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Abstract—This paper considers an Internet-of-Things (IoT)
scenario in which devices sporadically transmit short packets
with few pilot symbols over a fading channel. Devices are
characterized by unique transmission non-idealities, such as I/Q
imbalance. The number of pilots is generally insufficient to obtain
an accurate estimate of the end-to-end channel, which includes
the effects of fading and of the transmission-side distortion. This
paper proposes to tackle this problem by using meta-learning.
Accordingly, pilots from previous IoT transmissions are used
as meta-training data in order to train a demodulator that
is able to quickly adapt to new end-to-end channel conditions
from few pilots. Various state-of-the-art meta-learning schemes
are adapted to the problem at hand and evaluated, including
Model-Agnostic Meta-Learning (MAML), First-Order MAML
(FOMAML), REPTILE, and fast Context Adaptation VIA meta-
learning (CAVIA). Both offline and online solutions are devel-
oped. In the latter case, an integrated online meta-learning and
adaptive pilot number selection scheme is proposed. Numerical
results validate the advantages of meta-learning as compared to
training schemes that either do not leverage prior transmissions
or apply a standard joint learning algorithms on previously
received data.

Index Terms—Machine learning, meta-learning, online meta-
learning, Model-Agnostic Meta-Learning (MAML), First-Order
MAML (FOMAML), REPTILE, fast Context Adaptation VIA
meta-learning (CAVIA), IoT, demodulation.

I. INTRODUCTION

A. Motivation

For many standard channel models, such as additive Gaus-
sian noise and fading channels with receive Channel State
Information (CSI), the design of optimal demodulators and
decoders is well understood. Most communication links hence
use pilot sequences to estimate CSI, which is then plugged into
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Fig. 1: Illustration of few-pilot training for an IoT system via
meta-learning.

the optimal receiver with ideal receive CSI (see, e.g., [2]).
This standard model-based approach is inapplicable if: (i) an
accurate channel model is unavailable; and/or (ii) the optimal
receiver for the given transmission scheme and channel is
of prohibitive complexity or unknown. Examples of both
scenarios are reviewed in [3], [4], and include new com-
munication set-ups, such as molecular channels, which lack
well-established models; and links with strong non-linearities,
such as satellite channels with non-linear transceivers, whose
optimal demodulators can be highly complex [3], [5]. This ob-
servation has motivated a long line of work on the application
of machine learning methods to the design of demodulators
or decoders, from the 90s [3] to many recent contributions,
including [6], [7], [8] and references therein.

Demodulation and decoding can be interpreted as classifica-
tion tasks, where the input is given by the received baseband
signals and the output consists of the transmitted symbols
for demodulation, and of the transmitted binary messages for
decoding. Pilot symbols can hence be used as training data to
carry out the supervised learning of a parametric model for
the demodulator or decoder, such as Support Vector Machines
(SVMs) or neural networks. The performance of the trained
“machine” as a demodulator or a decoder generally depends
on how representative the training data are for the channel
conditions encountered during test time and on the suitability
of the parametric model in terms of trade-off between bias and
variance [9].

To the best of our knowledge, all the prior works reviewed
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above assume that training is carried out using pilot signals
from the same transmitter whose data is to be demodulated
or decoded. This generally requires the transmission of long
pilot sequences for training. In this paper, we consider an
Internet-of-Things (IoT)-like scenario, illustrated in Fig. 1, in
which devices sporadically transmit short packets with few
pilot symbols. The number of pilots is generally insufficient
to obtain an accurate estimate of the end-to-end channel, which
generally includes the effects of fading and of the transmitter’s
non-linearities [10]. We propose to tackle this problem by
using meta-learning [11].

B. Meta-Learning

Meta-learning, also sometimes referred to as “learning to
learn”, aims at leveraging training and test data from different,
but related, tasks for the purpose of acquiring an inductive
bias that is suitable for the entire class of tasks of interest
[11]. The inductive bias can be optimized by selecting either
a model class, e.g., through a feature extractor, or a training
algorithm, e.g., through an initialization of model parameters
or the learning rate [12], [13]. An important application of
meta-learning is the acquisition of a training procedure that
allows a quick adaptation to a new, but related, task using few
training examples, also known as few-shot learning [14]. For
instance, one may have training and test labelled images for
binary classifiers of different types of objects, such as cats vs
dogs or birds vs bikes. These can be used as meta-training data
to quickly learn a new binary classifier, say for handwritten
binary digits, from few training examples.

Meta-learning has recently received renewed attention, par-
ticularly thanks to advances in the development of meth-
ods based on Stochastic Gradient Descent (SGD), includ-
ing Model-Agnostic Meta-Learning (MAML) [15], REPTILE
[16], and fast Context Adaptation VIA meta-learning (CAVIA)
[17]. Such techniques can be generally classified as either
offline, in which case the meta-training data is fixed and given
[15], [16], [17]; or online, in which case all prior data from
related tasks is treated as meta-training data in a streaming
fashion [18].

C. Main Contributions

As illustrated in Figs. 2 and 3, the key idea of this paper
is to use pilots from previous transmissions of other IoT
devices as meta-training data in order to train a procedure
that is able to quickly adapt a demodulator to new end-to-
end channel conditions from few pilots. We consider both an
offline formulation, in which the set of previous transmissions
is fixed, and an online set-up, in which the meta-training
set is updated as transmitted pilots are received. The main
contributions are as follows:
• We adapt to the problem at hand a number of state-of-

the-art offline meta-learning solutions, namely MAML
[15], First-Order MAML (FOMAML) [15], REPTILE
[16], and CAVIA [17]. Their relative merits and a unified
interpretation in terms of the Expectation-Maximization
(EM) algorithm are discussed;
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Fig. 2: Offline meta-learning: Meta-training and meta-test data
for 4-PAM transmission from set S = {−3,−1, 1, 3}. The
figure assumes N = 8 pilot symbols divided into N tr = 4
for meta-training and N te = 4 for meta-testing, and P =
2 pilots for the meta-test device. Crosses represent received
signals y(n)k , and the number above each cross represents the
corresponding label, i.e., the pilot symbol s(n)k .
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Fig. 3: Online meta-learning: Meta-training and meta-test data
for 4-PAM transmission from set S = {−3,−1, 1, 3}. Meta-
training data are accumulated as the BS observes subsequent
slots t = 1, 2, . . ., with one device transmitting pilots and data
symbols in each slot.

• We validate the advantage of meta-learning with extensive
numerical results that provide comparisons with conven-
tional model-based and learning-based communication
schemes. A comparative study of the performance of
various meta-learning solutions is also presented;

• We propose a novel online solution that integrates meta-
learning with an adaptive selection of the number of pilots
and compare the proposed solution with conventional
non-adaptive solutions in terms of receiver’s performance
and number of pilots.

