering strategies with feedback.
Adding noise prior to the quantization operation and exploiting
the effect of stochastic resonance is studied in [18]. [19]
proves that a constant quantization threshold maximizes the
Fisher information measure and its Bayesian version. The
work [20] reveals that noise correlation can be beneficial for
the information flow (Shannon information measure) through
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highly non-linear ADC devices, while by means of an esti-
mation theoretic approach (Fisher information measure), the
discussions [21], [22] and [23] show how to exploit this effect
for statistical signal processing tasks by an adjusted design
of the analog radio front-end. In the context of non-linear
filtering, [24] and [25] study the effect of coarse receive signal
quantization, while [26], [27] and [28] propose algorithms for
state estimation and tracking with quantized measurement data
and analyze their performance.

B. Contribution
Here we follow the idea of including additional side in-

formation about the evolution of the channel into the digital
signal processing of measurement data with low amplitude
resolution. Different technical applications like wireless com-
munication, radar, sonar or satellite-based positioning require
the continuous inference of channel parameters at the receiver.
As this process is performed subsequently on measurement
blocks of short duration and the channel in general follows ba-
sic physical principles, a stochastic model which describes the
short-time temporal evolution of the channel parameters can be
derived in many situations. Such a model forms an additional
source of information which can be exploited within the digital
part of the receiver at high internal resolution. We show that
for signal processing systems, where the measurement data
is acquired from a sampling device with low amplitude res-
olution, the embedding of available side information into the
formulation of the estimation problem plays an important role.
By an asymptotic performance analysis based on Bayesian
bounds for signal parameter tracking [29], [30], [31], [32],
we show that significant performance gains can be achieved
for quantized receivers if a state-space model is incorporated
into the estimation algorithm and tracking over subsequent
blocks is performed. In contrast to preliminary works [24]
and [25], on the subject of state estimation with quantized
measurements, we carry out an asymptotic performance anal-
ysis under slow channel parameter evolution and obtain an
explicit relative loss of

√
2/π (−0.98 dB) in the low SNR

regime. The analysis shows that in general, the performance
gap χ between two signal processing systems established
under a Fisher or Bayesian estimation perspective diminishes
to
√
χ when analyzed in conjunction with a slow evolving

state-space model. This corresponds to a reduction of the
performance loss in dB by a factor of two, making the result
particularly interesting for situations where the performance
loss is pronounced (e.g. 1-bit signal processing in the medium
to high SNR regime). Analyzing the rate of convergence of
the estimation error under slow evolution reveals that the
duration of the transient phase of the tracking process increases
accordingly by

√
χ−1. With Monte-Carlo simulations using

particle filters for channel estimation tasks in the context of
low SNR satellite-based ranging and UWB communication,
we verify that the established results can be translated into
signal processing applications. In the beginning, we briefly
review the Fisher and the Bayesian approach onto estimation
without a state-space model and discuss the performance loss
attained within these frameworks when operating with 1-bit
measurement data.

II. OBSERVATION MODEL

For the discussion, an amplified sensor signal

y(t) = γs(t; θ(t)) + η(t), (1)

y(t) ∈ R, is assumed. The analog signal y(t) consists of
a deterministic transmit signal s(t; θ(t)) ∈ R, attenuated by
factor γ ∈ R. The signal s(t; θ(t)) is modulated by a parameter
θ(t) ∈ R, which evolves over time t ∈ R. White random
noise η(t) ∈ R, due to an analog low-noise amplifier behind
the receive sensor, distorts the receive signal in an additive
way. The receive signal y(t) is low-pass filtered to a one-sided
bandwidth of B and sampled with a rate of fs = 2B = 1

Ts
.

