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Sample-based and Feature-based Federated

Learning for Unconstrained and Constrained

Nonconvex Optimization via Mini-batch SSCA
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Abstract—Federated learning (FL) has become a hot research
area in enabling the collaborative training of machine learning
models among multiple clients that hold sensitive local data.
Nevertheless, unconstrained federated optimization has been
studied mainly using stochastic gradient descent (SGD), which
may converge slowly, and constrained federated optimization,
which is more challenging, has not been investigated so far.
This paper investigates sample-based and feature-based federated
optimization, respectively, and considers both unconstrained
and constrained nonconvex problems for each of them. First,
we propose FL algorithms using stochastic successive convex
approximation (SSCA) and mini-batch techniques. These algo-
rithms can adequately exploit the structures of the objective
and constraint functions and incrementally utilize samples. We
show that the proposed FL algorithms converge to stationary
points and Karush-Kuhn-Tucker (KKT) points of the respective
unconstrained and constrained nonconvex problems, respectively.
Next, we provide algorithm examples with appealing computa-
tional complexity and communication load per communication
round. We show that the proposed algorithm examples for uncon-
strained federated optimization are identical to FL algorithms via
momentum SGD and provide an analytical connection between
SSCA and momentum SGD. Finally, numerical experiments
demonstrate the inherent advantages of the proposed algorithms
in convergence speeds, communication and computation costs,
and model specifications.

Index Terms—Federated learning, nonconvex optimization,
stochastic optimization, stochastic successive convex approxima-
tion.

I. INTRODUCTION

Machine learning with distributed databases has been a hot

research area [2]. The amount of data at each client can

be large, and hence the data uploading to a central server

may be constrained by energy and bandwidth limitations.

Besides, local data may contain highly sensitive information,

e.g., travel records, health information, and web browsing

history, and thus a client may be unwilling to share it. Recent

years have witnessed the growing interest in federated learning

(FL), where data is maintained locally during the collaborative

training of the server and clients [3], [4]. FL can protect

data privacy for privacy-sensitive applications and improve

communication efficiency.

Model aggregation, cryptographic methods, and differential

privacy are three main privacy mechanisms in FL. They

The authors are with School of Electronic Information and Electrical
Engineering, Shanghai Jiao Tong University, China. This paper was presented
in part at IEEE ICC 2021 [1].

provide different privacy guarantees. Specifically, model ag-

gregation, including model averaging and gradient averaging,

is a basic privacy mechanism that reduces privacy risk by

sharing model-related intermediate results computed based on

local data [5]–[15]. Note that communicating locally computed

results generally reveals much less information than commu-

nicating local data. Cryptographic methods, such as homo-

morphic encryption [10], [13] and secret sharing [16], further

enhance privacy protection by encrypting locally computed

results before sharing, at the cost of communication and com-

putation efficiency reduction. Finally, differential privacy [11],

[15] enhances privacy protection by adding random noise to

locally computed results at the cost of model performance

decline.

Depending on whether data is distributed over the sample

space or feature space, FL can be classified into sample-based

(horizontal) FL and feature-based (vertical) FL. Specifically,

in sample-based FL [5]–[11], the datasets of different clients

have the same feature space but no (or little) intersection on the

sample space. On the contrary, in feature-based FL [12]–[15],

the datasets of different clients share the same sample space

but differ in the feature space. As a client cannot evaluate the

impact of the model on the loss for a particular sample relying

purely on its local data, feature-based FL is more challenging

and hence less studied.

Existing works on FL [5]–[15] investigate only un-

constrained optimization problems mainly using mini-batch

stochastic gradient descent (SGD). In sample-based FL via

mini-batch SGD [5]–[11], the global model is iteratively

updated at the server by aggregating and averaging the clients’

locally computed models or model-related results. Specifi-

cally, at one communication round, each client downloads

the latest global model parameters and conducts one (e.g., in

FedSGD [5]) or multiple (e.g., in FedAvg1 [5] and PR-SGD

[6]) local SGD updates to refine its local model. Multiple local

SGD updates can reduce the communication cost (required

number of communication rounds) with possibly increased

computation cost. To further reduce communication cost, some

recent works carefully design SGD update directions (e.g.,

momentum term [7]) or the numbers of local SGD updates

at all clients [8], [9].

In contrast, the existing feature-based FL algorithms via

1In FedAvg, all local samples are utilized during local updates in each
communication round.
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mini-batch SGD [12]–[15] conduct only one SGD update in

each communication round and impose additional restrictions

on the structure of the loss function to guarantee privacy

risk reduction. Specifically, the feature-based FL algorithms in

[12]–[14] are designed only for two clients and some particular

loss functions. In contrast, the feature-based FL algorithm in

[15] applies to an arbitrary number of clients and a more

general loss function. Besides, the feature-based FL algorithms

in [12], [14], [15] do not maintain the global model at any

node.

SGD has long been used for obtaining stationary points

of unconstrained stochastic optimization problems [17] or

Karush-Kuhn-Tucker (KKT) points of stochastic optimization

problems with deterministic convex constraints [18]. Recently,

stochastic successive convex approximation (SSCA) has been

proposed to obtain KKT points of stochastic optimization

problems with deterministic convex constraints [19] and with

general stochastic nonconvex constraints [20], [21]. Appar-

ently, SSCA applies to more types of constraints. Besides,

SSCA empirically achieves a higher convergence speed than

SGD [19].2 Notice that [19]–[21] use only one sample at

each iteration and may converge slowly when applied to

machine learning problems with large datasets. Some recent

works [22]–[24] have combined the SSCA algorithm in [19]

and mini-batch techniques to solve unconstrained or convex

constrained machine learning problems. However, SSCA has

never been used for solving machine learning problems with

nonconvex constraints or federated optimization problems.

In summary, there are several interesting questions: 1)

whether mini-batch SSCA can apply to a broader range of

federated optimization problems than mini-batch SGD, 2)

whether mini-batch SSCA can converge faster than mini-

batch SGD, and 3) whether mini-batch SSCA can reduce

privacy risk in FL, like mini-batch SGD. In this paper, we

would like to address the above questions. Specifically, we

investigate general sample-based and feature-based federated

optimization, respectively. For each of them, we consider both

unconstrained and constrained nonconvex problems. The main

contributions are summarized as follows.

• We propose FL algorithms for solving four federated

optimization problems: unconstrained sample-based, con-

strained sample-based, unconstrained feature-based, and

constrained feature-based federated optimization, using

mini-batch SSCA. We show that the proposed FL algorithms

converge to stationary points and KKT points of the respec-

tive unconstrained and constrained problems, respectively.

Moreover, the proposed FL algorithms can adequately ex-

ploit the structures of the objective and constraint functions

and incrementally utilize samples to improve convergence

speeds. They can also reduce privacy risk through the model

2SGD utilizes first-order information of a sample estimate of the objective
function and usually oscillates across narrow ravines. In contrast, SSCA
uses a convex approximation of an incremental sample estimate of the
objective/constraint function (reflecting more information) and effectively
mitigates oscillations.

aggregation mechanism, and their security can be enhanced

via additional privacy mechanisms.

• We provide an example for each proposed FL algorithm.

The algorithm examples for unconstrained sample-based

and feature-based federated optimization have closed-form

updates and achieve the same computational complexity

(in order) and communication load per communication

round as the corresponding SGD-based ones in [5]–[7] and

[13], respectively. Besides, the algorithm examples and FL

algorithms via momentum SGD with diminishing stepsizes

perform identically, which is a rather surprising result.

• We consider two application examples in classification and

customize the proposed FL algorithms to them. We show

that the updates in the algorithms for the four federated

optimization problems all have closed-form expressions. We

also characterize the relationship between the two formula-

tions.

• Numerical experiments demonstrate that in general, the

proposed mini-batch SSCA-based FL algorithms for uncon-

strained federated optimization converge faster and achieve

better computation and communication tradeoffs than the

existing SGD-based ones [5]–[7], [13]. Furthermore, numer-

ical experiments show that the proposed mini-batch SSCA-

based FL algorithms for constrained federated optimization

can more flexibly specify a training model.

To the best of our knowledge, this is the first work that

applies SSCA to solve federated optimization, resolves con-

strained nonconvex federated optimization, and establishes an

analytical connection between SSCA and momentum SGD.

The key notation used in this paper is listed in Table I.

Notation Description

I (I) number (index set) of clients

N (N ) number (index set) of samples

K dimension of the vector for each sample

Ki dimension of the i-th subvector for each sample

Ni index set of samples at client i

B batch size

xn vector for the n-th sample

xn,i the i-th subvector for the n-th sample

ω model parameters

Fa,m(ω) objective or constraint function

fa,m(ω;xn) loss for the n-th sample

F̄ (t)
a,m(ω) convex approximation of Fa,m(ω) at iteration t

f̄a,m(ω;ω′,xn) convex approximation of fa,m(ω;xn) around ω
′

TABLE I. Key notation. a = s and a = f represent sample-based and
feature-based, respectively. m = 0 and m = 1, 2 · · · represent the objective

and m-th constraint, respectively.

II. SYSTEM SETTING

Consider N data samples, denoted by xn ∈ R
K , n ∈ N ,

{1, · · · , N}. Consider a central server connected with I local

clients, each maintaining a local dataset.3 Assume that the

server and clients are honest-but-curious.4 The server and I

3The proposed SSCA-based algorithms can be used for solving federated
optimization problems over streaming data and have theoretical convergence
guarantees if the properties of the data stream do not change over time.

4The nodes will follow a predetermined algorithm but will attempt to
infer private data using information received throughout the algorithm ex-
ecution [25].



clients conduct FL, i.e., collaboratively train a model from

the local datasets stored on the I clients under the condition

that each client cannot expose its local raw data to the server

or the other clients. Depending on whether data is distributed

over the sample space or feature space, FL can be typically

classified into sample-based FL and feature-based FL.

In sample-based FL, the clients have the same feature space

but differ in the sample space. Specifically, partition N into

I disjoint subsets, denoted by Ni, i ∈ I , {1, · · · , I}, where

Ni , |Ni| denotes the cardinality of the i-th subset and
∑

i∈I Ni = N . For all i ∈ I, the i-th client maintains a local

dataset containing Ni samples, i.e., xn, n ∈ Ni. For example,

two companies with similar businesses in different cities may

have different user groups (from their respective regions) but

the same type of data, e.g., users’ occupations, ages, incomes,

deposits, etc. The underlying optimization, termed sample-

based federated optimization, is to minimize the following loss

function:

Fs,0(ω) ,
1

N

∑

n∈N

fs,0(ω;xn) (1)

with respect to (w.r.t.) model parameters ω ∈ R
d. Here,

fs,0(ω;xn) represents the loss function for sample xn.

In feature-based FL, the clients have the same sample space

but differ in the feature space. Specifically, for all n ∈ N , xn

can be equivalently expressed by I subvectors of it, denoted by

xn,i ∈ R
Ki , i ∈ I, where

∑

i∈I Ki ≥ K .5 With a slight abuse

of notation, we write xn = (xn,i)i∈I . For all i ∈ I, the i-th
client maintains xn,i, n ∈ N .6 For example, two companies

in the same city with different businesses may have the same

user group but different data types (from different types of

businesses), e.g., one stores users’ occupations and ages, and

the other stores users’ incomes and deposits. The underlying

optimization, termed feature-based federated optimization, is

to minimize the following loss function:

Ff,0(ω) ,
1

N

∑

n∈N

g0
(
ω0, (h0,i(ωi,xn,i))i∈I

)

︸ ︷︷ ︸

,ff,0(ω;xn)

(2)

w.r.t. model parameters ω , (ωi)i=0,1,··· ,I ∈ R
d, where ωi ∈

R
di , i = 0, 1, · · · , I and

∑I
i=0 di = d. Here, ff,0(ω;xn) rep-

resents the loss function for sample xn, formed by composing

g0 : Rd0+H0I → R with functions h0,i : R
di+Ki → R

H0 , i ∈
I, for some positive integer H0. That is, we assume that the

i-th block of model parameters, ωi, and the i-th subvector for

the n-th sample, xn,i, influence the loss of the n-th sample

only via h0,i(ωi,xn,i). We impose this additional restriction to

enable privacy risk reduction via model aggregation in feature-

based FL. It is worth noting that the existing works on feature-

based FL impose the same restriction [15] or even stronger

restrictions (e.g., I = 2 [12]–[14] and the loss function is the

mean square error function [12] or cross-entropy function [13],

5For unsupervised learning, xn,i ∈ R
Ki , i ∈ I do not share any common

coordinates of xn. For supervised learning, xn,i ∈ R
Ki , i ∈ I share some

common coordinates of xn, which represent the label of xn.
6The assumption that the I local datasets share the same set of N samples

can be easily met using private set intersection techniques [26], [27].

[14]).

In Section III and Section IV, we investigate sample-based

FL and feature-based FL, respectively. To be general, we

do not assume Fs,0(ω) and Ff,0(ω) to be convex in ω. To

guarantee the convergence of the proposed FL algorithms, we

assume that fs,0 (ω;xn) and ff,0 (ω;xn) satisfy the following

assumption in the rest of the paper.7

Assumption 1 (Assumption on f(ω;x)): For any x ∈ R
K ,

f(ω;x) is continuously differentiable, and its gradient is

Lipschitz continuous on any compact set.

III. SAMPLE-BASED FEDERATED LEARNING

In this section, we propose FL algorithms for unconstrained

and constrained sample-based federated optimization prob-

lems, respectively, using mini-batch SSCA. In sample-based

FL, the batch size B satisfies B ≤ Ni, i ∈ I.

A. Sample-based Federated Learning for Unconstrained Op-

timization

In this part, we consider the following unconstrained

sample-based federated optimization problem:

Problem 1 (Unconstrained Sample-based Federated Opti-

mization):

min
ω

Fs,0(ω)

where Fs,0(ω) is given by (1).

