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Abstract—Uplink sensing in perceptive mobile networks
(PMNs), which uses uplink communication signals for
sensing the environment around a base station, faces chal-
lenging issues of clock asynchronism and the requirement
of a line-of-sight (LOS) path between transmitters and
receivers. The channel state information (CSI) ratio has
been applied to resolve these issues, however, current
research on the CSI ratio is limited to Doppler estimation
in a single dynamic path. This paper proposes an advanced
parameter estimation scheme that can extract multiple
dynamic parameters, including Doppler frequency, angle-
of-arrival (AoA), and delay, in a communication uplink
channel and completes the localization of multiple moving
targets. Our scheme is based on the multi-element Taylor
series of the CSI ratio that converts a nonlinear function
of sensing parameters to linear forms and enables the
applications of traditional sensing algorithms. Using the
truncated Taylor series, we develop novel multiple-signal-
classification grid searching algorithms for estimating
Doppler frequencies and AoAs and use the least-square
method to obtain delays. Both experimental and simulation
results are provided, demonstrating that our proposed
scheme can achieve good performances for sensing both
single and multiple dynamic paths, without requiring the
presence of a LOS path.

Index Terms—Integrated radar sensing and communi-
cation (ISAC), parameter extraction, perceptive mobile
network, uplink sensing.

I. INTRODUCTION

Perceptive Mobile Network (PMN) [1], [2] is a re-
cently proposed next-generation mobile network based
on joint radar-communication technology. The concept
of PMN was proposed in [1] and then elaborated in [2].
In contrast to current communication-only mobile net-
works, PMNs are expected to serve as ubiquitous sens-
ing networks while providing uncompromised mobile
communication services. Integrated sensing and commu-
nication (ISAC) shows the prospect of realizing dual-
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function devices with reduced cost, packed size, smart
functions, and uncompromised service quality. A key
link facilitating this is that the communication channel
state information (CSI) resembles the radar channel [3],
[4].

As discussed in [2], there are three main types of
sensing methods using the received communication sig-
nals in PMNs. They are named uplink sensing [5]–[9],
downlink active sensing [10]–[12], and downlink passive
sensing [13], [14]. In view of hardware cost and required
facility changes, uplink sensing is the most viable way
for realizing radar functions in PMNs.

In uplink sensing, multiple user equipements (UEs)
send uplink signals to one base station (BS) for data
transmission [5]. When the number of UEs is large
enough, the targets around the BS can be completely
covered and the BS can perform simultaneous data
transmission and target detection. In [6], the authors de-
signed an uplink channel estimation and sensing scheme
based on deep learning. The authors in [7] analyzed the
Cramér-Rao bound for the uplink ISAC and concluded
that the uplink multi-path environment is beneficial for
improving the radar sensing accuracy. Besides estimating
the element-wise channel, parameter extractions, which
only extract the parameters of interest from the overall
channel, can also be adopted for obtaining radar channels
[15]–[17]. Some papers discussed how to extract the
parameters of the ISAC channel environment. In [18],
the authors used a low-rank tensor metric to extract three
parameters including delay, angle, and Doppler of tar-
gets. In [19], the authors proposed a range-and-Doppler
estimation scheme based on multiple-signal classification
(MUSIC) estimators. These papers assumed perfect syn-
chronization between transceivers. The synchronization
is not easy to realize between BS and multiple UEs
since this process can be time-consuming [20]. When
the transmitter is asynchronous with the BS, there exist
timing offset (TO) and carrier-frequency offset (CFO)
in the channel, which need to be removed for sensing
targets [21]–[23].

Recently, some WiFi-sensing papers have dealt
with asynchronous transceiver setups and obtained
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key parameters including delay, angle-of-arrival (AoA),
and Doppler frequency. In [21], cross-antenna cross-
correlation (CACC) was applied to obtain the AoA with
commodity WiFi devices. In [22], CACC was used to re-
solve the ranging estimation problem for passive human
tracking using a single WiFi link. In [23], the authors
also applied CACC to cancel the offsets and used the
modulus of received signals to obtain the parameter of a
human target. The CACC operation results in mirrored
parameters in the output. The authors in [22] used the
average signal to suppress the mirrored side product.
In [24], the authors considered asynchronous PMNs
and perfectly canceled the mirrored unknown parameters
using a mirrored MUSIC. All of these works are based
on CACC operations, and they would require a fixed line-
of-sight (LOS) path and other assumptions for system
setups [25]. Another way to perfectly cancel the offsets
is to use division/ratio, rather than the cross-correlation,
between the signals (CSI) obtained on different antennas
[26]. The authors in [27] proceeded to obtain parameters
of multiple targets using the CSI ratio, which would
lead to an unreachable hardware requirement. All of
these WiFi-sensing-based papers could be adopted in
the uplink sensing in PMNs but problems would oc-
cur, because the LOS path can be obstructed and the
channel fluctuation is more severe than that in an indoor
environment, which reduces the sensing resolution and
substantially raises both false alarm and miss rate [28]. In
the application where multiple dynamic/moving objects
are needed to be detected in the PMNs, most of the
previous papers cannot be used either as they can detect
only one moving target.

Motivated by the fact that multiple moving targets
should be separately estimated in the ISAC systems, this
paper develops an uplink sensing scheme that obtains
key sensing parameters, including Doppler frequency,
AoA, and propagation delay, of all moving targets for
localization. Under an uplink channel of PMN, we
perform the uplink sensing based on the unprecedentedly
employed Taylor series of the CSI ratio. Compared with
CACC, the CSI ratio has no requirement for a LOS path
and can extract the specific targets in movements. This
work can also be used in other applications, such as WiFi
sensing and indoor tracking. The main contributions of
this paper are

• We use the Taylor series to convert the CSI ratio
from a nonlinear function into a linear function,
which enables us to detect the moving targets ex-
cluding the asynchronous offsets without requiring
a LOS path. Even with the asynchronous offsets, the
proposed method can still benefit the extraction of

parameters of moving targets. We also analyze the
convergence of the Taylor series of the CSI ratio.

• We extract key parameters exclusively that belong
to dynamic paths of the ISAC channel. For Doppler
frequency, we reconstruct the signal variation in the
temporal domain. The zero frequency is suppressed
and the non-zero Doppler frequencies can be ex-
tracted in the proposed Doppler estimator.

• We form a manifold, such that the vectorized man-
ifold is only influenced by the AoAs and known
received signals. The vectorized manifold increases
the AoA resolution but is ineffective when there is
only one dynamic path and the number of antennas
is small.

