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Abstract

Distributed cooperative localization in wireless networks is a challenging problem since it typi-
cally requires solving a large-scale nonconvex and nonsmooth optimization problem. In this paper,
we reformulate the classic cooperative localization problem as a smooth and constrained nonconvex
minimization problem while its loss function is separable over nodes. By utilizing the structure of the
reformulation, we propose two novel scaled proximal alternating direction method of multipliers (SP-
ADMM) algorithms, which can be implemented in a distributed manner. Compared with the classic semi-
definite programming relaxation techniques, the proposed algorithms can provide more accurate position
estimates with significantly lower computation complexity. The associated theoretical analysis shows that
our algorithms globally converge to a KKT point of the reformulated problem and a critical point of the
original problem, with a favorable sublinear O (1/T ) convergence rate, where T is the iteration counter.
Numerical experiments have consistently shown that the proposed SP-ADMM algorithms are superior to
state-of-the-art methods in terms of localization accuracy and computational complexity across all tested
scenarios, varying network size, number of anchors, average number of neighbors, and noise variance
levels.

Keywords− Proximal ADMM, distributed algorithm, global convergence rate, cooperative localization,
wireless sensor network.

I. INTRODUCTION

Wireless sensor networks (WSNs) are widely used to deal with sensitive information in a variety

of applications, including healthcare, military, Internet of Things, surveillance, and industrial [1]. In the

aforementioned applications, all collected information is meaningful only when the locations of the sensor

nodes are accurately known. Therefore, localization is an enabling technique for WSNs. The cooperative

localization problem aims to determine multiple sensor locations with the aid of a relatively small portion
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of anchors whose positions are precisely known and the relative noisy range measurements of adjacent

nodes [2]. The range measurements can be measured in a variety of ways, such as time-of-arrival (TOA)

[3], [4], time-difference-of-arrival (TDOA) [5], angle-of-arrival (AOA) [6] and received signal strength

(RSS) [7], [8]. In recent years, there has been a growing interest in estimating target positions through

optimization techniques due to the faster response speed of position estimation by these methods and

convergence guarantee.

Nonconvex and nonsmooth is the major difficulty of the least squares objective function in the maximum

likelihood framework [9]. It is hard to find an optimal solution with low computational complexity, and

in consequence, most existing methods resort to developing approximate solutions through applying, for

instance, the relaxation techniques, to the original nonconvex problem. A popular class of methods is

based on semi-definite programming (SDP) relaxation [10]–[12], which can be solved by the interior-point

algorithm. Although convex relaxation techniques guarantee convergence to a global minimum point, it

is not necessarily a critical point of the original nonconvex formulation. In addition, the above convex

relaxation methods are implemented in a centralized framework, since all measurements are collected

and processed at a processing center. Centralized methods are vulnerable to the malfunction of any single

node. There have been increasing efforts in developing distributed sensor network localization methods

[13]–[15].

Distributed1 methods are able to avoid the major drawbacks of the centralized counterparts for large-

scale networks, thus making them well-suited for wireless sensor network localization. Distributed meth-

ods not just have lower computational and communication complexity due to scalability but are also more

robust to node failures [16], [17]. This inspired the use of distributed optimization approaches to solve

the target positioning problem in large-scale networks. Compared with the centralized SDP methods,

the work [18] proposed a more practical alternative. By leveraging the concept of convex envelope,

the authors developed a method that is both scalable and simple to implement. They also analyzed the

total number of iterations required by the algorithm to approach the optimal function value with a high

probability for the convexified problem. Despite these advances, it still can be difficult to infer where the

solutions are the critical points of the original nonconvex problem (discussed in [19], [20]). In view of

this, non-relaxed methods may be a workable viewpoint.

In this paper, we focus on the first-order method that solves the original nonconvex localization problem

directly. In general, the design of this kind of algorithm first reformulates the problem by exploiting the

1The term distributed in this paper refers to an implementation that sensor nodes can locate themselves and neighboring nodes

based on the local network information containing neighbors, without whole network data [9], [13].
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internal structure of the problem and then develops an efficient optimization algorithm to solve the

reformulated problem. For example, a nonconvex sequential greedy (NCSG) optimization algorithm was

proposed in [21]. It is also proved that this algorithm owns the convergence guarantee inherited from

the non-linear Gauss-Seidel framework [22]. Notwithstanding, the limit point of the generated sequence

converges to the KKT point of the reformulated problem, the connection with the original problem is

yet not provided.

One efficient way is to reformulate the original localization problem as a two-block nonconvex op-

timization problem with linear equality constraints, and then a distributed ADMM method is proposed

in [23], [24] to solve the resulting nonconvex reformulation. In [25], [26], they show that the ADMM

algorithm may be unstable when the objective function is nonconvex and nonsmooth. In order to obtain

a favorable initial point for the method developed in [23], the authors in [19] proposed a hybrid ADMM

(ADMM-H) method that contains two stages. In the first stage, a reliable starting point of the target

problem is given by exploiting the convex relaxation technique introduced in [18]. In the second stage,

the solution will be constantly updated by adopting the method developed in [23]. While the simulations

demonstrated faster convergence, there remain limitations both in the local minimum theoretical guarantee

and practical implementation. This is discussed in detail by [20] and our Section V.

Recently, for the single source localization problem, the authors in [24] adopted a simple variational

representation of the Euclidean norm, then derived an equivalent smooth reformulation with ball con-

straint. Later on, it was extended for the multi-source localization problem in [20], and they proposed

an alternating minimization (AM) method to solve the reformulated constrained smooth and nonconvex

optimization problem. There are two versions of the AM method in [20], the fully centralized (AM-FC)

and the fully distributed (AM-FD). Due to the sequential2 nature of the AM-FD method, it is impractical to

apply it to large-scale networks. Therefore, the authors further propose a unifying AM (AM-U) algorithm

to remedy this difficulty. The basic idea of AM-U is to divide the sensors in the network into several

disjoint clusters and then apply the AM-FD method separately for each cluster. The convergence of the

AM-FD can be guaranteed. Since the difficulty of nonconvex and nonsmooth, the convergence rate for

the original problem is not provided.

In this work, we aim to exploit the advantages of [23] and [24] to develop an efficient distributed

algorithm with lower computational complexity for the nonconvex and nonsmooth localization problem

and establish a theoretical guarantee of its performance.

2In this paper, sequential means sensor nodes perform their update calculations in turn, that is, they have to wait for a part

of neighbor nodes to complete the update before running their local update steps.
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TABLE I

COMPARISONS OF DIFFERENT ALGORITHMS

Sensor i

Convex First order Step Convergence Computational Communication Storage

Algorithm Relaxations Method Size Rate Parallelized Complexity Cost Space

SDP [10] ✔ ✗ - ✗ - O(n3) nNi
1
2

∑N
i=1 Ni − |Ea|⋇ + n(N −m)

SF [18] ✔ ✔ fixed ✗
∗

✔ O(nNi) nNi 2n+Ni + 1(parallel method)

AM-FD [20] ✗ ✔ fixed ✗ ✗ O(nNi) nNi n+ nNi +Ni + 1

ADMM-H [19] hybrid
†

✗ - ✗ ✔ O(n3Ti + nNi)
⋆

2nNi +Ni 2Ni(Ni + 1)n2 + 4nNi +Ni + 9

SP-ADMM (ours) ✗ ✔ fixed O(1/T )
‡

✔ O(nNi) 2nNi 4nNi +Ni + 3 (Algorithm 2)

∗ is due to the convergence analysis of the SF for the convex relaxation problem rather than the original nonconvex problem.
† Here, “hybrid” means a two-stage algorithm, including a convex relaxation stage and a nonconvex stage.
⋆ Ti refers to the number of iterations required by the nonconvex Newton algorithm to converge.
‡ T refers to the total number of iterations of the algorithm.
⋇ |Ea| denotes the number of edges in which both nodes are anchors. The value of storage space refers to the minimum total storage space required by the SDP per

step, as described in reference [27].

Our contributions are summarized as follows.

• By introducing an auxiliary variable for the nonsmooth Euclidean norm, we reformulate the classic

cooperative localization problem as a smooth and constrained nonconvex minimization problem,

whose loss function is separable over nodes and has two block variables that eventually leads to a

nice optimization structure.

• To exploit the nice structure of the new reformulation, we proposed a scaled proximal ADMM

(SP-ADMM) algorithm, which is suitable for distributed computing and parallel implementation.

Moreover, to further reduce the storage space at each node, we proposed Algorithm 2 that is

a simplified version of Algorithm 1. As shown in Table I, the proposed algorithms enjoy lower

computation complexity and storage space when compared with the existing SDP relaxation method

and ADMM-H method, respectively.

• By utilizing a novel potential function, we demonstrates that the global convergence of the sequence

generated by the proposed algorithm, that is, the whole sequence converges to a unique KKT point of

the reformulated problem and a critical point of the original problem. Remarkably, these algorithms

also exhibit sublinear convergence, with a convergence rate of O (1/T ), where T represents the

iteration counter. To the best of our knowledge, this is the first result that shows the sublinear

convergence rate of a distributed ADMM algorithm for a nonconvex and nonsmooth localization

problem.

• Numerical experiments conducted on a variety of networks have consistently demonstrated that

the proposed algorithms outperform existing methods in terms of both localization accuracy and

computational efficiency. The experimental data encompasses scenarios with different network sizes,
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number of anchors, average number of neighbor nodes, and variance levels of the measurement noise.

Notation: We use lowercase bold letters to denote vectors, 1Ni
and 0Ni

to represent Ni-dimensional

column vector with all ones and all zeros, respectively. Capital bold letters represent matrices, specially,

INi
and ONi

denote Ni × Ni-dimensional identity matrix and zero matrix, respectively. ∥x∥ is the

Euclidean norm of a real vector x, ⊗ denotes the Kronecker product. We use vec (xi, i ∈ N ) to denote

the concatenated vector of xi for all i ∈ N and Diag (z) to denote the diagonal matrix with the coefficients

of z along the diagonal. The projection operator of set BNi is defined as:

projBNi

(
ut
i

)
:= arg min

ui∈BNi

1

2
∥ui − ut

i∥2.

Lastly, let f : C → (−∞,+∞] be a proper closed and convex function and W be a positive semi-definite

matrix. Then the scaled proximal operator of f is given by

proxWf (z) := argmin
v∈C

f (v) +
1

2
∥v − z∥2W,

where ∥ · ∥W is the scaled norm induced by W, i.e., ∥z∥2W := ⟨z,Wz⟩ for every z in R(2Ni+1)n.

Synopsis: Section II introduces the reformulated smooth constrained nonconvex minimization problem.

The proposed SP-ADMM algorithms are presented in Section III. Section IV presents the theoretical

results of the convergence conditions and convergence rate of the SP-ADMM algorithm. The performance

of the proposed SP-ADMM algorithm is illustrated in Section V, and the conclusion is given in Section

VI.

II. PROBLEM FORMULATION

A. Problem Statement

The wireless sensor network that we consider throughout this paper is represented as an undirected and

connected graph, G = (N , E), and the topology is assumed to be known. The node set N = {1, 2, . . . , N}
consists of N nodes, some of which are anchors with known true positions collected in the set A =

{aN−m+1, . . . ,aN} ⊂ N . For each node i ∈ N , we define Ni = {j | (i, j) ∈ E} as the set of adjacent

nodes to node i, and Ni as the cardinality of Ni. The true position of node i is represented by pi ∈ Rn for

i ∈ N , and the collection of all node positions is denoted by p = vec(pi, i ∈ N ) ∈ RnN . The available

noisy range measurement between node i and its adjacent node j ∈ Ni is denoted as di,j , and we assume

that di,j = dj,i following the convention in [3], [18]. Specifically, the noisy range measurement di,j can

be expressed as in [28], [29],

di,j = ∥pi − pj∥+ wi,j , i ∈ N , j ∈ Ni, (1)

where wi,j are the zero-mean, independent, and identically-distributed Gaussian measurement noise terms.
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Using these notations, the maximum likelihood estimator, as our baseline, can be obtained through

solving the following nonconvex constrained optimization problem (following [23])

argmin
p∈RnN

∑

i∈N

∑

j∈Ni

1

2
(∥pi − pj∥ − di,j)

2 (2a)

subject to pk = ak, ∀k ∈ A. (2b)

B. Problem Reformulation

Our first step is to derive an equivalent smooth and constrained reformulation of problem (2), which

provides the key insight toward algorithm design and its convergence of this paper. Notice that the

objective function in problem (2) can be written explicitly as

∑

i∈N

∑

j∈Ni

[1
2
∥pi − pj∥2 − di,j ∥pi − pj∥︸ ︷︷ ︸

nonsmooth

+
1

2
d2i,j

]
. (3)

Obviously, there is a nonsmooth term in the objective function. Motivated by the recent works [20], [24],

we apply the Cauchy-Schwartz inequality to obtain

∥pi − pj∥ = max
ui,j∈B

uT
i,j(pi − pj), (4)

where B := {x ∈ Rn | ∥x∥ ≤ 1} is a unit ball in Rn with the center at the origin and ui,j ∈ Rn is an

auxiliary variable, then we have

−∥pi − pj∥ = min
ui,j∈B

− uT
i,j(pi − pj). (5)

Substituting (5) into (3), problem (2) is rewritten as a minimization problem of a smooth function over

a ball constraint set as follows

argmin
p,u

∑

i∈N

∑

j∈Ni

[1
2
∥pi − pj∥2 − di,ju

T
i,j(pi − pj)

]
(6a)

subject to ui ∈ BNi , ∀i ∈ N , (6b)

pk = ak, ∀k ∈ A. (6c)

where u := vec (ui, i ∈ N ), ui := vec (ui,j , j ∈ Ni), and BNi := {(x1,x2, . . . ,xNi
) | xj ∈ B, j =

1, . . . , Ni} is the Cartesian product of Ni balls B. To decouple the loss function of problem (6) over

nodes, we introduce auxiliary variables that duplicate the positions of neighboring nodes. Specifically,

we define z+i,j ∈ Rn as a copy of the position pj for each neighbor j ∈ Ni, i.e.,

z+i,j := pj , j ∈ Ni. (7)
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Similarly, we define z−i,j ∈ Rn as a copy of the position pi assigned to neighbor j ∈ Ni, i.e.,

z−i,j := pi, j ∈ Ni. (8)

By collecting all variables associated with node i together, we define a new variable zi as

zi :=




pi

z−i

z+i


 ∈ R(2Ni+1)n, i ∈ N . (9)

Here, z−i := vec
(
z−i,j , j ∈ Ni

)
∈ RNin is the collection of Ni copies of the position pi, and z+i :=

vec
(
z+i,j , j ∈ Ni

)
∈ RNin represents the collection of all replicas of pj from neighboring node j ∈ Ni.

Using these notations, the objective function (6) can be written in a separable form as follows:

∑

i∈N

[ 1

2
∥Qizi∥2 − uT

i DiQizi
︸ ︷︷ ︸

Fi(zi,ui)

+δBNi (ui)
]
, (10)

where Di := Diag (vec (di,j , j ∈ Ni))⊗ In ∈ RNin×Nin is the measurement matrix of node i and

Qi := [1Ni
,ONi

,−INi
]⊗ In ∈ RNin×(1+2Ni)n. (11)

By using (9), we can rewrite (8) as a compact form

Aizi = 0, (12)

where Ai := [1Ni
,−INi

,ONi
] ⊗ In ∈ RNin×(1+2Ni)n. Moreover, for a pair of connected sensors i and

j, we can deduce from equation (8) that z−j,i = pj . Combining this equation with (7), we obtain an

additional constraint that applies to all connected sensors:

z := vec(zi, i ∈ N ) ∈ Z, Z := {z|z+i,j = pj = z−j,i, ∀ i ∈ N , j ∈ Ni}. (13)

Using (9), the set of anchors in (6c) can be expressed as

z ∈ X := {z | Eizi = ai, ∀ i ∈ A}, Ei :=
[
1,0TNi

,0TNi

]
⊗ In ∈ Rn×(1+2Ni)n. (14)

Finally, using (10), (12), and (13), the nonconvex optimization problem (6) can be equivalently reformu-

lated into the compact form

argmin
z,u

∑

i∈N

[ 1

2
∥Qizi∥2 − uT

i DiQizi
︸ ︷︷ ︸

Fi(zi,ui)

+δBNi (ui)
]

(15a)

subject to Aizi = 0, i ∈ N , (15b)

z ∈ X , z ∈ Z. (15c)
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Network

1

Constraints for node 2

1

N1 = {2, 3, 4}

anchor

4

{1, 2} = N4

2

{1, 4} = N2

3

N3 = {1}

}
z−2

}
z+2




p2

z−2,1

z−2,4

z+2,1

z+2,4




= z2




p4

z−4,1
z−4,2
z+4,1
z+4,2



= z4



p3

z−3,1
z+3,1


 = z3




p1

z−1,2
z−1,3
z−1,4
z+1,2
z+1,3
z+1,4




= z1

p2 = z−2,1 ,

p2 = z−2,4 .