In [5]–[7], SGD is utilized to obtain a stationary point of

Problem 1. SSCA can empirically achieve a higher conver-

gence speed than SGD, as illustrated in Section I. In the

following, we propose a sample-based FL algorithm, i.e.,

Algorithm 1, to obtain a stationary point of Problem 1 using

mini-batch SSCA.8

1) Algorithm Description: The main idea of Algorithm 1 is

to solve a sequence of successively refined convex problems,

each of which is obtained by approximating Fs,0(ω) with a

convex function based on its structure and randomly selected

samples. Specifically, at iteration t, we choose an incremental

sample estimate:

F̄
(t)
s,0(ω) =(1− ρ(t))F̄

(t−1)
s,0 (ω)

+ ρ(t)
∑

i∈I

Ni

BN

∑

n∈N
(t)
i

f̄s,0(ω;ω(t)
s ,xn) (3)

with F̄
(0)
s,0 (ω) = 0 as a convex approximation function of

Fs,0(ω), where ρ(t) is a stepsize satisfying:

0 < ρ(t) ≤ 1, lim
t→∞

ρ(t) = 0,

∞∑

t=1

ρ(t) = ∞, (4)

7In Assumptions 1 and 2, we omit the subscripts s, f for notation sim-
plicity. Note that Assumptions 1 and 2 are necessary for the convergence
of SSCA [19]–[21], and Assumption 1 is necessary for the convergences of
SGD [6], [17], [18] and its variants [7].

8A machine learning problem involving a huge number of samples is
usually transformed to an equivalent stochastic optimization problem and
solved using stochastic optimization algorithms.



Algorithm 1 Mini-batch SSCA for Problem 1

1: initialize: choose any ω
1
s at the server.

2: for t = 1, 2, · · · , T − 1 do

3: the server sends ω
(t)
s to all clients.

4: for all i ∈ I, client i randomly selects a mini-batch N
(t)
i ⊆

Ni, computes qs,0

(

ω
(t)
s , (xn)

n∈N
(t)
i

)

, and sends it to the

server.
5: the server obtains ω̄

(t)
s by solving Problem 2.

6: the server updates ω
(t+1)
s according to (5).

7: end for
8: Output: ωT

s

N
(t)
i ⊆ Ni is a randomly selected mini-batch by client i at

iteration t, and f̄s,0(ω;ω
(t)
s ,xn) is a convex approximation9 of

fs,0(ω;xn) around ω
(t)
s satisfying the following assumptions.

Assumption 2 (Assumptions on f̄(ω;ω′,x) for Approximat-

ing f(ω;x) Around ω′): 1) For any ω ∈ R
d and x ∈ R

K ,

∇f̄(ω;ω,x) = ∇f(ω;x); 2) For any ω′ ∈ R
d and x ∈ R

K ,

f̄(ω;ω′,x) is strongly convex w.r.t. ω; 3) For any x ∈ R
K ,

f̄(ω;ω′,x) is Lipschitz continuous on any compact set; 4) For

any ω′ ∈ R
d and x ∈ R

K , f̄(ω;ω′,x), its derivatives w.r.t. ω,

and its second-order derivatives w.r.t. ω are uniformly bounded

on any compact set.

Note that for all i ∈ I, mini-batch N ′
i ⊆ Ni with batch

size B, and ω′ ∈ R
d,
∑

n∈N ′

i
f̄s,0(ω;ω′,xn), a function of

ω with parameters jointly determined by ω′ and xn, n ∈
N ′

i , can be written naturally as
∑

n∈N ′

i
f̄s,0(ω;ω′,xn) =

ps,0
(
ω,qs,0

(
ω′, (xn)n∈N ′

i

))
with ps,0 : R

d+D0 → R and

qs,0 : R
d+BK → R

D0 , for some positive integer D0.

Here, qs,0

(
ω′, (xn)n∈N ′

i

)
represents the D0 parameters of

∑

n∈N ′

i
f̄s,0(ω;ω′,xn). Assume that the expressions of f̄s,0,

ps,0, and qs,0 are known to the server and I clients. Each

client i ∈ I computes qs,0

(

ω
(t)
s , (xn)n∈N

(t)
i

)

and sends it

to the server. Then, the server solves the following convex

approximate problem to obtain ω̄
(t)
s .

Problem 2 (Convex Approximate Problem of Problem 1):

ω̄(t)
s , argmin

ω

F̄
(t)
s,0(ω)

Problem 2 is an unconstrained convex problem and can be

solved with decent methods such as Newton’s method. Given

ω̄
(t)
s , the server updates ω

(t)
s according to:

ω(t+1)
s = (1− γ(t))ω(t)

s + γ(t)ω̄(t)
s , t = 1, 2, · · · (5)

where γ(t) is a stepsize satisfying:

0 < γ(t) ≤ 1, lim
t→∞

γ(t) = 0,

∞∑

t=1

γ(t) = ∞,

∞∑

t=1

(

γ(t)
)2

< ∞, lim
t→∞

γ(t)

ρ(t)
= 0. (6)

9Usually, we preserve all convex terms in fs,0(ω;xn) and properly
approximates the remaining nonconvex terms for reducing the approximation
error or utilize the first-order approximation of fs,0(ω;xn) (see (7)) for
reducing the computational complexity for solving Problem 2.

The detailed procedure is summarized in Algorithm 1.10 The

convergence of Algorithm 1 is summarized below. Algorithm 1

can empirically achieve a high convergence speed (shown in

Section VI), as it can adequately exploit the structure of the

objective function and incrementally utilize samples.

Theorem 1 (Convergence of Algorithm 1): Suppose that

fs,0 satisfies Assumption 1, f̄s,0 satisfies Assumption 2, and

the sequence {ω
(t)
s } generated by Algorithm 1 is bounded.11

Then, every limit point of {ω
(t)
s } is a stationary point of

Problem 1 almost surely.

Proof: Please refer to Appendix A.

2) Security Analysis: If for all i ∈ I, mini-batch N ′
i ⊆ Ni,

and ω′ ∈ R
d, the system of equations w.r.t. z ∈ R

BK ,

i.e., qs,0 (ω
′, z) = qs,0

(
ω′, (xn)n∈N ′

i

)
, has an infinite (or

a sufficiently large) number of solutions, then raw data xn,

n ∈ N
(t)
i can hardly be extracted by the server from

qs,0

(

ω
(t)
s , (xn)n∈N

(t)
i

)

in Step 4 of Algorithm 1, and hence,

Algorithm 1 can reduce privacy risk based on model ag-

gregation, like the existing sample-based FL algorithms via

SGD [5]–[7]. Otherwise, extra privacy mechanisms can be

applied to preserve data privacy. For example, if ω̄
(t)
s is

linear in qs,0

(

ω
(t)
s , (xn)n∈N

(t)
i

)

, i ∈ I, then homomorphic

encryption [10] can be applied; if ω̄
(t)
s is a polynomial of xn

and ω
(t)
s , then secret sharing [16] can be applied.

3) Algorithm Example: We provide an example of f̄s,0
which satisfies Assumption 2 and yields an analytical solution

of Problem 2:

f̄s,0(ω;ω(t)
s ,xn)=

(

∇fs,0(ω
(t)
s ;xn)

)T(

ω−ω(t)
s

)

+τ
∥
∥
∥ω−ω(t)

s

∥
∥
∥

2

2
, (7)

where τ > 0 can be any constant, and the term

τ
∥
∥
∥ω − ω

(t)
s

∥
∥
∥

2

2
is used to ensure strong convexity.

Then,
∑

n∈N
(t)
i

∇fs,0(ω
(t)
s ;xn) can be viewed as

qs,0

(

ω
(t)
s , (xn)n∈N

(t)
i

)

(implying D0 = d). Furthermore,

substituting (7) into (3), F̄
(t)
s,0(ω) can be rewritten as:

F̄
(t)
s,0(ω) =

(

f̂
(t)
s,0,1

)T

ω + τ ‖ω‖22 , (8)

where f̂
(t)
s,0,1 ∈ R

d is given by:

f̂
(t)
s,0,1 = (1− ρ(t))f̂

(t−1)
s,0,1

+ ρ(t)
∑

i∈I

Ni

BN

∑

n∈N
(t)
i

(

∇fs,0(ω
(t)
s ;xn)− 2τω(t)

s

)

(9)

10Each iteration of Algorithms 1-4 is implemented in one communication
round. The computational complexity and communication load per commu-
nication round depend on the specific choices of f̄a,m(ω;ω′,xn), a = s, f
and m = 0, 1, · · · ,M .

11The conclusion of Theorems 1-4 still holds if the boundedness condition
of the sequence in the theorem is replaced with the compact set constraint
on ω in the corresponding problem [19]–[21]. Note that the boundedness
condition is easily satisfied in numerical experiments, and a simple compact
set constraint that is sufficiently large can always be imposed without
destroying the optimality [20], [21].



with f̂
(0)
s,0,1 = 0. Apparently, Problem 2 with f̄s,0 given by (7)

is an unconstrained convex quadratic programming w.r.t. ω.

By the first-order optimality condition, it has the following

analytical solution:

ω̄(t)
s = −

1

2τ
f̂
(t)
s,0,1. (10)

Therefore, Step 4 and Step 5 of Algorithm 1 with

f̄s,0 given by (7) (i.e., an example of Algorithm 1) are

given below. In Step 4, each client i ∈ I computes
∑

n∈N
(t)
i

∇fs,0(ω
(t)
s ;xn) ∈ R

d and sends the d-dimensional

vector to the server. In Step 5, the server calculates ω̄
(t)
s

according to (10). If for all i ∈ I, N ′
i ⊆ Ni, and ω′ ∈ R

d, the

system of equations w.r.t. (zn)n=1··· ,B with zn ∈ R
K , n =

1, · · · , B, i.e.,
∑B

n=1 ∇fs,0(ω
′; zn) =

∑

n∈N ′

i
∇fs,0(ω

′;xn),
has an infinite (or a sufficiently large) number of solutions,

then the example of Algorithm 1 can reduce privacy risk. Oth-

erwise, homomorphic encryption [10], [13] can be applied to

preserve data privacy, since ω̄
(t)
s is linear in ∇fs,0(ω

(t)
s ;xn),

n ∈ N , as shown in (9) and (10).

Remark 1 (Comparison Between Example of Algorithm 1

and Sample-based FL Algorithms via SGD and Its Vari-

ants [5]–[7]): Algorithm 1 with f̄s,0 given by (7) has the same

order of computational complexity (O(B)) and communica-

tion load per communication round as the sample-based FL

algorithms via SGD and its variants [5]–[7], where B samples

are utilized by each client per communication round. Besides,

it has the same level of privacy protection (due to the same

system of equations for inferring private data) as the sample-

based algorithm via SGD and its variants with one local SGD

update per communication round (e.g., FedSGD [5]).

Finally, by (5), (9), and (10) and by choosing ρ(1) = 1,

{ωs
(t)} generated by the example of Algorithm 1 satisfies:

ωs
(t+1) = ωs

(t) − γ(t)v(t)
s , t = 1, 2, · · · (11)

v(t)
s =

(

1− ρ(t)
)(

1− γ(t−1)
)

v(t−1)
s

+
ρ(t)

2τ

∑

i∈I

Ni

BN

∑

n∈N
(t)
i

∇fs,0(ω
(t)
s ;xn), t = 1, 2, · · · (12)

where γ(0) = 0, v
(0)
s = 0, and ρ(t) and γ(t) satisfy (3) and (5),

respectively. From (11) and (12), we can make the following

remark.

Remark 2 (Connection Between Example of Algorithm 1 and

Sample-based FL Algorithms via Momentum SGD [7]): Algo-

rithm 1 with f̄s,0 given by (7) can also be viewed as sample-

based FL algorithm via momentum SGD with the momentum

term v
(t)
s and diminishing stepsize γ(t) being the update

direction and stepsize, respectively. This result also reveals an

analytical connection between SSCA and momentum SGD,

which is established for the first time. Furthermore, since the

existing momentum SGD algorithms [7], [28] with theoretical

convergence guarantees all rely on constant stepsizes, this

work also enriches the results for momentum SGD.

B. Sample-based Federated Learning for Constrained Opti-

mization

In this part, we consider the following constrained sample-

based federated optimization problem:

Problem 3 (Constrained Sample-based Federated Optimiza-

tion):

min
ω

Fs,0(ω)

s.t. Fs,m(ω) ≤ 0, m = 1, 2, · · · ,M,

where Fs,0(ω) is given by (1), and

Fs,m(ω) ,
1

N

∑

n∈N

fs,m(ω;xn), m = 1, 2, · · · ,M. (13)

To be general, Fs,m(ω), m = 0, · · · ,M are not assumed

to be convex in ω. Notice that federated optimization with

nonconvex constraints has not been investigated so far. In

the following, we propose a sample-based FL algorithm,

i.e., Algorithm 2, to obtain a KKT point of Problem 3, by

combining the exact penalty method for SSCA in our previous

work [21] and mini-batch techniques.

1) Algorithm Description: Sample convex approxima-

tions of Problem 3, obtained by directly approximating

Fs,m(ω),m = 0, 1, · · · ,M with the method proposed for

Fs,0 in Section III-A, may not always be feasible, leading

to possibly infeasible stochastic iterates [20], [21]. To ensure

feasible stochastic iterates, we first transform Problem 3 to

the following stochastic optimization problem whose objective

function is the weighted sum of the original objective and the

penalty for violating the original constraints [21]. We will soon

see that its sample convex approximations are always feasible.

Problem 4 (Transformed Problem of Problem 3):

min
ω,s

Fs,0(ω) + c

M∑

m=1

sm

s.t. Fs,m(ω) ≤ sm, m = 1, 2, · · · ,M,

sm ≥ 0, m = 1, 2, · · · ,M,

where s , (sm)m=1,··· ,M are slack variables, and c > 0 is a

penalty parameter that trades off the original objective function

and the slack penalty term.

At iteration t, we choose F̄
(t)
s,0(ω) given in (3) as an

approximation function of Fs,0(ω) and choose:

F̄ (t)
s,m(ω) = (1 − ρ(t))F̄ (t−1)

s,m (ω)

+ ρ(t)
∑

i∈I

Ni

BN

∑

n∈N
(t)
i

f̄s,m(ω;ω(t)
s ,xn), m = 1, · · · ,M (14)

with F̄
(0)
s,m(ω) = 0 as a convex approximation function of

Fs,m(ω), for all m = 1, · · · ,M , where ρ(t) is a stepsize

satisfying (4), N
(t)
i is a randomly selected mini-batch by client

i at iteration t, and f̄s,m(ω;ω
(t)
s ,xn) is a convex approxima-

tion of fs,m(ω;xn) around ω
(t)
s satisfying f̄s,m(ω;ω,x) =

fs,m(ω;x) and Assumption 2 for all m = 1, · · · ,M .