• We proceed to propose a joint AoA and delay
estimator for one dynamic path. We demonstrate the
dynamic AoA and delay can be obtained as long as
the overall static component is given.

• We propose an estimator for dynamic delays. Mul-
tiple dynamic delays are estimated individually in
the estimation range, which increases the accuracy
of the delay estimates.

Notations: a denotes a vector, A denotes a matrix,
italic English letters like N and lower-case Greek letters
like α are a scalar. AT ,AH ,A∗, A−1, and A† represent
transpose, conjugate transpose, conjugate, inverse and
pseudo inverse, respectively. ‖A‖F is Frobenius norm
of a matrix.

II. SYSTEM AND CHANNEL MODELS

We consider the uplink communication and sensing
in a PMN, as shown in Fig. 1. Multiple static UEs
communicate with one static BS that uses received uplink
signals for both communication and sensing. Each UE
has one antenna. The BS uses a uniform linear array
(ULA) of N antennas. The uplink channel between the
BS receiver and the UE’s transmitter has multiple paths
including both static and dynamic ones. The static paths
refer to the LOS path, the paths reflected by static
objects, and the ones that have negligible moving speed.
The Doppler frequencies of static paths are assumed to
be zeros. The dynamic paths are reflected by moving
objects, such as vehicles. The Doppler frequencies of
dynamic paths are non-zeros and cause temporal phase
variations in CSI. Since all UEs are assumed to be static,
the uplink channel mainly consists of static paths and
probably has several dynamic paths. In this paper, we
treat these two types of paths differently and focus on
estimating the parameters of dynamic paths solely.

Although logical channels are used in mobile net-
works and signals are transmitted in well-defined times-
lots, we adopt a simplified packet structure to generate
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Fig. 1. Illustration of uplink communication and sensing.

transmitted signals. In each packet, training symbols,
denoted as preambles, are followed by a sequence of
data symbols. Orthogonal frequency-division multiplex-
ing (OFDM) modulation is applied across the whole
packet. The data symbols can be empty if the packet
is a demodulation reference signal (DMRS). For both
preamble and data symbols, each of them has G subcar-
riers with a subcarrier interval of 1/T , where T denotes
the length of an OFDM symbol. Each of the OFDM
symbols is prepended by a cyclic prefix (CP) of period
TC. The mth transmitted packet at the UE’s baseband
can be expressed as [16], [29]

s(t|m) =

G−1∑
g=0

exp

(
j2πg

t

T

)
rect

(
t

T + TC

)
x[m, g],

m ∈ {0, · · · ,M − 1}, g ∈ {0, · · · , G− 1},
(1)

where x[m, g] is a preamble transmitted on the gth
subcarrier of the mth OFDM packet and rect

(
t

T+TC

)
denotes a rectangular window of length T + TC. For
notational simplicity, we let one specific UE occupy
the whole frequency band of G/T and omit the index
related to different UEs, but the proposed scheme can
be readily applied to the case of multiple UEs by using
other subcarrier assignment [30]. This packet structure is
generalized and can be used to represent signals in many
wireless devices, such as WiFi and Bluetooth, in addition
to mobile networks. Therefore, the scheme presented in
this paper can also be applied to all these systems.

In this paper, we assume there are LS static paths and
L dynamic paths. Without loss of generality, we let the
first L paths, 1 ≤ l ≤ L, be dynamic ones, and the rest
LS paths, L + 1 ≤ l ≤ L + LS , be static ones. Let αl,
fD,l, τl and θl denote the complex channel gain, Doppler
frequency, delay (propagation delay), and AoA of the

lth path, (1 ≤ l ≤ L + LS), respectively. Since there
is typically no synchronization at clock level between
BS and UEs, the received signal has an unknown time-
varying TO, denoted as τO[m], associated with the delay,
even if the packet level synchronization is achieved.
Hence, the total time delay during the signal propagation
as seen by BS equals τl + τO[m]. There also exists an
unknown time-varying CFO due to the asynchronous
carrier frequency, denoted as fO[m]. Assume M packets
are continuously transmitted with the same interval that
is integer times of T , denoted as TA. The channel model
is given by

h(t|m) =

L+LS∑
l=1

αl×

δ (t− τl − τO[m]−mTA − (fD,l + fO[m])ct/fc)a(Ωl),
(2)

where δ(t) is an impulse signal, c is the speed of light, fc
is the carrier frequency, a(Ωl) = exp[jΩl(0, 1, · · · , N −
1)]T , is the array response vector of size N×1, with Ωl =
2πd
λ sin θl, d denoting the antenna interval, λ denoting the

wavelength, and θl denoting the AoA from the lth path.
The received time-domain signal corresponding to (1)

and (2) can be represented as [22]

y(t|m) =

L+LS∑
l=1

αl×

ej2πmTA(fD,l+fO[m])s(t− τl − τO[m]|m)a(Ωl) + w(t|m),
(3)

where w(t|m) is a complex additive-white-Gaussian-
noise (AWGN) vector with zero mean and variance of
σ2.

Recall that we only use the preambles, x[m, g], for
sensing. Hence, x[m, g] is available at the BS and can be
easily removed by multiplying (x[m, g])−1. After remov-
ing CP and x[m, g], we transform the time-domain signal
into the frequency domain via G-point fast-Fourier-
transform (FFT)’s. Referring to (3) and neglecting the
noise, the received frequency-domain signal is

yn[m, g]

=F{h(t|m) ∗ s(t|m)}(x[m, g])−1

=

L+LS∑
l=1

αle
jnΩlej2πmTA(fD,l+fO[m])e−j2π

g

T
(τl+τO[m])

=

L∑
l=1

αle
jnΩlej2πmTA(fD,l+fO[m])e−j2π

g

T
(τl+τO[m])+

L+LS∑
l=L+1

αle
jnΩlej2πmTAfO[m]e−j2π

g

T
(τl+τO[m])
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,(Dn[m, g] + Sn[g])ej2πmTAfO[m]e−j2π
g

T
τO[m],

n ∈ {0, · · · , N − 1}, (4)

where n denotes the index of antennas at BS, ∗ de-
notes the convolution between two signals, F{·} is the

FFT function, Sn[g] =
L+LS∑
l=L+1

αle
jnΩle−j2π

g

T
τl is the

static component without the offsets, and Dn[m, g] =
L∑
l=1

αle
jnΩlej2πmTAfD,le−j2π

g

T
τl is the dynamic compo-

nent without the offsets. Note that the Doppler frequen-
cies of the static paths are zeros. The parameters to be
estimated are the dynamic ones, i.e., τl, Ωl, and fD,l,
1 ≤ l ≤ L.