A2z2 =

[
p2 − z−2,1
p2 − z−2,4

]
= 0;

A2 = [12,−I2,O2]⊗ In

z+2,1 = p1 = z−1,2, z+2,4 = p4 = z−4,2

z2 ∈
{
x | z+2,j = pj = z−j,2, j ∈ N2

}

com
pact form

compact form

Fig. 1. An illustrating example of a connected wireless sensor network in 2-D space (N = 4,m = 1).

To show these notations clearly, we give an example of a connected wireless sensor network in 2-D space

in Fig. 1.

Example 1 Fig.1 presents a wireless sensor network with 3 (inexact) positions of node i = 1, 2, 3 and

one anchor of node 4. If we only focus on node 2, on the one hand, since N2 = {1, 4} and z−2,1, z
−
2,4 are

the copies of p2, then we have

p2 = z−2,1, p2 = z−2,4.

On the other hand, Fig. 1 presents that there exit the same partial elements in z2, z1, and z4. Specifically,

p1 is the element of both z1 and z2; z2 and z4 also contain p4. To enforce this trivial observation, we

obtain the following constraint

z+2,1 = p1 = z−1,2, z+2,4 = p4 = z−4,2,

which is part of the constraint set Z defined in (13).

Remark 1 The objective function Fi(zi,ui) in problem (15) is convex with respect to zi when ui is fixed,

however, it is NOT a jointly convex function for (zi,ui). In addition, one can observe that the objective

function is separable but the linear constraint Z is NOT separable in z. In Section III, we introduce a

scaled proximal term to deal with this problem.
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III. PROPOSED SP-ADMM ALGORITHMS

In this section, we present the proposed SP-ADMM algorithms for solving the nonconvex and nonsmooth

optimization problem derived in (15). The proposed SP-ADMM algorithms are built upon the ADMM

method [24] developed for large-scale nonconvex problems.

First, we introduce the augmented Lagrangian (AL) function of problem (15) as follows:

L(z,u,λ) :=
∑

i∈N
Li (zi,ui,λi) ,

where

Li (zi,ui,λi) := Fi (zi,ui) + δBNi (ui) + ⟨λi,Aizi⟩+
c

2
∥Aizi∥2, i ∈ N , (16)

and λi := vec (λi,j , j ∈ Ni) ∈ RNin correspond to the Lagrangian multipliers, c > 0 is a penalty

coefficient. We apply the following scaled proximal ADMM updates [30] to obtain

zt+1 = argmin
z∈Z
z∈X

∑

i∈N
Li

(
zi,u

t
i,λ

t
i

)
+

c

2
∥zi − zti∥2BT

i Bi
, (17)

ut+1 = argmin
u

∑

i∈N
Li

(
zt+1
i ,ui,λ

t
i

)
+

ρ

2
∥ui − ut

i∥2, (18)

λt+1
i = λt

i + cAiz
t+1
i , ∀i ∈ N , (19)

where ρ > 0 is a penalty coefficient and t denotes the iteration step.

The AL function L is separable in each of the variables (zi,ui,λi) , i ∈ N and Li, i ∈ N is convex

as a function separately of (zi,ui) when the others are fixed. These features are key to distributed imple-

mentation. In addition, we remark that the (scaled) proximal term is critical in both the implementation

efficiency and the theoretical analysis. It is used to ensure the following attractive properties:

• zi → Li

(
zi,u

t
i,λ

t
i

)
+ c

2∥zi − zti∥2BT
i Bi

is strongly convex;

• ui → Li

(
zt+1
i ,ui,λ

t
i

)
+ ρ

2∥ui − ut
i∥2 is strongly convex;

• The sequence {
(
zti,u

t
i

)
} has lower computational complexity.

It should be noted that applying distinct penalty coefficients for zi and ui is necessary due to they

control different aspects of the optimization problem. The proximal term controlled by ρ only affects the

update for u, whereas the AL term controlled by c affects the update for z and requires the use of a

dual multiplier λ to enforce the constraint. The choice of c can have a crucial impact on the convergence

behavior of the algorithm. Moreover, using different penalty coefficients enables users to fine-tune the

algorithm’s parameters for optimal performance in practice presented in Section V.
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To see the first point, we reformulate the objective function of problem (17). Combining (15a) and

(16), and rearranging the above quadratic term, we have

Li

(
zi,u

t
i,λ

t
i

)
+

c

2
∥zi − zti∥2BT

i Bi
=
1

2
∥zi∥2Wi

−
〈
QT

i Diu
t
i −AT

i λ
t
i + cBT

i Biz
t
i, zi

〉

+ δBNi

(
ut
i

)
+

c

2
∥zti∥2BT

i Bi
, (20)

where

Wi = QT
i Qi + cAT

i Ai + cBT
i Bi. (21)

Suppose BT
i Bi is chosen such that Wi is a positive definite matrix, then the objective function of

subproblem (17) is strongly convex, which ensures that the subproblem (17) has a unique solution. By

completing the square of (20), we get

Li

(
zi,u

t
i,λ

t
i

)
+

c

2
∥zi − zti∥2BT

i Bi
=

1

2
∥zi − z̃t+1

i ∥2Wi
− 1

2
∥z̃t+1

i ∥2Wi
+ δBNi

(
ut
i

)
+

c

2
∥zti∥2BT

i Bi
, (22)

where

z̃t+1
i = W−1

i

(
QT

i Diu
t
i −AT

i λ
t
i + cBT

i Biz
t
i

)
. (23)

Substituting (22) into (17) and omitting the constant terms, the optimization problem (17) is equivalent

to

zt+1 = argmin
z∈X ,z∈Z

∑

i∈N

1

2

∥∥zi − z̃t+1
i

∥∥2
Wi

. (24)

Optimization problem (24) presents two challenges. Firstly, obtaining an analytic solution is difficult due

to the linear constraints of both Z and X . Secondly, calculating the inverse matrix Wi in (23) to obtain

z̃t+1
i can be computationally expensive. In the following, we demonstrate that an appropriate choice of

BT
i Bi can overcome these challenges. To facilitate the calculation of the inverse of Wi, we set

cBT
i Bi = c|AT

i Ai|+ |QT
i Qi|, (25)

where | · | takes element-wise absolute value of a matrix. From the definition of Ai and Qi in (12) and

(11) respectively, we get

AT
i Ai =




Ni −1TNi
0TNi

−1Ni
INi

ONi

0Ni
ONi

ONi


⊗ In, (26)

QT
i Qi =




Ni 0TNi
−1TNi

0Ni
ONi

ONi

−1Ni
ONi

INi


⊗ In. (27)
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Substituting (26)-(27) into (25), we obtain

cBT
i Bi =




(c+ 1)Ni c · 1TNi
1TNi

c · 1Ni
c · INi

ONi

1Ni
ONi

INi


⊗ In. (28)

With the aid of (26)-(28), we can guarantee that Wi defined in (21) is a positive definite diagonal matrix

of the form

Wi = 2 · Diag
([
(c+ 1)Ni, c · 1TNi

,1TNi

])
⊗ In. (29)

It makes z̃t+1
i in (23) easy to compute. Moreover, by denoting z̃i := [(p̃i)

T ,
(
z̃−i

)T
,
(
z̃+i

)T
]T , where its

last two parts are

z̃−i := vec
(
z̃−i,j , j ∈ Ni

)
, z̃+i := vec

(
z̃+i,j , j ∈ Ni

)
,

then zt+1
i can be deduced using the following remark.

Remark 2 Given Bi, i ∈ N in (25), the analytic formula of the optimal solution zt+1
i in (24) is derived

as follows

pt+1
i = p̃t+1

i , (30)

(
z−i

)t+1
= vec

(
c

c+ 1
(z̃−i,j)

t+1 +
1

c+ 1
(z̃+j,i)

t+1, j ∈ Ni

)
, (31)

(
z+i

)t+1
= vec

(
1

c+ 1
(z̃+i,j)

t+1 +
c

c+ 1
(z̃−j,i)

t+1, j ∈ Ni

)
. (32)

The proof is shown in the Section 1 in the supplement material. From (30)-(32), one can see that zt+1
i

can be obtained in a distributed fashion using only z̃t+1
j , j ∈ Ni from its neighbors.

To see the last point for ui, by omitting the terms that are irrelevant with u, the optimization problem

in (18) reduces to

argmin
u

∑

i∈N

(
−⟨QT

i Diui, z
t+1
i ⟩+ δBNi (ui) +

ρ

2
∥ui − ut

i∥2
)
.

The above objective function is separable in ui and further performing projection yields

ut+1
i = projBNi

(
ut
i +

1

ρ
DiQiz

t+1
i

)
, (33)

which represents a projection onto the unit ball that can be reduced to

ut+1
i,j =

ũt+1
i,j

max{1, ∥ũt+1
i,j ∥}

, j ∈ Ni, (34)

where

vec
(
ũt+1
i,j , j ∈ Ni

)
= ut

i +
1

ρ
DiQiz

t+1
i .
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In summary, problem (17) and problem (18) can be equivalently rewritten as problem (24) and problem

(33), respectively, and the corresponding distributed solutions are given in (30)-(32) and (34). An outline

of the distributed procedure is described in Algorithm 1.

Algorithm 1: Distributed SP-ADMM algorithm
Input: parameter c, ρ, and initial values of z0i ,u

0
i ,λ

0
i = 0, i = 1, . . . , N .

Let Wi = 2 · Diag
([
(c+ 1)Ni, c · 1TNi

,1TNi

])
⊗ In.

for t ∈ {0, . . . , T} do

for client i = 1, 2, . . . , N in parallel do

z̃t+1
i = W−1

i

(
QT

i Diu
t
i −AT

i λ
t
i + cBT

i Biz
t
i

)
(35)

p̃t+1
i = ai, if i ∈ A (36)

end

communication:

⇒ Broadcast (z̃−i,j)
t+1, (z̃+i,j)

t+1 to region j ∈ Ni,

⇐ Receive (z̃−j,i)
t+1, (z̃+j,i)

t+1 from region j ∈ Ni.

for client i = 1, 2, . . . , N in parallel do

Update zt+1
i via (30) − (32) (37)

Update ut+1
i via (34)

λt+1
i = λt

i + cAiz
t+1
i (38)

end

end

Remark 3 We show that the SP-ADMM algorithm is closely related to the ADMM algorithm derived in

[24] for single source localization. Specifically, let us set pt = pt
i, aj = pt

j for all t ≥ 0, j ∈ Ni = A
(single source localization). Then, by (30) and the definition of Ei in (14), we obtain

pt+1 = p̃t+1
i = Eiz̃

t+1
i , i /∈ A. (39)
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Multiplying Ei on both sides of (23) and rearranging terms yields

p̃t+1
i =

∑

j∈Ni

1

2 (c+ 1)Ni

[
diju

t
i,j + (2c+ 1)

(
pt
i − pt

j

)
− λt

i,j + (2c+ 1)pt
j + (z+i,j)

t − c
(
pt
i − (z−i,j)

t
) ]

.

(40)

If pt
i = (z−i,j)

t, which is Aiz
t
i = 0, i ∈ N , then combining (39) with (40), replacing pj , z

+
i,j with aj ,

and rearranging terms again we have

pt+1 =
1

m

m∑

j=1

[
aj +

1

2 (c+ 1)m

(
dju

t
j + (2c+ 1)

(
pt − aj

)
− λt

j

) ]
. (41)

Here we have replaced di,j ,u
t
i,j ,λ

t
i,j by dj ,u

t
j ,λ

t
j since i is a fixed value in the single source localization

problem. Hence, if zti satisfies the linear equality constraint (15b), then equation (41) is identical to the

ADMM algorithm given in [ [24], Equation (3.8)] except for the constant coefficients of the variables.

Therefore, the proposed SP-ADMM algorithm can be regarded as an extended version of the ADMM

algorithm in [ [24] with extra capability to handle the multi-source localization problems.

However, in the case of multi-source localization, the ADMM algorithm can be significantly more com-

plex than in single-source localization due to coupled variables and increased computational complexity.

Coupled variables make subproblems in ADMM entangled and thus the convergence of the algorithm

is hard to prove. Moreover, the increased number of variables in multi-source localization increases

computational complexity, leading to slower convergence rates and reduced localization accuracy.

In Algorithm 1, we observed that in order to carry out the new round of iterations, node i has to

store the following values: zti,u
t
i,λ

t
i,Wi,B

T
i Bi,Di,Qi,Ai, c, ρ,Ni. If we assume that the storage unit

occupied by any real number is one, then node i requires 13n2N2
i +10n2Ni+2n2+4nNi+n+3 storage

units in total. Note that although the matrices and parameters involved are fixed, the rest of the vectors

are updated with each iteration. To reduce the storage space required by each sensor to run Algorithm

1, we transform the update step as follows.

Let us start by giving an explicit formula for the parts of the update variables in Algorithm 1. Using

the form of Ai,Qi, and Di, defined in (12), (11), and (10), respectively, we have

AT
i λ

t
i =

[ ∑

j∈Ni

(
λt
i,j

)T
, vec

(
−λt

i,j , j ∈ Ni

)T
,0TNi

]T
,

QT
i Diu

t
i =

[ ∑

j∈Ni

(
di,ju

t
i,j

)T
,0TNi

, vec
(
−di,ju

t
i,j , j ∈ Ni

)T ]T
. (42)
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Also, it follows from the definition (28) that

cBT
i Biz

t
i =

[(
(c+ 1)Nip

t
i + c

∑

j∈Ni

(z−i,j)
t +

∑

j∈Ni

(z+i,j)
t
)T

, vec
(
c
(
pt
i + (z−i,j)

t
)
, j ∈ Ni

)T
,

vec
(
pt
i + (z+i,j)

t, j ∈ Ni

)T ]T
. (43)

By substituting (42)-(43) into (35) yields the following update

p̃t+1
i =

1

2(c+ 1)Ni

∑

j∈Ni

[
di,ju

t
i,j − λt

i,j + c
(
pt
i + (z−i,j)

t
)
+ pt

i + (z+i,j)
t
]
, (44)

(z̃−i,j)
t+1 =

1

2c
λt
i,j +

1

2

(
pt
i + (z−i,j)

t
)
, (45)

(z̃+i,j)
t+1 =− 1

2
di,ju

t
i,j +

1

2

(
pt
i + (z+i,j)

t
)
. (46)

Using once again the form of Qi,Di and Ai, it follows from the (34) and (38) that

ũt+1
i,j =ut

i,j +
di,j
ρ

(
pt+1
i − (z+i,j)

t+1
)
,

ut+1
i,j =

1

max{1, ∥ũt+1
i,j ∥}

ũt+1
i,j , (47)

λt+1
i,j =λt

i,j + c
(
pt+1
i − (z−i,j)

t+1
)
. (48)

Next, we intend to remove z̃t+1
i to reduce the storage space and computation required by Algorithm

1. Combining (30) with (36) and (44), we have

pt+1
i =





∑
j∈Ni

(2di,jut
i,j−2λt

i,j+αt
i,j+βt

i,j)
2(c+1)Ni

, if i /∈ A,

ai, if i ∈ A.

(49)

where

αt
i,j : = λt

i,j + c
(
pt
i + (z−i,j)

t
)
, (50)

βt
i,j : = −di,ju

t
i,j + pt

i + (z+i,j)
t. (51)

By adding 1
c (z̃

+
j,i)

t+1 to the both side of (45) and using (31), we get

c+ 1

c
(z−i,j)

t+1 =
1

2c
λt
i,j +

1

2

(
pt
i + (z−i,j)

t
)
+

1

c
(z̃+j,i)

t+1. (52)

Then, substituting (46) into (52) and using (50)-(51), it yields

(z−i,j)
t+1 =

1

2(c+ 1)

(
αt

i,j + βt
j,i

)
. (53)

Similarly, we add c(z̃−j,i)
t+1 to (46), then using (32) and (50)-(51) to obtain

(z+i,j)
t+1 =

1

2 (c+ 1)

(
βt
i,j +αt

j,i

)
. (54)
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Algorithm 2: Simplified SP-ADMM algorithm
Input: parameter c, ρ, and initial values of z0 ∈ Z,u0

i,j ,λ
0
i,j = 0, i ∈ N, j ∈ Ni.