The results in this paper have been partially presented in
[1]. In particular, reference [1] derives an offline MAML-based
algorithm, and offers some preliminary numerical results. As
compared to the preliminary conference version [1], this paper
presents additional analysis, including a general framework
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for meta-learning based on EM; novel algorithms, introducing
a comprehensive evaluation of a larger number of meta-
learning offline schemes and the study of online meta-learning
for demodulation, along with a new adaptive pilot number
selection algorithm; and more extensive discussions in terms
of both algorithm definition and extra experiments.

D. Related Works

In [19], which is concurrent to [1], the authors train a neural
network-based decoder that can adapt to the new channel
condition with a minimal number of pilot symbols using
meta-learning via FOMAML. In [20], the authors train a
neural network-based channel estimator in OFDM system with
meta-learning via FOMAML in order to obtain an effective
channel estimation given a small number of pilots. After the
first submission of this paper, several additional papers have
considered meta-learning for communication. Reference [13]
provides a review of meta-learning with applications to com-
munication systems. In [21], meta-learning is used for down-
link/uplink channel conversion in Frequency-Division Duplex
massive MIMO channels. Papers [22] and [23] consider meta-
learning for end-to-end training of physical layer with and
without a channel model, respectively. Finally, reference [24]
considers a related approach based on hypernetworks to aid
neural network-based MIMO detection.

Paper organization: The rest of the paper is organized
as follows. In Sec. II, we detail system model and offline
meta-learning problem. In Sec. III, various offline meta-
learning solutions are covered within a unified interpretation.
In Sec. IV, we redefine system model for an online setting
and propose a novel online solution, including adaptive pilot
number selection. Numerical results are presented in Sec. V
and conclusions are presented in Sec. VI.

II. MODEL AND PROBLEM

A. System Model

In this paper, we consider the IoT system illustrated in
Fig. 1, which consists of a number of devices and a base station
(BS). For each device k, the complex symbol transmitted by
the device and the corresponding received signal at the BS
are denoted as sk ∈ S and yk, respectively. We also denote
as S the set of all constellation symbols as determined by the
modulation scheme. The end-to-end channel for a device k is
defined as

yk = hkxk + zk, (1)

where hk is the complex channel gain from device k to the
BS, which is constant over a transmission block according to
the standard quasi-static fading model typically assumed for
short-packet transmissions; zk ∼ CN (0, N0) is additive white
complex Gaussian noise; and

xk ∼ pk(·|sk) (2)

is the output of a generally random transformation defined by
the conditional distribution pk(·|sk). This conditional distri-
bution accounts for transmitter’s non-idealities such as phase

noise [25], I/Q imbalance [26], and amplifier’s characteristics
[10] of the IoT device. Throughout the paper for each device
k, we assume pilots and data symbols to follow the same
constellation S and to be subject to the transmitter’s non-
idealities defined by pk(·|sk). The average transmitted energy
per symbol is constrained as E[|xk|2] ≤ Ex for some positive
value Ex for both pilot and data symbols. As an example for
the transmitter’s non-idealities (2), a common model for the
I/Q imbalance assumes the following transformation [27]

xk =(1 + εk) cos δkRe{sk} − (1 + εk) sin δkIm{sk}
+j((1− εk) cos δkIm{sk} − (1− εk) sin δkRe{sk}), (3)

where εk and δk represent the amplitude imbalance factor and
phase imbalance factor, which are real constants or random
variables. Note that we only explicitly model imperfections at
the transmitter side. This is because, in practice, non-idealities
on the receiver processing chain at the BS are expected to
be much less significant than the mentioned non-idealities
for IoT devices. Furthermore, receiver-side non-linearities at
the BS can be also mitigated through offline designs prior to
deployment.

Based on the reception of few pilots from a target device,
we aim at determining a demodulator that correctly recovers
the transmitted symbol s from the received signal y with
high probability. The demodulator is defined by a conditional
probability distribution p(s|y, ϕ), which depends on a trainable
parameter vector ϕ.

B. Offline Meta-Learning Problem

Following the nomenclature of meta-learning [15], the target
device is referred to as the meta-test device. To enable few-
pilot learning, we assume here that the BS can use the signals
received from the previous pilot transmissions of K other IoT
devices, which are referred to as meta-training devices and
their data as meta-training data. Specifically, as illustrated in
Fig. 2, the BS has N pairs of pilot sk and received signal
yk for each meta-training device k = 1, . . . ,K. The meta-
training dataset is denoted as D = {Dk}k=1,...,K , where
Dk = {(s(n)k , y

(n)
k ) : n = 1, . . . , N}, and (s

(n)
k , y

(n)
k ) are

the n-th pilot-received signal pairs for the kth meta-training
device. This scenario is referred to as offline meta-learning
since the meta-training dataset D is fixed and given. Online
meta-training will be discussed in Sec. IV.

For the target, or the meta-test, device, the BS receives
P pilot symbols. We collect the P pilots received from the
target device in set DT = {(s(n), y(n)) : n = 1, . . . , P}. The
demodulator can be trained using meta-training data D and
the pilot symbols DT from the meta-test device.

Training requires the selection of a parametric model
p(s|y, ϕ) for the demodulator. The choice of the parametric
model p(s|y, ϕ) should account for the standard trade-off
between capacity of the model and overfitting [28], [29]. To
fix the ideas, we will assume that the demodulator p(s|y, ϕ)
is given by a multi-layer neural network with L layers, with
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a softmax non-linearity in the final, Lth, layer. This can be
written as

p(s|y, ϕ) =
exp

(
[fϕ(L−1)(fϕ(L−2)(· · fϕ(1)(y)))]s

)
∑
s′∈S

exp
(
[fϕ(L−1)(fϕ(L−2)(· · fϕ(1)(y)))]s′

) ,
(4)

where fϕ(l)(x) = σ(W (l)x + b(l)) represents the non-linear
activation function of the lth layer with parameter ϕ(l) =
{W (l), b(l)}, with W (l) and b(l) being the weight matrix and
bias vector of appropriate size, respectively; [·]s stands for the
element regarding s; and ϕ = {ϕ(l)}l=1,...,L−1 is the vector
of parameters. The non-linear function σ(·) can be, e.g., a
Rectified Linear Unit (ReLU) or a hyperbolic tangent function.
The input y in (4) can be represented as a two-dimensional
vector comprising real and imaginary parts of the received
signal.