In the k-th processing block of duration NTs we combine N
subsequent samples to an observation vector

yk = γs(θk) + ηk (2)

yk, s(θk),ηk ∈ RN , with the individual vector entries

[yk]n = y((k−1)NTs + (n− 1)Ts)

[s(θk)]n = s((k−1)NTs + (n− 1)Ts; θk)

θk = θ((k−1)NTs)

[ηk]n = η((k−1)NTs + (n− 1)Ts), (3)

where n = 1, . . . , N . By following this model we assume that
the temporal evolution of the channel parameter θ(t) is slow
compared to the sampling process, so that we approximate the
parameter θk to be constant within the k-th block. Note that
this imposes no general restriction. In practice, the sampling
rate fs or the block length N can be chosen such that the
assumption of a constant block parameter is fulfilled with
sufficiently high accuracy. The temporal evolution of the
parameter over subsequent blocks can then be described in
the form of a transition probability function p(θk|θk-1) with an
initial prior p(θ0) modeling the uncertainty about the channel
parameter at the beginning of the receive process. The noise
samples ηk form a multivariate Gaussian random variable with
the properties

Eη [ηk] = 0, ∀k,
Eη
[
ηkη

T
k

]
= I, ∀k, (4)

such that the conditional probability of the receive signal yk
in the k-th block can be written

p(yk|θk) =
1

(2π)
N
2

e−
1
2

(
yk−γs(θk)

)T(
yk−γs(θk)

)
=

1

(2π)
N
2

N∏
n=1

e−
1
2

(
[yk]n−γ[s(θk)]n

)2
. (5)

In the following, in order to take into account a 1-bit ADC at
the receiver, the receive signal is considered to be exclusively
available in the form

rk = sign (yk), (6)

where sign (x) is the element-wise signum function with the
definition

sign(x) =

{
+1 if x ≥ 0

−1 if x < 0.
(7)
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After this hard-limiting operation, the conditional probability
of each binary receive sample [rk]n is

p([rk]n = +1|θk) =

∫ ∞
−γ[s(θk)]n

pη([ηk]n)d[ηk]n

= Q (−γ[s(θk)]n)

= 1−Q (γ[s(θk)]n) (8)

and

p([rk]n = −1|θk) =

∫ −γ[s(θk)]n

−∞
pη([ηk]n)d[ηk]n

= 1−Q (−γ[s(θk)]n)

= Q (γ[s(θk)]n) , (9)

such that

p(rk|θk) =

N∏
n=1

(
1−Q (γ[rk]n[s(θk)]n)

)
=

N∏
n=1

Q (−γ[rk]n[s(θk)]n) , (10)

with Q (x) being the Q-function

Q (x) =
1√
2π

∫ ∞
x

exp
(
− z2

2

)
dz. (11)

The final task of the receiver is to calculate a block-wise
estimate θ̂(rk) from the receive signal rk. The quality of the
estimate θ̂(rk) is judged on the basis of a quadratic error

εk =
(
θ̂(rk)− θk

)2
. (12)

III. HARD-LIMITING LOSS - FISHER ESTIMATION

First we discuss the problem under a Fisher theoretic
perspective [33]. The parameter θk is considered to be deter-
ministic but unknown. Further, each block is processed inde-
pendently without taking into account the temporal evolution
of the channel parameter θk. In this case, the optimum block-
wise inference procedure is the maximum likelihood estimator
(MLE)

θ̂ML(rk) = arg max
θk∈Θ

p(rk|θk). (13)

As the estimator is unbiased and asymptotically efficient, the
mean square error (MSE) of the estimator

MSE(θk) = Erk|θk

[(
θ̂ML(rk)− θk

)2]
(14)

reaches the theoretical limit, the so-called Cramér-Rao lower
bound (CRLB)

MSE(θk) ≥ 1

F (θk)
. (15)

The Fisher information measure F (θk) is defined

F (θk) = Erk|θk

[(
∂ ln p(rk|θk)

∂θk

)2
]

=

N∑
n=1

E[rk]n|θk

[(
∂ ln p([rk]n|θk)

∂θk

)2
]

=

N∑
n=1

(
∂p([rk]n=+1|θk)

∂θk

)2

p([rk]n = +1|θk)
+

N∑
n=1

(
∂p([rk]n=−1|θk)

∂θk

)2

p([rk]n = −1|θk)
.