III. TAYLOR SERIES OF CSI RATIO

In typical cases where the number of dynamic paths
is much smaller than that of static paths, it would be
convenient to extract the dynamic parameters without
knowing the static paths as only the moving targets
are of interest to radar. The CSI ratio enables such a
requirement. Referring to (4) and neglecting the noise
term, the CSI ratio between the nth antenna and the
(n− q)th antenna is given by

ξn,n−q[m, g]

=
yn[m, g]

yn−q[m, g]

=
(Sn[g] +Dn[m, g])ej2πmTAfO[m]e−j2π

g

T
τO[m]

(Sn−q[g] +Dn−q[m, g])ej2πmTAfO[m]e−j2π
g

T
τO[m]

=

Sn[g] +
L∑
l=1

αle
jnΩlej2πmTAfD,le−j2π

g

T
τl

Sn−q[g] +
L∑
l=1

αlej(n−q)Ωlej2πmTAfD,le−j2π
g

T
τl

,

Sn[g] +
L∑
l=1

zn,l[m, g]

Sn−q[g] +
L∑
l=1

e−jqΩlzn,l[m, g]

, f(Zm),

q ∈ {n−N + 1, · · · , n}, (5)

where zn,l[m, g] = αle
jnΩlej2πmTAfD,le−j2π

g

T
τl and

Zm = [zn,1[m, g], · · · , zn,L[m, g]]T . Note that different
from existing works [26], [27], we consider a general
and more complicated case where multiple dynamic and
static paths are present. Also note f(Zm) is related to
g, q, and n as well, while we omit these subscripts, g,
q, and n, for the notational simplicity of the following
derivations. From (5), it is noted that both TOs and CFOs
are fully canceled. It shall be highlighted that the offsets
can only be removed by dividing the signals across the

spatial domain. Otherwise, the ratio will involve the
offsets back across other domains, i.e., g or m.

Since there are L dynamic components, the CSI ratio
is a multi-element function with respect to (w.r.t.) L
zn,l[m, g]’s in the temporal domain. Note that we have
stacked these L variables into the vector, Zm. By using
the multi-element Taylor series at the mth packet, the
CSI ratio can be represented as

f(Z) =f(Zm) + [∇f(Zm)]T (Z− Zm)

+
1

2!
[(Z− Zm)]TH(Zm)[Z− Zm] + O3(Z),

(6)

where ∇f(Zm) =
[
∂f
∂z1
, · · · , ∂f∂zL

]T
and H(Zm) is

H(Zm) =


∂2f
∂z21

· · · ∂2f
∂z1∂zL

...
. . .

...
∂2f

∂zL∂z1
· · · ∂2f

∂z2L

 , (7)

where zl is the brief notation for zn,l[m, g]. Referring
to (5), the 0th-order, the 1st-order, and the 2nd-order
derivatives are given by

f(Zm) =
yn[m, g]

yn−q[m, g]
= ξn,n−q[m, g], (8)

f (1)(zl) =
∂f

∂zl

=
yn−q[m, g]− e−jqΩlyn[m, g]

yn−q[m, g]2
ej2πmTAfO[m]e−j2π

g

T
τO[m]

,hm,gn,q (Ωl)e
j2πmTAfO[m]e−j2π

g

T
τO[m], (9)

and

f (2)(zl1 , zl2)

=
∂2f

∂zl1∂zl2

,Hm,g
n,q (Ωl1 ,Ωl2)e

j2πmTA2fO[m]e−j2π
g

T
2τO[m],

l1 ∈ {1, · · · , L}, l2 ∈ {1, · · · , L}, (10)

respectively, where

hm,gn,q (Ωl) =
yn−q[m, g]− e−jqΩlyn[m, g]

yn−q[m, g]2
, (11)

and

Hm,g
n,q (Ωl1 ,Ωl2)

=
2e−jqΩl2e−jqΩl1yn[m, g]

yn−q[m, g]−3
− e−jqΩl2 + e−jqΩl1

yn−q[m, g]−2
. (12)

There is an interesting phenomenon that the offsets
(TOs and CFOs) are added back in the derivatives of the
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Taylor series, while the CSI ratio should have removed
the offsets. The received signal, yn[m, g], equals (Sn[g]+
Dn[m, g])ej2πmTAfO[m]e−j2π

g

T
τO[m], which means that

the received signal intrinsically contains those offsets.
Hence, the TOs are mixed with delays as long as yn[m, g]
is involved in the expression of the Taylor series.

Proposition 1. The Taylor series of CSI ratio are con-
vergent when |yn−q[m, g]| ≥ 2Lmax

l
|αl|.

See proofs in Appendix A. Note that yn−q[m, g]
contains the static component and |αl| is the path gain
of dynamic paths. The power of static paths is much
stronger than that of dynamic paths. Hence, the condition
is satisfied almost for sure.

Substituting (8), (9), and (10) into (6) and letting Z
be Zm+p, we can obtain

f(Zm+p) = ξn,n−q[m+ p, g]

=f(Zm)+

L∑
l=1

hm,gn,q (Ωl)e
j2πmTAfO[m]e−j2π

g

T
τO[m]∆zl+

1

2

L∑
l1=1

L∑
l2=1

Hm,g
n,q (Ωl1 ,Ωl2)e

j2πmTA2fO[m]e−j2π
g

T
2τO[m]×

∆zl1∆zl2 , p ∈ {1, · · · , P}, (13)

where ∆zl = zn,l[m + p, g] − zn,l[m, g] , zl ·
(ej2πpTAfD,l − 1) and zn,l[m, g] is abbreviated as zl.
Letting z̃l be zlej2πmTAfO[m]e−j2π

g

T
τO[m], we have

f(Zm+p)

=f(Zm) +

L∑
l=1

hm,gn,q (Ωl)z̃l · (ej2πpTAfD,l − 1)+

1

2

L∑
l1=1

L∑
l2=1

Hm,g
n,q (Ωl1 ,Ωl2)z̃

2
l1 z̃

2
l2×

(ej2πpTAfD,l1 − 1) · (ej2πpTAfD,l2 − 1). (14)

Note that (14) can be transformed into f(Zm+p)−f(Zm)
that denotes the difference of CSI-ratio (D-CSIR), de-
noted as

ψn,q[m, p, g]

=f(Zm+p)− f(Zm)

=ξn,n−q[m+ p, g]− ξn,n−q[m, g]

n ∈ {0, · · · , N − 1}, q ∈ {n−N + 1, · · · , n}. (15)

Regarding the samples of D-CSIR, f(Zm+p)−f(Zm),
the Doppler frequencies of dynamic paths are clearly
shown on the right-hand side of (14) and can be retrieved
by analyzing the phase variance of the D-CSIR in the

temporal domain. Unfortunately, the delays make both
dynamic paths and static paths vary in the frequency
domain, and hence, it is invalid to use the Taylor series
w.r.t. g. As for AoAs, they do not suffer from the
coupling of offsets. Traditional AoA estimation methods
could be used but would involve all static paths.