III. OFFLINE META-LEARNING ALGORITHMS

In this section, we adapt state-of-the-art offline meta-
learning algorithms to design the demodulator in (4) given
meta-training and meta-test data. As discussed in Sec. I, we
view demodulation as a classification task. To set the notation,
for any set D0 of pairs (s, y) of transmitted symbol s and
received signal y, the standard cross-entropy loss function is
defined as a function of the demodulator parameter vector ϕ
as

LD0(ϕ) = −
∑

(s,y)∈D0

log p(s|y, ϕ). (5)

A. Joint Training

As a benchmark, we start by considering a conventional
approach that uses the meta-training data D and the training
data DT for the joint training of the model p(s|y, ϕ). Joint
training pools together all the pilots received from the meta-
training devices and the meta-test device, and carries out
the optimization of the cumulative loss LD∪DT(ϕ) in (5)
using SGD. Accordingly, the parameter vector ϕ is updated
iteratively based on the rule

ϕ← ϕ+ η∇ϕ log p(s(n)|y(n), ϕ), (6)

by drawing one pair (s(n), y(n)) at random from the set D∪DT.
In (6), the step size η is assumed to be fixed for simplicity of
notation but it can in practice be adapted across the updates
(see, e.g., [30]). Furthermore, this rule can be generalized by
summing the gradient in (6) over a mini-batch of pairs from
the dataset D ∪DT at each iteration [30].

B. A Unified View of Meta-Learning

A useful way to introduce meta-learning in terms of the
graphical model is illustrated in Fig. 4. Accordingly, meta-
learning assumes a demodulator p(s|y, φ, θ) that depends on
a shared parameter θ common to all tasks, or users, and on
a latent context variable φ, which is specific to each user.
The specific parameterization p(s|y, φ, θ) and its relationship

𝜃

𝜙

𝑠𝑦

user

𝑝(𝜙|𝜃)

𝑝(𝑠|𝑦,𝜙, 𝜃)

pilot

Fig. 4: Graphical model assumed by meta-learning: The de-
modulator p(s|y, φ, θ) depends on a user-specific, or context,
random variable φ, as well as on a shared parameter θ, which
may also affect the prior distribution of the context variable φ.
Double circles denote parameters, and the tile notation (see,
e.g., [31]) defines multiple users and pilots per user.

with (4) depend on the meta-learning scheme, and they will
be discussed below. Note that, as illustrated in Fig. 4, the
context vector φ is assumed to be random, while θ is a shared
(deterministic) parameter. Furthermore, from Fig. 4, the shared
variable θ can also affect the prior distribution of the context
variable φ. In this framework, the key idea is that meta-
training data D are used to estimate the shared parameters
θ via the process of meta-learning, while the context variable
φ is inferred from the meta-test data DT.

To elaborate, a principled way to train the model in Fig. 4
would be to estimate parameter θ using the Expectation-
Maximization (EM) algorithm based on the meta-training data
D. The EM algorithm is in fact the standard tool to tackle the
problem of maximum likelihood estimation in the presence of
latent variables, here the context variable φ (see, e.g., [28],
[29], [31]). EM maximizes the sum of marginal likelihoods

p(s|y, θ) = Eφ∼p(φ|θ,Dk)[p(s|y, φ, θ)] (7)

over the data pairs (s, y) from all data sets Dk in the meta-
training data set D. In (7), the average is taken with respect
to the posterior distribution p(φ|θ,Dk) of the context variable
given the training data Dk of the kth meta-training device.
After EM training, one can consider the obtained parameter θ
as fixed when inferring a data symbol s given a new observed
signal y and the pilots DT for the meta-test device. This last
step would ideally yield the demodulator

p(s|y, θ) = Eφ∼p(φ|θ,DT)[p(s|y, φ, θ)], (8)

where the average is taken over the posterior distribution
p(φ|θ,DT) of the context variable given the training data of
the meta-test device.

The computation of the posteriors p(φ|θ,Dk) in (7) and
p(φ|θ,DT) in (8) is generally of infeasible complexity. There-
fore, state-of-the-art meta-learning techniques approximate
this principled solution by either employing point estimate
of latent context variable φ [15], [16], [17] or by a direct
approximation of its posterior distribution [32], [33], [34]. In
this paper, we focus on the more common point estimate based
meta-learning techniques, which are reviewed next.
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C. MAML

For any meta-training device k, MAML [15] assumes a
demodulator p(s|y, φk) given by (4) with model weights ϕ
equal to the context variable φk. The user-specific variable φk,
rather than being obtained from the ideal posterior p(φk|θ,Dk)
as in (7), is computed via SGD-based training from the data
Dk. Specifically, the key idea in MAML is to identify an initial
shared parameter θ during meta-training such that starting
from it, the SGD updates (6) for any meta-training device k
(i.e., for D0 = Dk) produce a parameter vector φk that yields
a low value of the loss function (5). As we will detail, it is
possible to include one or multiple SGD updating steps in (6)
[35]. After meta-training, the initial parameter θ is used for
the SGD updates of the target device based on the pilots in
set DT.

To elaborate, assume first that the exact average loss
Lk(φk) = E[− log p(sk|yk, φk)] for all meta-training devices
k = 1, . . . ,K is given. The average in Lk(φk) is taken over
the distribution p(sk, yk) = p(sk)p(yk|sk), where p(sk) is the
prior distribution of the transmitted symbol sk and p(yk|sk) is
defined by (1) and (2). Note that in practice, this distribution is
not known since the channel and the transmitters’ model are
not known a priori. During meta-training, MAML seeks an
initial value θ such that, for every device k, the losses Lk(φk)
obtained after one or more SGD updates starting from θ are
collectively minimized. As discussed, the SGD updates can
be interpreted as producing a point estimate of the context
variables φk in the model in Fig. 4 [12]. Mathematically, with
a single SGD iteration, the estimate is obtained as

φk = θ − η∇θLk(θ). (9)

More generally, with m ≥ 1 local SGD updates we obtain
φk = φmk , where

φik = φi−1k − η∇φi−1
k
Lk(φ

i−1
k ), (10)

for i = 1, . . . ,m, with φ0k = θ. The identification of a shared
parameter θ is done by minimizing the sum

∑K
k=1 Lk(φk)

over θ.
The losses Lk(φk) for all meta-training devices are not

known and need to be estimated from the available data.
To this end, in the meta-training phase, each set Dk of N
pairs of pilots and received signals for meta-training device
k is randomly divided into a training set Dtr

k of N tr pairs
and a test set Dte

k of N te pairs, as shown in Fig. 2. The
updated context variable φk is computed by applying the SGD-
based rule in (6) by using the training subset Dtr

k , as in (10),
e.g., φk = θ − η∇θLDtr

k
(θ) for a single update. In practice,

m SGD updates can be carried out using mini-batches of
training samples at each iteration. The loss Lk(φk) is then
estimated by using the test subset Dte

k as LDte
k
(φk). Finally,

MAML minimizes the overall estimated loss
∑K
k=1 LDte

k
(φk)

by performing an SGD-based update in the opposite direction
of the gradient ∇θ

∑K
k=1 LDte

k
(φk) with step size κ.