Compute {
(
α0

i,j ,β
0
i,j

)
}i∈N ,j∈Ni

defined in (50)-(51)

for t ∈ {0, . . . , T} do
communications:

⇒ Broadcast αt
i,j ,β

t
i,j to region j ∈ Ni,

⇐ Receive αt
j,i,β

t
j,i from region j ∈ Ni.

for client i = 1, 2, . . . , N in parallel do

Update pt+1
i via (49)

Update ut+1
i,j via (55)

Update βt+1
i,j via (56)

Update αt+1
i,j via (58)

Update λt+1
i,j via (57)

end

end

Applying (54) to (47) and (51), we get

ũt+1
i,j =ut

i,j +
di,j
ρ

pt+1
i − di,j

2ρ (c+ 1)

(
βt
i,j +αt

j,i

)
,

ut+1
i,j =

1

max{1, ∥ũt+1
i,j ∥}

ũt+1
i,j , (55)

βt+1
i,j =− di,ju

t+1
i,j + pt+1

i +
1

2 (c+ 1)

(
βt
i,j +αt

j,i

)
. (56)

Substituting (53) into (48) and (50), we have

λt+1
i,j = λt

i,j + cpt+1
i − c

2(c+ 1)

(
αt

i,j + βt
j,i

)
, (57)

αt+1
i,j = λt

i,j + 2cpt+1
i . (58)

The simplified version of the algorithm is summarized in Algorithm 2. From the updating steps of Algo-

rithm 2, it can be seen that each node only needs to store the following values: αt
i,j ,β

t
i,j ,u

t
i,j ,λ

t
i,j , di,j , j ∈

Ni and c, ρ,Ni. Compared with the storage space required by node i of Algorithm 1, Algorithm 2

demands only 4nNi + Ni + 3 storage units, which is significantly reduced compared to that required
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by Algorithm 1. We remark that the update (49) and (55)-(58) of Algorithm 2 should be interpreted

as an improved version that optimizes the storage requirement of Algorithm 1. Although Algorithm 2

offers superior storage efficiency, the presentation of Algorithm 1 still has value for several reasons.

Firstly, Algorithm 1 serves as a foundation for understanding the principles and techniques behind

Algorithm 2. By presenting Algorithm 1 first, we can demonstrate the motivation and rationale for

the modifications made in Algorithm 2. Additionally, the convergence analysis for Algorithm 1 is more

direct since Algorithm 2 streamlines the steps of Algorithm 1.

Remark 4 (Complexity Comparison) For each iteration of Algorithm 1, the computation cost is derived

by (35) that involves the inversion of diagonal matrix Wi ∈ Rn(2Ni+1)×n(2Ni+1), which is independent of

the iteration index t, and thus needs to be computed only once. Besides, equation (34) requires calculating

the Euclidean norm of ui ∈ RnNi×1. Hence, the computational complexity of the proposed SP-ADMM

algorithm is O (nNi), which is lower than SDP relaxation method O(n3) and ADMM-H, but equal to

SF and AM-FD. The communication cost per iteration per node is directly proportional to the number

of scalar variables that sensors need to transmit to their neighboring nodes [9]. Thus, the AM-FD, SDP,

and SF algorithms have a communication cost of nNi, while the proposed SP-ADMM requires sending

two variables to its neighbor, resulting in a communication cost per iteration of 2nNi. It should be noted

that the proposed SP-ADMM has lower communication cost than ADMM-H since the latter also needs

to transmit a penalty parameter to its neighboring nodes at each iteration. The detailed comparisons

between the proposed SP-ADMM algorithm with the other methods have been shown in Table I.

IV. CONVERGENCE ANALYSIS

In this section, we present a proof for the convergence of the proposed Algorithm 1, which consists of three

main steps. First, we provide an upper bound [31] for the difference L(zt+1,ut+1,λt+1)−L(zt,ut,λt).

Then, we construct a potential function ςt based on the AL function L(zt,ut,λt), which monotonically

decreases with each iteration and has a lower bound. Employing the Kurdyka–Łojasiewicz property [32]–

[36], we establish the global convergence of the sequence generated by Algorithm 1. Next, we introduce

the optimal gap function F(z,u,λ) to show that the proposed Algorithm 1 converges to both a KKT

point of problem (15) and a critical point of the original problem (2). Lastly, we define the ε-solution

and prove that the algorithm sequence converges with a sublinear rate.

First, we bound the update step of the AL function L (z,u,λ) at each iteration.
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Lemma 1 Suppose cBT
i Bi takes the form of (25), and let {

(
zti,u

t
i,λ

t
i

)
} be a sequence generated by

Algorithm 1. Then, for all t ≥ 1, we have

L
(
zt+1,λt+1,ut+1

)
− L

(
zt,λt,ut

)

≤
∑

i∈N

[
− c

2
∥zt+1

i − zti∥2BT
i Bi

− ρ

2
∥ut+1

i − ut
i∥2

+
3 (Nmax + 1)

c
∥Qi

(
z̃t+1
i − z̃ti

)
−Di

(
ut
i − ut−1

i

)
∥2

+ 3c (Nmax + 1) ∥z̃t+1
i − zt+1

i −
(
z̃ti − zti

)
∥2AT

i Ai

+ 3 (1 + c) (1 +Nmax) ∥z̃t+1
i − zti −

(
z̃ti − zt−1

i

)
∥2BT

i Bi

]
, (59)

where Nmax := max{Ni, i ∈ N}.

Proof: See the Section 2 in the supplement material.

Obviously, the right-hand-side (rhs) of (59) is a sum of three positive terms, no matter how large c and

ρ are, there is no guarantee that L (z,u,λ) decreases at each iteration step. Thus, it cannot be used as

a potential function. In search for an appropriate potential function, we add the constraint violation and

the proximal term to the AL function, then a novel potential function is designed as follows

ςt =
∑

i∈N

c

2

[
κ1∥Aiz̃

t
i∥2 + κ2∥Aiz

t
i∥2 +

ρ

2c
∥ut

i − ut−1
i ∥2 + (κ1 + κ2) ∥zti − zt−1

i ∥2BT
i Bi

]
+ L(zt,λt,ut),

(60)

where κ1, κ2, c, ρ > 0 are some positive constants, which can be determined by the following Lemma.

Lemma 2 Suppose the sequence {
(
zti,u

t
i,λ

t
i

)
} is generated by Algorithm 1 and cBT

i Bi takes the form

of (25). Then we have the following

ςt+1 − ςt ≤
∑

i∈N

[
− 1

2
∥zt+1

i − zti∥2Wi
− κ1 − 1

2
∥zt+1

i − zti∥2QT
i Qi

− c (κ1 − 1)

2
∥zt+1

i − zti∥2AT
i Ai

−ρ

4
∥ut+1

i − ut
i∥2 −

c (κ1 − 6 (Nmax + 1))

2
∥z̃t+1

i − zt+1
i −

(
z̃ti − zti

)
∥2AT

i Ai

− cκ1 − 6 (Nmax + 1)

2c
∥Qi(z̃

t+1
i − z̃ti)−Di

(
ut
i − ut−1

i

)
∥2

− cκ1− 6 (1 + c)(Nmax + 1)

2
∥z̃t+1

i − zti − (z̃ti − zt−1
i )∥2BT

i Bi

−
(

cκ2 · τ̃min

2Nsumn (c+ 1)2
− (Nmax + 1) cκ1

2

)
∥z̃t+1

i − zti∥2

−
(ρ
4
− d2max (κ1 + κ2)

)
∥ut

i − ut−1
i ∥2

]
, (61)

where Nsum :=
∑

i∈N Ni is the total number of neighboring nodes, dmax := max{di,j , i ∈ N , j ∈ Ni}
is the maximum measurement distance and τ̃min := min{(c+ 1)2N2

i + c2Ni +Ni, i ∈ N}.
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Proof: See the Section 3 in the supplement material.

From the above analysis, it is clear that as long as κ1, κ2 and ρ are sufficiently large, the rhs of (61)

is less than zero. As such, the potential function ςt decreases at each iteration of SP-ADMM. Below,

we derive the precise bounds for κ1, κ2 and ρ. First, following the first five rows on the rhs of (61), a

sufficient condition for κ1 is given below (for any given c > 0)

κ1 ≥ 6 (Nmax + 1)

(
1 +

1

c

)
. (62)

Second, for any given c and κ1, according to the sixth row on the rhs of (61), we need

κ2 ≥
Nsumn (c+ 1)2 (Nmax + 1)κ1

τ̃min
. (63)

Finally, given c, κ1, κ2, and based on the last row on the rhs of (61), parameter ρ requires to satisfy

ρ ≥ 4d2max (κ1 + κ2) . (64)

We conclude that if (62)-(64) are satisfied, then the potential function ςt will decrease at every iteration.

Now, we are ready to establish the main result. To this end, let us define the function F
(
zt,ut,λt

)

as the optimal gap of problem (15) given by

F
(
zt,ut,λt

)
=

∑

i∈N

[
∥zti − projX ,Z

(
zti −

(
∇zi

Fi

(
zti,u

t
i

)
+AT

i λ
t
i

))
∥2 + ∥Aiz

t
i∥2 + ∥ut

i − ut−1
i ∥2

]
.

(65)

Based on the function F
(
zt,ut,λt

)
defined above, Lemma 3 establishes its relationship with a KKT

point of problem (15) and a critical point of problem (6).

Lemma 3 When F
(
zt,ut,λt

)
= 0, then (zt,ut,λt) is a KKT solution of problem (15) satisfying:

zt ∈ argmin
z∈Z
z∈X

∑

i∈N
Fi

(
zi,u

t
i

)
+ ⟨λt

i,Aizi⟩, (66a)

0 ∈∇ui
Fi

(
zti,u

t
i

)
+ ∂δBNi (u

t
i), (66b)

0 =Aiz
t
i. (66c)

Moreover, (pt,ut) is a critical point of problem (6), and pt is a critical point of the original problem

(2).

Proof: See the Section 4 in the supplement material.

Lemma 3 suggests that we can demonstrate the sublinear convergence of Algorithm 1 to a critical point

of the original problem (2) by proving the sublinear convergence of the sequence {(zt,ut,λt)} to a KKT
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stationary point of problem (15). This convergence can be illustrated by invoking the following definition

and lemma.

Definition 1 Given problem (15), we define (z,u,λ) as an ε-solution if ∥Aizi∥ < ε and there exists a

vector v1 ∈ ∇zi
Fi(zi,ui) +Aiλi + ∂δX×Z (zi) and a vector v2 ∈ ∇zi

Fi(zi,ui) + ∂δBNi (ui) such that

∥v1∥ ≤ ε, ∥v2∥ ≤ ε.

Lemma 4 Let parameters c and ρ satisfy (62)-(64), then for any t > 1, there exists a constant M > 0

such that we can find an s ∈ {1, 2, ..., t− 1} satisfying (zs+1
i ,us+1

i ,λs+1
i ) being a M/

√
t− 1-solution.

This implies that an ϵ-solution can be obtained within M2/ϵ2 iterations.

Proof: See the Section 5 in the supplement material.

Theorem 1 For each nodes i ∈ N , suppose the sequence
{(

zti,u
t
i,λ

t
i

)}
is generated by Algorithm 1

and the conditions (62)-(64) are satisfied by properly setting the parameters. Then we have

• Lower Bound:

∃ ς > −∞ s.t. ςt ≥ ς, ∀t > 0.

• Eventual Consensus:

lim
t→∞

zt+1
i − zti → 0, lim

t→∞
λt+1
i − λt

i → 0,

lim
t→∞

ut+1
i − ut

i → 0, lim
t→∞

Aiz
t
i → 0.

• Global Convergence: the sequence
{
yt =

(
zt,ut,λt

)}
has a finite length, i.e.,

∑∞
t=1 ∥yt+1−yt∥ <

∞, and it converges to a KKT point of problem (15).

• Convergence to Stationary Points3: F
(
zt,ut,λt

)
→ 0 and the iteration sequence

{(
zt,ut,λt

)}

converges to a KKT stationary point of problem (15).

• Sublinear Convergence Rate: For any given ϵ1 > 0, suppose that F(zt,ut,λt) in (65) is less than

ϵ1 for the first time in the T -th iteration step, i.e.,

T := argmin
t

F(zt,ut,λt) ≤ ϵ1.

Then there exists a positive constant ϵ2 > 0 (the specific form is defined in the (S.119) of the

supplement material) such that ϵ1 ≤ ϵ2
T−1 , which means the convergence rate of function F(zt,ut,λt)

is O(1/T ).

3Given the linear constraint and nonsmooth term in the nonconvex optimization problem (15), we refer to the points that

satisfy the KKT condition as the stationary points (or KKT points) of the problem (15), such as [26], [37]–[40].
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Proof: See the Section 6 in the supplement material.

To our knowledge, Theorem 1 is the first result that shows the O(1/T ) convergence rate of the distributed

ADMM algorithm for the nonconvex and nonsmooth localization problem. Since Algorithm 2 is a

simplified version of Algorithm 1 in Section III, the convergence result also holds for Algorithm 2.

In the next section, numerical results will corroborate that the SP-ADMM algorithms can demonstrate

more favorable convergence behavior than the benchmark methods.

V. NUMERICAL RESULTS

We consider the two-dimensional sensor network localization problem and evaluate the performance of

the proposed Algorithm 1 against several other state-of-the-art methods, including SDP [10], SF [18],

AM-FD [20] and ADMM-H [19]. We remark that the proposed Algorithm 2 only simplifies the storage

space of Algorithm 1. Therefore, there is no difference in positioning accuracy between Algorithm 1 and

Algorithm 2. Note also that the first two methods employ convex relaxation, the third one solves the

original nonconvex problem directly, and the last one is a hybrid convex/nonconvex solver. Following

[20], we will also examine the performance of SP-ADMM-NAG50 and AM-FD-NAG50, where SP-

ADMM-NAG50 means that we run 50 steps of the NAG method [41] to obtain a good initial point, after

that, the proposed SP-ADMM is used until convergence. For fairness, AM-FD-NAG50 uses the same

initialization.

The criteria under which we compare the above algorithms are the practical running time counted as

the maximal computation time among all parallel computing components and the averaged root mean

squared error (RMSE) in a particular iteration, as described in [19], [23],

RMSE(t) =

√√√√
∑

i∈(N/A)

∥pt
i − pi∥2
N −m

,

where N/A represents the set of agents with unknown positions, which has N −m elements, pi is the

true position of node i and pt
i is the estimated position of node i in the t-th iteration of the algorithm.

In addition, to check the convergence of the proposed algorithm as stated in Theorem 1, let

S(t) =
∑

i∈N
∥∇zi

Fi

(
zti,u

t
i

)
+AT

i λ
t
i∥2,

U(t) =
∑

i∈N
∥ut

i − ut−1
i ∥2,

P (t) =
∑

i∈N
∥Aiz

t
i∥2, (67)
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TABLE II

BENCHMARK NETWORK AND ALGORITHM SETUP

Method Parameters

Network Parameters ADMM-H AM-FD

N m Crange σadd Davg ϵc ζc τc θc δc λmax u0

500 10 0.3 0.02 14.15 0.002 0.25 0.008 0.98 1.01 103 0

1000 20 0.1 0.007 11.09 0.003 0.07 0.002 0.98 1.01 103 0

where S(t) and U(t) are defined as the stationarity gap while P (t) is defined as the feasibility gap for

problem (15). The MATLAB code that implements the proposed SP-ADMM is available at: https://github.com/zm-

stu/SP-ADMM.

A. Benchmark Network

In the experiment, various methods are applied to the benchmark network data collected by the Stanford

Computational Imaging Lab [42]. Table II lists the details of the two networks and the specific parameters

used for both the ADMM-H method and AM-FD method, which refer to the settings in [19] and [20].