Note that for all i ∈ I, mini-batch N ′
i ⊆ Ni with

batch size B, and ω′ ∈ R
d,
∑

n∈N ′

i
f̄s,m(ω;ω′,xn), m =

0, · · · ,M can be written as
∑

n∈N ′

i
f̄s,m(ω;ω′,xn) =



Algorithm 2 Mini-batch SSCA for Problem 3

1: initialize: choose any ω
1
s and c > 0 at the server.

2: for t = 1, 2, · · · , T − 1 do

3: the server sends ω
(t)
s to all clients.

4: for all i ∈ I, client i randomly selects a mini-batch N
(t)
i ⊆

Ni, computes qs,m

(

ω
(t)
s , (xn)

n∈N
(t)
i

)

, m = 0, 1, · · · ,M ,

and sends them to the server.
5: the server obtains (ω̄

(t)
s , s

(t)
s ) by solving Problem 5.

6: the server updates ω
(t+1)
s according to (5).

7: end for
8: Output: ωT

s

ps,m
(
ω,qs,m

(
ω′, (xn)n∈N ′

i

))
, m = 0, · · · ,M with ps,m :

R
Dm+d → R and qs,m : RBK+d → R

Dm . Assume that the

expressions of f̄s,m, ps,m, qs,m, m = 0, · · · ,M are known

to the server and I clients. Each client i ∈ I computes

qs,m

(

ω
(t)
s , (xn)n∈N

(t)
i

)

, m = 0, · · · ,M and sends them

to the server. Then, the server solves the following convex

approximate problem to obtain ω̄
(t)
s .

Problem 5 (Convex Approximate Problem of Problem 4):

(ω̄(t)
s , s(t)s ) , argmin

ω,s
F̄

(t)
s,0(ω) + c

M∑

m=1

sm

s.t. F̄ (t)
s,m(ω) ≤ sm, m = 1, 2, · · · ,M,

sm ≥ 0, m = 1, 2, · · · ,M.

Problem 5 is a constrained convex problem that is always

feasible and can be readily solved with interior-point methods

such as the barrier method.12 Given ω̄
(t)
s , the server updates

ω
(t)
s according to (5). The detailed procedure is summarized in

Algorithm 2. The convergence of Algorithm 2 is summarized

below. Consider a sequence {cj}. For all j, let (ω⋆
s,j , s

⋆
s,j)

denote a limit point of {(ω
(t)
s , s

(t)
s )} generated by Algorithm 2

with c = cj .

Theorem 2 (Convergence of Algorithm 2): Suppose that

fs,m, m = 0, · · · ,M satisfy Assumption 1, f̄s,0 satisfies

Assumption 2, f̄s,m satisfies f̄s,m(ω;ω,x) = fs,m(ω;x) and

Assumption 2 for all m = 1, · · · ,M , the sequence {ω
(t)
s }

generated by Algorithm 2 with c = cj is bounded for all

j, and the sequence {cj} satisfies 0 < cj < cj+1 and

limj→∞ cj = ∞. Then, the following statements hold. i) For

all j, if s⋆s,j = 0, then ω⋆
s,j is a KKT point of Problem 3

almost surely; ii) A limit point of {(ω⋆
s,j , s

⋆
s,j)}, denoted by

{(ω⋆
s,∞, s⋆s,∞)}, satisfies that s⋆s,∞ = 0, and ω⋆

s,∞ is a KKT

point of Problem 3 almost surely.

Proof: Please refer to Appendix B.

2) Security Analysis: If for all i ∈ I, mini-batch N ′
i ⊆ Ni,

and ω′ ∈ R
d, the system of equations w.r.t. z ∈ R

BK ,

i.e., qs,m (ω′, z) = qs,m

(
ω′, (xn)n∈N ′

i

)
, m = 0, · · · ,M ,

has an infinite (or a sufficiently large) number of solutions,

12Problem 5 can be efficiently solved by the barrier method, regardless
of how large c (which influences only the linear terms of the objective
function) is. This is because, in each centering step of the barrier method,
an unconstrained centering problem is solved by Newton’s method, whose
convergence rate depends only on the smallest and largest eigenvalues and
Lipschitz constant of the Hessian matrix of the objective function.

then raw data xn, n ∈ N
(t)
i can hardly be extracted from

qs,m

(

ω
(t)
s , (xn)n∈N

(t)
i

)

, m = 0, · · · ,M in Step 4 of Al-

gorithm 2. Hence, Algorithm 2 can reduce privacy risk.

Otherwise, extra privacy mechanisms need to be exploited.

Note that FL for constrained optimization has not been studied

so far, let alone privacy mechanisms for it.

3) Algorithm Example: We provide an example of f̄s,m,

m = 0, · · · ,M with f̄s,0 satisfying Assumption 2 and f̄s,m
satisfying f̄s,m(ω;ω,x) = fs,m(ω;x) and Assumption 2 for

all m = 1, · · · ,M . Specifically, we can choose f̄s,0 given by

(7) and choose f̄s,m, m = 1, · · · ,M as follows:

f̄s,m(ω,ω(t)
s ;xn) = fs,m(ω(t)

s ;xn)

+
(

∇fs,m(ω(t)
s ;xn)

)T(

ω − ω(t)
s

)

+ τ
∥
∥
∥ω − ω(t)

s

∥
∥
∥

2

2
, (15)

where τ > 0 can be any constant. Then,
∑

n∈N
(t)
i

∇fs,0(ω
(t)
s ;xn) can be viewed as

qs,0

(

ω
(t)
s , (xn)n∈N

(t)
i

)

(implying D0 = d), and
(
∑

n∈N
(t)
i

fs,m(ω
(t)
s ;xn),

∑

n∈N
(t)
i

∇fs,m(ω
(t)
s ;xn)

)

can be

viewed as qs,m

(

ω
(t)
s , (xn)n∈N

(t)
i

)

(implying Dm = 1+d),

for all m = 1, · · · ,M . Recall that with fs,0 given in (7),

F̄
(t)
s,0(ω) is given in (8). In addition, for all m = 1, · · · ,M ,

substituting (15) into (14), F̄
(t)
s,m(ω) can be rewritten as:

F̄ (t)
s,m(ω) = f̂

(t)
s,m,0 +

(

f̂
(t)
s,m,1

)T

ω + τ ‖ω‖22 ,m = 1, · · · ,M,

where f̂
(t)
s,m,0 and f̂

(t)
s,m,1 ∈ R

d are given by:

f̂
(t)
s,m,0 = (1 − ρ(t))f̂

(t−1)
s,m,0 + ρ(t)

∑

i∈I

Ni

BN

∑

n∈N
(t)
i

(

fs,m(ω(t)
s ;xn)

−
(

∇fs,m(ω(t)
s ;xn)

)T

ω(t)
s + τ

∥
∥
∥ω

(t)
s

∥
∥
∥

2

2

)

,m = 1, · · · ,M,

f̂
(t)
s,m,1 = (1− ρ(t))f̂

(t−1)
s,m,1

+ ρ(t)
∑

i∈I

Ni

BN

∑

n∈N
(t)
i

(

∇fs,m(ω(t)
s ;xn)− 2τω(t)

s

)

,m = 1, · · · ,M,

with f̂
(0)
s,m,0 = 0 and f̂

(0)
s,m,1 = 0. Apparently, Problem 5 with

f̄s,0 given by (7) and f̄s,m, m = 1, · · · ,M given by (15) is a

convex quadratically constrained quadratic programming and

can be solved using an interior-point method.

Therefore, Step 4 and Step 5 of Algorithm 2 with f̄s,0
given by (7) and f̄s,m, m = 1, · · · ,M given by (15) (i.e.,

an example of Algorithm 2) are given below. In Step 4,

each client i ∈ I computes
∑

n∈N
(t)
i

∇fs,0(ω
(t)
s ;xn) ∈ R

d

and
(
∑

n∈N
(t)
i

fs,m(ω
(t)
s ;xn),

∑

n∈N
(t)
i

∇fs,m(ω
(t)
s ;xn)

)

∈

R
1+d,m = 1, · · · ,M and sends the d-dimensional vector

and M (1 + d)-dimensional vectors to the server. In Step

5, the server calculates (ω̄
(t)
s , s

(t)
s ) using an interior-point

method. If for all i ∈ I, N ′
i ⊆ Ni, and ω′ ∈ R

d, the

system of equations w.r.t. (zn)n=1··· ,B with zn ∈ R
K , i.e.,

∑B
n=1 fs,m(ω′; zn) =

∑

n∈N ′

i
fs,m(ω′;xn), m = 1, · · · ,M

and
∑B

n=1 ∇fs,m(ω′; zn) =
∑

n∈N ′

i
∇fs,m(ω′;xn), m =

0, · · · ,M , has an infinite (or a sufficiently large) number of



Algorithm 3 Mini-batch SSCA for Problem 6

1: initialize: choose any ω
1
f at the server.

2: for t = 1, 2, · · · , T − 1 do
3: the server randomly selects a mini-batch with the index set

denoted by N (t) ⊂ N and sends N (t) and (ω
(t)
0 ,ω

(t)
i ) to

client i for all i ∈ I.
4: for all i ∈ I, client i computes h0,i(ω

(t)
i ,xn,i), n ∈ N (t)

and sends them to the other clients.
5: the client with the highest computation speed (or any client)

computes qf,0,0

(

ω
(t)
0 ,

(

h0,i(ω
(t)
i ,xn,i)

)

n∈N (t),i∈I

)

and

sends it to the server.
6: for all i ∈ I, client i computes

qf,0,i

(

ω
(t)
0 ,ω

(t)
i ,(xn,i)n∈N (t) ,

(

h0,j(ω
(t)
j ,xn,j)

)

n∈N (t),j∈I

)

and sends it to the server.
7: the server obtains ω̄

(t)
f by solving Problem 7.

8: the server updates ω
(t+1)
f according to (18).

9: end for
10: Output: ωT

f

solutions, then the example of Algorithm 2 can reduce privacy

risk.

IV. FEATURE-BASED FEDERATED LEARNING

In this section, we propose FL algorithms for unconstrained

and constrained feature-based federated optimization prob-

lems, respectively, using mini-batch SSCA. In feature-based

FL, the batch size B satisfies B ≤ N .

A. Feature-based Federated Learning for Unconstrained Op-

timization

In this part, we consider the following unconstrained

feature-based federated optimization problem:

Problem 6 (Unconstrained Feature-based Federated Opti-

mization):

min
ω

Ff,0(ω)

where Ff,0(ω) is given by (2).

In [13], SGD is utilized to obtain a stationary point of

Problem 6 only with I = 2 and Ff,0(ω) being the cross-

entropy function. In the following, we propose a feature-based

FL algorithm, i.e., Algorithm 3, to obtain a stationary point of

Problem 6 using mini-batch SSCA, which empirically achieves

a higher convergence speed than SGD.

1) Algorithm Description: At iteration t, we choose:

F̄
(t)
f,0(ω)=(1 − ρ(t))F̄

(t−1)
f,0 (ω)+ρ(t)

1

B

∑

n∈N (t)

f̄f,0(ω;ω
(t)
f ,xn)

(16)

with F̄
(0)
f,0 (ω) = 0 as a convex approximation function of

Ff,0(ω), where ρ(t) is a stepsize satisfying (4), N (t) ∈ N is a

randomly selected mini-batch by the server at iteration t, and

f̄f,0(ω;ω
(t)
f ,xn) is a convex approximation of ff,0(ω;xn)

around ω
(t)
f satisfying Assumption 2.

Suppose that for any mini-batch N ′ ⊆ N with batch

size B,
∑

n∈N ′ f̄f,0(ω;ω′,xn), a function of ω with

parameters jointly determined by ω′ and xn, n ∈ N ′
i , can be

written as (17), as shown at the top of the next page, with

pf,0 : Rd+
∑I

i=1 E0,i → R, qf,0,0 : Rd0+H0BI → R
E0,0 , and

qf,0,i : R
d0+di+KiB+H0BI → R

E0,i , i ∈ I, for some positive

integers Ei, i = 0, 1, · · · , I .13 Assume that the expressions

of f̄f,0, pf,0, qf,0,0, qf,0,i, i ∈ I, and h0,i, i ∈ I are known

to the server and I clients. Each client i ∈ I computes

h0,i(ω
(t)
i ,xn,i), n ∈ N (t) and sends them to the other

clients. The client with the highest computation speed (or any

client) computes qf,0,0

(

ω
(t)
0 ,
(

h0,i(ω
(t)
i ,xn,i)

)

n∈N (t),i∈I

)

based on h0,i(ω
(t)
i ,xn,i), i ∈ I, n ∈ N (t) and sends

it to the server. Moreover, each client i ∈ I computes

qf,0,i

(

ω
(t)
0 ,ω

(t)
i , (xn,i)n∈N (t) ,

(

h0,j(ω
(t)
j ,xn,j)

)

n∈N (t),j∈I

)

and sends it to the server.14 Then, the server solves the

following convex approximate problem to obtain ω̄
(t)
f .

Problem 7 (Convex Approximate Problem of Problem 6):

ω̄
(t)
f , argmin

ω

F̄
(t)
f,0(ω)

Like Problem 2, Problem 7 is an unconstrained convex

problem and can be readily solved. Given ω̄
(t)
f , the server

updates ω
(t)
f according to:

ω
(t+1)
f = (1− γ(t))ω

(t)
f + γ(t)ω̄

(t)
f , t = 1, 2, · · · (18)

where γ(t) is a stepsize satisfying (6). The detailed procedure

is summarized in Algorithm 3. The convergence of Algo-

rithm 3 is summarized below.

Theorem 3 (Convergence of Algorithm 3): Suppose that ff,0
satisfies Assumption 1, f̄f,0 satisfies Assumption 2, and the

sequence {ω
(t)
f } generated by Algorithm 3 is bounded almost

surely. Then, every limit point of {ω
(t)
f } is a stationary point

of Problem 6 almost surely.