Considering first a single local SGD update (9) for the
context variables, the meta-training update is finally given as

θ ←θ − κ∇θ
K∑
k=1

LDte
k
(φk) = θ − κ

K∑
k=1

(Jθφk)∇φk
LDte

k
(φk)

=θ − κ
K∑
k=1

(I − η∇2
θLDtr

k
(θ))∇φk

LDte
k
(φk), (11)

where Jθ represents the Jacobian operation, and κ > 0 is the
step size. With multiple local SGD updating steps in (10), the
meta-training update can be similarly written as

θ ← θ − κ
K∑
k=1

[
(I − η∇2

θLDtr
k
(θ)) · · ·

(I − η∇2
φm−1
k

LDtr
k
(φm−1k ))∇φm

k
LDte

k
(φmk )

]
. (12)

In practice, the meta-update in (11) and (12) can be carried
out over a subset of meta-training devices at each iteration.
Computation of the Hessian matrices needed in (11) and
(12) can be significantly accelerated using a finite difference
approximation for Hessian-vector product calculation [36],
[37], which is reviewed in Appendix A. The MAML algorithm
is summarized in Algorithm 1.

In Algorithm 1, meta-training is carried out for a given fixed
number of iterations. Among these iterations, we choose the it-
erate that has the smallest meta-training loss

∑
k∈K′ LDte

k
(φk),

evaluated on the subset K ′ of meta-training devices sampled
for the corresponding meta-training update. Similarly, adapta-
tion on the meta-test device chooses the iterate that has the
lowest loss LD′T(φT), where D′T is the mini-batch of training
pairs (s, y) drawn from DT for the corresponding update.

D. FOMAML

First-order MAML (FOMAML) [15] is an approximation of
MAML that ignores the second-derivative terms in the meta-
training updates (11)–(12). Accordingly, the meta-training
update is given as

θ ← θ − κ∇φk

K∑
k=1

LDte
k
(φk). (13)

As a result, FOMAML updates parameter θ in the oppo-
site direction of the gradient ∇φk

∑K
k=1 LDte

k
(φk) instead of

∇θ
∑K
k=1 LDte

k
(φk). For some neural network architectures

and loss functions, e.g., networks with ReLU activation func-
tions [38], FOMAML has been reported to perform almost as
well as MAML [15]. Algorithm 1 provides a summary.

E. REPTILE

REPTILE [16] is a first-order gradient-based meta-learning
algorithm as FOMAML. It uses the same local update (9)–
(10) for the context variables φk, but the meta-training update
is given as

θ ← (1− κ)θ + κ

K∑
k=1

φk. (14)
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Algorithm 1: Few-Pilot Demodulator Meta-Learning
via MAML, FOMAML, REPTILE

Input: Meta-training set D = {Dk}k=1,...,K and pilots
DT from the target device; N tr and N te; step
size hyperparameters η and κ; number of
meta-training iterations I; number of local
updates during meta-training m and
meta-testing IT

Output: Learned shared initial parameter vector θ and
target-device specific parameter vector φT

initialize parameter vector θ
meta-learning phase
for I meta-training iterations do

randomly select a subset K ′ of meta-training
devices

for each selected meta-training device k do
randomly divide Dk into two sets Dtr

k of size
N tr and Dte

k of size N te

do m local updates for the context variable φk
using (9)–(10)

end
update shared parameter θ via (11)–(12) for
MAML, via (13) for FOMAML, via (14) for
REPTILE

end
return iterate θ with minimum meta-training loss∑

k∈K′ LDte
k
(θ)

adaptation on the meta-test device
initialize context parameter vector φT ← θ
for IT meta-testing iterations do

draw a mini-batch D′T of pairs (s(n), y(n)) from DT
update context variable φT in the direction of the

gradient
∑

(s,y)∈D′T
∇φT log p(s|y, φT) with step

size η
end
return iterate φT with minimum training loss LD′T(φT)

The REPTILE update rule (14) is essentially equivalent to
that used for federated learning [39]. We refer to [16] for a
justification of the method.

F. CAVIA

Unlike the meta-learning techniques discussed so far,
CAVIA [17] interprets context variable φ as an additional input
to the demodulator, so that the demodulator p(s|y, φ, θ) can
be written as in (4) with input given by the concatenation
ỹ = [y, φ] and model weights ϕ equal to the shared parameter
vector θ. Using (4), the demodulator is hence in the form
p(s|ỹ, θ), where the shared parameter θ defines the weights
of the demodulator model. After meta-training, the shared
parameter θ is fixed, and the pilots in set DT of the meta-
test device are used to optimize the additional input vector
φ.

During meta-training, given the current value of the shared
parameter θ, the context variable φk is optimized by one or

Algorithm 2: Few-Pilot Demodulator Meta-Learning
via CAVIA

Input: Meta-training set D = {Dk}k=1,...,K and pilots
DT from the target device; N tr and N te; step
size hyperparameters η and κ; number of
meta-training iterations I; number of local
updates during meta-training m and
meta-testing IT

Output: Learned parameter vector θ and target-device
context parameter vector φT

initialize parameter vector θ
meta-learning phase
for I meta-training iterations do

randomly select a subset K ′ of meta-training
devices

for each selected meta-training device k do
initialize context parameter vector φk
randomly divide Dk into two sets Dtr

k of size
N tr and Dte

k of size N te

do m local updates for the context variable φk
using (15)

end
update shared parameter θ via (16)

end
return iterate θ with minimum meta-training loss∑

k∈K′ LDte
k
(θ)

adaptation on the meta-test device
initialize context parameter vector φT
for IT meta-testing iterations do

draw a mini-batch D′T of pairs (s(n), y(n)) from DT
update context parameter vector φT in the direction

of the gradient
∑

(s,y)∈D′T
∇φT log p(s|ỹ, θ) with

step size η where ỹ = [y, φT]
end
return iterate φT with minimum training loss LD′T(θ)

more SGD-based updates to minimize the loss LDtr
k
(θ) as

φk ←φk − η∇φk
LDtr

k
(θ). (15)

Note that the loss LDtr
k
(θ) is a function of φk through the

additional input φk. With the obtained additional input φk,
the meta-training update is given as

θ ← θ − κ∇θ
K∑
k=1

LDte
k
(θ). (16)

After meta-training, as mentioned, parameter θ is fixed, and
the context vector φT is obtained by using SGD updates as

φT ←φT − η∇φTLDT(θ). (17)

CAVIA is summarized in Algorithm 2.