(16)

With the derivatives of the conditional probability function

∂p([rk]n = +1|θk)

∂θk
=

γ√
2π

[
∂s(θk)

∂θk

]
n

e−
γ2[s(θk)]2n

2

∂p([rk]n = −1|θk)

∂θk
= − γ√

2π

[
∂s(θk)

∂θk

]
n

e−
γ2[s(θk)]2n

2 , (17)

the information measure is found to be given by

F (θk) =
γ2

2π

N∑
n=1

[
∂s(θk)
∂θk

]2
n
e−γ

2[s(θk)]2n

Q (γ[s(θk)]n) Q (−γ[s(θk)]n)
. (18)

As a performance reference for the non-linear 1-bit receiver
(6), we consider an ideal receiver which has access to the
high resolution signal yk. For this kind of receive system, the
Fisher information measure in the k-th block is found to be

F∞(θk) = Eyk|θk

[(
∂ ln p(yk|θk)

∂θk

)2
]

= γ2

(
∂s(θk)

∂θk

)T
∂s(θk)

∂θk

= γ2
N∑
n=1

[
∂s(θk)

∂θk

]2

n

. (19)

In order to compare both receivers, we define the relative
performance loss by the block-wise information ratio

χk(θk) =
F (θk)

F∞(θk)
. (20)

As Q (0) = 1
2 , we obtain

lim
κ→0

e−κ
2

Q (κ) Q (−κ)
= 4 (21)

and the loss for asymptotically small SNR is

lim
γ→0

χk(θk) =
2

π
, ∀k. (22)

IV. HARD-LIMITING LOSS - BAYESIAN ESTIMATION

The Bayesian perspective is slightly different [32]. Here
the parameter θk is treated as a random variable which is
distributed according to a block-wise prior p(θk). Still, each
block is processed independently, but the prior knowledge
p(θk) is incorporated into the estimation process. In such
a situation, the optimum algorithm for the inference of the
parameter θk is the conditional mean estimator (CME)

θ̂CM(rk) = Eθk|rk [θk] . (23)
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The MSE of any estimator for the Bayesian parameter estima-
tion problem

MSEk = Erk,θk

[(
θ̂(rk)− θk

)2]
(24)

can be bounded by a Bayesian version of the CRLB

MSEk ≥
1

Jk
, (25)

where the block-wise Bayesian information measure is

Jk = Erk,θk

[(
∂ ln p(rk, θk)

∂θk

)2
]

= Eθk

[
Erk|θk

[(
∂ ln p(rk|θk)

∂θk

)2
]]

+

Eθk

[(
∂ ln p(θk)

∂θk

)2
]

= Eθk [F (θk)] + Jp,k

= F̄k + Jp,k. (26)

Equivalently, for the ideal reference receiver we have

J∞,k = Eyk,θk

[(
∂ ln p(yk, θk)

∂θk

)2
]

= Eθk [F∞(θk)] + Jp,k

= F̄∞,k + Jp,k. (27)

Defining the relative performance gap between both systems

ψk =
Jk
J∞,k

=
F̄k + Jp,k
F̄∞,k + Jp,k

, (28)

allows us to compare both systems in the Bayesian setting.
The case of technical interest is

Jp,k � F̄k, ∀k,
Jp,k � F̄∞,k, ∀k, (29)

for which the asymptotic analysis in the low SNR regime

lim
γ→0

ψk ≈ lim
γ→0

F̄k
F̄∞,k

=
2

π
, ∀k, (30)

produces approximately the same result as in the Fisher
estimation framework.