Proof: Please refer to Appendix A.
2) Security Analysis: Suppose 1) for all i ∈ I, mini-

batch N ′ ⊆ N , and ω′
i ∈ R

di , the system of equations

w.r.t. (θ, (zn)n=1,··· ,B) ∈ R
di+BKi with θ ∈ R

di and

zn ∈ R
Ki , i.e., h0,i(θ, zn) = h0,i(ω

′
i,xn,i), n ∈ N ′, has

an infinite (or a sufficiently large) number of solutions;

2) for any mini-batch N ′ ⊆ N and ω′ ∈ R
d, the

system of equations w.r.t. (zn,i)n=1,··· ,B,i∈I ∈ R
BK with

zn,i ∈ R
Ki , i.e., qf,0,0

(

ω′
0, (h0,i(ω

′
i, zn,i))n=1,··· ,B,i∈I

)

=

qf,0,0

(

ω′
0, (h0,i(ω

′
i,xn,i))n∈N ′,i∈I

)

,

qf,0,i

(

ω′
0,ω

′
i, (zn,i)n∈N ′ ,

(
h0,j(ω

′
j , zn,j)

)

n=1,··· ,B,j∈I

)

=

qf,0,i

(

ω′
0,ω

′
i, (xn,i)n∈N ′ ,

(
h0,j(ω

′
j ,xn,j)

)

n∈N ′,j∈I

)

,

i ∈ I, has an infinite (or a sufficiently large)

number of solutions. In that case, raw data xn,

n ∈ N (t) can hardly be extracted by any client

from h0,i(ω
(t)
i ,xn,i), n ∈ N (t), i ∈ I or by the

server from qf,0,0

(

ω
(t)
0 ,
(

h0,i(ω
(t)
i ,xn,i)

)

n∈N (t),i∈I

)

,

13This assumption is met by commonly used loss functions such as those
in [12]–[14] and Section V.

14The information collection mechanism in Algorithm 3 can be viewed as
an extension of that in the feature-based FL algorithm via SGD [13].



∑

n∈N ′

f̄f,0(ω;ω′,xn)=pf,0

(

ω,qf,0,0

(

ω′
0, (h0,i(ω

′
i,xn,i))n∈N ′,i∈I

)

,
(

qf,0,i

(

ω′
0,ω

′
i,(xn,i)n∈N ′ ,

(
h0,j(ω

′
j ,xn,j)

)

n∈N ′,j∈I

))

i∈I

)

(17)

qf,0,i

(

ω
(t)
0 ,ω

(t)
i , (xn,i)n∈N (t) ,

(

h0,j(ω
(t)
j ,xn,j)

)

n∈N (t),j∈I

)

,

i ∈ I in Steps 4-6 of Algorithm 3, and hence Algorithm 3

can reduce privacy risk. However, if the two assumptions

mentioned above are not satisfied, extra privacy mechanisms

are required. For instance, if ω̄
(t)
f is linear in qf,0,0 and qf,0,i,

i ∈ I, then homomorphic encryption [13] can be applied.

3) Algorithm Example: We provide an example of f̄f,0
which satisfies Assumption 2 and yields an analytical solution

of Problem 7:

f̄f,0(ω;ω
(t)
f ,xn)=

(

∇ωff,0(ω
(t)
f ;xn)

)T(

ω−ω
(t)
f

)

+ τ
∥
∥
∥ω − ω

(t)
f

∥
∥
∥

2

2
, n ∈ N (t), (19)

where τ > 0 can be any constant. By the chain rule, we have:

∇ω0
ff,0(ω

(t)
f ;xn) = ∇ω0

g0

(

ω
(t)
0 ,
(

h0,i(ω
(t)
i ,xn,i)

)

i∈I

)

,

n ∈ N (t), (20)

∇ωi
ff,0(ω

(t)
f ;xn)

=∇h0,ig0

(

ω
(t)
0 ,
(

h0,i(ω
(t)
i ,xn,i)

)

i∈I

)T
∂h0,i(ω

(t)
i ,xn,i)

∂ωi

,

n ∈ N (t), i ∈ I. (21)

Substituting (20) and (21) into (19), we

know that
∑

n∈N (t) ∇ω0
ff,0(ω

(t)
f ;xn) and

∑

n∈N (t) ∇ωi
ff,0(ω

(t)
f ;xn), i ∈ I can be viewed

as qf,0,0

(

ω
(t)
0 ,
(

h0,i(ω
(t)
i ,xn,i)

)

n∈N (t),i∈I

)

(implying E0,0 = d0) and

qf,0,i

(

ω
(t)
0 ,ω

(t)
i , (xn,i)n∈N (t) ,

(

h0,j(ω
(t)
j ,xn,j)

)

n∈N (t),j∈I

)

(implying E0,i = di), i ∈ I, respectively. Besides, substituting

(19) into (16), F̄
(t)
f,0(ω) can be rewritten as:

F̄
(t)
f,0(ω) =

(

f̂
(t)
f,0,1

)T

ω + τ ‖ω‖22 , (22)

where f̂
(t)
f,0,1 ∈ R

d is given by:

f̂
(t)
f,0,1=(1−ρ(t))f̂

(t−1)
f,0,1 +

ρ(t)

B

∑

n∈N (t)

(

∇ff,0(ω
(t)
f ;xn)−2τω

(t)
f

)

(23)

with f̂
(0)
f,0,1 = 0. Similar to Problem 2 with f̄s,0 given by (7),

Problem 7 with f̄f,0 given by (19) is an unconstrained convex

quadratic programming w.r.t. ω and hence has the following

analytical solution:

ω̄
(t)
f = −

1

2τ
f̂
(t)
f,0,1. (24)

Therefore, Steps 5-7 of Algorithm 3 with f̄f,0 given by (19)

(i.e., an example of Algorithm 3) are given below. In Step 5,

the client with the highest computation speed (or any client)

computes
∑

n∈N (t) ∇ω0
ff,0(ω

(t)
f ;xn) ∈ R

d0 and sends the

d0-dimensional vector to the server. In Step 6, each client

i ∈ I computes
∑

n∈N (t) ∇ωi
ff,0(ω

(t)
f ;xn) ∈ R

di and

sends the di-dimensional vector to the server. In Step 7, the

server calculates ω̄
(t)
f according to (24). Suppose that for all

i ∈ I, mini-batch N ′ ⊆ N , and ω′
i ∈ R

di , the system of

equations w.r.t. (θ, (zn)n=1,··· ,B) ∈ R
di+BKi with θ ∈ R

di

and zn ∈ R
Ki , i.e., h0,i(θ, zn) = h0,i(ω

′
i,xn,i), n ∈ N ′,

has an infinite (or a sufficiently large) number of solutions,

and for any N ′ ⊆ N and ω′ ∈ R
d, the system of equations

w.r.t. (zn)n=1··· ,B with zn ∈ R
K , i.e.,

∑B
n=1 ∇ff,0(ω

′; zn) =∑

n∈N ′ ∇ff,0(ω
′;xn), has an infinite (or a sufficiently large)

number of solutions. In that case, the example of Algorithm 3

can reduce privacy risk. If the two assumptions are not

satisfied, homomorphic encryption [10], [13] can be applied to

preserve data privacy, since ω̄
(t)
f is linear in ∇ff,0(ω

(t)
f ;xn),

n ∈ N , as shown in (23) and (24). Similarly, the example of

Algorithm 3 can be viewed as a feature-based FL algorithm

via momentum SGD with diminishing stepsize γ(t).

Remark 3 (Comparison Between Example of Algorithm 3

and Feature-based FL Algorithm via SGD [13]): Algorithm 3

with f̄f,0 given by (19) and the extension of the feature-

based FL algorithm via SGD [13] (without extra privacy

mechanisms) to the general case with I > 2 and Ff,0(ω)
given in (2) have the same order of computational complexity

(O(B)) and communication load per communication round

and the same level of privacy protection (due to the same

system of equations for inferring private data).

Remark 4 (Information Collection for Example of Algo-

rithm 3): When choosing f̄f,0 given by (19), another option

for collecting information is to let each client i ∈ I directly

send h0,i(ω
(t)
i ,xn,i), ∇ωi

h0,i(ω
(t)
i ,xn,i), n ∈ N (t) to the

sever.15 In general, it has a lower communication load but

higher privacy risk than the information collection mechanism

in Steps 4-6 of the example of Algorithm 3, without using

additional privacy mechanisms.16

B. Feature-based Federated Learning for Constrained Opti-

mization

In this part, we consider the following constrained feature-

based federated optimization problem:

Problem 8 (Constrained Feature-based Federated Optimiza-

tion):

min
ω

Ff,0(ω)

s.t. Ff,m(ω) ≤ 0, m = 1, 2, · · · ,M,

15This one-step information collection mechanism can be viewed as an
extension of that in the feature-based FL algorithm via SGD [15] to the case
where the server maintains the global model.

16For the loss function given in (28), the one-step information collection

mechanism exposes raw data (as ∇ωih0,i(ω
(t)
i ,xn,i) = xn,i), whereas the

one adopted in Algorithm 3 does not, as shown in Section V.



Algorithm 4 Mini-batch SSCA for Problem 8

1: initialize: choose any ω
1
f and c > 0 at the server.

2: for t = 1, 2, · · · , T − 1 do
3: the server randomly selects a mini-batch with the index set

denoted by N (t) ⊂ N and sends N (t) and (ω
(t)
0 ,ω

(t)
i ) to

client i for all i ∈ I.
4: for all i ∈ I, client i computes hm,i(ω

(t)
i ,xn,i), n ∈ N (t),

m = 0, 1, · · · ,M and sends them to the other clients.
5: the client with the highest computation speed (or any client)

computes qf,m,0

(

ω
(t)
0 ,

(

hm,i(ω
(t)
i ,xn,i)

)

n∈N (t),i∈I

)

,

m = 0, 1, · · · ,M and sends them to the server.
6: for all i ∈ I, client i computes

qf,m,i

(

ω
(t)
0 ,ω

(t)
i ,(xn,i)n∈N (t) ,

(

hm,j(ω
(t)
j ,xn,j)

)

n∈N (t),j∈I

)

,

m = 0, 1, · · · ,M and sends them to the server.

7: the server obtains (ω̄
(t)
f , s

(t)
f ) by solving Problem 10.

8: the server updates ω
(t+1)
f according to (18).

9: end for
10: Output: ωT

f

where Ff,0(ω) is given by (2), and

Ff,m(ω) ,
1

N

∑

n∈N

gm
(
ω0, (hm,i(ωi,xn,i))i∈I

)

︸ ︷︷ ︸

,ff,m(ω;xn)

.

Here, ff,m(ω;xn) is formed by composing gm : Rd0+HmI →
R with functions hm,i : Rdi+Ki → R

Hm , i ∈ I, for some

positive integer Hm.

To be general, Ff,m(ω), m = 0, · · · ,M are not assumed

to be convex in ω. Analogously to Algorithm 2, we propose a

feature-based FL algorithm, i.e., Algorithm 4, to obtain a KKT

point of Problem 8, by combining the exact penalty method for

SSCA in our previous work [21] and mini-batch techniques.

1) Algorithm Description: Similarly, to ensure feasible

stochastic iterates, we first transform Problem 8 to the fol-

lowing stochastic optimization problem with a slack penalty

term.

Problem 9 (Transformed Problem of Problem 8):

min
ω,s

Ff,0 (ω) + c

M∑

m=1

sm

s.t. Ff,m (ω) ≤ sm, m = 1, 2, · · · ,M,

sm ≥ 0, m = 1, 2, · · · ,M.

At iteration t, we choose F̄
(t)
f,0(ω) given in (16) as an

approximation function of Ff,0(ω) and choose:

F̄
(t)
f,m(ω)=(1−ρ(t))F̄

(t−1)
f,m (ω)+ρ(t)

1

B

∑

n∈N (t)

f̄f,m(ω;ω
(t)
f ,xn),

m = 1, · · · ,M (25)

with F̄
(0)
f,m(ω) = 0 as a convex approximation function of

Ff,m(ω), for all m = 1, · · · ,M , where ρ(t) is a stepsize

satisfying (4), N (t) is a randomly selected mini-batch by the

server at iteration t, and f̄f,m(ω;ω
(t)
f ,xn) is a convex approxi-

mation of ff,m(ω;xn) around ω
(t)
f satisfying f̄s,m(ω;ω,x) =

fs,m(ω;x) and Assumption 2 for all m = 1 · · · ,M .

Note that for any mini-batch N ′ ⊆ N with

batch size B,
∑

n∈N ′ f̄f,m(ω;ω′,xn) can be written

as (26), as shown at the top of the next page, with

pf,m : Rd+
∑

I
i=0 Em,i → R, qf,m,0 : Rd0+HmBI → R

Em,0 ,

and qf,m,i : R
d0+di+KiB+HmBI → R

Em,i , i ∈ I, for some

positive integers Em,i, i = 0, 1, · · · , I . Assume that the

expressions of f̄f,m, pf,m, qf,m,0, qf,m,i, i ∈ I, and hm,i,

m = 0, · · · ,M , i ∈ I are known to the server and I clients.

Each client i ∈ I computes hm,i(ω
(t)
i ,xn,i), n ∈ N (t),

m = 0, · · · ,M and sends them to the other clients. Based

on hm,i(ω
(t)
i ,xn,i), m = 0, · · · ,M , n ∈ N (t), i ∈ I, the

client with the highest computation speed (or any client)

computes qf,m,0

(

ω
(t)
0 ,
(

hm,i(ω
(t)
i ,xn,i)

)

n∈N (t),i∈I

)

,

m = 0, · · · ,M and sends them to the

server. Moreover, each client i ∈ I computes

qf,m,i

(

ω
(t)
0 ,ω

(t)
i , (xn,i)n∈N (t) ,

(

hm,j(ω
(t)
j ,xn,j)

)

n∈N (t),j∈I

)

,

m = 0, · · · ,M and sends them to the server. Then, the server

solves the following convex approximate problem to obtain

ω̄
(t)
f .

Problem 10 (Convex Approximate Problem of Problem 9):

(ω̄
(t)
f , s

(t)
f ) , argmin

ω,s
F̄

(t)
f,0(ω) + c

M∑

m=1

sm

s.t. F̄
(t)
f,m(ω) ≤ sm, m = 1, 2, · · · ,M,

sm ≥ 0, m = 1, 2, · · · ,M.

Like Problem 5, Problem 10 is a constrained convex prob-

lem that is always feasible and can be readily solved. Given

ω̄
(t)
f , the server updates ω

(t)
f according to (18). The detailed

procedure is summarized in Algorithm 4. The convergence of

Algorithm 4 is summarized below. Consider a sequence {cj}.