IV. DYNAMIC PARAMETER ESTIMATION

In this section, we will propose a novel estimation
scheme for obtaining Doppler frequencies, AoAs, and
delays. Via using the CSI ratio, the scheme can exclu-
sively extract the dynamic parameters. For the Doppler
frequency, the proposed estimator is shown in section
IV-A. The proposed AoA estimator is shown in section
IV-B but it cannot solve the case when L = 1 and the
number of antennas is too small. Hence, we supplement
a joint AoA and delay estimator in section IV-C. The
general delay estimator is shown in section IV-D.

A. Doppler Frequency Estimator

Intuitively, the Doppler frequencies can be obtained
by observing the phase variance of the D-CSIR from
p = 1 to p = P . By assembling p from 1 to P ,
we obtain a D-CSIR vector, denoted as pn,q[m, g] =
[ψn,q[m, 1, g], · · · , ψn,q[m,P, g]]T . The selection of P is
limited. On the one hand, the value of P should be larger,
such that we can use more samples of D-CSIR. On the
other hand, a large value of P would make the Taylor
series invalid. Since only the Doppler term is related to
p, the MUSIC method can be readily used to obtain the
Doppler frequencies of the dynamic paths. Given the first
two orders of the Taylor series, the non-linear CSI ratio
becomes a linear function w.r.t. (ej2πpTAfD,l − 1).

The MUSIC-type estimators require the basis vectors
of pn,q[m, g]. Since the CSI ratio has been transformed
into linear expressions via the Taylor series, the first-,
the second-, and/or the higher-order Taylor series can
be used to represent the basis vectors of pn,q[m, g].
The first- and second-order normalized basis vectors of
pn,q[m, g] are

b1(f) = ‖b1(f)‖−1
F

(
[ej2πTAf , · · · , ej2πPTAf ]T − 1

)
,

(16)

and

b2(f, f ′)

=‖b2(f, f ′)‖−1
F

(
[ej2πTAf , · · · , ej2πPTAf ]T − 1

)
×(

[ej2πTAf ′ , · · · , ej2πPTAf ′ ]T − 1
)
, (17)

respectively, where f and f ′ are the test candidates for
fD,l1 and fD,l2 in (15), respectively. With L dynamic
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paths, there are L 1st-order and L2 2nd-order basis
vectors. Likewise, the number of 3rd-order basis vectors
is L3. When L = 1, f and f ′ are the same value.
When L 6= 1, those harmonic vectors, f 6= f ′, would
be inconvenient to set the test candidates. Note that the
number of basis vectors of pn,q[m, g] is no larger than
P . Thanks to the limited number of basis vectors, the
harmonic vectors can be dismissed. Hence, we let all
test candidates, f , f ′, and .etc, be the same value in the
following processing. Additionally, note that Appendix A
has given the expression for all Taylor series. Hence, we
can also construct the third-order basis vectors, denoted
as b3(f, f ′, f ′′), etc. The higher-order basis vectors can
also be dismissed.

We fix n = 1, q = 1, g = 0, and stack the vectors,
pn,q[m, g], from m = 0 to m = M − P − 1. The
corresponding stacked matrix is P. After dismissing
the harmonic vectors and higher-order Taylor series, the
required number of basis vectors equals JL. We select
J , such that JL is larger than the rank of P. Here, for
simplicity of exposition, we assume J = 2, which means
that only the first two orders of the Taylor series are
used. Using the MUSIC method, the dynamic Doppler
frequencies can be individually obtained by solving

fD,l = Peakl

(
1

‖[b1(f),b2(f, f)]HNP ‖2F

)
, (18)

where NP is the null-space of P that is obtained from
the left singular matrix of P and Peakl() is a function
that obtains f , such that the objective function reaches
the lth highest peak. It is noted that there is a trivial
solution, f = 0, to the problem of (18), because b1(0) =
b2(0, 0) = 0. The normalization of b1(f) and b2(f, f)
can greatly suppress the peak generated by the trivial
solution. Hence, the value of f can be an arbitrary value
except 0.

B. AoA Estimator

For estimating AoAs of dynamic paths, similar to the
proposed estimator above, we exploit the D-CSIR, such
that the dynamic AoAs can be extracted solely. From
(15), we can observe that the AoAs are dependent on
both n and q. By assembling the samples in the spatial
domain, n and q, we also use the MUSIC-type estimators
to obtain AoAs. Note that the basis vectors in the spatial
domain are related to m and g too, which is observed
from the expressions of hm,gn,q (Ωl) and Hm,g

n,q (Ωl1 ,Ωl2).
This indicates that m and g are coupled with the spatial
domain and need to be fixed during the AoA estimation.
Fortunately, the index, p, is not coupled with the spatial-

domain samples. Therefore, for estimating AoAs, only
measurements with different p can be stacked.

We form a spatial-domain matrix with the (n +
1, n − q + 1)th entry being the D-CSIR, ψn,q[m, p, g],
n ∈ {0, · · · , N − 1}, q ∈ {n−N + 1, · · · , n}, given by

A[m, p, g]

=


ψ0,0[m, p, g] · · · ψ0,−N+1[m, p, g]
ψ1,1[m, p, g] · · · ψ1,−N+2[m, p, g]

... · · ·
...

ψN−1,N−1[m, p, g] · · · ψN−1,0[m, p, g]

 .
(19)

Note that the diagonal entries of A[m, p, g] are 0’s since
ψn,0[m, g] = ξn,n[m+p, g]−ξn,n[m, g] = 0. The number
of effective entries in A[m, p, g] is N2 −N . With fixed
m, p, and g, the matrix becomes a manifold influenced
by AoAs only.