V. HARD-LIMITING LOSS - TRACKING

Finally, we assume that the available stochastic model
p(θk|θk-1), describing the temporal evolution of the channel
parameter from one block to another, is taken into account in
an optimum way. This allows us to perform parameter esti-
mation with tracking over subsequent blocks and to calculate
the current block estimate θ̂k based on the observations of the
current block and all preceding blocks. We assume that the

channel parameter θk evolves according to a stochastic model
of first order (autoregressive model of order one)

θk = αθk-1 + zk, (31)

where α ∈ R and the innovation zk ∈ R is a Gaussian random
variable with the properties

Ezk [zk] = 0, ∀k,
Ezk

[
z2
k

]
= σ2, ∀k, (32)

such that the transition probability function is given by

p(θk|θk-1) =
1√
2πσ

e−
(θk−αθk-1)2

2σ2 . (33)

For the first block we assume an initial prior

p(θ0) =
1√

2πσ0

e
− (θ0−µ0)2

2σ20 . (34)

Note that for such a state-space model, the mean and the
variance of the parameter evolve according to

Eθk [θk] = αkµ0 (35)

Eθk
[
(θk − Eθk [θk])2

]
= α2kσ2

0 +

( k∑
i=1

α2(k−i)
)
σ2. (36)

In order to avoid divergence of the state-space variance, we
restrict α to the range 0 ≤ α < 1, such that

lim
k→∞

Eθk [θk] = 0 (37)

lim
k→∞

Eθk
[
(θk − Eθk [θk])2

]
=

1

1− α2
σ2. (38)

The optimum estimator in such a setup is the CME with all
past observation blocks

θ̂CM(Rk) = Eθk|Rk
[θk]

=

∫
Θk

θkp(θk|Rk)dθk, (39)

where the observation matrix

Rk =
[
rk rk-1 . . . r1

]
(40)

contains the receive signals of all past blocks up to the k-th
block. The MSE of this estimator

MSEk = ERk,θk

[(
θ̂CM(Rk)− θk

)2]
(41)

can be lower bounded by

MSEk ≥
1

Uk
, (42)

where the tracking information measure [29] in block k

Uk = D22
k −D21

k (Uk-1 +D11
k )−1D12

k (43)



5

is calculated recursively with

D11
k = Eθk-1,θk

[(
∂ ln p(θk|θk-1)

∂θk-1

)2
]

= Eθk-1

[
Eθk|θk-1

[(
∂ ln p(θk|θk-1)

∂θk-1

)2
]]

(44)

D12
k = Eθk-1,θk

[
∂ ln p(θk|θk-1)

∂θk-1

∂ ln p(θk|θk-1)

∂θk

]
= Eθk-1

[
Eθk|θk-1

[
∂ ln p(θk|θk-1)

∂θk-1

∂ ln p(θk|θk-1)

∂θk

]]
= D21

k (45)

D22
k = Eθk-1,θk

[(
∂ ln p(θk|θk-1)

∂θk

)2
]

+

Eθk,rk

[(
∂ ln p(rk|θk)

∂θk

)2
]

= Eθk-1

[
Eθk|θk-1

[(
∂ ln p(θk|θk-1)

∂θk

)2
]]

+ F̄k. (46)

With the state-space model (31), the required derivatives are

∂ ln p(θk|θk-1)

∂θk-1
=

(θk − αθk-1)α

σ2

∂ ln p(θk|θk-1)

∂θk
= − (θk − αθk-1)

σ2
, (47)

such that

Eθk-1

[
Eθk|θk-1

[(
∂ ln p(θk|θk-1)

∂θk-1

)2
]]

=
α2

σ2
(48)

Eθk-1

[
Eθk|θk-1

[(
∂ ln p(θk|θk-1)

∂θk

)2
]]

=
1

σ2
(49)

Eθk-1

[
Eθk|θk-1

[
∂ ln p(θk|θk-1)

∂θk-1

∂ ln p(θk|θk-1)

∂θk

]]
= − α

σ2
.