Crange and Davg := 1
N

∑
i∈N Ni in Table II represent the communication range and the average number

of neighbors, respectively. For the proposed algorithm, parameters are set to ρ = c = 0.11,u0 = 0

for N = 500 networks and ρ = c = 0.0197,u0 = 0 for N = 1000 networks. The initial point z0

for both networks is selected from a uniform distribution, Unif (−1, 1)n(4|E|+N). Following [15], we

consider two different kinds of measurement noise: one is an additive white Gaussian noise (AWGN)

with standard deviation σi,j = σadd, while the other is the range dependent Gaussian noise, namely a

zero mean Gaussian distribution with range dependent variance σ2
i,j = σadd∥pi − pj∥2. The purpose of

including the range-dependent Gaussian noise experiment is to evaluate the robustness of our proposed

algorithm.

Convergence performance: Let us first examine the convergence behaviors of the proposed algorithm,

SDP [10], SF [18], AM-FD [20], and ADMM-H [19]. Fig. 2(a) and Fig. 2(c) display the RMSE versus

the iteration number when we use AWGN and range-dependent Gaussian noise, respectively. As shown

in Fig. 2(a) that ADMM-H based on a two-stage approach performs the best and its RMSE approaches

the Cramer–Rao Lower Bound (CRLB) [43], but it is less advantageous in terms of the running time (see

Table III). We note that the AM-FD-NAG50 and SP-ADMM-NAG50 show lower RMSE than both SF
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Fig. 2. Performance with benchmark network (N = 500,m = 10). Measurement noise: AWGN (first row) and Range-

dependent Gaussian noise σ2
i,j = σadd∥pi − pj∥2 (second row). RMSE value (left column); feasibility gap and stationarity gap

(right column).

and SDP, illustrating that non-relaxed problems generally result in better location estimation than that of

the relaxed problems. When we focus on the first-order methods, Fig. 2(a) and Fig. 2(c) demonstrate that

the SP-ADMM-NAG50 algorithm achieves higher accuracy with fewer iterations than other methods for

both AWGN and range-dependent Gaussian noise scenarios. Furthermore, we see that AM-FD-NAG50

outperforms AM-FD, which reflects the advantage of using the NAG method to provide an initial value

that is beneficial for the nonconvex localization problem (2).

In Fig. 3, we plot the RMSE versus the iteration number for a large network with (N = 1000,m = 20).

Further comparing Fig. 3(a) (Fig. 3(c)) with Fig. 2(a) (Fig. 2(c)), we observe that the performance of

all the methods is degraded. Intriguingly, Fig. 3(c) shows that the proposed method achieves the best

performance under range-dependent Gaussian noise. It implies that the proposed method may be more

suitable for a large network in reality, possibly due to the noise and error elasticity of ADMM [9].

Gap: To further examine the convergence of the SP-ADMM algorithm, we plot in Fig. 2(b) (Fig.
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Fig. 3. Performance with benchmark network (N=1000, m=20). Measurement noise: AWGN (first row) and Range-dependent

Gaussian noise σ2
i,j = σadd∥pi − pj∥2 (second row). RMSE value (left column); feasibility gap and stationarity gap (right

column).

0 1 2 3

10
7

10
-2

10
-1

10
0

R
M

S
E

(a) N = 500,m = 10

0 2 4 6 8

10
7

10
-1

10
0

R
M

S
E

(b) N = 1000,m = 20

Fig. 4. Comparison of RMSE and communication cost for different methods in the benchmark network with AWGN noise.
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TABLE III

COMPARISONS OF RUNNING TIME

Run time (seconds)

Algorithm RMSE (AWGN) Parallelized Sequential(Per Step)

Benchmark Network (N = 500, step = 1000,CRLB ≈ 0.014)

SF 9.85e02 0.05401 1.24e03 (1.2428)

AM-FD 4.99e-02 -a 6.19e02 (0.6193)

AM-FD-NAG50 2.75e-02 - 6.75e02 (0.6753)

SDP 2.97e-02 - 1.98e02 (6.1815)

ADMM-H 1.49e-02 0.1518 3.50e03 (3.4957)

SP-ADMM-NAG50 2.03e-02 0.01091 6.64e02 (0.6642)

SP-ADMM 2.98e-02 0.01784 6.30e02 (0.6298)

Benchmark Network (N = 1000, step = 1000,CRLB ≈ 0.005)

SF 7.41e-02 0.045 6.09e03 (6.085)

AM-FD 5.07e-02 - 1.43e02 (0.1430)

AM-FD-NAG50 4.17e-02 - 1.45e02 (0.1455)

SDP 4.19e-02 - 1.56e03 (23.9601)

ADMM-H 2.73e-02 0.152 1.06e04 (10.5978)

SP-ADMM-NAG50 2.94e-02 0.034 9.63e01 (0.0965)

SP-ADMM 3.73e-02 0.033 9.04e01 (0.0905)

a These symbols “-” in the table mean that the methods cannot be implemented in parallel.

2(d)) and Fig. 3(b) (Fig. 3(d)) the curves of the optimal gap of problem (15) versus the iteration number.

Observe explicitly that the performance gap of our proposed SP-ADMM algorithm reduces as the iteration

number increases. This result verifies the efficacy of the Theorem 1, which states that the iterative sequence
{(

zt,ut,λt
)}

generated by Algorithm 1 converges to a KKT stationary point of problem (15) and the

convergence rate is O (1/T ).

Running time: Table III shows the running time of the methods in Fig. 2 and Fig. 3. It can be

seen that the proposed SP-ADMM algorithm is most efficient in computation time than other methods.

Note that while SF has a competitive running time compared to ours, its RMSE is bigger than ours. In

addition, although the SDP solver here uses SeDuMi [44], it still consumed a lot of computational time,

especially when the network size N is large. SDP terminates when the norm of the constraint gap reaches

the order of 10−7, while the other methods perform 1000 iterations. In contrast, AM-FD and AM-FD-

NAG50 require modestly increased computation time as the network size grows. Nevertheless, compared
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Fig. 5. Convergence performance of different methods with various sizes. (a)-(d) RMSE value vs. iteration number; (e)-(h)

RMSE value vs. communication cost.

to other parallel methods, AM-FD and AM-FD-NAG50 are not the most sensible choices for large-scale

networks and networks with a large average number of neighboring nodes, causing extra delays by the

sequential structure under distributed networks. As a result, the structure of parallel implementation would

be more efficient. Lastly, we note that the application of the ADMM-H method to large-scale networks

is impractical due to the unaffordable sequential running time. Moreover, it can be seen from Table II

that the ADMM-H has more parameters to adjust for different networks.

Communication cost: To evaluate the efficiency of various communication methods, we performed

a comparison of the RMSE of different methods under benchmark networks as communication costs

increased, as depicted in Fig. 4. Our results reveal that although the proposed SP-ADMM incurs a

higher communication cost than the SF and AM-FD algorithms during the same iteration (i.e., 1000

steps), it achieves higher accuracy at the same communication cost once convergence has been reached.

Additionally, Fig. 4 also indicates that the AM-FD and SF methods were incapable of meeting higher

accuracy requirements, even with sufficient communication resources.

B. Synthesized Network

In this subsection, we evaluate the performance of the proposed SP-ADMM algorithm in comparison

to ADMM-H [19], SDP [10], SF [18], and AM-FD [20] under varying factors that could potentially
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TABLE IV

SYNTHESIZED NETWORK AND ALGORITHM SETUP

Method Parameters

Network Parameters ADMM-H AM-FD

N m Crange σadd Davg ϵc ζc θc δc λmax τc u0

Random (Changing m)

495 5 0.3 0.02 12.88

0.002 0.25 0.008 0.98 1.01 103 0515 20 0.3 0.02 16.48

525 30 0.3 0.02 18.50

impact localization accuracy.

1) Influence of the Number of Sensors (N ): We initiated our investigation by evaluating the per-

formance of random networks with sizes N=2000, 3000, 5000, and 10000. Similar to the benchmark

networks, the anchor number was set to 2% of the network size, and the value of σadd of AWGN was

chosen to be 7% of the communication range. The results of our experiments are presented in Fig. 5, where

Fig. 5(a)-(d) depicts RMSE versus iteration steps and Fig. 5(e)-(h) illustrates RMSE versus communication

loss. Similar to the results obtained for the benchmark networks shown in Fig. 4, our findings demonstrate

that the proposed SP-ADMM algorithm incurs a higher communication cost compared to the SF and AM-

FD algorithms during the same number of iterations (i.e., 1500 steps). However, once convergence has

been achieved, the SP-ADMM algorithm provides higher accuracy at the same communication cost.

Moreover, Fig. 5(e)-(h) show that even with sufficient communication resources, the AM-FD and SF

methods are incapable of meeting higher accuracy requirements.

2) Influence of the Number of Anchors (m): The parameters for the random networks and ADMM-

H method are summarized in Table IV. The three networks of the experiment are formed by randomly

removing 5 anchors, randomly generating 10 anchors, and randomly generating 20 anchors on the

benchmark network (N = 500,m = 10). Fig. 6 explores the influence of the number of anchor

nodes on positioning accuracy. In all three networks, the parameters of our algorithm were set to

ρ = c = 0.11,u0 = 0, and z0 from a distribution Unif (−1, 1)n(4|E|+N). As expected, the localization

accuracy of most methods improves as the number of anchors increases. This is due to the anchors

know their true locations, thus can provide more accurate position estimates of the neighboring nodes. In

addition, we can see that except for the ADMM-H method, the SP-ADMM-NAG works better than other
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Fig. 6. Convergence performance under a different number of anchors with AWGN for the N − m = 490 nodes network.

RMSE value (left column); primal feasibility and stationarity gap (right column).

methods and gets closer to CRLB when increasing the number of anchors. A closer inspection shows that

for the AM-FD (light blue line), which is also a nonconvex relaxation method, the proposed SP-ADMM

(green line) performs better even though it converges not so fast at the beginning. AM-FD-NAG50 (dark
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TABLE V

COMPARISONS OF RUNNING TIME

Run time (seconds)

Algorithm RMSE Parallelized Sequential(Per Step)

Random (N = 495,m = 5, step = 2000,CRLB ≈ 0.016)

SF 4.64e-01 0.0402 1.97e02(0.0984)

AM-FD 1.86e-01 -
b

1.23e02 (0.0613)

AM-FD-NAG50 9.25e-02 - 1.24e02 (0.0623)

SDP 7.99e-02 - 1.59e02 (4.9609)

ADMM-H 7.47e-02 0.1412 6.27e03 (3.1338)

SP-ADMM-NAG50 7.45e-02 0.0256 1.16e02 (0.0581)

SP-ADMM 1.38e-01 0.0251 1.11e02 (0.0554)

Random (N = 510,m = 20, step = 1000,CRLB ≈ 0.013)

SF 9.40e-02 0.04971 1.39e03 (1.3411)

AM-FD 4.67e-02 - 7.20e01 (0.07202)

AM-FD-NAG50 2.31e-02 - 7.66e01 (0.0768)

SDP 2.65e-02 - 3.24e02 (10.4481)

ADMM-H 1.38e-02 1.31 3.56e03 (3.5575)

SP-ADMM-NAG50 1.97e-02 0.03232 8.10e01 (0.0881)

SP-ADMM 3.72e-02 0.0388 8.29e01 (0.0811)

Random (N = 520,m = 30, step = 1000,CRLB ≈ 0.013)

SF 7.94e-02 0.0411 1.81e03 (1.8142)

AM-FD 3.67e-02 - 7.51e01(0.0752)

AM-FD-NAG50 1.90e-02 - 8.20e01 (0.0821)

SDP 2.56e-02 - 5.57e02 (18.5801)

ADMM-H 1.33e-02 1.41 3.51e03 (3.5150)

SP-ADMM-NAG50 1.35e-02 0.0343 8.54e01 (0.0854)

SP-ADMM 1.90e-02 0.0351 8.51e01 (0.0811)

b These symbols “-” in the table mean that the methods cannot be implemented in parallel.
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Fig. 7. Convergence performance under different average number of neighboring nodes (Davg). Here, we adopt σadd = 0.02;

N = 108,m = 8.

blue line) and SP-ADMM-NAG50 (red line) also have such performance. The running time is shown

in Table V, and we find that the SP-ADMM is most computationally time efficient due to the parallel

implementation. The results here are similar to those in Table III and consistent with Table I.

3) Influence of the Average Number of Neighbors (Davg): Fig. 7 investigates the influence of the

average number of neighbors on the performance of four algorithms: the proposed SP-ADMM algorithm,

SF, SDP, and AM-FD. The network (N = 108,m = 8) randomly placed in the 2D [0, 1] × [0, 1] area.

and we set the parameters ρ = c = 0.0265, z0 = 0, and u0 = 0.5 · 1. As shown in Fig. 7, the RMSE

values of most algorithms decrease as the average number of neighbors increases. The reason may be that

each node communicates with more neighbors at each iteration, which leads to the position estimated

by different nodes for the same node reaching consistency faster. Notably, the SP-ADMM algorithm
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Fig. 8. Position estimates obtained by the SDP, SF, AM-FD, and the proposed SP-ADMM algorithm in 2-D plane. Here, we

adopt σadd = 0.02, N = 108,m = 8, Davg = 12.57 (Crange = 0.23). Here, the anchors are marked by ■, the true agent positions

by + and the estimated ones by ◦.

consistently achieves the lowest RMSE in all scenarios. Fig. 8 visualizes the position estimates obtained

in Fig. 7(c). It clearly shows that the positions estimated by our approach are very close to the true

agents’ locations.

4) Influence of the Measurement Noise Variance (σi,j): To test the robustness of the proposed

algorithm against different measurement noise profiles, the localization scenarios are further extended to

sensor networks with different measurement noise variances σ2
i,j = σadd∥pi − pj∥2. The corresponding

convergence results we obtained are depicted in Fig. 9. Both the network and our proposed algorithm

used the same parameters as in Fig. 7(c). Note that Fig. 7(c) shows the test results for σadd = 0.02, while

we show some other configurations in Fig. 9. Here, we have similar observations as in Fig. 7. Although

the performance of these methods demonstrates certain loss with the increase of the noise variance, the
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Fig. 9. Convergence performance under different measurement noise variances. Here, we let N = 108,m = 8; communication

range is set to 0.23.

localization error of our proposed SP-ADMM algorithm is consistently lower in all scenarios. Moreover,

one can see that the non-relaxed methods are relatively insensitive to measurement noise compared with

the other convex relaxation methods. Perhaps the reason that the solution of the convex relaxation method

is an approximation of the original problem.

We also conducted an experiment to investigate the influence of range-dependent noise on the po-

sitioning effectiveness of various methods in extreme cases. To this end, we randomly generated a set

of 100 nodes and 8 anchors within a [0, 1] × [0, 1] square. The communication distance is set to 0.23,

and the network topology is depicted in Fig. 10(a). The distance measurements between sensors are

subject to Gaussian-distributed noise with zero mean and variance σ2
i,j = σadd∥pi − pj∥2. The initial

positions are drawn from a uniform distribution Unif(−1, 1)200, and we calculated the corresponding
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Fig. 10. Influence of range-dependent measurement noise wi,j on positioning accuracy across various methods. wi,j ∼

Gauss(0, σadd∥pi − pj∥2)

Root-Mean-Squared-Error (RMSE) value as follows:

RMSE(0) =

√√√√ 1

NMC

1

100

NMC∑

k=1

100∑

i∈(N/A)

(p0
i − pi)T (p0

i − pi),

where NMC denotes the count of independent Monte Carlo trials, while p0,k
i symbolizes the initial

position vector of the i-th node in the k-th Monte Carlo trial. For Fig. 10, we set NMC = 50. When the

RMSE of the algorithm is larger than the initial RMSE, it means that the algorithm has failed to improve

the accuracy of the sensor positions and may have even made it worse. From Fig. 10, one can observe

that the proposed SP-ADMM failed to provide appropriate position estimates when the variance of the

range-noise is bigger than 60. Additionally, Fig. 10 shows that the RMSEs of all methods increase as the

noise variance becomes larger. Nevertheless, the proposed SP-ADMM shows the slowest performance

degradation, indicating that the proposed method is more robust than AM-FD method and SDP method.

C. Evaluation of the Proposed SP-ADMM Algorithm Versus Penalty Parameters

We simulated the proposed SP-ADMM algorithm under different values of the penalty parameters c, ρ,

as well as the initial value u0. The different network parameters (Cscale, Crange, Nmax = {Ni, i ∈ N})

are also considered. Fig. 12 summarizes the RMSE after 1000 iterations. Fig. 11 and Fig. 12 not only

show the sensitivity of the proposed SP-ADMM algorithm to parameters ρ, c, and u0, but also provide

practical advice that can assist users, using the proposed SP-ADMM algorithm, to reduce the time in

adjusting parameters ρ, c,u0 on different networks.
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Fig. 11. RMSE curves achieved by our proposed methods with different penalty coefficients under the benchmark network

(N = 500,m = 10) with AWGN noise.