Referring to (15), we can obtain the basis vectors for
each column of A[m, p, g]. The first-order basis vector
for the (n′ + 1)th column of A[m, p, g] is written as

d1(Ω, n′) =
[
hm,g0,−n′(Ω)ej0Ω, · · · ,

hm,gN−1,−n′+N−1(Ω)ej(N−1)Ω
]T
,

n′ ∈ {0, · · · , N − 1}, (20)

and the second-order basis vector is written as

d2(Ω,Ω′, n′)

=
[
Hm,g

0,−n′(Ω,Ω
′)ej0, Hm,g

1,−n′+1(Ω,Ω′)ej2(Ω+Ω′), · · · ,

Hm,g
N−1,−n′+N−1(Ω,Ω′)ej2(N−1)(Ω+Ω′)

]T
, (21)

where Ω and Ω′ are test candidates for AoA estimation.
To use all columns of the manifold effectively, we

vectorize the manifold into an N2 × 1 vector. Since the
number of effective entries in A[m, p, g] is N(N − 1),
the maximum number of dynamic AoAs that can be dis-
tinguished is N(N − 1). The vectorized and normalized
first-order basis vector is expressed as

d1(Ω) = ‖d1(Ω)‖−1
F [dT1 (Ω, 0), · · · ,dT1 (Ω, N − 1)]T ,

(22)

and the vectorized and normalized second-order basis
vector, d2(Ω,Ω′), is similarly obtained.

To remove the harmonic components, we let Ω′ = Ω.
The basis vectors of AoAs are dependent on m and g as
well. Hence, we let m = 0, g = 0, and stack the vectors
from p = 1 to p = P into a matrix, given by

Ā = [vec(A[0, 1, 0]), · · · , vec(A[0, P, 0])]. (23)

Based on the MUSIC estimators, the AoAs are estimated
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by

Ωl = Peakl
(

1

‖[d1(Ω),d2(Ω,Ω)]HNĀ‖2F

)
, (24)

where NĀ is the null-space of Ā.
There is a trivial solution to the problem of (24) under

a specific condition, as stated in Proposition 2.

Proposition 2. Ω = 0 is the trivial solution to (24) when
Sn1

[g] = Sn2
[g],∀n1, ∀n2 ∈ {0, · · · , N − 1} and L = 1.

See proofs in Appendix B. According to Proposition
2, the trivial solution happens when there is only one
dynamic path and the static components, Sn[g], are the
same for all antennas. Such a case rarely happens in
PMN because the number of antennas for a BS is large
enough to assure Sn[g] to be different from one another.
When there are only 2, 3 or 4 antennas, the trivial
solution could exist and influence the accuracy of the
AoA estimator.

To address this issue of our proposed AoA estimator,
we would like to estimate the single dynamic AoA and
delay together, which will be illustrated in the next
subsection.

C. Joint AoA and Delay Estimator for One Dynamic
Path

This subsection provides how to obtain one dynamic
AoA and delay. Referring to (14), the delay is not
explicitly expressed and only exists in z̃l. From the
expression of z̃l above (14), we see that the delay is
mixed with TO.

Proposition 3. For a single dynamic path, the dynamic
delay can be obtained from the CSI ratio if and only if
Sn[g] is known.

Proof. For a single dynamic path, CSI ratio in (5) can
be rewritten as

ξn,n−q[m, g]

=
Sn[g]ej2π

g

T
x + α1e

jnΩ1ej2πmTAfD,1ej2π
g

T
(x−τ1)

Sn−q[g]ej2π
g

T
x + α1ej(n−q)Ω1ej2πmTAfD,1ej2π

g

T
(x−τ1)

,

(25)

where x is an arbitrary value. Without knowing Sn[g], it
is impossible to differ Sn[g] from Sn[g]ej2π

g

T
x because

both Sn[g] and Sn[g]ej2π
g

T
x can be generated using

different values of static delays. Then, τ1 shows no
difference with τ1 − x. This means that no matter what
τ1 becomes, the CSI ratio is the same value. Therefore,
if the CSI ratio is used for obtaining τ1 in the dynamic
path, Sn[g] must be known first.

According to Proposition 3, without knowing the static
path, the dynamic delay is impossible to be obtained
from the CSI ratio. If using the ratio between adjacent
g, the delay is entangled with TO and hence cannot be
obtained either. The ratio between adjacent m is too
sensitive to the noise. Due to these reasons, we can see
that using the CSI ratio alone is nearly impossible to
obtain the delay, τ1.

Since the Doppler frequency of the dynamic path is
known, all other terms excluding the Doppler-frequency
term can be obtained from the CSI ratio by solving

ξn,n−q[m, g] =
yn[m, g]

yn−q[m, g]
=

Sn[g] +Dn[m, g]

Sn−q[g] +Dn−q[m, g]

=
Sn[g] + α1e

jnΩ1ej2πmTAfD,1e−j2π
g

T
τ1

Sn−q[g] + α1ej(n−q)Ω1ej2πmTAfD,1e−j2π
g

T
τ1

=
S′n[g] +D′[m]

S′n−q[g] +D′[m]
, (26)

where D′[m] = ej2πmTAfD,1 and S′n[g] =
Sn[g]/α1e

−jnΩ1ej2π
g

T
τ1 . Note that the index m

and g are separated in the last term of (26). Using the
previously estimated fD,1, D′[m] becomes a known
value. Then, selecting the CSI ratio over two or more
packets, we can obtain S′n[g] by using the least-square
(LS) method, i.e.,[

S′n[g]
S′n−q[g]

]
=

[
1, −ξn,q[m0, g]
1, −ξn,n−q[m1, g]

]−1

×[
ξn,n−q[m0, g]D′[m0]−D′[m0]
ξn,n−q[m1, g]D′[m1]−D′[m1]

]
, (27)

where m0 and m1 are two selected packets. It is noted
that m0 and m1 should not be close to each other, other-
wise they would result in a high noise floor. Generally,
the interval between m0 and m1 is larger than P .

The phase angle of S′n[g] is equal to (∠Sn[g]) +
2π g

T τ1 − nΩ1. According to Proposition 3, the delay
is impossible to be obtained from the CSI ratio when
Sn[g] is unknown. Note that Sn[g] denotes the static
component of a received signal without offsets. The
phase angle of S′n[g] is time-varying due to the time-
varying τ1 and Ω1 over a long training period.