(50)

Consequently, the recursive rule for the computation of the
tracking information measure Uk is given by

Uk =
1

σ2
− α2

σ4

(
Uk-1 +

α2

σ2

)−1

+ F̄k

=

(
σ2 +

α2

Uk-1

)−1

+ F̄k, (51)

and accordingly for the ideal receiver (infinite resolution)

U∞,k =

(
σ2 +

α2

U∞,k-1

)−1

+ F̄∞,k, (52)

where the initial value is

U0 = U∞,0 =
1

σ2
0

. (53)

A. Steady-state Tracking Performance

After an initial transient phase, the tracking algorithm
reaches a steady-state such that the estimation error saturates
and

Uk ≈ Uk-1, ∀k > Kλ, (54)

where Kλ defines the end of the transient phase. Therefore

U = lim
k→∞

Uk

=
1− α2

2σ2
+
F̄

2
+

√(
1− α2

2σ2
+
F̄

2

)2

+
α2F̄

σ2
, (55)

where the expected steady-state Fisher information is

F̄ = lim
k→∞

Eθk [F (θk)] . (56)

The situation that the last term α2F̄
σ2 in (55) dominates the

tracking information measure U arises if the two conditions(
1− α2

2σ2

)2

� α2F̄

σ2
(57)(

F̄

2

)2

� α2F̄

σ2
(58)

are fulfilled. The first condition (57) can be reformulated

(1− α2)2 � α2σ2F̄ (59)

and the second condition (58) can be stated as

F̄ � α2

σ2
. (60)

Substituting (60) into (59), we get

1− α2 � α2, (61)

which is satisfied if we set α close to one. Hence, if α is close
to one (see eq. (61)) and the informative quality of the state-
space model indicated by α2

σ2 (see eq. (48)) is much higher
than the expected steady-state Fisher information F̄ of the
observation model (60), the steady-state tracking information
measure U can be approximated by

U ≈
√
α2F̄

σ2
. (62)

For the comparison between the quantized receiver and the
ideal system, we define the 1-bit quantization loss for para-
meter estimation and tracking in the k-th block as

ρk =
Uk
U∞,k

, (63)

such that asymptotically

ρ = lim
k→∞

ρk

=
U

U∞
, (64)

where the steady-state tracking information measure U∞ for
the ideal reference receiver is

U∞ =
1− α2

2σ2
+
F̄∞
2

+

√(
1− α2

2σ2
+
F̄∞
2

)2

+
α2F̄∞
σ2

,

(65)

with the expected steady-state Fisher information

F̄∞ = lim
k→∞

Eθk [F∞(θk)] . (66)
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Under the assumption that the state-space model has much
higher informative value than the observation model indepen-
dent of the form of the receiver, i.e.,

F̄ � α2

σ2
(67)

F̄∞ �
α2

σ2
, (68)

it is possible to evaluate the loss for a slow temporal evolution
of the channel parameter according to

lim
α→1

ρ ≈

√
F̄

F̄∞
. (69)

Note that as long as (67) and (68) are fulfilled, the result (69)
holds in general, independent of the considered SNR regime.
This implies that compared to the Fisher or the Bayesian
approach, tracking the parameter with the use of a slow
evolving state-space model leads to a 1-bit quantization loss
in dB which is smaller by a factor of two. With the result (69),
we can make the explicit statement that for signal parameter
estimation and tracking in the low SNR regime, the relative
1-bit quantization loss is

lim
γ→0

lim
α→1

ρ ≈
√

2

π
. (70)

B. Convergence and Transient Phase Analysis

In order to further analyze the behavior of the 1-bit quan-
tized system, we consider the convergence of the recursive
information measure (51). The goal is to determine the number
of measurement blocks which are required to fulfill the steady-
state condition (54). To this end, we define a transient phase
of quality λ > 1 with duration

Kλ = inf
{
k ≥ 1

∣∣∣|Uk − U | ≤ 10−λ|U0 − U |
}
. (71)