IV. ONLINE META-LEARNING ALGORITHM

In this section, we consider an online formulation in which
packets from devices, containing both pilots and a data
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Fig. 5: Illustration of adaptive pilot number selection based on
online meta-learning for 4-PAM transmission. The number of
transmitted pilots Pt+1 for the IoT device active in the next
time slot is determined by the BS from the performance of
the meta-learned demodulator in the current slot t.

payload, are sequentially received at the BS. Therefore, as
illustrated in Fig. 3, meta-training data are accumulated at the
BS over time. The formulation follows the basic framework
of online meta-learning introduced in [18], which proposes an
online version of MAML. Here, we adapt the online meta-
learning framework to the demodulation problem at hand, and
extend it to integrate all the meta-training solutions discussed
in the previous section, namely MAML, FOMAML, REP-
TILE, and CAVIA. Moreover, a novel adaptive pilot number
selection scheme is proposed that leverages the fast adaptation
property of meta-learning to reduce the pilot overhead.

A. System Model

As illustrated in Fig. 3, in each slot t = 1, 2, . . . , the
BS receives a packet from a new device, from which the
BS obtains the set Dt = {(s(n)t , y

(n)
t ) : n = 1, . . . , Nt} of

Nt pilots {s(n)t } and corresponding received signals {y(n)t }.
Each received packet also contains a payload of data Ddata

t =

{(y(n)t ) : n = 1, 2, . . .}. Therefore, at each slot t, the BS has
meta-training data-carrying symbols Dt−1 = {Dt′}t−1t′=1 from
previously active devices, as well as meta-test data Dt from
the currently active device. The goal is training a demodulator
p(s|y, ϕt) that performs well on the payload data Ddata

t after
adaptation on the received pilots in set Dt by using the meta-
training data Dt−1 as well.

B. Online Learning (Joint Training)

Before discussing online meta-learning, here we briefly
summarize the standard online learning set-up as applied to
the problem introduced above. This can be considered as the
counterpart of joint training for the offline problem studied in
Sec. III-A. In online learning, the goal of the online learner

is to determine a model parameter vector ϕt, sequentially at
each slot t, that performs well on the loss sequence LDt(ϕt)
for t = 1, 2, . . . (recall (5)). As a benchmark, typical online
learning formulations use the best single model ϕ that can be
obtained using knowledge of the losses LDt

(·) in hindsight for
all relevant values of t, i.e., ϕ ∈ argminϕ

∑
t LDt

(ϕ), where
the sum is over the time horizon of interest [40].

A standard online learning algorithm is Follow The Leader
(FTL) [41], which determines the parameter ϕt that performs
best on the previous data Dt−1. For the problem at hand, FTL
determines the parameter ϕt at slot t by tackling the problem

ϕt = argmin
ϕ

t∑
k=1

LDk
(ϕ). (18)

Note that in standard online learning formulations the sum in
(18) would be performed up to time slot t − 1 due to the
typical assumption that no data is a priori known at time t
about loss LDt(·) [40]. From (18), FTL can be interpreted as
a form of joint training carried out in an online manner. From
a theoretical standpoint, FTL can be shown to obtain a sub-
linearly growing regret with respect to slot t as compared to
the discussed benchmark learner with hindsight information
(see [40] for precise statements).

C. Online Meta-Learning

With meta-learning, as discussed in Sec. III-B (see Fig. 4),
the demodulator p(s|y, φ, θ) is defined by a shared parameter θ
and by a context, device-dependent, variables φ. In the online
setting, in each slot t, we propose to estimate the shared
parameter θt from the meta-training data Dt−1, while the
context variable φt for the currently active device is estimated
from Dt. These steps can be carried out for different meta-
learning strategies as described in Sec. III, with set Dt−1 in
lieu of the meta-training set D and set Dt for the meta-test
set DT. As a special case, if MAML is used, this recovers
the Follow The Meta Leader (FTML) algorithm [18], which
determines the shared parameter θt by solving the problem

θt = argmin
θ

t−1∑
k=1

LDte
k
(φt), (19)

where the context variable φt is computed from the local
updates (9)–(10) starting from the initial value θ. The general
algorithm for online meta-learning is summarized in Algo-
rithm 3.

D. Integrated Online Meta-Learning and Pilot Number Selec-
tion

In order to further reduce the pilot overhead, we now
consider the possibility to adapt the number of transmitted
pilot symbols in each slot t based on the performance of the
demodulator meta-learned in the previous slots. We note that
in [42] the idea of adapting the number of pilots was proposed
for a single device by leveraging the temporal correlation of
the channels for an individual device. In contrast, the method
proposed here works by using information from different
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Algorithm 3: Few-Pilot Demodulator Online Meta-
Learning

Input: Data sets {Dt,Ddata
t } for t = 1, 2, . . .; step size

hyperparameters η and κ; number of
transmitted pilots p

Output: Learned parameter vector θt and context
vector φt, for t = 1, 2, . . .

initialize parameter vector θ1
initialize the meta-training dataset D as empty, i.e.,
D ← [ ]
for t = 1, . . . do

receive Dt = {(s(n)t , y
(n)
t ) : n = 1, . . . , p}

adaptation on the current device
setting DT ← Dt
follow adaptation on the meta-test device in
Algorithm 1 or Algorithm 2 to obtain context
vector φT → φt

use φt, θt to demodulate Ddata
t

meta-learning phase
add current dataset Dt to meta-training dataset D

as D ←
⋃t
k=1Dk

follow meta-learning phase in Algorithm 1 or
Algorithm 2 to obtain shared parameter θt+1

end

devices without making any assumption about temporal cor-
relations. In practice, the adaptive assignment of the number
of pilots requires a low-rate control downlink channel to be
available for transmission prior to uplink transmission. The
proposed method is hence not applicable to IoT systems
whose communication protocols do not allow for the downlink
control channels. It is noted that IoT systems such as NB-IoT
do include downlink control channels [43].

In the proposed scheme, at each slot t, a device transmits Pt
pilots. The BS carries out demodulation of the data payload
by using the demodulator p(s|y, φ(p)t , θt), where the shared
parameter θt is obtained as discussed in Sec. IV-C and the
context variable φ(p)t is obtained by using p ≤ Pt pilots via
Algorithm 3. By trying different values of p = 1, . . . , Pt,
the BS determines the minimum value of p ≤ Pt such that
demodulation of the data in set Ddata

t meets some reliability
requirement. If such a value of p is found, then the BS assigns
the number of pilots for the next slot as Pt+1 = p. Otherwise,
Pt+1 is set to the maximum value P . The overall online meta-
learning procedure with this pilot number selection scheme is
summarized in Algorithm 4, and an illustration of the proposed
adaptive pilot number selection strategy can be found in Fig.
5.