1) The Selection Strategy of ρ and c: Theorem 1 guarantees that the proposed Algorithms will

converge if ρ is selected in accordance with (62)-(64) for a given c. To corroborate this claim, we present in

Fig. 11 the RMSE with iterations for different values of ρ, while maintaining c = 0.1 under the benchmark

network (N=500, m=10). Our experimental results demonstrate that, in practical implementation, the

selection of proximal penalty coefficients impacts the convergence rate and final accuracy of the proposed

algorithm. Specifically, for a benchmark network with N = 500 and m = 10, we observed that choosing

a smaller value of c or ρ within an appropriate range resulted in the fastest convergence and highest

accuracy. For instance, as depicted in Fig. 11(a) (Fig. 11(b)), when c (ρ) is in the range of [1.1ρ, 2ρ]

([0.7c, 1.2c]), the algorithm’s performance improves with decreasing values of the parameter c. However,

selecting a value of c or ρ that is too small or too large may significantly slow down the convergence

rate and compromise the final accuracy, as evidenced by the yellow, brown, red, and purple lines in the

two subfigures of Fig. 11. The appropriate range of the parameter values is typically selected empirically

based on the specific data used.

2) Localization Performance with u and c Selection: Fig. 12(a) and Fig. 12(b) validate this statement.

Cscale denotes the side length of the square area where the network is deployed, for example, Cscale = 10

indicates that the network deployed over [0, 10] × [0, 10] area. Fig. 12(a)-(b) employ the same sensor

network as Figure , except for the variance of the measured noise σ2
i,j , which is set to σ2

i,j = 0.02∥pi −
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Fig. 12. Localization accuracy of the SP-ADMM algorithm at iteration step T = 1000. Measurement noise variance σ2
i,j =

0.02∥pi − pj∥2; Cscale denotes the side length of the square area where the network is deployed; ui initialized as u0
i =

u · 1Ni ,∀i ∈ N ; Crange refers to communication range; Nmax = max {Ni, i ∈ N}. (a) penalty parameter c is fixed at 0.0265;

(b)(c)(d) initial parameter u is fixed at 0.5.

pj∥2. We can see that the curves at different Cscale show tiny fluctuations for varying u than in changing

c. This is because the convergence rate is strongly dependent on the penalty parameter c: please see

the supplementary material for the specific form of the convergence rate. These results indicate that the

performance of the proposed SP-ADMM is not sensitive to initial parameter u but sensitive to penalty

parameter c. Besides, Fig. 12(b) shows that the appropriate interval value of c for different Cscale is

consistent, and cannot be too large or too small. Therefore, parameter c should be adjusted more carefully

when the proposed SP-ADMM algorithm is applied to different networks.

3) The Selection Strategy of c based on the Communication Range: In this part, we focus on

how the parameter c should be chosen for networks with different communication ranges. The network

composed of N = 108,m = 8 nodes located over [0, 1]× [0, 1] square area and the measurement noise
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with variance σ2
i,j = 0.02∥pi−pj∥2. Fig. 12(c) depicts the evolution of RMSE under networks at different

communication ranges. Under the same number of iterative steps, it can be seen from Fig. 12(c) that

networks with large Crange can obtain a lower RMSE by choosing a large c, networks with smaller Crange

can reach lower RMSE by selecting smaller c.

These results are consistent with (62)-(64) derived from Lemma 2. In detail, the maximum measurement

distance dmax, the maximum number of adjacent nodes Nmax and the total number of adjacent nodes

Nsum all increase as Crange increases. Therefore, according to (62)-(64), ρ needs to be increased to ensure

the convergence of the proposed algorithm. Since we set ρ = c in all experiments, it is reasonable for

c to larger. Moreover, we also obtain similar results for the benchmark network, such as ρ = c = 0.11

(Crange = 0.3, N = 500) is greater than ρ = c = 0.0197 (Crange = 0.1, N = 1000). These results serve as

the rule-of-thumb for selecting the parameter c of the proposed SP-ADMM algorithm when it is applied

to different networks.

4) Convergence rate with Nmax: Fig. 12(d) displays the RMSE versus the maximum number of

adjacent nodes Nmax for different values of c. The sensor network graph is the same as Fig. 12(c) at

Crange = 0.25. As seen in Fig. 12(d), a lower RMSE is obtained at a larger Nmax, which means that for

the same penalty c, the proposed algorithm converges faster on a network with a larger Nmax. This is

indeed consistent with our convergence rate of Theorem 1. It can be seen from the supplement that the

coefficient ϵ2 of the sublinear convergence rate is inversely proportional to Nmax when c, ρ, κ1 and κ2

are fixed.

D. Summary

The proposed algorithm has been evaluated against SDP, SF, AM-FD, and ADMM-H methods in terms

of RMSE, running time, and communication cost across a range of network scenarios. These scenarios

include different number of anchors and sensor nodes, average number of neighboring nodes, and different

variance levels of the measurement noise under both benchmark and synthesized network configurations.

Furthermore, we have included an empirical investigation on the impact of the penalty parameters ρ and

c for our proposed SP-ADMM algorithm.

The results indicated that the proposed algorithm surpasses the SDP, SF, and AM-FD methods in terms

of localization accuracy, while exhibiting lower computational complexity and communication cost than

the ADMM-H method. Although the communication cost of the proposed SP-ADMM is higher than that

of the SF and AM-FD algorithms per iteration, it provides higher accuracy at the same communication

cost once convergence has been reached. Overall, the proposed SP-ADMM is a promising solution for

cooperative localization problem in wireless sensor networks.
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One possible future direction is to explore selective communication strategy among nodes to reduce

the communication burden. This involves nodes randomly or sequentially choosing a subset of neigh-

boring nodes to communicate with during each iteration. Additionally, addressing outliers in realistic

measurement data and fusing other types of measurements are also important areas for future research.

VI. CONCLUSION

In this paper, we have proposed novel distributed parallel SP-ADMM algorithms for wireless sensor

network localization in Gaussian measurement noise. Our proposed algorithms directly tackle the chal-

lenging nonconvex and nonsmooth problem without resorting to convex relaxation. We have shown that

Algorithm 1 has a low computational complexity (in Table I) and proved that the algorithm converges

to a critical point of the original problem (in Lemma 3, 4, and Theorem 1) at rate O (1/T ). Moreover,

we have proposed Algorithm 2, which is an improved version of Algorithm 1 in terms of storage space.

Simulation and experimental results not only have shown that the proposed SP-ADMM algorithm is

robust and performs well in the different average number of neighboring nodes, measurement noise

variance, coverage area, and the number of anchors and non-anchors, but also provided suggestions of

the parameters for migrating the proposed algorithm to different networks.
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1. Proof of the Remark 2

Recall that

Z =
{
z|z+i,j = pj = z−j,i, ∀ i ∈ N , j ∈ Ni

}
,

and Wi is a diagonal matrix defined in (29). Substituting them into (24), then the optimization (24) is

rewritten as

min
z∈X

∑

i∈N

[
(c+ 1)Ni

∥∥pi − p̃t+1
i

∥∥2 +
∑

j∈Ni

c
∥∥z−i,j − (z̃−i,j)

t+1
∥∥2 +

∑

j∈Ni

∥∥z+i,j − (z̃+i,j)
t+1

∥∥2
]
. (S.1)

From the definition of X in (14) and (S.1), we immediately obtain the optimal solution for pt+1
i as

follows

pt+1
i =





p̃t+1
i,i , for i /∈ A,

ai, for i ∈ A.
(S.2)

Combining (S.2) with (36) yields

pt+1
i = p̃t+1

i , ∀i ∈ N . (S.3)

The terms in problem (S.1) related to z−i,j are

c
∥∥∥z−i,j − (z̃−i,j)

t+1
∥∥∥
2
+
∥∥∥z−i,j − (z̃+j,i)

t+1
∥∥∥
2
, ∀i ∈ N , j ∈ Ni.

By the optimality condition, we have

c
(
(z−i,j)

t+1 − (z̃−i,j)
t+1

)
+
(
(z−i,j)

t+1 − (z̃+j,i)
t+1

)
= 0.

After rearranging the terms, we obtain

(z−i,j)
t+1 =

1

c+ 1

(
c · (z̃−i,j)t+1 + (z̃+j,i)

t+1
)
. (S.4)

Similarly, for i ∈ N , j ∈ Ni, we can obtain the closed form solution for z+i,j as follows

(z+i,j)
t+1 =

1

c+ 1

(
z̃+i,j)

t+1 + c · (z̃−j,i)t+1
)
, ∀i ∈ N , j ∈ Ni. (S.5)

This completes the proof of Remark 2 by combining (9) and (S.3)-(S.5).
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2. Proof of the Lemma 1

In (22), we take zi = zt+1
i and zi = zti, it yields that

Li

(
zt+1
i ,ut

i,λ
t
i

)
+

c

2
∥zt+1

i − zti∥2BT
i Bi

− Li

(
zti,u

t
i,λ

t
i

)
=

1

2
∥zt+1

i − z̃t+1
i ∥2Wi

− 1

2
∥zti − z̃t+1

i ∥2Wi
.

(S.6)

Since zt+1
i is the optimal solution from Remark 2 and zti ∈ Z ∩ X , zt+1

i ∈ Z ∩ X , then we have

1

2
∥zt+1

i − z̃t+1
i ∥2Wi

≤ 1

2
∥zti − z̃t+1

i ∥2Wi
. (S.7)

Substituting (S.7) into (S.6), we obtain

Li

(
zt+1
i ,ut

i,λ
t
i

)
− Li

(
zti,u

t
i,λ

t
i

)
≤ − c

2
∥zt+1

i − zti∥2BT
i Bi

. (S.8)

Using the u update in (18) with the same technique, we can obtain the following inequality

Li

(
zt+1
i ,ut+1

i ,λt
i

)
− Li

(
zt+1
i ,ut

i,λ
t
i

)
≤ −ρ

2
∥ut+1

i − ut
i∥2. (S.9)

Recall that λt+1
i = λt

i + cAiz
t+1
i in (38), we have the trivial equality

Li

(
zt+1
i ,ut+1

i ,λt+1
i

)
− Li

(
zt+1
i ,ut+1

i ,λt
i

)
=

1

c
∥λt+1

i − λt
i∥2. (S.10)

Applying (23), we have

AT
i λ

t
i = QT

i Diu
t
i −Wiz̃

t+1
i + cBT

i Biz
t
i. (S.11)

Both sides plus the term cAT
i Aiz

t+1
i , by (38), it yields

AT
i λ

t+1
i = QT

i Diu
t
i −Wiz̃

t+1
i + cBT

i Biz
t
i + cAT

i Aiz
t+1
i

= QT
i Diu

t
i −QT

i Qiz̃
t+1
i − cAT

i Ai(z̃
t+1
i − zt+1

i )− cBT
i Bi(z̃

t+1
i − zti), (S.12)

where the last equality dues to the definition of Wi in (21). Let σ̃min denote the smallest non-zero

eigenvalue of AT
i Ai, we have

σ̃min∥λt+1
i − λt

i∥2 ≤ ∥AT
i (λ

t+1
i − λt

i)∥2.

From the definition of AT
i Ai in (26), it derives σ̃min = 1. The above inequality combined with (S.12)

implies that

∥λt+1
i − λt

i∥2

≤∥QT
i Di

(
ut
i − ut−1

i

)
−QT

i Qi(z̃
t+1
i − z̃ti)− cAT

i Ai

[
z̃t+1
i − zt+1

i −
(
z̃ti − zti

)]

− cBT
i Bi

[
z̃t+1
i − zti −

(
z̃ti − zt−1

i

)]
∥2

≤3 (Ni + 1) ∥Qi

(
z̃t+1
i − z̃ti

)
−Di

(
ut
i − ut−1

i

)
∥2 + 3c2 (Ni + 1) ∥z̃t+1

i − zt+1
i −

(
z̃ti − zti

)
∥2AT

i Ai

+ 3c2∥BT
i Bi∥∥z̃t+1

i − zti −
(
z̃ti − zt−1

i

)
∥2BT

i Bi
, (S.13)
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where the last inequality holds because of the triangle inequality and ∥QT
i Qi∥ = ∥AT

i Ai∥ = Ni + 1

from (26)-(27), ∥AT
i Ai∥ denotes the spectral norm of a matrix AT

i Ai. Along with the form of the matrix

cBT
i Bi in (28), we have

∥BT
i Bi∥ ≤ (1 + c) (1 +Nmax)

c
, (S.14)

where Nmax := max{Ni, i ∈ N}. Substituting (S.14) into (S.13) and the resulting applied to (S.10), we

have

Li

(
zt+1
i ,ut+1,λt+1

i

)
− L

(
zt+1
i ,ut+1

i ,λt
i

)

≤3 (Nmax + 1)

c
∥Qi

(
z̃t+1
i − z̃ti

)
−Di

(
ut
i − ut−1

i

)
∥2 + 3c (Nmax + 1) ∥z̃t+1

i − zt+1
i −

(
z̃ti − zti

)
∥2AT

i Ai

+ 3 (1 + c) (1 +Nmax) ∥z̃t+1
i − zti −

(
z̃ti − zt−1

i

)
∥2BT

i Bi
. (S.15)

Combing (S.8), (S.9), (S.15), moreover, taking summation over i ∈ N , we obtain the final result (59).

3. Proof of the Lemma 2

The following Lemma shows the descent of the desired term.

Lemma 5 Suppose cBT
i Bi takes the form of (25), then the following is true for Algorithm 1

∑

i∈N

c

2
∥Aiz̃

t+1
i ∥2 + c

2
∥zt+1

i − zti∥2BT
i Bi

≤
∑

i∈N

[ c
2
∥Aiz̃

t
i∥2 +

c

2
∥zti − zt−1

i ∥2BT
i Bi

− c

2
∥zt+1

i − zti∥2AT
i Ai

− 1

2
∥zt+1

i − zti∥2QT
i Qi

+
d2max

2
∥ut

i − ut−1
i ∥2 − 1

2
∥Qi

(
z̃t+1
i − z̃ti

)
−Di

(
ut
i − ut−1

i

)
∥2

− c

2
∥z̃t+1

i − zt+1
i − (z̃ti − zti)∥2AT

i Ai
+

c (Ni + 1)

2
∥zti − z̃t+1

i ∥2

− c

2
∥z̃t+1

i − zti − (z̃ti − zt−1
i )∥2BT

i Bi

]
,

where dmax := max{dij , i ∈ N , j ∈ Ni}.

Proof: According to (S.12), we get

⟨AT
i (λ

t+1
i − λt

i), z̃
t+1
i − z̃ti⟩ =

〈
−Wi

(
z̃t+1
i − z̃ti

)
+QT

i Di

(
ut
i − ut−1

i

)
, z̃t+1

i − z̃ti
〉

+
〈
cAT

i Ai

(
zt+1
i − zti

)
+ cBT

i Bi

(
zti − zt−1

i

)
, z̃t+1

i − z̃ti
〉
. (S.16)

Let us bound the left-hand side (lhs) and the rhs of (S.16) separately. First, the lhs of (S.16) can be

expressed as

⟨AT
i (λ

t+1
i − λt

i), z̃
t+1
i − z̃ti⟩ =

〈
cAT

i Aiz
t+1
i , z̃t+1

i − z̃ti
〉
,
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where the equality dues to dual update in (38). Furthermore,

〈
cAT

i Aiz
t+1
i , z̃t+1

i − z̃ti
〉

=
〈
cAT

i Ai

(
zt+1
i − zti

)
, z̃t+1

i − z̃ti
〉
−
〈
cAT

i Aiz
t
i, z̃

t+1
i − z̃ti

〉

=− c

2
∥zt+1

i − zti −
(
z̃t+1
i − z̃ti

)
∥2AT

i Ai
+

c

2
∥z̃t+1

i − z̃ti∥2AT
i Ai

+
c

2
∥zt+1

i − zti∥2AT
i Ai

+
c

2
∥Ai

(
zti − z̃ti

)
∥2 − c

2
∥Ai

(
zti − z̃t+1

i

)
∥2 + c

2
∥Aiz̃

t+1
i ∥2 − c

2
∥Aiz̃

t
i∥2, (S.17)

where the final equality dues to ⟨a,b⟩ = −1
2∥a− b∥2 + 1

2∥a∥2 + 1
2∥b∥2 for any a,b ∈ R(2Ni+1)n. And

from the compatibility of the norm that

c

2
∥Ai

(
zti − z̃t+1

i

)
∥2 ≤ c (Ni + 1)

2
∥zti − z̃t+1

i ∥2, (S.18)

where ∥AT
i Ai∥ = Ni + 1 due to (26).