For all j, let (ω⋆
f,j , s

⋆
f,j) denote a limit point of {(ω

(t)
f , s

(t)
f )}

generated by Algorithm 4 with c = cj .

Theorem 4 (Convergence of Algorithm 4): Suppose that ff,m
satisfies Assumption 1 for all m = 0, · · · ,M , f̄f,0 satisfies

Assumption 2, f̄f,m satisfies f̄f,m(ω;ω,x) = ff,m(ω;x) and

Assumption 2 for all m = 1, · · · ,M , the sequence {ω
(t)
f }

generated by Algorithm 4 with c = cj is bounded for all j, and

the sequence {cj} satisfies 0 < cj < cj+1 and limj→∞ cj =
∞. Then, the following statements hold. i) For all j, if s⋆f,j =
0, then ω⋆

f,j is a KKT point of Problem 8 almost surely; ii)

A limit point of {(ω⋆
f,j , s

⋆
f,j)}, denoted by {(ω⋆

f,∞, s⋆f,∞)},

satisfies that s⋆f,∞ = 0, and ω⋆
f,∞ is a KKT point of Problem 8

almost surely.

Proof: Please refer to Appendix B.

2) Security Analysis: Suppose 1) for all i ∈ I, mini-batch

N ′ ⊆ N , and ω′
i ∈ R

di , the system of equations w.r.t.

(θ, (zn)n=1,··· ,B) ∈ R
di+BKi with θ ∈ R

di and zn ∈ R
Ki ,

i.e., hm,i(θ, zn) = hm,i(ω
′
i,xn,i), n ∈ N ′, m = 0, · · · ,M ,

has an infinite (or a sufficiently large) number of solutions;

2) for any mini-batch N ′ ⊆ N and ω′ ∈ R
d, the

system of equations w.r.t. (zn,i)n=1,··· ,B,i∈I ∈ R
BK with

zn,i ∈ R
Ki , i.e., qf,m,0

(

ω′
0, (hm,i(ω

′
i, zn,i))n=1,··· ,B,i∈I

)

=

qf,m,0

(

ω′
0, (hm,i(ω

′
i,xn,i))n∈N ′,i∈I

)

, m = 0, · · · ,M and



∑

n∈N ′

f̄f,m(ω;ω′,xn)=pf,m

(

ω,qf,m,0(ω
′
0,(hm,i(ω

′
i,xn,i))n∈N ′,i∈I),

(

qf,m,i

(

ω′
0,ω

′
i,(xn,i)n∈N ′,

(
hm,j(ω

′
j ,xn,j)

)

n∈N ′,j∈I

))

i∈I

)

,

m = 0, · · · ,M (26)

qf,m,i

(

ω′
0,ω

′
i, (zn,i)n∈N ′ ,

(
hm,j(ω

′
j , zn,j)

)

n=1,··· ,B,j∈I

)

=

qf,m,i

(

ω′
0,ω

′
i, (xn,i)n∈N ′ ,

(
hm,j(ω

′
j ,xn,j)

)

n∈N ′,j∈I

)

,

m = 0, · · · ,M , i ∈ I, has an infinite (or a sufficiently

large) number of solutions. In that case, raw data xn,

n ∈ N (t) can hardly be extracted by any client from

hm,i(ω
(t)
i ,xn,i), m = 0, · · · ,M , n ∈ N (t), i ∈ I or by

the server from qf,m,0

(

ω
(t)
0 ,
(

hm,i(ω
(t)
i ,xn,i)

)

n∈N (t),i∈I

)

,

qf,m,i

(

ω
(t)
0 ,ω

(t)
i , (xn,i)n∈N (t) ,

(

hm,j(ω
(t)
j ,xn,j)

)

n∈N (t),j∈I

)

,

m = 0, · · · ,M , i ∈ I in Steps 4-6 of Algorithm 4. Hence,

Algorithm 4 can reduce privacy risk. However, extra privacy

mechanisms need to be investigated if the two assumptions

mentioned above are not satisfied.

3) Algorithm Example: We provide an example of f̄f,m,

m = 0, · · · ,M with f̄f,0 satisfying Assumption 2 and f̄f,m
satisfying f̄f,m(ω;ω,x) = ff,m(ω;x) and Assumption 2 for

all m = 1, · · · ,M . Specifically, we can choose f̄f,0 given by

(19) and choose f̄f,m, m = 1, · · · ,M as follows:

f̄f,m(ω;ω
(t)
f ,xn)=ff,m(ω

(t)
f ;xn)+

(

∇ff,m(ω
(t)
f ;xn)

)T(

ω−ω
(t)
f

)

+ τ
∥
∥
∥ω − ω

(t)
f

∥
∥
∥

2

2
, m = 1, · · · ,M, (27)

where τ > 0 can be any constant. Note that ∇ωff,m(ω
(t)
f ;xn)

can be computed according to the chain rule, similarly to (20)

and (21). Thus,
∑

n∈N (t) ∇ω0ff,0(ω
(t)
f ;xn) can be viewed as

qf,0,0

(

ω
(t)
0 ,
(

h0,i(ω
(t)
i ,xn,i)

)

n∈N (t),i∈I

)

(implying E0,0 =

d0);
(
∑

n∈N (t) ff,m(ω
(t)
f ;xn),

∑

n∈N (t) ∇ω0
ff,m(ω

(t)
f ;xn)

)

can be viewed as qf,m,0

(

ω
(t)
0 ,
(

hm,i(ω
(t)
i ,xn,i)

)

n∈N (t),i∈I

)

(implying Em,0 = 1 + d0), for all m = 1, · · · ,M ;

and
∑

n∈N (t) ∇ωi
ff,m(ω

(t)
f ;xn) can be viewed as

qf,m,i

(

ω
(t)
0 ,ω

(t)
i ,(xn,i)n∈N (t) ,

(

hm,j(ω
(t)
j ,xn,j)

)

n∈N (t),j∈I

)

(implying Em,i = di), for all m = 0, · · · ,M , i ∈ I. Recall

that F̄
(t)
f,0(ω) is given in (22) with ff,0 given in (19). In

addition, for all m = 1, · · · ,M , substituting (27) into (25),

F̄
(t)
f,m(ω) can be rewritten as:

F̄
(t)
f,m(ω) =f̂

(t)
f,m,0 +

(

f̂
(t)
f,m,1

)T

ω + τ ‖ω‖22 , m = 1, · · · ,M,

where f̂
(t)
f,m,0 and f̂

(t)
f,m,1 ∈ R

d are given by:

f̂
(t)
f,m,0 = (1 − ρ(t))f̂

(t−1)
f,m,0 + ρ(t)

1

B

∑

n∈N (t)

(

ff,m(ω
(t)
f ;xn)

−
(

∇ff,m(ω
(t)
f ;xn)

)T

ω
(t)
f + τ

∥
∥
∥ω

(t)
f

∥
∥
∥

2

2

)

, m = 1, · · · ,M,

f̂
(t)
f,m,1 = (1− ρ(t))f̂

(t−1)
f,m,1 + ρ(t)

1

B

×
∑

n∈N (t)

(

∇ff,m(ω
(t)
f ;xn)− 2τω

(t)
f

)

, m = 1, · · · ,M

with f̂
(0)
f,m,0 = 0 and f̂

(0)
f,m,1 = 0. Problem 10 with f̄f,0 given

by (19) and f̄f,m, m = 1, · · · ,M given by (27) is a convex

quadratically constrained quadratic programming and can be

solved using an interior-point method.

Therefore, Steps 5-7 of Algorithm 4 with f̄f,0 given

by (19) and f̄f,m,m = 1, · · · ,M given by (27) (i.e.,

an example of Algorithm 4) are given below. In Step

5, the client with the highest computation speed (or any

client) computes
∑

n∈N (t) ∇ω0ff,0(ω
(t)
f ;xn) ∈ R

d0 and
(
∑

n∈N (t) ff,m(ω
(t)
f ;xn),

∑

n∈N (t) ∇ω0
ff,m(ω

(t)
f ;xn)

)

∈

R
1+d0 , m = 1, · · · ,M and sends the d0-dimensional vector

and M (1 + d0)-dimensional vectors to the server. In Step

6, each client i ∈ I computes
∑

n∈N (t) ∇ωi
ff,m(ω

(t)
f ;xn),

m = 0, · · · ,M and sends the (M +1) di-dimensional vectors

to the server. In Step 7, the server calculates (ω̄
(t)
f , s

(t)
f ) using

an interior-point method. Suppose that for all i ∈ I, mini-

batch N ′ ⊆ N , and ω′
i ∈ R

di , the system of equations

w.r.t (θ, (zn)n=1,··· ,B) ∈ R
di+BKi with θ ∈ R

di and

zn ∈ R
Ki , i.e., hm,i(θ, zn) = hm,i(ω

′
i,xn,i), n ∈ N ′,

m = 0, · · · ,M , has an infinite (or a sufficiently large)

number of solutions; and for all N ′ ⊆ N and ω′ ∈ R
d, the

system of equations w.r.t. (zn)n=1,··· ,B with zn ∈ R
K , i.e.,

∑B

n=1 ff,m(ω′; zn) =
∑

n∈N ′ ff,m(ω′;xn), m = 1, · · · ,M

and
∑B

n=1 ∇ff,m(ω′; zn) =
∑

n∈N ′ ∇ff,m(ω′;xn), m =
0, · · · ,M , has an infinite (or a sufficiently large) number of

solutions. In that case, the example of Algorithm 4 can reduce

privacy risk.

V. APPLICATION EXAMPLES

In this section, we customize the proposed algorithmic

frameworks to some applications and provide detailed so-

lutions for the specific problems. The server and I clients

collaboratively solve an L-class classification problem with

a dataset of N samples using FL. Denote P , {1, · · · , P}
and L , {1, · · · , L}. The n-th sample is represented by

xn , (zn,yn) ∈ R
K , where K = P + L, and zn ,

(zn,p)p∈P ∈ R
P and yn , (yn,l)l∈L ∈ {0, 1}L represent

the P features and label of the n-th sample, respectively. In

feature-based FL, P is partitioned into I subsets, denoted by

Pi, i ∈ I, and for each sample n ∈ N , client i maintains

the Pi features zn,i , (zn,p)p∈Pi
∈ R

Pi and the label yn.

Note that P =
∑

i∈I Pi. Thus, the i-th subvector for the n-th

sample is given by xn,i , (zn,i,yn).



Consider a two-layer neural network, including an input

layer composed of P cells, a hidden layer composed of

J cells, and an output layer composed of L cells. Denote

J , {1, · · · , J}. The model parameters are represented

by ω , ((ω0,l,j)l∈L,j∈J , (ω1,j,p)j∈J ,p∈P) ∈ R
d, where

d = J(P + L). For feature-based FL, ω is also expressed

as ω = (ω0, (ωi)i∈I), where ω0 , (ω0,l,j)l∈L,j∈J and

ωi , (ω1,j,p)j∈J ,p∈Pi
, i ∈ I. We use the swish activation

function S(z) = z/(1 + exp(−z)) [29] for the hidden layer

and the softmax activation function for the output layer. Note

that S′(z) = 1
1+exp(−z)

(

1 + z exp(−z)
1+exp(−z)

)

. We consider the

cross-entropy loss function. Thus, the resulting loss function

for sample-based and feature-based FL is given by:

F (ω) , −
1

N

∑

n∈N

∑

l∈L

yn,l log (Ql(ω;xn)) , (28)

where

Ql(ω;xn) ,
exp(

∑

j∈J ω0,l,jS(
∑

p∈P ω1,j,pzn,p))
∑L

h=1 exp(
∑

j∈J ω0,h,jS(
∑

p∈P ω1,j,pzn,p))
.

For ease of exposition, in the rest of this section, we denote:

Ā
(t)
a,l,j,

{∑

i∈I
Ni

BN

∑

n∈N
(t)
i

āa,n,l,j, a = s
1
B

∑

n∈N (t) āa,n,l,j, a = f
, (29)

B̄
(t)
a,j,p,

{∑

i∈I
Ni

BN

∑

n∈N
(t)
i

b̄a,n,j,p, a = s
1
B

∑

n∈N (t) b̄a,n,j,p, a = f
, (30)

C̄(t)
a ,







∑

i∈I
Ni

BN

∑

n∈N
(t)
i

c̄a,n + τ
∥
∥
∥ω

(t)
a

∥
∥
∥

2

2
, a = s

1
B

∑

n∈N (t) c̄a,n + τ
∥
∥
∥ω

(t)
a

∥
∥
∥

2

2
, a = f

, (31)

where

āa,n,l,j,(Ql(ω
(t)
a ;xn)−yn,l)S(

P∑

p′=1

ω
(t)
a,1,j,p′xn,p′),

b̄a,n,j,p,
∑

l∈L

(Ql(ω
(t)
a ;xn)−yn,l)S

′(

P∑

p′=1

ω
(t)
a,1,j,p′xn,p′)ω

(t)
a,0,l,jxn,p,

c̄a,n,
∑

l∈L

yn,l log(Ql(ω
(t)
a ;xn)).

A. Unconstrained Federated Optimization

For a = s, f , one unconstrained federated optimization for-

mulation for the L-class classification problem is to minimize

the weighted sum of the loss function F (ω) in (28) and the

ℓ2-norm regularization term ‖ω‖22:

min
ω

Fa,0(ω) , F (ω) + λ ‖ω‖22 (32)

where λ > 0 is the regularization parameter that trades off the

cost and model sparsity. Obviously, F (ω) + λ ‖ω‖22 satisfies

the additional restrictions on the structure of Ff,0(ω). We

can view −
∑

l∈L yn,l log (Ql(ω;xn)) as fa,0(ω;xn), apply

Algorithm 1 with f̄s,0(ω;ω
(t)
s ,xn) given by (7) to solve the

problem in (32) for a = s, and apply Algorithm 3 with

f̄f,0(ω;ω
(t)
f ,xn) given by (19) to solve the problem in (32)

for a = f .

First, we present the details of Step 4 in Algo-

rithm 1 and the details of Steps 4-6 in Algorithm 3.