When 2π g
T τ1−nΩ1 goes through a wide range within

[0, 2π), Sn[g] can be seen as the expectation of S′n[g] ,
i.e.,

Sn[g] ≈ E(S′n[g]). (28)

Then, the dynamic delay and AoA can be extracted from
the phase value of

S′n[g]/Sn[g] = ej(2π
g

T
τ1−nΩ1). (29)
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D. Delay Estimator

When AoAs can be obtained from section IV-B,
we estimate delays similar to section IV-C. The main
difference is that, here, the Doppler frequencies and
AoAs have been obtained from section IV-A and IV-B,
respectively. Hence, before estimating delays, we can
match the obtained Doppler frequencies and AoAs of
multiple dynamic paths.

Note that Ā in (23) is related to both Doppler fre-
quencies and AoAs. Hence, the pair of fD,l and Ωl can
be matched by solving

(fD,l,Ωl′) = max
l,l′

∣∣∣dH1 (Ω̂l′)Āb1(f̂D,l)
∣∣∣ , l, l′ ∈ {1, · · · , L},

(30)

where d1(Ω̂l′) and bT1 (f̂D,l) are the basis vectors for
the columns and rows of Ā, respectively, and their
expressions are given by (22) and (16), respectively.

We can obtain multiple delays from

ξn,n−q[m, g]

=
yn[m, g]

yn−q[m, g]
=

Sn[g] +Dn[m, g]

Sn−q[g] +Dn−q[m, g]

=

S′n[g] +D′1[m] +
L∑
l=2

αl

α1
D′l[m]ejn(Ωl−Ω1)e−j2π

g

T
(τl−τ1)

S′n−q[g] +D′1[m] +
L∑
l=2

αl

α1
D′l[m]ejn(Ωl−Ω1)e−j2π

g

T
(τl−τ1)

,

(31)

where D′l[m] = ej2πmTAfD,l and S′n[g] =
Sn[g]/α1e

−jnΩ1ej2π
g

T
τ1 . Note that D′1[m] is available.

Also using the LS method, we can obtain multiple
dynamic delays from[

S′n[g], S′n−q[g],
α2

α1
e−j2π

g

T
(τ2−τ1)ejn(Ωl−Ω1), · · · ,

αL
α1
e−j2π

g

T
(τL−τ1)ejn(Ωl−Ω1)

]T

=


1T

−ξn,n−q[mT , g]
D′2[mT ]− ξn,n−q[mT , g]�D′2[mT ]

...
D′L[mT ]− ξn,n−q[mT , g]�D′L[mT ]


T †

×
[
ξn,n−q[m, g]�D′1[m]−D′1[m]

]
, (32)

where m = [m0, · · · ,mL]T are the indexes of (L + 1)
packets ranging from 0 to M − 1. From the equation
above, as long as τ1 can be obtained, other delays are
easy to be obtained from the 3rd row to the last row of
the LS output. We note that τ1 is obtained from S′n[g],
which is realized in the same way as section IV-C.

V. EXPERIMENTAL AND NUMERICAL RESULTS

In this section, we provide both experimental and
numerical results to validate the proposed parameter
estimators. We use both practical data collected by a
3-antenna COTS WiFi device and the simulated data
generated by MATLAB.

A. Experimental Results

In experimental results, the detailed setup is the same
as that in [23] as we implement our estimator by using
their obtained raw data, where the receiver is a 3-antenna
CTOS WiFi and the transmitter is one antenna that is 235
cm away from the receive antenna n = 0. The interval
between the receive antenna n = 0 and n = 1 is 2.682
cm. The interval between the receive antenna n = 1 and
n = 2 is 2.251 cm. The carrier frequency is 5.32 GHz
with the subcarrier interval being 312.5 kHz. The number
of subcarriers, G, is 30. The sampling frequency, 1/T , is
1 kHz and TA is 0.1 s. It should be highlighted that the
raw data in [23] has a fixed phase diversity over different
antennas due to hardware imperfection. Fortunately, such
a phase diversity can be easily removed, such that the
data is compatible with our estimators. The transformed
received signal should be yn[m, g] · ejφn with φn being
the phase diversity. It should be also noted that the
received signal needs to go through a low-pass filter
before estimating the parameters because the raw data
is mixed with high-frequency noises due to the network
interface controller. We select the cutoff frequency as 60
Hz. We let P equal 30. The gap between m0 and m1 in
our delay estimator is 30.

In Fig. 2, we illustrate the Doppler frequency, AoA,
delay, and trajectory obtained by processing the WiFi
received signal. In practice, there is one moving human
target in the indoor environment. In Fig. 2 (a), (b), and
(c), our method shows a similar trend to the WiDFS
method but provides more details. In Fig. 2 (b), the
AoAs of the WiDFS method show fewer details and
have mutated points around 28s and 58 s. We need to
point out that the delay is too small compared with T ,
which results in low accuracy of delay. Hence, both our
estimator and the WiDFS method use the Kalman filter
to smooth the delay and plot the trajectory. The detailed
setup of the Kalman filter can be referred to [23]. As
for the delay itself, we plot the original output of delays
without the Kalman filter, as shown in Fig. 2 (c). We also
observe that, in the practically obtained data, Sn[g] can
be approximately written as |Sn[g]|e−τ0 , where τ0 is the
delay of the LOS path, as the LOS path is dominant
in the received signal. Fig. 2 (d) plots the trajectory
calculated by the AoA and the smoothed delay from 20s
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Fig. 2. Tracing all three parameters and trajectory. The benchmarks include WiDFS [23] and points cloud obtained by mmWave radar.

to 50s. According to the cosine law, the coordinates of
the trajectory are expressed as

xtraj = dr sin(θ)− d0/2, ytraj = dr cos(θ), (33)

where dr, calculated by the cosine law with substituting
delay and AoA, is the distance between the receive
antenna n = 0 and the human target, and d0 = 270
cm. The ground truth is obtained by the millimetre-
wave (mmWave) radar device that is located beside
the commodity WiFi. Our obtained trajectory matches
with the ground truth tightly, and we can see that the
WiDFS’s obtained trajectory has mutated curves due to
the deviated AoAs. Most importantly, we should point
out that our method does not require the existence of
the LOS path even though the LOS path is dominant
in the raw data, but the WiDFS method would require
the existence of the LOS path to obtain both AoAs and
delays.