Second, we have rewritten the first row on the rhs of the (S.16):

⟨−Wi(z̃
t+1
i − z̃ti) +QT

i Di(u
t
i − ut−1

i ), z̃t+1
i − z̃ti⟩

=− ∥z̃t+1
i − z̃ti∥2Wi

− 1

2
∥Qi

(
z̃t+1
i − z̃ti

)
−Di

(
ut
i − ut−1

i

)
∥2

+
1

2
∥Qi

(
z̃t+1
i − z̃ti

)
∥2 + 1

2
∥Di(u

t
i − ut−1

i )∥2. (S.19)

For the second row on the rhs of the (S.16), we have

⟨cAT
i Ai

(
zt+1
i − zti

)
+ cBT

i Bi

(
zti − zt−1

i

)
, z̃t+1

i − z̃ti⟩

=
c

2
∥Ai

(
z̃t+1
i − z̃ti

)
∥2 + c

2
∥Ai

(
zt+1
i − zti

)
∥2 − c

2
∥z̃t+1

i − z̃ti −
(
zt+1
i − zti

)
∥2AT

i Ai

+
c

2
∥z̃t+1

i − z̃ti∥2BT
i Bi

+
c

2
∥zti − zt−1

i ∥2BT
i Bi

− c

2
∥z̃t+1

i − zti − (z̃ti − zt−1
i )∥2BT

i Bi
. (S.20)

Recall Wi = QT
i Qi + cAT

i Ai + cBT
i Bi. Combing (S.19) and (S.20), then the rhs of (S.16) can be

expressed as

〈
−Wi

(
z̃t+1
i − z̃ti

)
+QT

i Di

(
ut
i − ut−1

i

)
, z̃t+1

i − z̃ti
〉

+
〈
cAT

i Ai

(
zt+1
i − zti

)
+ cBT

i Bi

(
zti − zt−1

i

)
, z̃t+1

i − z̃ti
〉

=− 1

2
∥Qi

(
z̃t+1
i − z̃ti

)
−Di

(
ut
i − ut−1

i

)
∥2 − c

2
∥z̃t+1

i − z̃ti −
(
zt+1
i − zti

)
∥2AT

i Ai

− 1

2
∥z̃t+1

i − z̃ti∥2Wi
− c

2
∥z̃t+1

i − zti − (z̃ti − zt−1
i )∥2BT

i Bi
+

c

2
∥Ai

(
zt+1
i − zti

)
∥2

+
c

2
∥zti − zt−1

i ∥2BT
i Bi

+
1

2
∥Di(u

t
i − ut−1

i )∥2. (S.21)
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From the optimality conditions for the strongly convex optimization problem (24), for any zi ∈ Z ∩ X
we have

∑

i∈N
⟨Wi(z

t+1
i − z̃t+1

i ), zt+1
i − zi⟩ ≤ 0,

∑

i∈N
⟨Wi(z

t
i − z̃ti), z

t
i − zi⟩ ≤ 0.

Plugging zi = zti into the first inequality and zi = zt+1
i into the second, adding the resulting inequalities,

we have
∑

i∈N
⟨Wi

(
z̃t+1
i − z̃ti + zti − zt+1

i

)
, zti − zt+1

i ⟩ ≤ 0.

Rearranging the above inequality, we have

∑

i∈N
∥zti − zt+1

i ∥2Wi
≤

∑

i∈N
⟨Wi

(
z̃t+1
i − z̃ti

)
, zt+1

i − zti⟩. (S.22)

Using ⟨a,b⟩ = −1
2∥a− b∥2 + 1

2∥a∥2 + 1
2∥b∥2, then (S.22) becomes

∑

i∈N

1

2
∥zti − zt+1

i ∥2Wi
≤

∑

i∈N

1

2
∥z̃t+1

i − z̃ti∥2Wi
− 1

2
∥z̃t+1

i − z̃ti −
(
zt+1
i − zti

)
∥2. (S.23)

Substituting (S.18) (S.23) into (S.17) (S.21), respectively, againg using Wi = QT
i Qi+ cAT

i Ai+ cBT
i Bi

and combining (S.16), we obtain the result.

Note that it remains to bound the term ∥zti − z̃t+1
i ∥2 in Lemma 5. Next, we establish a simple Lemma

to ensure that the term decreases.

Lemma 6 Let
{(

zti,u
t
i,λ

t
i

)}
be the sequence generated by Algorithm 1, cBT

i Bi takes the form of (25).

Then we have

∑

i∈N

c

2
∥Aiz

t+1
i ∥2 + c

2
∥zt+1

i − zti∥2BT
i Bi

≤
∑

i∈N

[
c

2
∥Aiz

t
i∥2 +

c

2
∥zti − zt−1

i ∥2BT
i Bi

+
d2max

2
∥ut

i − ut−1
i ∥2 − c · τ̃min

2Nsumn (c+ 1)2
∥zti − z̃t+1

i ∥2
]
,

where τ̃min := min{(c+ 1)2N2
i + c2Ni +Ni, i ∈ N} and Nsum :=

∑
i∈N Ni.

Proof: Using (S.12) again, we can get

⟨AT
i (λ

t+1
i − λt

i), z
t+1
i − zti⟩ =

〈
−Wi

(
z̃t+1
i − z̃ti

)
, zt+1

i − zti
〉
+ c∥Ai

(
zt+1
i − zti

)
∥2

+
〈
QT

i Di

(
ut
i − ut−1

i

)
+ cBT

i Bi

(
zti − zt−1

i

)
, zt+1

i − zti
〉
. (S.24)
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First, the lhs of (S.24) can be expressed as

⟨AT
i (λ

t+1
i − λt

i), z
t+1
i − zti⟩ =⟨cAiz

t+1
i ,Aiz

t+1
i −Aiz

t
i⟩

=
c

2
∥Aiz

t+1
i ∥2 − c

2
∥Aiz

t
i∥2 +

c

2
∥Ai

(
zt+1
i − zti

)
∥2. (S.25)

where the first equality dues to (38), and the second equality dues to ⟨a,a−b⟩ = 1
2∥a−b∥2+ 1

2∥a∥2−
1
2∥b∥2 for any a,b ∈ R(2Ni+1)n.

Next, we deal with the rhs of the (S.24). By (S.22) yields

∑

i∈N

〈
−Wi

(
z̃t+1
i − z̃ti

)
, zt+1

i − zti
〉
≤ −

∑

i∈N
∥zt+1

i − zti∥2Wi
. (S.26)

And using the Cauchy–Schwarz inequality, we have

〈
QT

i Di

(
ut
i − ut−1

i

)
+ cBT

i Bi

(
zti − zt−1

i

)
, zt+1

i − zti
〉

≤1

2
∥Di

(
ut
i − ut−1

i

)
∥2 + 1

2
∥Qi

(
zt+1
i − zti

)
∥2 + c

2
∥zti − zt−1

i ∥2BT
i Bi

+
c

2
∥zt+1

i − zti∥2BT
i Bi

. (S.27)

Combing (S.24)-(S.27) and using Wi = cBT
i Bi + cAT

i Ai +QT
i Qi, we have

∑

i∈N

c

2
∥Aiz

t+1
i ∥2 + c

2
∥zt+1

i − zti∥2BT
i Bi

≤
∑

i∈N

[ c
2
∥Aiz

t
i∥2 +

c

2
∥zti − zt−1

i ∥2BT
i Bi

+
1

2
∥Di

(
ut
i − ut−1

i

)
∥2 − c

2
∥Ai

(
zt+1
i − zti

)
∥2
]
. (S.28)

Hence, we will use the dual residual
∑

i∈N ∥Ai

(
zt+1
i − zti

)
∥2 to bound

∑
i∈N ∥zti − z̃t+1

i ∥. Recall the

definition of zi in (9) and Ai in (12), we have

Ai

(
zt+1
i − zti

)
=

[
pt+1
i − pt

i −
(
(z−i,j)

t+1 − (z−i,j)
t
)]

j∈Ni

,

then it yields

1TNin ·Ai

(
zt+1
i − zti

)
=

∑

j∈Ni

[
pt+1
i − pt

i −
(
(z−i,j)

t+1 − (z−i,j)
t
)]

. (S.29)

Substituting (30)-(31) into (S.29), rearranging the terms, and summing the above relation over i ∈ N ,

we obtain

∑

i∈N
1TNin ·Ai

(
zt+1
i − zti

)
=
∑

i∈N

∑

j∈Ni

[ c

c+ 1

(
p̃t+1
i − pt

i −
(
(z̃−i,j)

t+1 − (z−i,j)
t
))

+
1

c+ 1

(
p̃t+1
i − pt

i −
(
(z̃+j,i)

t+1 − (z−i,j)
t
)) ]

. (S.30)

For the first row on the rhs of the (S.30), using (12) again, we have

∑

i∈N

∑

j∈Ni

c

c+ 1

(
p̃t+1
i − pt

i −
(
(z̃−i,j)

t+1 − (z−i,j)
t
))

=
∑

i∈N
1TNin · c

c+ 1
Ai

(
z̃t+1
i − zti

)
. (S.31)
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For the second row on the rhs of the (S.30), since zt+1
i is an optimal solution of (24) for all t ≥ 1, we

have zti ∈ Z , then we can deduce that

(z−i,j)
t = (z+j,i)

t, ∀ i ∈ N , j ∈ Ni. (S.32)

Hence, together with (S.32), the second row on the rhs of the (S.30) can be expressed as
∑

i∈N

∑

j∈Ni

1

c+ 1

(
p̃t+1
i − pt

i −
(
(z̃+j,i)

t+1 − (z−i,j)
t
))

=
∑

i∈N

∑

j∈Ni

1

c+ 1

(
p̃t+1
i − pt

i −
(
(z̃+j,i)

t+1 − (z+j,i)
t
))

=
∑

i∈N
1TNin · 1

c+ 1
Qi

(
z̃t+1
i − zti

)
, (S.33)

where the last step is due to (11) and rearranges the terms. Substituting (S.31) and (S.33) into (S.30),

we can get
∥∥∥
∑

i∈N
1TNin ·Ai

(
zt+1
i − zti

) ∥∥∥
2
=

1

(c+ 1)2

∥∥∥
∑

i∈N
1TNin · [cAi +Qi]

(
z̃t+1
i − zti

) ∥∥∥
2
. (S.34)

Let A := diag (Ai, i ∈ N ) denote the block diagonal matrix whose diagonal coefficients correspond to

the Ai, i ∈ N and Q := diag (Qi, i ∈ N ), z̃t+1 := vec
(
z̃t+1
i , i ∈ N

)
, then (S.34) can be rewritten as a

compact form:

∥1TNsumn ·A
(
zt+1 − zt

)
∥2 = 1

(c+ 1)2
∥1TNsumn · [cA+Q]

(
z̃t+1 − zt

)
∥2, (S.35)

where Nsum :=
∑

i∈N Ni. Due to the Cauchy–Schwarz inequality, we can upper bound the lhs of (S.35)

Nsumn · ∥A
(
zt+1 − zt

)
∥2 ≥ ∥1TNsumn ·A

(
zt+1 − zt

)
∥2. (S.36)

For the rhs of (S.35), we have

∥1TNsumn · [cA+Q]
(
z̃t+1 − zt

)
∥2 ≥ τ̃min∥z̃t+1 − zt∥2, (S.37)

where τ̃min is defined as the smallest non-zero eigenvalue of
[
1TNsumn

· (cA+Q)
]T [

1TNsumn
· (cA+Q)

]
.

From the definition of Ai and Qi in (12) and (11), it derives τ̃min = min{(c+ 1)2N2
i +c2Ni+Ni, i ∈ N}.

Substituting (S.36) and (S.37) into (S.35), we obtain

c

2
∥A

(
zt+1 − zt

)
∥2 ≥ c · τ̃min

2Nsumn (c+ 1)2
∥z̃t+1 − zt∥2, (S.38)

which can be rewritten as a summation over network nodes:
∑

i∈N

c

2
∥Ai

(
zt+1
i − zti

)
∥2 ≥

∑

i∈N

c · τ̃min

2Nsumn (c+ 1)2
∥z̃t+1

i − zti∥2. (S.39)

Finally, we substitute (S.39) to (S.28), and the proof is complete.

Using Lemma 1, Lemma 5, Lemma 6 and the definition of the potential function ςt in (60), we can

get the desired result of (61).
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4. Proof of the Lemma 3

If F
(
zt,ut,λt

)
= 0, it implies that, for any node i ∈ N ,

zti − projX ,Z
(
zti −

(
∇zi

Fi

(
zti,u

t
i

)
+AT

i λ
t
i

))
= 0, (S.40)

Aiz
t
i = 0, (S.41)

ut
i − ut−1

i = 0. (S.42)

According to the definition of the projection operator, we have

projX ,Z
(
zti −

(
∇zi

Fi

(
zti,u

t
i

)
+AT

i λ
t
i

))
= argmin

z∈Z
z∈X

∥∥zi − zti +
(
∇zi

Fi

(
zti,u

t
i

)
+AT

i λ
t
i

)∥∥2 , (S.43)

Using (S.40), we deduce that zti is an optimal solution for problem (S.43). Therefore, based on the first

order necessary condition of (S.43), we obtain

⟨∇zi
Fi

(
zti,u

t
i

)
+AT

i λ
t
i,x− zti⟩ ≥ 0, ∀ x ∈ X ,x ∈ Z. (S.44)

Since Fi (zi,ui)+ ⟨λi,Aizi⟩ is convex over X and Z for any fixed ui, then the above expression (S.44)

implies that zti is also sufficient for zti to minimize Fi (zi,ui) + ⟨λi,Aizi⟩ over X and Z , i.e.,

zti ∈ argmin
z∈Z
z∈X

Fi

(
zi,u

t
i

)
+ ⟨λt

i,Aizi⟩.

Thanks to the separable property of the objective function about node i, we know zt shall satisfy the

KKT condition

zt ∈ argmin
z∈Z
z∈X

∑

i∈N
Fi

(
zi,u

t
i

)
+ ⟨λt

i,Aizi⟩. (S.45)

Similarly, the primal variable ui is updated as follows

ut
i = projBNi (u

t−1
i −∇ui

Fi

(
zti,u

t
i

)
).

Combing it with (S.42), we have

0 = ∥ut−1
i − ut

i∥2 = ∥ut−1
i − projBNi (u

t−1
i −∇ui

Fi

(
zti,u

t
i

)
)∥2,

Therefore ut−1
i is the optimal solution of the following problem

min
ui∈BNi

∥ui − ut−1
i +∇ui

Fi

(
zti,u

t
i

)
∥2. (S.46)

Based on the optimality condition of problem (S.46) and equation (S.42), we have

0 ≤ ⟨∇ui
Fi

(
zti,u

t
i

)
,ui − ut

i + ut
i − ut−1

i ⟩ = ⟨∇ui
Fi

(
zti,u

t
i

)
,ui − ut

i⟩, ∀ ui ∈ BNi . (S.47)



47

Since Fi (zi,ui) is convex for any fixed zi, it implies that

ut
i ∈ argmin

ui∈BNi

Fi

(
zti,u

t
i

)
, (S.48)

which is also written as

0 ∈ ∇ui
Fi

(
zti,u

t
i

)
+ ∂δBNi (u

t
i). (S.49)

Combing (S.45), (S.49) and (S.41), one can observe that
(
zt,ut,λt

)
satisfy the KKT condition (66).

Next, we show that if (zt,ut,λt) is a KKT solution of Problem (15), which satisfies (66), then (pt,ut)

is a critical point of the nonconvex problem (6) satisfying:

0 =
∑

j∈Ni

(
pt
i − pt

j − di,ju
t
i,j + pt

i − pt
j + dj,iu

t
j,i

)
, ∀ i ∈ (N/A), (S.50a)

0 ∈ −di,j
(
pt
i − pt

j

)
+ ∂δB

(
ut
i,j

)
, ∀ i ∈ N , j ∈ Ni, (S.50b)

pt
j = aj , ∀ j ∈ A. (S.50c)

Firstly, since zt is an optimal solution of (66a), we have zt ∈ X , thus (S.50c) is proved.