In Step 4 of Algorithm 1, each client i computes

((
∑

n∈N
(t)
i

ās,n,l,j)l∈L,j∈J , (
∑

n∈N
(t)
i

b̄s,n,j,p)j∈J ,p∈P) and

sends it to the server. In Steps 4-6 of Algorithm 3, each client i

computes (ω
(t)
f,1,j,pxn,p)j∈J ,p∈Pi

n ∈ N (t) and sends them to

the other clients; based on (ω
(t)
f,1,j,pxn,p)j∈J ,p∈Pi

, n ∈ N (t),

the client with the highest computation speed (or any client)

computes (
∑

n∈N (t) āf,n,l,j)j∈J ,l∈L and sends it to the server;

each client i computes (
∑

n∈N (t) b̄f,n,j,p)j∈J ,p∈Pi
and sends

it to the server.

Next, we present the details of Step 5 in Algorithm 1 and

the details of Step 7 in Algorithm 3. For a = s, f , the convex

approximate problem is given by:

min
ω

F̄
(t)
a,0(ω) = F̄ (t)

a (ω) + 2λ(β(t))Tω (33)

where F̄
(t)
a (ω) is given by

F̄ (t)
a (ω)=

∑

l∈L

∑

j∈J

A
(t)
a,l,jω0,l,j+

∑

j∈J

∑

p∈P

B
(t)
a,j,pω1,j,p+τ ‖ω‖22 ,

(34)

and β(t) ∈ R
d, A

(t)
a,l,j ∈ R, and B

(t)
a,j,p ∈ R are updated

according to:

β(t) = (1− ρ(t))β(t−1) + ρ(t)ω(t)
a , (35)

A
(t)
a,l,j = (1− ρ(t))A

(t−1)
a,l,j + ρ(t)

(

Ā
(t)
a,l,j − 2τω

(t)
a,0,l,j

)

, (36)

B
(t)
a,j,p= (1 − ρ(t))B

(t−1)
a,j,p + ρ(t)

(

B̄
(t)
a,j,p− 2τω

(t)
a,1,j,p

)

, (37)

respectively, with β
(0) = 0 and A

(0)
a,l,j = B

(0)
a,j,p = 0. Here,

Ā
(t)
a,l,j and B̄

(t)
a,j,p are given by (29) and (30) respectively.

By (10) for a = s and (24) for a = f , the closed-form

solutions of the problem in (33) for a = s, f are given by:

ω̄
(t)
a,0,l,j = −

1

2τ

(

A
(t)
a,l,j + 2λβ

(t)
2,l,j

)

, l ∈ L, j ∈ J , (38)

ω̄
(t)
a,1,j,p = −

1

2τ

(

B
(t)
a,j,p + 2λβ

(t)
1,j,p

)

, j ∈ J , p ∈ P . (39)

Thus, in Step 5 in Algorithm 1 and Step 7 in Algorithm 3, the

server only needs to compute ω̄
(t)
a according to (38) and (39).

Theorem 1 and Theorem 3 guarantee the convergences of

Algorithm 1 and Algorithm 3, respectively, as Assumption 1

and Assumption 2 are satisfied.

B. Constrained Federated Optimization

For a = s, f , one constrained federated optimization formu-

lation for the L-class classification problem is to minimize the

ℓ2-norm of the network parameters ‖ω‖22 under a constraint

on the loss function F (ω) in (28):

min
ω

Fa,0(ω) , ‖ω‖22 (40)

s.t. Fa,1(ω) , F (ω)− U ≤ 0,

where U represents the limit on the cost. We can

view 0 and −
∑

l∈L yn,l log (Ql(ω;xn)) as fa,0(ω;xn) and

fa,1(ω;xn), respectively. Then, we can apply Algorithm 2

with f̄s,0(ω;ω
(t)
s ,xn) given by (7) and f̄s,1(ω;ω

(t)
s ,xn) given

by (15) to solve the problem in (40) for a = s and ap-



ply Algorithm 4 with f̄f,0(ω;ω
(t)
f ,xn) given by (19) and

f̄f,1(ω;ω
(t)
f ,xn) given by (27) to solve the problem in (40)

for a = f .

First, we present the details of Step 4 in Algorithm 2

and the details of Steps 4-6 in Algorithm 4. In

Step 4 of Algorithm 2, each client i computes

((
∑

n∈N
(t)
i

ās,n,l,j)l∈L,j∈J , (
∑

n∈N
(t)
i

b̄s,n,j,p)j∈J ,p∈P)

and
∑

n∈N
(t)
i

c̄s,n and sends them to the server. In

Steps 4-6 of Algorithm 4, each client i computes

(ω
(t)
f,1,j,pxn,p)j∈J ,p∈Pi

, n ∈ N (t) and sends them to

the other clients; based on (ω
(t)
f,1,j,pxn,p)j∈J ,p∈Pi

, n ∈ N (t),

the client with the highest computation speed (or any client)

computes (
∑

n∈N (t) āf,n,l,j)l∈L,j∈J and
∑

n∈N (t) c̄f,n
and sends them to the server; each client i computes
(∑

n∈N (t) b̄f,n,j,p
)

j∈J ,p∈Pi
and sends it to the server.

Next, we present the details of Step 5 in Algorithm 2 and

the details of Step 7 in Algorithm 4. For a = s, f , the convex

approximate problem is given by:

min
ω,s

‖ω‖22 + cs (41)

s.t. F̄ (t)
a (ω) + C(t)

a − U ≤ s,

s ≥ 0,

where F̄
(t)
a (ω) is given by (34) with A

(t)
a,l,j , B

(t)
a,j,p, and C

(t)
a

updated according to (36), (37), and

C(t)
a = (1 − ρ(t))C(t−1)

a +

ρ(t)
(

C̄(t)
a −

∑

l∈L

∑

j∈J

Ā
(t)
a,l,jω

(t)
a,0,l,j −

∑

j∈J

∑

p∈P

B̄
(t)
a,j,pω

(t)
a,1,j,p

)

,

(42)

respectively, with C
(0)
a = 0 and C̄

(t)
a given by (31). By the

KKT conditions, the closed-form solutions of the problem

in (41) for a = s, f are given as follows.

Lemma 1 (Optimal Solution of Problem in (41)):

ω̄
(t)
a,0,l,j = −

νA
(t)
a,l,j

2(1 + ντ)
, l ∈ L, j ∈ J , (43)

ω̄
(t)
a,1,j,p = −

νB
(t)
a,j,p

2(1 + ντ)
, j ∈ J , p ∈ P , (44)

where

ν=







[

1
τ

(
√

b

b+4τ(U−C
(t)
a )

− 1

)]c

0

, b+ 4τ(U − C
(t)
a )>0

c, b+ 4τ(U − C
(t)
a )≤0

,

b=
∑

l∈L

∑

j∈J

(A
(t)
a,l,j)

2 +
∑

j∈J

∑

p∈P

(B
(t)
a,j,p)

2. (45)

Here, [x]c0 , min {max{x, 0}, c}.

Proof: Please refer to Appendix C.

Thus, in Step 5 of Algorithm 2 and Step 7 of Algorithm 4,

the server only needs to compute ω̄
(t)
a according to (43)

and (44).

The convergences of Algorithm 2 and Algorithm 4 are

guaranteed by Theorem 2 and Theorem 4, respectively, as

Assumption 1 and Assumption 2 are satisfied.

C. Comparisons of Two Formulations

Both the unconstrained federated optimization formulation

in (32) and constrained federated optimization formulation

in (40) allow tradeoffs between the cost and model spar-

sity [30]. The equivalence between the two formulations is

summarized in the following theorem.

Theorem 5 (Equivalence between Problems in (32)

and (40)): i) If ω∗ is a locally optimal solution of the problem

in (32) with λ > 0, then there exists U ≥ 0 such that ω∗ is

a locally optimal solution of the problem in (40). ii) If ω† is

a locally optimal solution of the problem in (40) with U > 0,

which is regular and satisfies the KKT conditions together

with a corresponding Lagrange multiplier ξ > 0, then there

exists λ > 0 such that ω† is a stationary point of the problem

in (32). If, in addition, λ and ω† satisfy ∇2F (ω†) + λI � 0,

then ω† is a locally optimal solution of the problem in (32).

Proof: Please refer to Appendix D.

By the above theorem, we know that the problem in (32)

and the problem in (40) have the same locally optimal solution

for certain λ and U under some conditions. Besides, we can

tradeoff between the training accuracy and model sparsity

of each formulation. It is evident that with the constrained

federated optimization formulation in (40), one can set an

explicit constraint on the training cost to control the test

accuracy effectively.

VI. NUMERICAL RESULTS

In this section, we numerically evaluate the proposed exam-

ples of Algorithms 1-4 using the application examples in Sec-

tion V.17 For unconstrained federated optimization, we adopt

the existing SGD-based [5], [6], [13] and momentum SGD-

based [7] FL algorithms, called SGD and SGD-m, respectively,

as the baseline algorithms for the proposed examples of

Algorithm 1 and Algorithm 3. Let E denote the number of

local SGD (momentum SGD) updates for sample-based SGD

(SGD-m). Note that sample-based SGD with B × E = N
becomes FedAvg [5]. Feature-based SGD and SGD-m adopt

the information collection mechanism used in Algorithms 3

(i.e., the extension of the one in [13]). In each communication

round, each proposed algorithm executes one iteration, each

sample-based SGD (SGD-m) executes one global iteration and

E local SGD (momentum SGD) updates, and each feature-

based SGD (SGD-m) executes one global iteration. Algo-

rithm 1 (Algorithm 3) and its baseline algorithms have the

same communication load per communication round. Besides,

if the value of B for Algorithm 1 (Algorithm 3) and the value

of B × E for each sample-based (B for each feature-based)

baseline algorithm are equal, the two algorithms have the

same order of computational complexity per communication

round.18

We set λ = 10−5 and U = 0.13 for the unconstrained

and constrained federated optimization problems in (32) and

17Source code for the experiments is available at [31].
18The example of Algorithm 1 (Algorithm 3) has the same level of

privacy protection as its baseline algorithms, as illustrated in Section III-A
(Section IV-A).



(40), respectively, unless otherwise specified. We carry our

experiments on Mnist dataset. For the training model, we set

N = 60000, I = 10, K = 784, J = 128, and L = 10.

For the proposed algorithms, we choose T = 1000, c = 105,

ρ(t) = a1/t
α and γ(t) = a2/t

α with a1 = 0.9, 0.3, 0.2, a2 =
0.5, 0.3, 0.3, α = 0.1, 0.1, 0.1, and τ = 0.2, 0.05, 0.03 for

batch sizes B = 10, 100, 6000 in sample-based FL and a1 =
0.9, 0.9, 0.3, a2 = 0.3, 0.5, 0.3, α = 0.3, 0.1, 0.1, and τ =
0.1, 0.2, 0.05 for batch sizes B = 10, 100, 1000 in feature-

based FL. For SGD, the learning rate is set as r = ā/tᾱ with

ā = 0.3 and ᾱ = 0.3. For SGD-m, the learning rate is set as

r = ā with ā = 0.3 and the momentum parameter is set as

β̄ = 0.1. Note that all the algorithm parameters are selected

using a grid search method, and all the results are given by

averaging over ten runs.
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Fig. 1. Training cost F (ω
(t)
s ) and test accuracy at ω

(t)
s versus

communication round index t for sample-based FL.

Fig. 1 and Fig. 2 illustrate the training cost and test accuracy

versus the communication round index in sample-based FL

and feature-based FL, respectively. From Fig. 1 (a), (c), (e)

and Fig. 2 (a), (c), we can see that each proposed algorithm

with larger B, sample-based SGD (SGD-m) with larger B ×
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Fig. 2. Training cost F (ω
(t)
f ) and test accuracy at ω

(t)
f versus

communication round index t for feature-based FL.
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Fig. 3. Tradeoff between communication cost and computation cost
for solving unconstrained federated optimization with a specific test
accuracy.

E, and feature-based SGD (SGD-m) with larger B converge

faster at higher computation costs per communication round.

We can also observe that Algorithm 1 (Algorithm 3) converges

faster than all the baseline algorithms with the same order of

computational complexity per communication round in most

(all) cases. The only exception for Algorithm 1 is that in Fig. 1

(c), Algorithm 1 with B = 6000 converges slightly slower than

sample-based SGD-m with B = 600 and E = 10.

Fig. 3 shows the tradeoff between the communication and

computation costs for solving unconstrained federated opti-

mization. Here, the communication cost of each algorithm

is measured by the number of communication rounds, the

computation costs of Algorithm 1, Algorithm 3, and feature-

based SGD (SGD-m) are measured by B, and the commu-

nication cost of sample-based SGD (SGD-m) is measured by

B × E. From Fig. 3(a), we see that the proposed algorithms

achieve the best tradeoff between the communication cost
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Fig. 4. Tradeoff between model sparsity and training cost for sample-
based FL at T = 1000.

and computation cost in all cases except the case where

all local samples are utilized per communication round for

solving for sample-based FL. Thus, Fig. 3(a) indicates that

Algorithm 1 (Algorithm 3) achieves the lowest communication

and computation costs for reaching a specific convergence

performance in most (all) cases.

Fig. 4 shows the tradeoff curve between the model sparsity

and training cost of each proposed algorithm for sample-based

FL. From Fig. 4(b), we see that with constrained sample-based

federated optimization, one can set an explicit constraint on

the training cost to control the test accuracy effectively.

VII. CONCLUSIONS

In this paper, we investigated sample-based and feature-

based federated optimization, respectively, and considered

both the unconstrained problem and constrained problem

for each of them. We proposed FL algorithms that con-

verge to stationary points or KKT points using SSCA and

mini-batch techniques. We also provided algorithm examples

that have appealing computational complexities and com-

munication loads per communication round and connect to

FL algorithms via momentum SGD. Numerical experiments

demonstrated that the proposed mini-batch SSCA-based FL

algorithms for unconstrained sample-based and feature-based

federated optimization generally converge faster than existing

FL algorithms, and the proposed mini-batch SSCA-based FL

algorithms for constrained sample-based and feature-based

federated optimization problems obtain models that strictly

satisfy nonconvex constraints. To the best of our knowledge,

this is the first work that provides an SSCA framework for

federated optimization, highlights the value of constrained fed-

erated optimization, and establishes an analytical connection

between SSCA and momentum SGD. This paper opens up

several directions for future research. An important direction

is to design advanced SSCA-based FL algorithms that allow

multiple local updates to reduce communication costs further.

Another interesting direction is to design more privacy mech-

anisms for SSCA-based FL algorithms.