The measure Kλ characterizes the delay from the start of the
tracking procedure to the steady-state entry point. The rate of
convergence ν ∈ R of recursion (51) is found by solving

lim
k→∞

|Uk − U |
|Uk-1 − U |ν

= ξ (72)

for ν with constant ξ ∈ R, ξ <∞. As the derivative

∂Uk
∂Uk-1

∣∣∣∣
Uk-1=U

= α2(σ2U + α2)−2 6= 0, (73)

we have ν = 1, i.e., the order of convergence is linear and

ξ = α2(σ2U + α2)−2. (74)

With |Uk −U | ≈ ξk|U0 −U |, the duration Kλ is found to be
approximately

Kλ ≈ −
λ

log ξ
. (75)

Assuming that the conditions (67) and (68) are satisfied and√
σ2F̄ + α > 1, it is possible to use the approximation

ξ ≈
(√

σ2F̄ + α
)−2

. (76)

In this case,

Kλ ≈
λ

2 log
(√

σ2F̄ + α
) . (77)

Specifying the additional relative delay ∆ which is introduced
with 1-bit quantization by

∆ =
Kλ

K∞,λ
, (78)

where K∞,λ is the duration of the transient phase for the ideal
receive system, we find

∆ ≈
log
(√

σ2F̄∞ + α
)

log
(√

σ2F̄ + α
)

≈
√
F̄∞
F̄

(79)

for α → 1, independent of the choice of the steady-state
accuracy λ. Further, with√

F̄∞
F̄

∣∣∣∣∣
γ→0

=

√
π

2

≈ 1.25 (80)

it can be concluded that with slow parameter evolution
(α → 1) and low SNR, the transient phase with the 1-bit
receiver takes approximately 25% more time than with the
ideal system.

VI. APPLICATION EXAMPLES

A. Satellite-based Positioning at Low SNR

As an application, we consider a satellite-based ranging
problem where a transmitter sends a known periodic signal
of the form

x(t) =

∞∑
c=−∞

[b](1+mod(c,C))g(t− cTc). (81)

The vector b is a binary sequence with C symbols. Each
symbol has a duration Tc and g(t) is the corresponding band-
limited rectangular transmit pulse. A Doppler-compensated
receiver observes an attenuated and delayed copy of the
transmit signal

y(t) = γs(t; θ(t)) + η(t)

= γx(t− θ(t)) + η(t) (82)

with additive white noise η(t). By band-limiting and sampling
the analog signal (82), the ideal receiver attains the digital
receive signal

yk = γs(θk) + ηk, (83)

while a low-cost 1-bit version of the receiver operates exclu-
sively on the basis of the signal sign

rk = sign (yk)

= sign (γs(θk) + ηk). (84)
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The temporal evolution of the time-delay parameter θk can be
approximated by

θk = αθk-1 + zk. (85)

Note, that in this radio-based ranging example, α is related to
the movement of transmitter and receiver. For simplicity, we
assume that the state-space parameter α is constant over the
considered amount of blocks and is known at the receiver. The
receiver’s task is to estimate the distance to the transmitter in
each block k by measuring the time-delay parameter θ̂k.

1) Tracking with a non-linear filter: Because the optimum
estimator (39) is difficult to calculate in this situation we use a
suboptimal non-linear filter [31] for simulations. The particle
filter is based on approximating the posterior

p(θk|Rk) ≈
L∑
l=1

wlkδ(θk − θlk)

= p̃(θk|Rk), (86)

by L particles θlk. The particle weights wlk ≥ 0 satisfy
L∑
l=1

wlk = 1, (87)

such that a block-wise estimate θ̂k can be calculated by

θ̂k =

L∑
l=1

wlkθ
l
k. (88)

Using the transitional probability function p(θk|θk-1) as the
importance density, the particle weights are updated recur-
sively

w̃lk = wlk-1p(rk|θlk) (89)

and normalized

wlk =
w̃lk∑L
l=1 w̃

l
k

. (90)

If the effective number of particles

Leff =
1∑L

l=1(wlk)2
(91)

falls below a certain threshold κ, i.e.,

Leff ≤ κL, (92)

a resampling step is performed by replacing the particles with
sampling L times from p̃(θk|Rk).