B. Numerical Results

In numerical results, the carrier frequency is 3 GHz.
The number of subcarriers is G = 64. The frequency
bandwidth is 64 MHz. Hence, the OFDM symbol period

T is 1 µs. The propagation delay is randomly distributed
over [0, 0.4] µs. The CP period TC is 0.3 µs. The
approximate interval between two packets, TA, is 1 ms.
We use M = 128 packets for the parameter estimation.
The parameters remain unchanged in these packets. The
velocity of targets ranges from -30 meter-per-second
(mps) to 30 mps, and the Doppler frequency is randomly
distributed over [−0.3, 0.3] kHz. The AoAs of targets
are random values uniformly distributed from −π/2
to π/2. All the targets are modelled as point sources,
and the radar cross-sections are assumed to be 1. The
BS employs a ULA with N = 8 antenna elements.
There is one dynamic path and LS = 5 static paths
unless mentioned individually. The power of all paths
is assumed to be equal, and hence, there would be no
requirement for a dominant LOS path.

Fig. 3 shows error proportion and convergence prob-
ability of Taylor series versus L and LS . Mathmatically,
the error proportation is given by

eTay(p) =

G−1∑
g=0

M−1∑
m=0

N∑
n=1

1

MGN |ξn,q[m+ p, g]|2
∣∣O3(Z)

∣∣2 .
(34)
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Fig. 3. Error proportion and convergence probability of Taylor series

Here, we let p = 2. Note that we regard the harmonic
of the second order of the Taylor series as errors too.
The error proportion can reflect the accuracy of the
Taylor series. We only count in the error in which the
absolute value is less than 1 w.r.t. different m, g, and n.
Otherwise, the error is divergent and removed from the
summation in (34). Hence, Fig. 3 (b) supplements the
corresponding convergence probability. From the figure,
we observe that the error proportion decreases with LS
increasing and with L decreasing. This means that more
static paths and less dynamic paths make the Taylor
series convergent more quickly. Fig. 3 (b) also indicates
the same conclusion. In general, the number of static
paths is far more than that of dynamic paths. When
involving the LOS path, the power of static paths can
be 10 times higher than that of the dynamic path, and
hence, the expected error proportion should be around
5% and the expected convergence probability is about
0.95. In the worst case of L = LS , which rarely happens,
the convergence probability is around 0.5.

Fig. 4, Fig. 5, and Fig. 6 plot the normalized mean-
squared-error (NMSE) versus signal-to-noise ratio (SNR)
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Fig. 4. NMSE versus SNR for Doppler frequency.
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Fig. 5. NMSE versus SNR for AoA.

of Doppler frequency, AoA, and delay, respectively. We
consider a case of L = 1 and LS = 5 with and without
a LOS path. The power of the LOS path is 10 dB
higher than that of the NLOS path. The parameter of
our proposed estimators, P , equals 30. Other system
setups are given at the beginning of this subsection.
Other uplink sensing benchmarks, which addressed the
TO and CFO in asynchronous systems, are included
in our simulations. For Doppler and delay estimators,
the benchmarks are the AMS method [21], CACC with
MUSIC, and CACC with mirrored MUSIC [24]. Due
to the high computational complexity of the WiDFS
method, it is not included in the comparisons. As for
the AoA estimator, we compare our AoA estimator with
the AMS, H-MUSIC [31], and the average NMSE of
quantized grids, i.e., 1/N2

T ≈ 1.56 × 10−2. The figures
demonstrate that our proposed estimator outperforms the
AMS method for all three parameters.

For NMSE of Dopper frequency, our estimator is
nearly the same as CACC-MUSIC in the LOS scenario.
Since the received signals involve a dominant LOS path,
CACC-mirrored-MUSIC has higher accuracy than our
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Fig. 6. NMSE versus SNR for delay.

proposed estimator, however, CACC methods only work
with the existence of a LOS scenario. Without the LOS
path, it is seen that the NMSEs of CACC methods
rise dramatically. Without the LOS path, our proposed
estimator is better than all the benchmarks.

For NMSE of AoA, our method can achieve nearly
the same NMSE as H-MUSIC at high SNRs. In low
SNRs, the performance of our proposed AoA estimator
degrades. This is because the Taylor series is convergent
when the dynamic component is little. Since the noise
can be treated as the dynamic component, the Taylor
series will be divergent with a high noise floor. Despite
the defect, our method obtains the dynamic path sepa-
rately while both H-MUSIC and CACC methods need
to estimate the parameters of all NLOS paths.

For NMSE of delay, our method can achieve the best
performances without the LOS path. With the existence
of the LOS path, our delay estimator still achieves the
lowest NMSE at a high SNR. Besides, CACC methods
can only obtain relative delays, which means that the
delay of the LOS path is necessary to be known at the
BS. Our delay estimator can obtain the absolute delays
as long as Sn[g] is known.

Fig. 7 illustrates the shapes of the ‘Peak’ functions
with considering multiple dynamic paths in a noiseless
environment. We let L = 2 and LS = 5. Other system
parameters are the same as Fig. 4. For the Doppler
frequency, we can observe two peaks tightly match with
the practical Doppler frequencies. We compare its shape
with the traditional MUSIC which has a large peak
around 0 Hz due to the existence of static components. In
the traditional MUSIC, the estimated Doppler frequen-
cies have unknown CFOs mixed with practical values.
Even worse, it is noted that some dynamic paths are
missing in the peaks of traditional MUSIC. For the AoA
estimator, the peaks have a sharp shape and match with
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Fig. 7. The shape of Peak functions of the multi-path estimator.

the practical AoAs tightly. Traditional MUSIC cannot
separate dynamic AoAs from static ones and hence
would generate 7 peaks, which is not shown in this
figure. For the delay estimator, we see that each peak
occupies the entire range of [0, T ] individually, which is
because the delays are obtained from different rows of
the LS outputs in (32). This means that the delays do
not have ambiguity problems when multiple delays are
close to each other.

VI. CONCLUSION

This paper has proposed a Doppler-AoA-delay esti-
mation scheme under the uplink ISAC systems, where
only the parameters of moving targets are estimated.
The system does not require synchronization between
transceivers thanks to the CSI ratio. Our novel estimation
scheme is mainly based on the Taylor series of the CSI
ratio, which shows a good convergence property and
makes it possible to transform the non-linear CSI ratio
into linear forms. The simulation results show that the
performance of our scheme becomes better with a larger
power of static components. The proposed AoA and
delay estimators outperform the benchmark at high SNR.
The Doppler estimator outperforms the benchmarks in
the NLOS scenario. Our work can be effectively applied
in the PMN and WiFi sensing networks.