APPENDIX A: PROOFS OF THEOREM 1 AND THEOREM 3

The proofs of Theorem 1 and Theorem 3 are identical. In

the following proof, we omit the subscripts s, f for notation

simplicity. First, we introduce the following preliminary re-

sults.

Lemma 2: Let {ω(t)} be the sequence generated by Algo-

rithm 1 (Algorithm 3). Then, we have:

lim
t→∞

∥
∥
∥∇F̄

(t)
0 (ω(t))−∇F0(ω

(t))
∥
∥
∥
2
= 0,

lim
t→∞

∣
∣
∣F̄

(t)
0 (ω)−G0(ω;ω(t))

∣
∣
∣ = 0, ω ∈ R

d,

almost surely, where G0(ω;ω(t)) ,
1
N

∑

n∈N f̄0(ω;ω(t),xn).

Proof: Lemma 2 is a consequence of [32, Lemma 1]. We

only need to verify that all the technical conditions therein

are satisfied. Specifically, Condition (a) of [32, Lemma 1] is

satisfied because {ω(t)} is assumed to be bounded. Condition

(b) of [32, Lemma 1] comes from Assumption 2.4. Conditions

(c)-(d) of [32, Lemma 1] come from the stepsize rules in

(4) and (6). Condition (e) of [32, Lemma 1] comes from

the Lipschitz property of F0(ω) from Assumption 1 and the

stepsize rule in (6).

Lemma 3: Let {ω(t)} be the sequence generated by Algo-

rithm 1 (Algorithm 3). Then, there exists a constant L̄ such

that
∥
∥
∥ω̄

(t1) − ω̄(t2)
∥
∥
∥
2
≤ L̄

∥
∥
∥ω

(t1) − ω(t2)
∥
∥
∥
2
+ e(t1, t2), (46)

and limt1,t2→∞ e(t1, t2) = 0 almost surely.

Proof: It follows from Lemma 2 that

F̄
(t)
0 (ω) = G0(ω;ω(t)) + ē(t), (47)

where ē(t) satisfies limt→∞ ē(t) = 0. From Assumption 2.3,

G0(ω;ω(t)) is Lipschitz continuous in ω(t) and thus
∣
∣
∣G0(ω;ω(t1))−G0(ω;ω(t2))

∣
∣
∣≤ L̃

∥
∥
∥ω

(t1)−ω(t2)
∥
∥
∥
2
,ω ∈ R

d,

(48)

for some constant L̃ > 0. Combining (47) and (48), we have:
∣
∣
∣F̄

(t1)
0 (ω)−F̄

(t2)
0 (ω)

∣
∣
∣≤ L̃

∥
∥
∥ω

(t1)−ω(t2)
∥
∥
∥
2
+ẽ(t1, t2),ω ∈ R

d,

(49)

where ẽ(t1, t2) satisfies limt1,t2→∞ ẽ(t1, t2) = 0. From As-

sumption 2.3, there exists constant µ > 0 such that for all

t = 1, 2, · · · ,∞, F̄
(t)
0 (ω) is strongly convex with µ. Due to

the strong convexity of F̄
(t1)
0 (ω) and the optimality of ω̄(t1),

we have:

F̄
(t1)
0 (ω)− F̄

(t1)
0 (ω̄(t1)) ≥

µ

2

∥
∥
∥ω − ω̄(t1)

∥
∥
∥
2
, ω ∈ R

d. (50)

Setting ω = ω̄(t2) in (50), we have:

F̄
(t1)
0 (ω̄(t2))− F̄

(t1)
0 (ω̄(t1)) ≥

µ

2

∥
∥
∥ω̄

(t2) − ω̄(t1)
∥
∥
∥
2
. (51)

Similarly, by the strong convexity of F̄
(t2)
0 (ω) and the opti-

mality of ω̄(t2), we have:

F̄
(t2)
0 (ω̄(t1))− F̄

(t2)
0 (ω̄(t2)) ≥

µ

2

∥
∥
∥ω̄

(t1) − ω̄(t2)
∥
∥
∥
2
. (52)

Thus, we have:
∥
∥
∥ω̄

(t1) − ω̄(t2)
∥
∥
∥
2



(a)

≤
1

µ

(∣
∣
∣F̄

(t1)
0 (ω̄(t1))−F̄

(t2)
0 (ω̄(t1))

∣
∣
∣+
∣
∣
∣F̄

(t1)
0 (ω̄(t2))−F̄

(t2)
0 (ω̄(t2))

∣
∣
∣

)

(b)

≤
2L̃

µ

∥
∥
∥ω

(t1) − ω(t2)
∥
∥
∥
2
+

2

µ
ẽ(t1, t2), (53)

where (a) follows from (51) and (52), and (b) follows

from (49). Finally, (46) follows from (53) immediately.

Lemma 4: Let {ω(t)} be the sequence generated by Algo-

rithm 1 (Algorithm 3). Then, we have:

F0(ω
(t+1))− F0(ω

(t))

≤γ(t)
∥
∥
∥ω̄

(t) − ω(t)
∥
∥
∥
2

∥
∥
∥∇F0(ω

(t))−∇F̄
(t)
0 (ω(t))

∥
∥
∥
2

− γ(t)

(

µ−
L̂

2
γ(t)

)
∥
∥
∥ω̄

(t) − ω(t)
∥
∥
∥

2

2
. (54)

Proof: From Assumption 2.2, F̄
(t)
0 (ω) is uniformly

strongly convex, and thus:

(ω̄(t) − ω(t))T∇F̄
(t)
0 (ω(t))

≤− µ
∥
∥
∥ω̄

(t) − ω(t)
∥
∥
∥
2
+ F̄

(t)
0 (ω̄(t))− F̄

(t)
0 (ω(t))

≤− µ
∥
∥
∥ω̄

(t) − ω(t)
∥
∥
∥
2
, (55)

where the last inequality follows from the optimality of ω̄(t).

Suppose ∇F0(ω) is Lipschitz continuous with constant L̂ > 0,

we have:

F0(ω
(t+1))− F0(ω

(t))

≤(ω(t+1) − ω(t))T∇F0(ω
(t)) +

L̂

2

∥
∥
∥ω

(t+1) − ω(t)
∥
∥
∥

2

2

≤γ(t)(ω̄(t) − ω(t))T∇F0(ω
(t)) +

L̂

2
(γ(t))2

∥
∥
∥ω̄

(t) − ω(t)
∥
∥
∥

2

2

≤γ(t)(ω̄(t)−ω(t))T
(

∇F0(ω
(t))−∇F̄

(t)
0 (ω(t))+∇F̄

(t)
0 (ω(t))

)

+
L̂

2
(γ(t))2

∥
∥
∥ω̄

(t) − ω(t)
∥
∥
∥

2

2

≤γ(t)
∥
∥
∥ω̄

(t) − ω(t)
∥
∥
∥
2

∥
∥
∥∇F0(ω

(t))−∇F̄
(t)
0 (ω(t))

∥
∥
∥
2

− γ(t)

(

µ−
L̂

2
γ(t)

)
∥
∥
∥ω̄

(t) − ω(t)
∥
∥
∥

2

2
, (56)

where the last inequality follows form (55).

Then, we show by contradiction that

lim inf t→∞

∥
∥ω̄(t) − ω(t)

∥
∥
2

= 0 almost surely. Suppose

lim inf t→∞

∥
∥ω̄(t) − ω(t)

∥
∥
2

≥ χ > 0 with a positive

probability. Then we can find a realization such that
∥
∥ω̄(t) − ω(t)

∥
∥
2
≥ χ > 0 for all t. We focus next on such a

realization. By
∥
∥ω̄(t) − ω(t)

∥
∥
2
≥ χ > 0 and Lemma 4, we

have:

F0(ω
(t+1))− F0(ω

(t))

≤− γ(t)

(

µ−
L̂

2
γ(t) −

1

χ

∥
∥
∥∇F0(ω

(t))−∇F̄
(t)
0 (ω(t))

∥
∥
∥
2

)

×
∥
∥
∥ω̄

(t) − ω(t)
∥
∥
∥

2

2
. (57)

Since limt→∞

∥
∥
∥∇F̄

(t)
0 (ω(t))−∇F0(ω

(t))
∥
∥
∥
2

= 0,

limt→∞ γ(t) and µ > 0, there exists a t0 sufficiently

large such that

µ−
L̂

2
γ(t)−

1

χ

∥
∥
∥∇F0(ω

(t))−∇F̄
(t)
0 (ω(t))

∥
∥
∥
2
≥ µ̄, ∀t ≥ t0,

(58)

for some µ̄ ∈ (0, µ). Therefore, it follows from (57), (58) and
∥
∥ω̄(t) − ω(t)

∥
∥
2
≥ χ for all t that

F0(ω
(t))− F0(ω

(t0)) ≤ −µ̄χ2

(t)
∑

n=t0

γ(t), (59)

which, in view of
∑∞

n=t0
γ(t) = ∞, contradicts

the boundedness of {F0(ω
(t))}. Therefore, it must be

lim inft→∞

∥
∥ω̄(t) − ω(t)

∥
∥
2
= 0 almost surely.

Next, we show by contradiction that

lim supt→∞

∥
∥ω̄(t) − ω(t)

∥
∥
2

= 0 almost surely.

Suppose lim supt→∞

∥
∥ω̄(t) − ω(t)

∥
∥
2

> 0 with a

positive probability. We focus next on a realization

along with lim supt→∞

∥
∥ω̄(t) − ω(t)

∥
∥
2

> 0,

lim inft→∞

∥
∥ω̄(t) − ω(t)

∥
∥
2
= 0, and limt1,t2→∞ e(t1, t2) =

0, where e(t1, t2) is defined in Lemma 3. It

follows from lim supt→∞

∥
∥ω̄(t) − ω(t)

∥
∥
2

> 0 and

lim inft→∞

∥
∥ω̄(t) − ω(t)

∥
∥
2

= 0 that there exists a δ > 0

such that
∥
∥∆ω(t)

∥
∥
2

≥ 2δ (with ∆ω(t) , ω̄(t) − ω) for

infinitely many t and also
∥
∥∆ω(t)

∥
∥
2
≤ δ for infinitely many

t. Therefore, one can always find an infinite set of indices,

say T , having the following properties: for any t ∈ T , we

have:
∥
∥
∥∆ω(t)

∥
∥
∥
2
≤ δ, (60)

and there exists an integer it > t such that
∥
∥
∥∆ω(it)

∥
∥
∥
2
≥ 2δ, δ ≤

∥
∥
∥∆ω(n)

∥
∥
∥
2
≤ 2δ, t < n < it. (61)

Thus, for all t ∈ T , we have:

δ ≤
∥
∥
∥∆ω(it)

∥
∥
∥
2
−
∥
∥
∥∆ω(t)

∥
∥
∥
2
≤
∥
∥
∥∆ω(it) −∆ω(t)

∥
∥
∥
2

=
∥
∥
∥(ω̄(it) − ω(it))− (ω̄(t) − ω(t))

∥
∥
∥
2

≤
∥
∥
∥ω̄

(it) − ω̄(t)
∥
∥
∥
2
+
∥
∥
∥ω

(it) − ω(t)
∥
∥
∥
2

(a)

≤ (1 + L̄)
∥
∥
∥ω

(it) − ω(t)
∥
∥
∥
2
+ e(it, t)

(b)

≤ (1 + L̄)

it−1∑

n=t

γ(n)
∥
∥
∥∆ω(n)

∥
∥
∥
2
+ e(it, t)

≤ 2δ(1 + L̄)

it−1∑

n=t

γ(n) + e(it, t), (62)

where (a) is due to Lemma 3, and (b) is due to (60) and (61).

By (62) and limt→∞ e(it, t) = 0, we have:

lim inf
T ∋t→∞

it−1∑

n=t

γ(t) ≥ δ1 ,
1

2(1 + L̄)
> 0. (63)

Proceeding as in (62), for all t ∈ T , we also have:
∥
∥
∥∆ω(t+1)‖ − ‖∆ω(t)

∥
∥
∥
2
≤
∥
∥
∥∆ω(t+1) −∆ω(t)

∥
∥
∥
2

≤(1 + L̄)γ(t)
∥
∥
∥∆ω(t)

∥
∥
∥
2
+ e(t, t+ 1), (64)



which leads to

(1+(1+L̄)γ(t))
∥
∥
∥∆ω(t)

∥
∥
∥
2
+ e(t, t+ 1) ≥

∥
∥
∥∆ω(t+1)

∥
∥
∥
2
≥ δ,

(65)

where the second inequality follows from (61). It follows

from (65) and limt→∞ e(t, t+1) = 0 that there exists a δ2 > 0
such that for a sufficiently large t ∈ T ,

∥
∥
∥∆ω(t)

∥
∥
∥
2
≥

δ − e(t, t+ 1)

1 + (1 + L̄)γ(t)
≥ δ2 > 0. (66)

Here after we assume w.l.o.g. that (66) holds for all t ∈ T
(in fact one can always restrict {ω(t)}t∈T to a proper subse-

quence). We show now that (63) is in contradiction with the

convergence of {F0(ω
(t))}. By Lemma 4, for all t ∈ T , we

have:

F0(ω
(t+1))− F0(ω

(t))≤−γ(t)

(

µ−
L̂

2
γ(t)

)
∥
∥
∥ω̄

(t) − ω(t)
∥
∥
∥

2

2

+ γ(t)δ
∥
∥
∥∇F0(ω

(t))−∇F̄
(t)
0 (ω(t))

∥
∥
∥
2
, (67)

and for t < n < it,

F0(ω
(n+1))− F0(ω

(n))

≤−γ
(n)






µ−

L̂

2
γ
(n)

−

∥

∥

∥
∇F0(ω

(n))−∇F̄
(n)
0 (ω(n))

∥

∥

∥

2
∥

∥

ω̄
(n) − ω

(n)
∥

∥

2







∥

∥

∥
ω̄

(n)
−ω

(n)
∥

∥

∥

2

2

≤−γ
(n)






µ−

L̂

2
γ
(n)

−

∥

∥

∥∇F0(ω
(n))−∇F̄

(n)
0 (ω(n))

∥

∥

∥

2

δ







∥

∥

∥
ω̄

(n)
−ω

(n)
∥

∥

∥

2

2
,

(68)

where the second inequality follows from (61). Adding (67)
and (68) over n = t+1, · · · , it− 1 and, for t ∈ T sufficiently

large (so that µ− L̂
2 γ

(t)−δ−1
∥
∥
∥∇F0(ω

(t))−∇F̄
(t)
0 (ω(t))

∥
∥
∥
2
≥

µ̂ > 0 and

∥
∥
∥∇F0(ω

(t))−∇F̄
(t)
0 (ω(t))

∥
∥
∥
2

< µ̂δ22δ
−1), we

have:

F0(ω
(it))− F0(ω

(t))

(a)

≤−µ̂
∑it−1

n=t
γ
(n)

∥

∥

∥ω̄
(n)

−ω
(n)

∥

∥

∥

2

2
+γ

(t)
δ
∥

∥

∥∇F0(ω
(t))−∇F̄

(t)
0 (ω(t))

∥

∥

∥

2

(b)

≤−µ̂δ
2
2

it−1
∑

n=t+1

γ
(n)

−γ
(t)
(

µ̂δ
2
2 − δ

∥

∥

∥∇F0(ω
(t))−∇F̄

(t)
0 (ω(t))

∥

∥

∥

2

)

(c)

≤−µ̂δ
2
2

it−1
∑

n=t+1

γ
(n)

, (69)

where (a) follows from µ − L̂
2 γ

(t) −

δ−1
∥
∥
∥∇F0(ω

(t))−∇F̄
(t)
0 (ω(t))

∥
∥
∥
2

≥ µ̂ > 0;

(b) follows from (66); and (c) follows from∥
∥
∥∇F0(ω

(t))−∇F̄
(t)
0 (ω(t))

∥
∥
∥
2
< µ̂δ22δ

−1. Since {F0(ω
(t))}

converges, it must be lim infT ∋t→∞

∑it−1
n=t+1 γ

(t) = 0,

which contradicts (63). Therefore, it must be

lim supt→∞

∥
∥ω̄(t) − ω(t)

∥
∥
2
= 0 almost surely.