2) Results: For simulations, we use the signal of the 5-th
GPS satellite with C = 1023, Tc = 1

1.023 MHz and a rectangular
transmit pulse g(t) [34]. According to the chip rate, the one-
sided band-width of the receiver is set to B = 1.023 MHz.
The sampling rate is set to fs = 2B and each block has
the duration NTs = 1 ms, i.e., a block contains N = 2046
samples. The signal-to-noise ratio is set to SNRdB = −15.0
dB. For the state-space model, we choose α = 1− 10−3 and
σ = 10−3 and the initialization setup is µ0 = 398.7342 · Tc
and σ0 = 0.1 ·Tc. For K = 250 blocks, we generate 100 delay
processes and run the non-linear filters with L = 100 particles
for each delay process 1000 times with independent noise
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S
E

in
m

√
MSEk√
U−1
k√

U−1√
MSE∞,k√
U−1
∞,k√

U−1
∞

Fig. 1: Tracking Error - Ranging

realizations, while the resampling threshold is set to κ = 0.66.
The results depicted in Fig. 1 show that the block-wise analytic
range tracking errors U−1

k and U−1
∞,k in meter approach the

asymptotic steady-state errors U−1 and U−1
∞ . Further, it can

be observed that both non-linear filters are efficient, such that
the errors MSEk and MSE∞,k reach the theoretic tracking
bounds U−1

k and U−1
∞,k. Therefore, in Fig. 2, the quantization

loss ρk defined in (63) is visualized. It is observed that at the
beginning of the range tracking process, the performance gap
between both receivers is moderate (−1.38 dB at k = 1), due
to the same initial knowledge with σ2

0 . In the transient phase,
the quantization loss becomes quite pronounced (−1.90 dB at
k = 15). While reaching the steady-state phase (k > 250), the
loss converges to −0.93 dB.
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−1.8

−1.6

−1.4

−1.2

−1

−0.8

k

dB

ρk from (63)
ρ from (64)

Fig. 2: 1-bit Tracking Loss - Ranging

B. UWB Channel Estimation at Low SNR

For a second application we consider the estimation of
the channel quality in the context of UWB communication.
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Similar to the ranging application, the receive signal of a
synchronized receiver during a pilot phase can be modelled

yk = sk(θk) + ηk

= θkxk + ηk, (93)

where xk is the time-discrete form of a known unit power pilot
signal with analog structure as in (81), and θk is the channel
coefficient. Note, that in contrast to the ranging problem, the
parameter θk in the ideal receive model (93) shows up in a
linear form. The task of a low-cost 1-bit UWB receiver

rk = sign (yk)

= sign (θkxk + ηk) (94)

is to estimate the signal attenuation θ̂k for each pilot block,
while the channel coefficient follows the temporal evolution
model (31). In contrast to the ranging application, we assume
B = 528 MHz, a Nyquist transmit pulse g(t) of bandwidth B
and C = 10 with SNRdB = −15.0 dB. The state-space model
parameters are α = 1−10−4 and σ =

√
(1− α2) SNR, where

SNR = 10
SNRdB

10 . The initialization setup is µ0 =
√

SNR
and σ0 = 0.05. In Fig. 3 it can be seen, like in the
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U−1
∞,k√

U−1
∞

Fig. 3: Tracking Error - UWB Channel Estimation

ranging application, that the non-linear filters, simulated with
1000 channel coefficient processes and 100 independent noise
realizations, perform efficiently and therefore closely to the
tracking bounds U−1

k or U−1
∞,k. These bounds asymptotically

equal the analytic steady-state errors U−1 and U−1
∞ . In Fig.