In practice, the reliability level can be estimated in different
ways. For example, it can be obtained by evaluating the output
of a cyclic redundancy check (CRC) field at the output of
a decoder operating on the demodulated symbols from the
payload Ddata

t . Here, a simpler approach is considered that uses
directly the output of the demodulator p(s|y, φt, θt) without
having to run a decoder. This is done by comparing the cross-

Algorithm 4: Few-Pilot Demodulator Learning via
Online Meta-Learning with Adaptive Pilot Number
Selection

Input: Data sets {Dt,Ddata
t } for t = 1, 2, . . .; step size

hyperparameters η and κ
Output: Learned parameter vector θt and context

vector φt, for t = 1, 2, . . .

initialize parameter vector θ1
initialize the meta-training dataset D as empty, i.e.,
D ← [ ]
initialize number of transmitted pilots P1 ← P
for t = 1, . . . do

receive Dt = {(s(n)t , y
(n)
t ) : n = 1, . . . , Pt}

adaptation on the current device
for p = 1, . . . , Pt do

setting DT ← {(s(n)t , y
(n)
t ) : n = 1, . . . , p}

follow adaptation on the meta-test device in
Algorithm 1 or Algorithm 2 to obtain context
vector φT → φt

if (reliability check passed) then
set Pt+1 = p and exit

else if (reliability check not passed) and
(p = Pt) then

set Pt+1 = P
end
use φt, θt to demodulate Ddata

t

meta-learning phase
add current dataset Dt to meta-training dataset D

as D ←
⋃t
k=1Dk

follow meta-learning phase in Algorithm 1 or
Algorithm 2 to obtain shared parameter θt+1

end

entropy loss (5) on the demodulated data

−
∑
y∈Ddata

t

max
s

[log p(s|y, φ(p)t , θt)] (20)

to some prescribed threshold: if (20) is below a threshold, then
the reliability check is considered successful.

V. EXPERIMENTS

In this section, we provide numerical results in order to
bring insights into the advantages of meta-learning 1.

A. Offline Meta-Learning: Binary Fading

We begin by considering the offline set-up and focusing
on a simple example, in which the transmitter is ideal, i.e.,
xk = sk and fading is binary, i.e., the channel hk in (1) can
take values ±1. We emphasize that this set-up is intended
to yield useful intuitions on the operation of meta-learning
in the simplest possible setting. A more realistic scenario is
studied in the next subsection. In this set-up, pulse-amplitude
modulation with four amplitude levels (4-PAM), i.e., S =

1Code is available at https://github.com/kclip/meta-demodulator.
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{−3,−1, 1, 3}, is adopted. Pilot symbols in the meta-training
dataset D and meta-test dataset DT follow a fixed periodic
sequence −3,−1, 1, 3,−3,−1, . . ., while transmitted symbols
in the test set for the meta-test device are randomly selected
from the set S. The channel of the meta-test device is selected
randomly between +1 and −1 with equal probability, while
the channels for half of the meta-training devices are set as
+1 and for the remaining half as −1.

Other numerical details are as follows. The number of meta-
training devices is K = 20; the number of pilot symbols per
meta-training device is N = 1000, which are divided into
N tr = 1 training symbols and N te = 999 testing symbols.
Only one pilot symbol is transmitted by the meta-test device,
i.e. P = 1. The demodulator (4) is a neural network with
L = 3 layers, i.e., an input layer with 2 neurons, one hidden
layer with 30 neurons, and a softmax output layer with 4
neurons. The network adopts a hyperbolic tangent function
σ(·) = tanh(·) as the activation function. For meta-learning,
fixed learning rates η = 0.1 and κ = 0.001 are used with a
single local update, i.e., m = 1, and the ADAM optimizer
[44] is used to update the shared parameter θ. To train for the
meta-test device, one adaptation step is adopted, i.e., IT = 1,
with learning rate η = 0.1. The average signal-to-noise ratio
(SNR) per real symbol is given as 2Ex/N0 = 18 dB.

We compare the performance of the proposed meta-learning
approach via MAML, FOMAML, REPTILE, and CAVIA
with: (i) conventional learning where data from the meta-
training devices are not used and the weights of the demodu-
lator are randomly initialized; (ii) joint training with the meta-
training dataset D as explained in Sec. III-A; (iii) optimal ideal
demodulator that assumes perfect CSI. In order to improve
the performance of (i), instead of single adaptation step for
the meta-test device, we allow for multiple SGD updates with
learning rate 0.001; while, for (ii), we set the learning rate to
0.001 and the mini-batch size to 4. The probability of symbol
error of the optimal demodulator (iii) can be computed as
Pe = 3/2Q(

√
SNR/5) using standard arguments.

In Fig. 6, we plot the symbol error rate with respect to
number I of iterations during meta-training. Conventional
learning and joint training curves are not shown since they both
failed to reach symbol error rates smaller than 0.25. FOMAML
and REPTILE curves are shown up to 400 and 1400 meta-
training iterations, respectively, since further iterations for both
schemes show unstable behavior [35], [45]. Despite having
only one pilot for adaptation P = 1, both MAML and CAVIA
can approach the performance of the optimal demodulator,
with MAML outperforming CAVIA after sufficiently many
meta-training iterations. This adavantage of MAML stems
from its adaptation of a larger number of parameters φT,
namely the demodulator weight vector, with respect to CAVIA,
which only updates an auxiliary input vector. Overall, these
results confirm the claim that, unlike conventional solutions,
meta-training can effectively transfer information from meta-
training devices to a new target device to achieve near-optimal
demodulator with few pilots, here only one.

In order to gain intuition on how meta-learning learns from
the meta-training devices, in Fig. 7, we plot the probabilities
defined by the demodulator (4) for the four symbols in the

0 1000 2000 3000 4000 5000 6000

10-3

10-2

MAML
CAVIA
FOMAML
REPTILE
optimal demodulator

Fig. 6: Symbol error rate with respect to number of iterations
during meta-training for an offline meta-learning example with
binary fading. P = 1 pilot is used for meta-test device. The
symbol error rate is averaged over 106 data symbols and 100
meta-test devices. The unstable behavior of FOMAML and
REPTILE after 400 and 1400 iterations, respectively, are not
shown. The symbol error rate for conventional training and
joint training are not shown as their symbol error rate is above
0.25.
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Fig. 7: (Top) Demodulator (4) for the shared parameter vector
θ obtained via offline meta-learning phase in Algorithm 1
using MAML; (Bottom) Updated demodulator (4) with target-
device specific parameter vector φT using P = 1 pilot from
the meta-test device.

constellation S with the shared parameter vector θ obtained
from the meta-learning phase in Algorithm 1 (top) and with
target-device specific parameter vector φT after adaptation
using the pilots of the target meta-test device (bottom). Here,
MAML is adopted as the meta-learning algorithm. The class
probabilities identified by meta-learning in the top figure have
the interesting property of being approximately symmetric
with respect to the origin. From this symmetric initialization,
the resulting decision region can be adapted to the channel of
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Fig. 8: Symbol error rate with respect to the number N tr = P
of training pilots used for both meta-training and meta-testing
for offline meta-learning with 16-QAM, Rayleigh fading,
and I/Q imbalance with K = 1000 meta-training devices,
N tr +N te = 3200 pilots for meta-training devices. In order to
plot average extra symbol error probability on the meta-test
device, the symbol error rate is evaluated by averaging over
100 different meta-test devices (i.e., channel realizations), each
with 10000 data symbols.

the target device, which may take values ±1 in this example.
The adapted probabilities in the bottom figure illustrate how
the initial demodulator obtained via MAML is specialized to
the channel of the target device.