Finally, we show that a limit point of the sequence {ω(t)}
generated by Algorithm 1 (Algorithm 3), i.e., ω⋆, is a station-

ary point of Problem 1 (Problem 6). It follows from first-order

optimality condition for ω̄(t) that

(ω − ω̄(t))T∇F̄
(t)
0 (ω(t)) ≥ 0, ω ∈ R

d. (70)

Taking the limit of (70) over the index set T , we have:

lim
T ∋t→∞

(ω − ω̄
(t))T∇F̄

(t)
0 (ω̄(t))=(ω− ω

⋆)T∇F0(ω
⋆)≥0, ω∈R

d
,

where the equality follows from limt→∞

∥
∥ω̄(t) − ω(t)

∥
∥
2
= 0

(which is due to lim inf t → ∞
∥
∥ω̄(t) − ω(t)

∥
∥
2

= 0

and lim supt→∞

∥
∥ω̄(t) − ω(t)

∥
∥
2

= 0) and

limt→∞

∥
∥
∥∇F0(ω

(t))−∇F̄
(t)
0 (ω(t))

∥
∥
∥
2

= 0. This is the

desired first-order optimality condition and ω⋆ is a stationary

point of Problem 1 (Problem 6).

APPENDIX B: PROOFS OF THEOREM 2 AND THEOREM 4

The proofs of Theorem 2 and Theorem 4 are identical. In

the following proof, we omit the subscripts s, f for notation

simplicity. We first introduce the following preliminary results.

Lemma 5: Let (ω⋆
j , s

⋆
j ) denote a KKT point of Problem 4

(Problem 9) with c = cj and let (ω⋆
∞, s⋆∞) denote a limit

point of {(ω⋆
j , s

⋆
j )}. Then, the following statements hold. i)

For all j, if s⋆s,j = 0, then ω⋆
s,j is a KKT point of Problem 3

(Problem 8); ii) s⋆∞ = 0, and ω⋆
∞ is a KKT point of Problem 3

(Problem 8).

Proof: i) The KKT conditions of Problem 4 (Problem 9)

with c = cj are given by:

Fm(ω⋆
j ) ≤ s⋆m,j , s⋆m,j ≥ 0, m = 1, 2, · · · ,M, (71a)

λm(Fm(ω⋆
j )−s⋆m,j)=0, µms⋆m,j=0, m = 1, · · · ,M, (71b)

∇ωF0(ω
⋆
j ) +

M∑

m=1

λm∇ωFm(ω⋆
j ) = 0, (71c)

cj − λm − µm = 0, m = 1, · · · ,M. (71d)

On the other hand, the KKT conditions of Problem 3 (Prob-

lem 8) are given by:

Fm(ω⋆
j ) ≤ 0, m = 1, 2, · · · ,M, (72a)

λm(Fm(ω⋆
j )−0)=0, m = 1, · · · ,M, (72b)

∇ωF0(ω
⋆
j ) +

M∑

m=1

λm∇ωFm(ω⋆
j ) = 0. (72c)

As (71) with s⋆s,j = 0 implies (72), we can show the first

statement. ii) Construct a convex approximation of Problem 4

(Problem 9) with c = cj around (ω⋆
j , s

⋆
j ), which satisfies the

assumptions in Theorem 2 and Theorem 4. It is clear that

(ω⋆
j , s

⋆
j ) is an optimal solution of the approximate problem

for c = cj . Following the proof of [37, Theorem 1], we can

show the second statement.

Lemma 6: Let {ω(t)} be the sequence generated by Algo-

rithm 2 (Algorithm 4). Then, we have:

lim
t→∞

∣
∣
∣F̄ (t)

m (ω(t))− Fm(ω(t))
∣
∣
∣ = 0, m = 1, · · · ,M,

lim
t→∞

∥
∥
∥∇F̄ (t)

m (ω(t))−∇Fm(ω(t))
∥
∥
∥
2
= 0, m = 0, · · · ,M,

lim
t→∞

∣
∣
∣F̄ (t)

m (ω)−Gm(ω;ω(t))
∣
∣
∣ = 0, ω ∈ R

d, m = 0, · · · ,M

almost surely, where Gm(ω;ω(t)) ,
1
N

∑

n∈N gm(ω;ω(t),xn).
Proof: Lemma 6 is a consequence of [32, Lemma 1].

We just need to verify that all the technical conditions therein

are satisfied. Specifically, Condition (a) of [32, Lemma 1] is



satisfied because {ω(t)} is assumed to be bounded. Condition

(b) of [32, Lemma 1] comes from Assumption 2.4. Conditions

(c)-(d) of [32, Lemma 1] come from the stepsize rules in

(4) and (6). Condition (e) of [32, Lemma 1] comes from

the Lipschitz property of F (ω) from Assumption 1.2 and the

stepsize rule in (6).

Lemma 7: Consider a subsequence {ω(tl)}∞l=1 generated by

Algorithm 2 (Algorithm 4) with c = cj converging to a limit

point ω⋆
j . There exist uniformly continuous functions F̃m(ω),

m = 0, · · · ,M such that

lim
l→∞

F̄ (tl)
m (ω) = F̃m(ω), ω ∈ R

d, m = 0, · · · ,M (73)

almost surely. Moreover, we have:

F̃m(ω⋆
j ) = Fm(ω⋆

j ), m = 1, · · · ,M, (74)

∇F̃m(ω⋆
j ) = ∇Fm(ω⋆

j ), m = 0, · · · ,M. (75)

Proof: It readily follows from Assumption 2 that the fam-

ilies of functions {F̄
(tl)
m (ω)} are equicontinuous. Moreover,

they are bounded and defined over a compact set. Hence,

the Arzela–Ascoli theorem [36] implies that, by restricting

to a subsequence, there exists uniformly continuous functions

F̃m(ω) such that (73) is satisfied. Finally, (74) and (75) follow

immediately from (73) and Lemma 6.

By Lemma 5, it remains to show that a limit point of

{(ω(t), s(t))} generated by Algorithm 2 (Algorithm 4) with

c = cj , (ω⋆
j , s

⋆
j), is a KKT point of Problem 4 (Problem 9).

By Assumption 1, Assumption 2, and Lemma 6, we can

show limt→∞ ‖ω̄(t) − ω(t)‖ = 0. As the proof is similar to

that in Appendix A, the details are omitted for conciseness.

Consider the subsequence {ω(tl)}∞l=1 converging to ω⋆
j . By

limt→∞

∥
∥ω̄(t) − ω(t)

∥
∥
2

= 0 and liml→∞ ω(tl) = ω⋆
j , we

have liml→∞ ω̄(tl) = ω⋆
j . Then, by liml→∞ ω̄(tl) = ω⋆

j , (73),

and Problem 4 (Problem 9) with c = cj , we have:

(ω⋆
j , s

⋆
j ) , argmin

ω.s
F̃0(ω) + cj

M∑

m=1

sm (76)

s.t. F̃m(ω) ≤ sm, m = 1, 2, · · · ,M.

As (ω⋆
j , s

⋆
j ) satisfies the KKT conditions of the problem in

(76), and (74) and (75) in Lemma 7 hold, {(ω⋆
j , s

⋆
j )} also

satisfies the KKT conditions of Problem 4 (Problem 9) with

c = cj , i.e., (71), implying that it is a KKT point of Problem 4

(Problem 9) with c = cj . Therefore, we complete the proof.

APPENDIX C: PROOF OF LEMMA 1

As the problem in (41) is convex and the Slater’s condition

holds, we can solve the problem in (41) by solving its dual

problem. The Lagrangian function of the problem in (41) is:

L(ω, s, ν, µ)=‖ω‖22 + cs+ ν
(

F̄ (t)(ω)+Ct
a−U−s

)

+µ(−s)

=‖ω‖22 + ν
(

F̄ (t)(ω)+Ct
a−U

)

+(c− ν − µ)s,

where ν and µ are the Lagrange multipliers. Thus, the La-

grange dual function is given by:

g(ν, µ) = inf
ω,s≥0

L(ω, s, ν, µ)

=

{

inf
ω

(

‖ω‖22 + ν
(
F̄ (t)(ω) + Ct

a − U
))

, c− ν − µ ≥ 0,

−∞, c− ν − µ < 0.

As L(ω, s, ν, µ) is convex w.r.t. ω, by taking its derivative and

setting it to zero, we can obtain the optimal solution:

ω̄
(t)
a,0,l,j =

−νA
(t)
a,l,j

2(1 + ντ)
, ω̄

(t)
a,1,j,p =

−νB
(t)
a,j,p

2(1 + ντ)
,

and the optimal value h(ν) = ν
(

C
(t)
a − U − bν

4(1+τν)

)

, where

b is given in (45). Therefore, the dual problem of the problem

in (41) is given by:

max
ν,µ

h(ν)

s.t. c− ν − µ ≥ 0, ν ≥ 0, µ ≥ 0,

which is equivalent to the following problem:

ν∗ , argmax
ν

h(ν) (77)

s.t. 0 ≤ ν ≤ c.

As h(ν) is convex in ν, and h′(ν) =
b−(b+4τ(U−C(t)

a ))(1+ντ)2

4τ(1+ντ)2 ,

by the optimality conditions of problem in (77), we have:

ν∗=







[

1
τ

(
√

b

b+4τ(U−C
(t)
a )

− 1

)]c

0

, b+ 4τ(U − C
(t)
a )>0

c, b+ 4τ(C
(t)
a )≤0

,

which completes the proof.
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As ω∗ is a locally optimal solution of the problem in (32),

there exists ε > 0 such that for all ω with ‖ω − ω∗‖2 < ε,

we have:

F (ω∗) + λ ‖ω∗‖22 ≤ F (ω) + λ ‖ω‖22 . (78)

Set U = F (ω∗). Then, for all ω with ‖ω − ω∗‖2 < ε and

F (ω) ≤ U , ‖ω∗‖22
(a)

≤ 1
λ
(F (ω)− F (ω∗)) + ‖ω‖22

(b)

≤ ‖ω‖22,

where (a) is due to (78) and (b) is due to F (ω) ≤ U = F (ω∗).
Therefore, ω∗ is a locally optimal solution of the problem

in (40). The first statement holds.

As ω† is a locally optimal solution of the problem in (40),

the necessary KKT condition ∇
∥
∥ω†

∥
∥
2

2
+ξ∇F (ω†) = 0 holds.

Set λ = 1
ξ

. Then, we have ∇F (ω†) + λ∇
∥
∥ω†

∥
∥
2

2
= 0.

Therefore, ω† is a stationary point of the problem in (32).

If, in addtion, λ and ω† satisfy ∇2F (ω†) + λI � 0, i.e., the

Hessian Matrix is semi-definite, then ω† is a locally optimal

solution of the problem in (32). The second statement holds.
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[32] A. Ruszczyński, “Feasible direction methods for stochastic programming
problems,” Mathematical Programming, vol. 19, pp. 220–229, 1980.

https://arxiv.org/abs/1903.03934
https://arxiv.org/abs/1903.03934
https://arxiv.org/abs/1711.10677
https://arxiv.org/abs/1711.10677
https://arxiv.org/abs/1911.09824
https://arxiv.org/abs/2007.06081
https://arxiv.org/abs/1710.05941
https://github.com/CuiYing123456/SB-and-FB-FL-for-Unconstrained-and-Constrained-Nonconvex-Optimization-via-Mini-batch-SSCA
https://github.com/CuiYing123456/SB-and-FB-FL-for-Unconstrained-and-Constrained-Nonconvex-Optimization-via-Mini-batch-SSCA

	I Introduction
	II System Setting
	III Sample-based Federated Learning
	III-A Sample-based Federated Learning for Unconstrained Optimization
	III-A1 Algorithm Description
	III-A2 Security Analysis
	III-A3 Algorithm Example

	III-B Sample-based Federated Learning for Constrained Optimization
	III-B1 Algorithm Description
	III-B2 Security Analysis
	III-B3 Algorithm Example


	IV Feature-based Federated Learning
	IV-A Feature-based Federated Learning for Unconstrained Optimization
	IV-A1 Algorithm Description
	IV-A2 Security Analysis
	IV-A3 Algorithm Example

	IV-B Feature-based Federated Learning for Constrained Optimization
	IV-B1 Algorithm Description
	IV-B2 Security Analysis
	IV-B3 Algorithm Example


	V Application Examples
	V-A Unconstrained Federated Optimization
	V-B Constrained Federated Optimization
	V-C Comparisons of Two Formulations

	VI Numerical Results
	VII Conclusions
	References