4, the performance loss ρk is depicted in dB. As in the
ranging problem, it is observed that the loss after the initial
transient phase recovers and approaches −1.02 dB. Note that
for both of the considered applications, the asymptotic loss
is slightly different from −0.98 dB, as the low SNR or the
slow channel evolution assumptions are not fully valid for the
chosen simulation setups.

C. Enabling 1-bit Estimation at Medium SNR
Because a low-cost radio front-end design might be par-

ticularly interesting for mobile communication receivers, we

0 50 100 150 200 250

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

k

dB

ρk
ρ

Fig. 4: 1-bit Tracking Loss - UWB Channel Estimation

finally investigate the potential tracking performance for signal
parameter estimation in the medium SNR regime. As here
the 1-bit quantization loss is much more pronounced, using
a low-cost 1-bit ADC might make it impossible to meet the
specified technical requirements. However, the use of a state-
space model bears the potential to reduce the quantization loss,
such that low-cost ADCs might become a possible system
design option. For the considered scenario we assume a mobile
communication channel as in (94) with B = 2.5 MHz, a
pilot sequence of C = 10 symbols and a medium channel
quality of SNRdB = 6.0 dB. The task of the receiver is to
estimate the channel coefficient θ̂k in each pilot block, while
the initial knowledge is assumed to be µ0 =

√
SNR under the

uncertainty

σ0 =
(√

Eθ0 [F∞(θ0)]
)−1

. (95)

The process noise is set to σ =
√

(1− α2) SNR. In Fig. 5,
the steady-state tracking loss ρ is depicted for β = 1− α. In

10−7 10−6 10−5 10−4 10−3 10−2 10−1 100
−6

−5

−4

−3

−2

β

dB

ρ
ψ

Fig. 5: 1-bit Tracking Loss - Mobile Channel Estimation
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comparison to the quantization loss ψ without tracking, it can
be seen that the quantization loss becomes smaller when α
approaches one. However, note that the amount of blocks Kλ

that are required in order to reach the steady-state and achieve
the small loss indicated by ρ can become large. In Fig. 6 the

0 200 400 600 800 1,000
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−4

−3

ψ (-5.73 dB)

k

ρ
k

in
dB

β = 10−1

β = 10−2

β = 10−3

β = 10−4

β = 10−5

Fig. 6: 1-bit Tracking Loss - Mobile Channel Estimation

quantization loss ρk for a finite amount of blocks and different
β is visualized. It becomes clear that in the considered scenario
the reduction of the quantization error to a level above−3.4 dB
(β < 10−3) might take a high number of blocks and therefore
can only be realized with significant delay.

VII. CONCLUSION

We have analyzed the performance gap between two ex-
treme receive systems with respect to parameter estimation
and tracking. The reference receiver performs analog-to-digital
conversion with infinite amplitude resolution, while the low-
cost receive system has a simple symmetric hard-limiting
ADC with 1-bit output resolution. If consecutive blocks are
processed independently, we attain the well-established loss
of 2/π (−1.96 dB) for low SNR applications. If, in contrast,
additional side information about the temporal evolution of
the channel in form of a state-space model is taken into
account and the parameter is tracked over subsequent blocks,
the loss can be significantly lower. For slow channel evolution
(α → 1), we attain

√
2/π (−0.98 dB) in the low SNR

regime, while for medium to high SNR, the loss in dB is,
in general, smaller by a factor of two, compared to the case
where the side information is not taken into account. Through
simulation of a non-linear filtering algorithm we have verified
that the result can be translated into practical applications.
In particular, for situations with medium SNR, the result is
interesting as here the quantization loss is pronounced. The
embedding of additional information into the estimation and
tracking process allows us to suppress the loss due to a non-
linear radio front-end and therefore might enable new low-cost
design options.
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