Secondly, we prove (pt,ut) satisfies (S.50b). Since zt is an optimal solution of (66a), we have zt ∈ Z .

By combining this with the KKT condition (66c), we can deduce that

(z+i,j)
t = pt

j = (z−j,i)
t, ∀ i ∈ N , ∀ j ∈ Ni. (S.51)

By using the definition of Fi(z
t
i,u

t
i) and (S.51), we obtain

∇ui
Fi(z

t
i,u

t
i) = −DiQiz

t
i = vec

(
−di,j(p

t
i − (z+i,j)

t) j ∈ Ni

)
= vec(−di,j(p

t
i − pt

j), j ∈ Ni),

(S.52)

where

Di = Diag (vec (di,j , j ∈ Ni))⊗ In, Qi = [1Ni
,ONi

,−INi
]⊗ In,

zti =

[
(pt

i)
T , vec

(
(z−i,j)

t, j ∈ Ni

)T
, vec

(
(z+i,j)

t, j ∈ Ni

)T
]T

. (S.53)

By combining (S.52) with KKT condition (66b), we have that (zti,u
t
i,j) satisfies the critical condition

(S.50b).

Finally, let us prove (S.50a). Recall that

Fi (zi,ui) =
1

2
∥Qizi∥2 − uT

i DiQizi, (S.54)

X = {z | Eizi = ai,∀i ∈ A}, Ei =
[
1,0TNi

,0TNi

]
⊗ In, Z = {z+i,j = pj = z−j,i, ∀ i ∈ N , j ∈ Ni}.
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Substituting (S.53) and (S.54) into (66a), then the optimization problem (66a) is rewritten as

argmin
z∈Z
z∈X

∑

i∈N
Fi (zi,ui) + ⟨λi,Aizi⟩

= argmin
z+
i,j=z−

j,i

pi=ai,i∈A

∑

i∈N

∑

j∈Ni

(
1

2
∥pi − z+i,j∥2 − di,ju

T
i,j(pi − z+i,j) + λT

i,j(pi − z−i,j)

)

=argmin
pi,z

−
i,j

∑

i∈(N/A)

∑

j∈Ni

(
1

2
∥pi − z−j,i∥2 − di,ju

T
i,j(pi − z−j,i) + λT

i,j(pi − z−i,j)

)

+
∑

i∈A

∑

j∈Ni

(
1

2
∥ai − z−j,i∥2 − di,ju

T
i,j(ai − z−j,i) + λT

i,j(ai − z−i,j)

)
. (S.55)

where the last equality holds by substituting the constraints z+i,j = z−j,i,∀i ∈ N , j ∈ Ni and pi = ai, i ∈ A
into the objective function of the first equality. Using the KKT condition (66a), we know that zt is an

optimal solution of problem (S.55). By using the optimality condition of (S.55) about variables pi and

z−i,j , we have that

0 =
∑

j∈Ni

(
pt
i − (z−j,i)

t − di,ju
t
i,j + λt

i,j

)
, ∀ i ∈ (N/A),

0 =
∑

j∈Ni

(
(z−i,j)

t − pt
j + dj,iu

t
j,i − λt

i,j

)
, ∀ i ∈ (N/A),

Adding the above equalities together, we get

0 =
∑

j∈Ni

(
pt
i − (z−j,i)

t − di,ju
t
i,j + (z−i,j)

t − pt
j + dj,iu

t
j,i

)
, ∀ i ∈ (N/A), (S.56)

By using the KKT condition (66c), we have (z−i,j)
t = pt

i, (z
−
j,i)

t = pt
j . Then (S.56) can be rewritten as

0 =
∑

j∈Ni

(
pt
i − pt

j − di,ju
t
i,j + pt

i − pt
j + dj,iu

t
j,i

)
, ∀ i ∈ (N/A). (S.57)

which shows that zt satisfy (S.50a).

We have thus established that if (zt,ut,λt) is a KKT solution of problem (15), which satisfies (66),

then (pt,ut) is a critical point of problem (6). Furthermore, we can demonstrate below that pt also

qualifies as a critical point of the original problem (2).

Recall that the function Fi (zi,ui) is defined as

Fi (zi,ui) =
1

2
∥Qizi∥2 − uT

i DiQizi =
∑

j∈Ni

1

2

[
∥pi − pj∥2 − di,ju

T
i,j (pi − pj)

]
, ∀ i ∈ N . (S.58)

Therefore, combining (S.48) with (S.58) yields that ut
i,j is the optimal solution of the following problem

min
ui,j∈B

−di,ju
T
i,j

(
pt
i − pt

j

)
.
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From this, we can derive that

ut
j,i = −ut

i,j , ∀ i ∈ N , j ∈ Ni. (S.59)

Using (S.59) and (S.50), we obtain that

pt
i − pt

j ∈ ∂δB
(
ut
i,j

)
for all i ∈ N , j ∈ Ni.

Since δB (·) is a proper, lower semicontinuous, and convex function, it follows from [ [45] Theorem 4.20,

p. 104] that

ut
i,j ∈ ∂δ∗B

(
pt
i − pt

j

)
, for all i ∈ N , j ∈ Ni.

Here, δ∗B represents the Fenchel conjugate of δB. From [ [45], Example 2.31, p. 28], we also find that

δ∗B (·) = ∥ · ∥. Hence ut
i,j ∈ ∂∥ · ∥(pt

i − pt
j) for all i ∈ N and j ∈ Ni. Substituting this fact, along with

(S.59) and (S.50c), into (S.50a), we can get

0 =
∑

j∈Ni

(pt
i − pt

j)− di,ju
t
i,j , ∀i ∈ (N/A), (S.60a)

ut
i,j ∈ ∂∥ · ∥(pt

i − pt
j), ∀i ∈ N , j ∈ Ni, (S.60b)

pt
j = aj , ∀ j ∈ A. (S.60c)

Therefore, from (S.60) we know that pt is a critical point of the original nonconvex problem (2).

5. Proof of the Lemma 4

According to equations (62)-(64), it can be observed that the value of ςt decreases after each iteration.

Combining this observation with the first part of Theorem 1, it can be concluded that for any t > 1,

there exists an s ∈ 1, 2, . . . , t− 1 such that ςs − ςs+1 ≤ ς0−ς
t−1 . By utilizing equation (61), we can let

K = (ς0 − ς) ·max
{1

2
,
κ1 − 1

2
,
c(κ1 − 1)

2
,
ρ

4
,
c(κ1 − 6(Nmax + 1))

2
,
cκ1 − 6(Nmax + 1)

2c
,

cκ2 · τ̃min

2Nsumn (c+ 1)2
− (Nmax + 1) cκ1

2
,
ρ

4
− d2max(κ1 + κ2)

}
.

and we obtain

∥zs+1 − zsi∥2 <
K

t− 1
, ∥us+1

i − us
i∥2 <

K

t− 1
, ∥z̃s+1

i − zs+1
i − (z̃si − zsi ) ∥2AT

i Ai
<

K

t− 1
,

∥Qi(z̃
s+1
i − z̃si )−Di

(
us
i − us−1

i

)
∥2 < K

t− 1
, ∥z̃s+1

i − zsi − (z̃si − zs−1
i )∥2BT

i Bi
<

K

t− 1
. (S.61)

From problem (17), we have

zs+1
i = argmin

z
Fi (zi,u

s
i ) + ⟨λs

i ,Aizi⟩+
c

2
∥zi − zsi∥2BT

i Bi
+ δX×Z(zi).
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Then by applying the optimality condition, we can get

0 ∈ ∇zi
Fi

(
zs+1
i ,us

i

)
+AT

i λ
s
i + cBT

i Bi(z
s+1
i − zsi ) + ∂δX×Z(z

s+1
i ).

Letting

v1 = ∇zi
Fi

(
zs+1
i ,us+1

i

)
+AT

i λ
s+1
i −∇zi

Fi

(
zs+1
i ,us

i

)
−AT

i λ
s
i − cBT

i Bi(z
s+1
i − zsi ),

then we have

∥v1∥ =∥ −QT
i Di(u

s+1
i − us

i ) +AT
i (λ

s+1
i − λs

i ) + cBT
i Bi(z

s+1
i − zsi )∥

≤dmax

√
Ni + 1∥us+1

i − us
i∥+

√
Ni + 1∥λs+1

i − λs
i∥+ (1 + c)(1 +Nmax)∥zs+1

i − zsi∥, (S.62)

where the last inequality holds due to ∥QT
i Qi∥ = ∥AT

i Ai∥ = Ni+1 and (S.14). Substituting (S.61) and

(S.13) into (S.62), we have

∥v1∥ ≤
√
K√

t− 1

(
dmax

√
Ni + 1 +

√
Ni + 1(

√
Ni + 1 + c

√
Ni + 1 + (1 + c)(1 +Nmax))

+ (1 + c)(1 +Nmax)
)

≤
√
M1√
t− 1

,

where M1 := K(dmax

√
Ni + 1 +

√
Ni + 1(

√
Ni + 1 + c

√
Ni + 1 + (1 + c)(1 + Nmax)) + (1 + c)(1 +

Nmax))
2 > 0. Recall the u update step, we have

us+1
i = argmin

u
Fi(z

s+1
i ,ui) +

ρ

2
∥ui − us

i∥2 + δBNi (ui),

By the optimality condition,

0 ∈ ∇ui
Fi(z

s+1
i ,us+1

i ) + ρ(us+1
i − us

i ) + ∂δBNi (u
s+1
i ).

Letting

v2 = ∇ui
Fi(z

s+1
i ,us

i )−∇ui
Fi(z

s+1
i ,us+1

i )− ρ(us+1
i − us

i ) = −ρ(us+1
i − us

i ), (S.63)

then we have

v2 ∈ ∇ui
Fi(z

s+1
i ,us+1

i ) + ∂δBNi (u
s+1
i ). (S.64)

By the inequality (S.61), we get

∥v2∥ ≤
√
K√

t− 1
· ρ =

M2√
t
, (S.65)

where M2 := Kρ2 > 0. Then the Lemma 1 holds for v1,v2 and M := max{M1,M2} and (zt,ut,λt)

is a M/
√
t− 1-solution. It indicates that the proposed algorithm converges to a KKT stationary point of

problem (15) at a sublinear rate.
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6. Proof of the Theorem 1

Lemma 7 Suppose c, ρ, κ1, κ2 are chosen according to (62)-(64). Then the following statement holds

true

∃ ς > −∞ s.t. ςt ≥ ς, ∀t > 0.

Proof: By using the update step (38) of the dual variable λt+1
i , we have

L(zt+1,λt+1,ut+1)

=
∑

i∈N
Fi(z

t+1
i ,ut+1

i ) + ⟨λt+1
i ,Aiz

t+1
i ⟩+ c

2
∥Aiz

t+1
i ∥2

=
∑

i∈N
Fi(z

t+1
i ,ut+1

i ) +
1

c
⟨λt+1

i ,λt+1
i − λt

i⟩+
c

2
∥Aiz

t+1
i ∥2

=
∑

i∈N

[
Fi(z

t+1
i ,ut+1

i ) +
1

2c
(∥λt+1

i ∥2 − ∥λt
i∥2 + ∥λt+1

i − λt
i∥2) +

c

2
∥Aiz

t+1
i ∥2

]
. (S.66)

Adding (S.66) from t = 1 to T , we obtain
T∑

t=1

L(zt+1,λt+1,ut+1)

=

T∑

t=1

∑

i∈N

[
Fi

(
zt+1
i ,ut+1

i

)
+

c

2
∥Aiz

t+1
i ∥2 + 1

2c

(
∥λt+1

i ∥2 − ∥λt
i∥2 + ∥λt+1

i − λt
i∥2

)]
. (S.67)

From the definition of Fi it follows that

∑

i∈N
Fi

(
zt+1
i ,ut+1

i

)
=
∑

i∈N

1

2

∥∥Qiz
t+1
i

∥∥2 −
(
ut+1
i

)t
DiQiz

t+1
i

=
∑

i∈N

1

2

∥∥Qiz
t+1
i −Diu

t+1
i

∥∥2 − 1

2

∥∥Diu
t+1
i

∥∥2

≥
∑

i∈N
−d2max

2

∥∥ut+1
i

∥∥2 > −∞, ∀t > 0, (S.68)

where the last inequality is due to ut
i ∈ BNi , ∀i ∈ N , t > 0. Therefore, according to the definition (60)

of potential function, (S.67) and (S.68), it shows that
T∑

t=1

ςt > −∞,∀T > 0. (S.69)

When c, ρ, κ1, κ2 satisfy (62)-(64), Lemma 2 show that the potential function ςt decreases at eatch iteration

of Algorithm 1. Hence, by (S.69) we can infer that ςt ≥ ς > −∞, ∀t > 0.
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Lemma 8 Suppose the parameters c, ρ, κ1 and κ2 satisfy (62)-(64), then the iterative sequence {
(
zti,u

t
i,λ

t
i

)
}

of Algorithm 1 satisfies

lim
t→∞

zt+1
i − zti → 0, lim

t→∞
Aiz

t
i → 0,

lim
t→∞

λt+1
i − λt

i → 0, lim
t→∞

ut+1
i − ut

i → 0, ∀i ∈ N .

Proof: Since Wi is a positive definite diagonal matrix, combining (61) and Lemma 7, we have

lim
t→∞

zt+1
i − zti → 0. (S.70)

Using the update step of λt+1
i (cf.(38)), we have from (S.10), (S.13) and Lemma 7 that

lim
t→∞

Aiz
t+1
i → 0, lim

t→∞
λt+1
i − λt

i → 0. (S.71)

By the inequality (61) and Lemma 7, we further obtain

lim
t→∞

ut+1
i − ut

i → 0. (S.72)

Lemma 9 (Sufficient decrease condition) Suppose the sequence {
(
zt,ut,λt

)
}t≥1 is generated by Al-

gorithm 1, cBT
i Bi takes the form of (25), and the conditions (62)-(64) are satisfied. Then we have

ςt+1 − ςt ≤
∑

i∈N

[
−min{c, 1} · ∥zt+1

i − zti∥2 −
ρ

4
∥ut+1

i − ut
i∥2 − C0∥λt+1

i − λt
i∥2 − C1∥z̃t+1

i − zti∥2
]
,

where C0 := min{cκ1−6(Nmax+1), c(cκ1−6(1+c)(Nmax+1))}
max{3(Ni+1), 3c(1+c)(1+Nmax)} and C1 := cκ2·τ̃min

2Nsumn(c+1)2
− (Nmax+1)cκ1

2 . dmax :=

max{di,j , i ∈ N , j ∈ Ni}, Nmax := max{Ni, i ∈ N}, Nsum :=
∑

i∈N Ni is the total number of

neighboring nodes and τ̃min := min{(c+ 1)2N2
i + c2Ni +Ni, i ∈ N}.

Proof: Substituting (S.14) into (S.13), we have

∥λt+1
i − λt

i∥2 ≤max{3(Ni + 1), 3c(1 + c)(1 +Nmax)} ·
(
∥Qi

(
z̃t+1
i − z̃ti

)
−Di

(
ut
i − ut−1

i

)
∥2

+ ∥z̃t+1
i − zt+1

i −
(
z̃ti − zti

)
∥2AT

i Ai
+ ∥z̃t+1

i − zti −
(
z̃ti − zt−1

i

)
∥2BT

i Bi

)
, ∀ i ∈ N .

(S.73)

Combining (S.73), (29) with (61), we can derive the result.

Lemma 10 (Bounded sequence) Suppose that conditions (62)-(64) are satisfied, the graph obtained by

the network is connected, and there is at least one anchor sensor. Then the sequence {
(
zt,ut,λt, z̃t

)
}t≥1

generated by Algorithm 1 is bounded.

Proof: We establish the boundedness of {ut}t≥1, {zt}t≥1, {λt}t≥1, and {z̃t}t≥1 sequentially:
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1) It is evident from Algorithm 1 that {ut}t≥1 ⊂ BNNi , where B represents the unit ball constraint.

Hence, the sequence {ut}t≥1 is bounded.

2) Using the update rule of λt+1
i , we obtain

c

∞∑

t=1

∑

i∈N
∥Aiz

t+1
i ∥2 =

∞∑

t=1

∑

i∈N
∥λt+1

i − λt
i∥2 ≤

1

C0

∞∑

t=1

(
ςt − ςt+1

)
≤ 1

C0

(
ς1 − ς

)
< ∞. (S.74)

where the first inequality is due to Lemma 9 and the second inequality comes from Lemma 7.