APPENDIX A
CONVERGENCE OF TAYLOR SERIES OF CSI RATIO

From (9) and (10), we can generalize the kth derivative
of f(Zm) as (35), where yn is short for yn[m, g], yn−q
is short for yn−q[m, g], ejkf̄O[m] = ejkmTAfO[m], and
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f (k)(zl1 , · · · , zlk) = (−1)k
k!e
−jq

k∑
i=1

Ωli
yn − (k − 1)!

k∑
i=1

e

−jq
k∑

h=1
h 6=i

Ωlh

yn−q

yk+1
n−q

ejkf̄O[m]e−jkτ̄O[m], lk ∈ {1, · · · , L} (35)

e−jkτ̄O[m] = e−jk
g

T
τO[m]. Both derivatives w.r.t. k = 1

and k = 2 satisfy (35). The higher-order Taylor series
can be proved by using the induction method, while
omitted due to the page limits.

Then, the kth individual coefficient of the Taylor series
is given by

1

k!
f (k)(zl1 , · · · , zlk)

k∏
i=1

(z − zli). (36)

We need to prove that the absolute value of (36) de-
creases with k increasing. Note that

1

k!
f (k)(zl1 , · · · , zlk)

k∏
i=1

(z − zli)

≤|yn|+ |yn−q|
|yn−q|k+1

k∏
i=1

|z − zli | =
|yn|+ |yn−q|
|yn−q|k+1

k∏
i=1

|z − zli |

≤|yn|+ |yn−q|
|yn−q|

k∏
i=1
|z − zli |

|yn−q|k
≤ |yn|+ |yn−q|

|yn−q|

max
l
|2αl|k

|yn−q|k
.

(37)

The last term in (37) gives the upper bound of the
kth coefficient of the Taylor series w.r.t. different li.
Acorrding to the definition of Taylor series, the kth
coefficient of the Taylor series sums Lk individual co-
efficients of li, 1 ≤ i ≤ k. Hence, the overall upper

bound equals |yn|+|yn−q|
|yn−q|

max
l
|2Lαl|k

|yn−q|k
. Note that the upper

bound approaches to zero with k → ∞ when |yn−q| ≥
max
l

2L|αl|. Therefore, the Taylor series of CSI ratio are

convergent when |yn−q| ≥ max
l

2L|αl|.

APPENDIX B
A TRIVAL SOLUTION IN AOA ESTIMATOR

When Ω = 0 and N is small, it can be assumed that
Sn1

[g] = Sn2
[g] , S[g], ∀n1, ∀n2. Referring to (9), and

abbreviating Dn[m, g], Sn[g], and Sn[g] + Dn[m, g], as
Dn, S, and Yn respectively, d1(0, n′) in (20) becomes

d1(0, n′) = [hm,g0,−n′(0), · · · , hm,g0+N−1,−n′+N−1(0)]T

=

[
Yn′ − Y0

Y 2
n′

, · · · , Yn
′ − YN−1

Y 2
n′

]T
=

[
Dn′ −D0

Y 2
n′

, · · · , Dn′ −DN−1

Y 2
n′

]T
, (38)

and d2(0, 0, n′) becomes

d2(0, 0, n′)

= [Hm,g
0,−n′(0, 0), · · · , Hm,g

0+N−1,−n′+N−1(0, 0)]T

= 2

[
D0 −Dn′

Y 3
n′

,
D1 −Dn′

Y 3
n′

, · · · , DN−1 −Dn′

Y 3
n′

]T
,

(39)

Given that L = 1 and abbreviating Sn[g] + Dn[m +
p, g] as Yn(p), the (n′ + 1)th column of A[m, p, g] in
(19) is

vn′(A[m, p, g])

=[ψ0,−n′ , · · · , ψN−1,−n′+N−1]T

=

[
Y0(p)

Yn′(p)
− Y0

Yn′
, · · · , YN−1(p)

Yn′(p)
− YN−1

Yn′

]T
=

[
S + ej2πpTAfD,lD0

S + ej2πpTAfD,lDn′
− S +D0

S +Dn′
, · · · ,

S + ej2πpTAfD,lDN−1

S + ej2πpTAfD,lDn′
− S +DN−1

S +Dn′

]T
=

[
S(Dn′ −D0)(1− ej2πpTAfD,l)

Yn′(S + ej2πpTAfD,lDn′)
, · · · ,

S(Dn′ −DN−1)(1− ej2πpTAfD,l)

Yn′(S + ej2πpTAfD,lDn′)

]T
, (40)

where vn′(·) is the n′th column of a matrix.

To prove that Ω = 0 is a trivial solution to (24), it is
equivalent to proving that d1(0, n′) and d2(0, 0, n′) are
the basis vectors of A[m, p, g]. It is clear that (40) is
linearly dependent with (38) and (39). Hence, the rank
of [d1(0, n′), d2(0, 0, n′),A[m, p, g]] is 1. Then, noting
that each column of Ā is

[v0(A[m, p, g]), · · · , vN−1(A[m, p, g])] , (41)

d1(0) = [dT1 (0, 0), · · · ,dT1 (0, N − 1)]T , and d2(0, 0) =
[dT2 (0, 0, 0), · · · ,dT2 (0, 0, N − 1)]T , we have

rank(Ā) = rank([Ā,d1(0),d2(0, 0)]) = N. (42)

Note that d1(0) and d2(0, 0) are the basis vectors for any
given Ā. Likewise, the higher-order vectors of di, i ≥ 3,
are also the basis vectors for any given Ā. Therefore,
Ω = 0 is a trivial solution to (24) when Sn1

[g] = Sn2
[g]

and L = 1, which ends the proofs.



13

REFERENCES

[1] M. L. Rahman, J. A. Zhang, X. Huang, Y. J. Guo, and R. W.
Heath, “Framework for a perceptive mobile network using
joint communication and radar sensing,” IEEE Trans. Aerosp.
Electron. Syst., vol. 56, no. 3, pp. 1926–1941, Jun. 2020.

[2] J. A. Zhang, M. L. Rahman, K. Wu, X. Huang, Y. J. Guo,
S. Chen, and J. Yuan, “Enabling joint communication and radar
sensing in mobile networks—a survey,” IEEE Communications
Surveys & Tutorials, vol. 24, no. 1, pp. 306–345, 2022.

[3] P. Kumari, J. Choi, N. González-Prelcic, and R. W. Heath,
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