B. Offline Meta-Learning: Rayleigh Fading with I/Q Imbal-
ance

We now consider a more realistic scenario including
Rayleigh fading channels hk ∼ CN (0, 1) and model (3) to ac-
count for I/Q imbalance at the transmitters. We set εk = 0.15ε′k
and δk = 15◦δ′k, where ε′k and δ′k are independent random
variables with beta distribution Beta(5, 2). Note that this
implies that εk and δk are limited in the intervals [0, 0.15] and
[0, 15◦], respectively. We assume 16-ary quadrature amplitude
modulation (16-QAM) for constellation S, and the sequence
of pilot symbols in the meta-training dataset D and meta-test
dataset DT is fixed by cycling through the symbols in S, while
the transmitted symbols in the test set for the meta-test device
are randomly selected from S. The number of meta-training
devices is set as K = 1000; the number of pilot symbols
per device is N = 3200, which are divided into N tr training
samples and N te = N−N tr testing samples. The average SNR
per complex symbol is given as Ex/N0 = 20 dB. Further
details on the numerical set-up can be found in Appendix B.

In Fig. 8, the symbol error rate with respect to the number
P of pilots for the meta-test device is illustrated when using an
equal number of pilots for meta-training, i.e., N tr = P . As in
Fig. 6, we compare the performance of meta-training methods
with conventional learning and joint training strategies, along
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Fig. 9: Symbol error rate with respect to the number P of
pilots (used during meta-testing) for offline meta-learning with
16-QAM, Rayleigh fading, and I/Q imbalance for K = 1000
meta-training devices, N tr = 4 (vertical line), N te = 3196.
The symbol error is averaged over 10000 data symbols and
100 meta-test devices.

with a conventional communication scheme based on Mini-
mum Mean Square Error (MMSE) channel estimation with P
pilots followed by a Maximum Likelihood (ML) demodulator.
All the schemes with worse performance as compared to this
conventional communication scheme are not shown. MAML,
REPTILE, and CAVIA are seen to adapt quickly to the channel
and I/Q imbalance of the target device, outperforming the
conventional scheme based on MMSE channel estimation,
which is agnostic to the I/Q imbalance. MAML shows the
best performance for sufficiently large P , while CAVIA is
seen to outperform MAML when fewer pilots are available.
It is worth noting that, when there is a sufficient number P
of pilots for the meta-test device, conventional learning can
outperform meta-learning schemes. In this case, the inductive
bias inferred by meta-training can hence cause a performance
degradation [22].

In Fig. 9, we consider the case where the number P of pilots
for the meta-test device is different from the number N tr used
for meta-training, here set to N tr = 4. Despite this mismatch
between meta-training and meta-testing condition, MAML,
CAVIA, and REPTILE are seen to outperform conventional
communication when there is a sufficient number P of pilots
for meta-test. In a manner similar to results in Fig. 8, CAVIA
shows the best performance with extremely few pilots, e.g.,
4 pilots, while MAML is preferable for larger values of P .
In fact, comparing Fig. 8 and Fig. 9 reveals that having
P > N tr can even be advantageous for some meta-training
schemes, such as CAVIA. This may be interpreted in terms of
meta-overfitting, which refers to a degradation in meta-testing
performance due to an excessive dependence of the meta-
trained shared parameters on the meta-training data [46]. Using
fewer pilots during meta-training can potentially reduce meta-
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Fig. 10: Symbol error rate with respect to number K of
meta-training devices for offline meta-learning with 16-QAM,
Rayleigh fading, and I/Q imbalance with N tr = 4 and
N te = 3196 for meta-training devices, P = 8 pilots for meta-
test devices. The symbol error is averaged over by 10000 data
symbols and 100 meta-test devices.

overfitting, by making the shared parameters less dependent
on meta-training data, and improve meta-testing performance.

Finally, in Fig. 10, the symbol error rate with respect to the
number K of the meta-training devices is demonstrated. Joint
training has a performance similar to conventional learning,
hence being unable to transfer useful information from the K
meta-training devices. In contrast, MAML and CAVIA show
better performance when given data from more meta-training
devices, up to a point where the gain saturates. This matches
well with the intuition that there is only a limited amount
of common information among different users that can be
captured by meta-learning. Confirming the results in Fig. 8
and Fig. 9, MAML and CAVIA are seen to offer better per-
formance than the conventional communication scheme with
a sufficient number K of meta-training devices. Furthermore,
CAVIA needs a larger value of K than MAML. This accounts
again for CAVIA’s architectural difference as compared to
MAML: CAVIA needs to find a shared parameter vector θ
for the demodulator p(s|y, φT, θ) that is not adapted to the
training symbols of the current device.

C. Online Meta-Learning: Rayleigh Fading with I/Q Imbal-
ance

We now move on to consider the online scenario under same
assumptions on Rayleigh fading, transmitters’ I/Q imbalance,
modulation scheme, and SNR as in the offline set-up presented
in Sec. V-B.

The maximum number of pilots is set as P = 32, and the
number of pilots Pt in any slot t is determined by using adap-
tive pilot number selection scheme in Algorithm 4. In a manner
similar to the offline set-up, we compare the performance with:
(i) a conventional learning scheme that only adapts to current
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Fig. 11: Illustration of the procedure of adaptive pilot number
selection scheme: (top) reliability level in (20) versus the num-
ber p of pilots during slots t = 510, . . . , 513 (the prescribed
reliability threshold value, 0.1, is dashed); (bottom) number
of transmitted pilots Pt for each slot t = 510, . . . , 514.

device based on current pilot data Dt with number of pilots
Pt fixed as constant to a prescribed value; (ii) joint training
as described in Sec. IV-B; (iii) conventional communication
scheme with MMSE channel estimation and ML demodulator;
and (iv) optimal ideal demodulator as described in the previous
section. Other details on the numerical set-up can be found in
Appendix B.

In Fig. 11, we first describe the procedure used by the
proposed adaptive pilot number selection scheme. As dis-
cussed in Sec. IV-D, reliability levels for different values
of the number p of pilots are evaluated by using (20) as
shown in Fig. 11 (top) and the number of transmitted pilots
Pt+1 in the next slot is selected accordingly (bottom). The
adaptive pilot number selection scheme is performed here with
CAVIA, while the prescribed threshold value is set as 0.1.
For instance, for slot 513, the number of transmitted pilots
is chosen as P513 = 4 based on the result from previous
slot 512 that passed reliability check at p = 4. In contrast,
for slot 512, the number of transmitted pilots P512 = P has
been chosen as maximum value p = 32 due to the failure
of reliability check pass at slot 511. In the following, we
assess whether the adaptive pilot number selection scheme can
maintain reasonable performance in terms of probability of
symbol error in the payload data Ddata

t , despite the illustrated
reduction in the pilot overhead.

To this end, in Fig. 12, we plot the average symbol error
rate for payload data Ddata

t versus the average number of
transmitted pilots as evaluated during slots t = 500, . . . , 519.
For MAML and CAVIA, the corresponding curve is ob-
tained by selecting the threshold values (0, 0.01, 0.05, 0.1) and
(0, 0.001, 0.02, 0.05, 0.1, 0.15), respectively, for the reliability
level. For conventional learning, each point on the curve
corresponds to the given fixed number of pilots defined by the
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Fig. 12: Average symbol error rate with respect to average
number of pilots over slots t = 500, . . . , 520 for online meta-
learning.

horizontal axis. The proposed adaptive pilot number selection
scheme is seen to improve both over conventional learning
and a conventional model-based demodulator. In particular,
in a manner consistent with the discussion so far, MAML
and CAVIA can operate with fewer pilots than conventional
schemes, with CAVIA being generally more efficient in re-
ducing the number of pilots due to its adaptation of a smaller
number of parameters.

VI. CONCLUSIONS AND EXTENSIONS

In communication systems with short packets, such as IoT,
meta-learning techniques can adapt quickly based on few
training examples by transferring knowledge from previously
observed pilot information from other devices. In this paper,
we have proposed the use of offline and online meta-learning
for IoT scenarios by adapting state-of-the-art meta-learning
schemes, namely MAML, FOMAML, REPTILE, and CAVIA,
in a unified framework. For the online setting, meta-learning
has been further integrated with an adaptive pilot number

selection scheme to reduce the pilot overhead. Extensive nu-
merical results have validated the advantage of meta-learning
in both offline and online cases as compared to conventional
machine learning schemes. Moreover, comparisons among the
mentioned meta-learning schemes reveal that MAML and
CAVIA are preferable, with each scheme outperforming the
other in different regimes in terms of amount of available
meta-training data. For online meta-learning, the proposed
pilot selection scheme was demonstrated to have a decreased
pilot overhead with negligible performance degradation of the
demodulator.

Meta-learning, first introduced in the conference version [1]
of this work and in [19] for use in communications systems,
may be useful in a number for other network functionalities
characterized by reduced overhead and correlation across suc-
cessive tasks. Examples include prediction of traffic from sets
of IoT devices, e.g., in grant-free access [47], [48]; channel
estimation [20]; and precoding in multi-antenna systems.

A complementary approach for reducing the pilot overhead
involves model-based compressive sensing (CS) methods that
leverage sparsity of the channel in some domain, typically
space or multi-path dimensions [49], [50]. An interesting
direction for future work would be to combine meta-learning
with CS in order to further reduce the number of pilots for
frequency-selective or multi-antenna channels. Furthermore,
more advanced meta-training solutions can also be considered
that are based on a probabilistic estimate of the context vari-
ables [34]. Finally, this work may motivate the development
of novel meta-training techniques that reap the complementary
benefits of CAVIA and MAML.

APPENDIX A
HESSIAN-VECTOR PRODUCT CALCULATION

In order to compute the updates in (11) and (12), we
adopt a finite difference method for Hessian-vector product
calculation [36]. This allows us to avoid computing Hessian
matrix and obtain an approximate value of the product of
the Hessian matrix and a vector. Given a loss function L(θ)
defined and doubly continuously differentiable over a local
neighborhood of the value θ of interest, the finite difference

TABLE I: Numerical Set-Up

Figs. 6, 7 Figs. 8, 9, 10 Figs. 11, 12

number of meta-training iterations (I) - 50000 500 (at each time slot)

number of local updates during meta-training (m) 1 1 1

number of local updates during meta-testing (IT) 1 1000 1000

mini-batch size during meta-training N tr = 1 N tr N tr = 4

mini-batch size during meta-testing for iTth update, for iT = 1, . . . ,m 1 min(P,N tr) min(P,N tr)

mini-batch size during meta-testing for iTth update, for iT = m+ 1, . . . , IT - min(P, 16) min(P, 16)

learning rate η during meta-training 0.1 0.1 0.1

learning rate κ during meta-training 0.001 0.001 0.001

learning rate η during meta-testing for iTth update, for iT = 1, . . . ,m 0.1 0.1 0.1

learning rate η during meta-testing for iTth update, for iT = m+ 1, . . . , IT - 0.005 0.005
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method approximates the Hessian-vector product Hg, where
H = ∇2

θL(θ) is the Hessian matrix and g is any vector. The
Hessian-vector product Hg can be approximately computed
as [36]

Hg ≈ 1

α
(∇θL(θ + αg)−∇θL(θ)), (21)

where α is a sufficiently small constant value. In (21), we
follow [37] to choose α as

α =
2
√
ε(1 + ‖θ‖)
‖g‖

, (22)

where ‖·‖ indicates Euclidean norm and ε = 1.192 092 9e−7,
which is an upper bound on the relative error due to rounding
in single precision floating-point arithmetic [51].

APPENDIX B
DETAILS ON NUMERICAL SET-UP

A. Offline Meta-Learning

The following is the fixed sequence that is used for pilot
symbols in the meta-training dataset D and meta-test dataset
DT in the offline scenario for 16-QAM: −3−3j,−3+1j, 1+
1j, 1−3j,−3+3j, 3+1j, 1−1j,−1−3j, 3+3j, 3−1j,−1−
1j,−1+3j, 3−3j,−3−1j,−1+1j, 1+3j,−3−3j,−3+1j, . . ..
Pilots in meta-test dataset DT and training set Dtr

k follow
this same fixed sequence. For the experiments in Sec. V-B,
every demodulator (4) except for CAVIA is a neural network
with L = 5 layers, i.e., an input layer with 2 neurons,
three hidden layers with 10, 30, 30 neurons, and a softmax
output layer with 16 neurons. For CAVIA, we use a neural
network with an input layer of 12 neurons, three hidden layers
with 10, 30, 30 neurons, and a softmax output layer with 16
neurons, so that the dimension of the context parameter φ is
10. For the activation function, we adopt a ReLU function as
σ(·) = ReLU(·). Detailed settings are described in Table I.

B. Online Meta-Learning

We trained the demodulator (4) with the same architecture
with same mini-batch sizes and learning rates described above
for offline meta-learning. For this experiment, we set Dte

k =
Dk. Other details are described in Table I.
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[2] J. Östman, G. Durisi, E. G. Ström, M. C. Coşkun, and G. Liva,
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