Consequently, {∥Aiz
t
i∥}t≥1 is bounded for all i ∈ N . Similarly, by using Lemma 9 and Lemma 7

again, we can show that
{
∥z̃t+1

i − zti∥
}
t≥1

is also bounded for all i ∈ N . Recall that

Qi = [1Ni
,ONi

,−INi
]⊗ In, Ai = [1Ni

,−INi
,ONi

]⊗ In, ∀i ∈ N , (S.75)

then with simple algebraic manipulation, we can derive

[0Ni
,ONi

,−INi
]⊗ In ·QT

i = INin, [0Ni
,ONi

,−INi
]⊗ In ·AT

i = ONin, ∀i ∈ N . (S.76)

In addition, substituting (29) into the update step of z̃t+1
i , we have

QT
i Qiz

t
i = −Wi

(
z̃t+1
i − zti

)
+QT

i Diu
t
i − cAT

i Aiz
t
i − cAT

i λ
t
i, ∀i ∈ N . (S.77)

Multiplying both sides of (S.77) by [0Ni
,ONi

,−INi
]⊗ In and taking the norm, we obtain

∥Qiz
t
i∥ = ∥ [0Ni

,ONi
,−INi

]⊗ In ·Wi

(
z̃t+1
i − zti

)
+Diu

t
i∥ ≤ 2∥z̃t+1

i − zti∥+ dmax∥ut
i∥,

where dmax = max{di,j , i ∈ N , j ∈ Ni}. The first equality is due to (S.76), while the second

inequality follows the triangle inequality and (29). Since the right-hand side (rhs) of the above

inequality is bounded, it follows that {∥Qiz
t
i∥}t≥1 is bounded for all i ∈ N . Recall the definition

of zi = [pT
i , (z

−
i )

T , (z+i )
T ]T and Qi,Aj in (S.75), we have

Qiz
t
i = vec

(
pt
i − (z+i,j)

t, j ∈ Ni

)
,Ajz

t
j = vec

(
pt
j − (z−j,i)

t, i ∈ Nj

)
. (S.78)

By using the triangle inequality, for all t ≥ 0, we have

∥(z+i,j)t∥ ≤ ∥pt
i∥+ ∥pt

i − (z+i,j)
t∥, ∥pt

j∥ ≤ ∥(z−j,i)t∥+ ∥pt
j − (z−j,i)

t∥. (S.79)

Recall the update step of zti, we have

(z+i,j)
t = (z−j,i)

t, ∀ i ∈ N , j ∈ Ni, and pt
i = ai, ∀ i ∈ A ⊆ N . (S.80)

Since we have at least one anchor, combining (S.79) with (S.80), we can get

∥pt
j∥ ≤ ∥ai∥+ ∥pt

i − (z+i,j)
t∥+ ∥pt

j − (z−j,i)
t∥, ∀ j ∈ Ni, i ∈ A. (S.81)
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Therefore, the sequence {∥pt
j∥}t≥1 is bounded for all j ∈ Ni, i ∈ A due to the rhs of (S.81) being

bounded, which is a consequence of the boundedness of {∥Qiz
t
i∥}t≥1 and {∥Aiz

t
i∥}t≥1 for all

i ∈ N (see (S.78)). Using the definition of ztj and the triangle inequality, we have

∥ztj∥ ≤
∑

i∈Nj

3∥pt
j∥+ ∥pt

j − (z−j,i)
t∥+ ∥pt

j − (z+j,i)
t∥, ∀ j ∈ N . (S.82)

Since the rhs of (S.82) is bounded, then the sequence {∥ztj∥}t≥1 is bounded for all j ∈ Ni, i ∈ A. By

applying a similar argument as in the derivation of (S.79)-(S.82), we can show that zti is bounded

in a neighborhood of the nodes j ∈ Ni, i ∈ A. Given that the graph is connected, we can thus

conclude that the sequence {zti}t≥1 is bounded for all i ∈ N .

3) Rearranging the terms of (S.77) and taking the norm yields

∥λt
i∥ ≤ ∥AT

i λ
t
i∥ ≤ ∥QT

i Qiz
t
i∥+ ∥Wi

(
z̃t+1
i − zti

)
∥+ ∥QT

i Diu
t
i∥+ ∥cAT

i Aiz
t
i∥, (S.83)

where the first inequality holds due to the smallest eigenvalue of AiA
T
i being 1 from (S.75), and

the second inequality follows from the triangle inequality. Since the rhs of (S.83) is bounded, it

follows that {λt
i}t≥1 is bounded for all i ∈ N .

4) Since ∥z̃t+1
i ∥ ≤ ∥z̃t+1

i − zti∥+ ∥zti∥, and the rhs is bounded, it follows that the sequence {z̃ti}t≥1 is

bounded for all i ∈ N .

Lemma 11 (Subgradient bound) Let {yt =
(
zt,ut,λt

)
}t≥1 be a sequence generated by Algorithm 1,

κ1, κ2, c, and ρ are parameters used in the potential function ςt. Then we have

vt+1 := (vzt+1 ,vut+1 ,vλt+1 ,vz̃t+1 ,vut ,vzt) ∈ ∂ςt+1, ∀ t ≥ 0,

where

vzt+1
i

:=Wi

(
zti − z̃t+1

i

)
+QT

i Di

(
ut
i − ut+1

i

)
+ (κ2 + 1)AT

i

(
λt+1
i − λt

i

)

+
(
cAT

i Ai +QT
i Qi + c (κ1 + κ2)B

T
i Bi

) (
zt+1
i − zti

)
,

vut+1
i

:=
ρ

2

(
ut
i − ut+1

i

)
, vλt+1

i
:=

1

c

(
λt+1
i − λt

i

)
, vz̃t+1

i
:= κ1A

T
i

(
cAi

(
z̃t+1
i − zt+1

i

)
+ λt+1

i − λt
i

)
,

vut
i
:=

ρ

2

(
ut
i − ut+1

i

)
, vzt

i
:= c (κ1 + κ2)B

T
i Bi

(
zti − zt+1

i

)
, i ∈ N . (S.84)

Moreover, for every t ≥ 0, it holds that

∥vt+1∥ ≤
∑

i∈N
αi∥zt+1

i − zti∥+
∑

i∈N

(
ρ+ dmax

√
Ni + 1

)
∥ut+1

i − ut
i∥+

∑

i∈N
βi∥λt+1

i − λt
i∥

≤C2∥yk+1 − yk∥, (S.85)
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where

αi := (c+ 1) (Ni + 1) + 2 (κ1 + κ2) (1 + c) (1 +Nmax) +
2Ni (c+ 1)2

√
nNNsum(Ni + 1)√
τ̃min

,

βi :=
√

Ni + 1 (κ1 + 1 + κ2) +
1

c
, C2 :=

√
3N ·max{αi, ρ+ dmax

√
Ni + 1, βi, i ∈ N}. (S.86)

Proof: By taking partial derivatives of ςt+1 with respect to zt+1
i ,ut+1

i ,λt+1
i , z̃t+1

i ,ut
i, z

t
i and using

the update step of λt+1
i , we obtain

∇zt+1
i

ςt+1 = ∇zi
Li

(
zt+1
i ,ut+1

i ,λt+1
i

)
+ κ2A

T
i

(
λt+1
i − λt

i

)
+ c (κ1 + κ2)B

T
i Bi

(
zt+1
i − zti

)
,

∂ut+1
i

ςt+1 = ∂ui
Li

(
zt+1
i ,ut+1

i ,λt+1
i

)
+

ρ

2

(
ut+1
i − ut

i

)
,

∇λt+1
i

ςt+1 = ∇λi
Li

(
zt+1
i ,ut+1

i ,λt+1
i

)
,

∇z̃t+1
i

ςt+1 = vz̃t+1
i

, ∇ut
i
ςt+1 = vut

i
, ∇zt

i
ςt+1 = vzt

i
, (S.87)

where vz̃t+1
i

,vut
i
, and vzt

i
are defined in (S.84). Using the update step of z̃t+1

i , we have

∇zi
Li

(
zt+1
i ,ut+1

i ,λt+1
i

)
=Wi

(
zti − z̃t+1

i

)
+QT

i Di

(
ut
i − ut+1

i

)
+AT

i

(
λt+1
i − λt

i

)

+
(
cAT

i Ai +QT
i Qi

) (
zt+1
i − zti

)
. (S.88)

Combining (S.88) with (S.87) yields vzt+1
i

= ∇zt+1
i

ςt+1. By the optimality condition of u subproblem

(18), we have

0 ∈ ∂ui
Li

(
zt+1
i ,ut+1

i ,λt
i

)
+ ρ

(
ut+1
i − ut

i

)
= ∂ui

Li

(
zt+1
i ,ut+1

i ,λt+1
i

)
+ ρ

(
ut+1
i − ut

i

)
. (S.89)

Combining (S.89) with (S.87) yields vut+1
i

∈ ∂ut+1
i

ςt+1. Applying the update formula of λt+1
i , yields

vλt+1
i

=
1

c

(
λt+1
i − λt

i

)
= Aiz

t+1
i = ∇λi

Li

(
zt+1
i ,ut+1

i ,λt+1
i

)
= ∇λt+1

i
ςt+1.

By using the expressions for vt+1 and the triangle inequality, we obtain the following bound

∥vt+1∥ ≤∥Wi∥∥z̃t+1
i − zti∥+

(
2c(κ1 + κ2)∥BT

i Bi∥+ c∥AT
i Ai∥+ ∥QT

i Qi∥
)
∥zt+1

i − zti∥ (S.90)

+
(
σ1/2
max

(
QiQ

T
i

)
∥Di∥+ ρ

)
∥ut+1

i − ut
i∥+

(
σ1/2
max

(
AiA

T
i

)
(κ2 + 1 + κ1) +

1

c

)
∥λt+1

i − λt
i∥,

where σmax

(
QiQ

T
i

)
and σmax

(
AiA

T
i

)
denote the largest eigenvalue of QiQ

T
i and AiA

T
i , respectively.

By taking the square root of both sides of the inequality (S.38), and combining the result using the fact

that ∥x∥2 ≤ ∥x∥1 ≤
√
N∥x∥2, ∀ x ∈ RN , we obtain
∑

i∈N
∥z̃t+1

i − zti∥ ≤ (c+ 1)
√
nNNsum√

τ̃min

∑

i∈N
∥Ai

(
zt+1
i − zti

)
∥. (S.91)

Furthermore, using (29) and (S.75), we have

∥Wi∥ = 2(c+ 1)Ni, σmax

(
AiA

T
i

)
= σmax

(
QiQ

T
i

)
= Ni + 1. (S.92)
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Substituting (S.14), (S.91), and (S.92) into (S.90), we get

∥vt+1∥ ≤
∑

i∈N
αi∥zt+1

i − zti∥+
∑

i∈N

(
ρ+ dmax

√
Ni + 1

)
∥ut+1

i − ut
i∥+

∑

i∈N
βi∥λt+1

i − λt
i∥, (S.93)

where αi and βi are defined in (S.86). By the fact that ∥x∥1 ≤
√
3N∥x∥2, ∀ x ∈ R3N , we obtain

∥vt+1∥ ≤C2∥yt+1 − yt∥,

where constant C2 is defined in (S.86). This concludes the proof.

In the following, we denote by ω
(
{xt}t≥1

)
the set of limit points of the sequence {xt}t≥1, and we

define critL := {y : 0 ∈ ∂L (y)} as the set of all critical points of L.

Lemma 12 (Properties of limit point set) Let {(zt,ut,λt)}t≥1 be a sequence generated by Algorithm

1. Suppose that conditions (62)-(64) are satisfied, and let Ω := ω
(
{(zt,ut,λt, z̃t,ut−1, zt−1)}t≥1

)
, we

have the following results:

1) the set Ω is nonempty and compact;

2) lim
t→∞

dist
[ (

zt,ut,λt, z̃t,ut−1, zt−1
)
,Ω

]
= 0;

3) Ω ⊆ {(z,u,λ, z,u, z) : (z,u,λ) ∈ critL};

4) any critical point of L is a KKT point of problem (15);

5) the potential function ςt is finite and constant on Ω.

Proof: We prove the results item by item below.

1) Since {
(
zt,ut,λt, z̃t

)
}t≥1 is bounded by Lemma 10, and thus Ω is nonempty and bounded. By the

definition of Ω, it is closed and therefore compact.

2) As a consequence of the limit point definition.

3) Let (z∗,u∗,λ∗) be a limit point of the sequence {
(
zt,ut,λt

)
}t≥1, which exists since the se-

quence {
(
zt,ut,λt

)
}t≥1 is bounded. Consequently, there exists a subsequence {

(
ztk ,utk ,λtk

)
}k≥1

of {
(
zt,ut,λt

)
}t≥1 that converges to (z∗,u∗,λ∗). Note that Lemma 9 with Lemma 7 implies

∑

i∈N
∥z̃t+1

i − zti∥2 → 0,
∑

i∈N
∥ut+1

i − ut
i∥2 → 0,

∑

i∈N
∥zt+1

i − zti∥2 → 0, as t → ∞,

which means {
(
z̃tk ,utk−1, ztk−1

)
}k≥1 converges to (z∗,u∗, z∗). Hence, (z∗,u∗,λ∗, z∗,u∗, z∗) ∈ Ω,

and from the continuity of ςt, it follows that

lim
k→∞

ςtk = ς∗.

On the other hand, from Lemma 9, Lemma 11, and Lemma 7, we know that vtk ∈ ∂ςtk and vtk →
0 as k → ∞. The closeness property of ∂ς (see [ [32], Remark 1 (ii)]) implies that

0 ∈ ∂ς∗. (S.94)
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In addition, according to (S.87) we also have

∂ς∗ = ∂L (z∗,u∗,λ∗) . (S.95)

Combining (S.94) with (S.95), we conclude that (z∗,u∗,λ∗) is a critical point of L.

4) Let (z∗,u∗,λ∗) ∈ critL. Thanks to the separable property of L about node i, we have

0 =∇zi
Li (z

∗
i ,u

∗
i ,λ

∗
i ) = ∇zi

Fi(z
∗
i ,u

∗
i ) +AT

i λ
∗
i + cAT

i Aiz
∗
i , (S.96)

0 ∈ ∂uiLi (z
∗
i ,u

∗
i ,λ

∗
i ) = ∇ui

Fi(z
∗
i ,u

∗
i ) + ∂δBNi (u

∗
i ) , (S.97)

0 =∇λi
Li (z

∗
i ,u

∗
i ,λ

∗
i ) = Aiz

∗
i . (S.98)

Thus, it follows from (S.96) and (S.98) that

∇zi
Fi(z

∗
i ,u

∗
i ) +AT

i λ
∗
i = 0. (S.99)

Since Fi(zi,ui) + ⟨λi,Aizi⟩ is convex over X and Z for any fixed ui, then the above expression

(S.99) implies that z∗i also satisfies

z∗i ∈ argmin lim
z∈Z
x∈X

Fi(zi,u
∗
i ) + ⟨λ∗

i ,Aizi⟩. (S.100)

Combining (S.97), (S.98), and (S.100), we obtain (z∗,u∗,λ∗) as a KKT point of problem (15).

5) The sequence {ςt}t≥1 decreases by Lemma 9 and is bounded from below by Lemma 7, thereby

implying its convergence to some finite limit ς∗. It follows that ςt is constant on Ω.

To achieve our main goal to establish the global convergence of the whole sequence, we recall the

following key result obtained in the existing literature [32]–[36].

Lemma 13 (Uniform KL property) Let Ω be a compact set and let σ : Rd → (−∞,∞] a proper and

lower semicontinuous function. Assume that σ is constant on Ω, and satisfies the KL property at each

point of Ω. Then there exist ε > 0, η > 0 and φ ∈ Φη such that for all ū in Ω, and all u in the following

intersection
{
u ∈ Rd : dist(u,Ω) < ε

}
∩ [σ(ū) < σ(u) < σ(ū) + η],

one has,

φ′(σ(u)− σ(ū)) dist(0, ∂σ(u)) ≥ 1. (S.101)

We can now conveniently summarize our convergence results.
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Lemma 14 (Global convergence) Let {yt = (zt,ut,λt)}t≥1 be a sequence generated by Algorithm 1.

Suppose that conditions (62)-(64) are satisfied, then the following statements are true:

1) the sequence {yt}t≥1 is bounded and has finite length, namely,
∞∑

t=1

∥yt+1 − yt∥ < +∞;

2) the sequence {yt}t≥0 converges to a KKT point of the problem (15).

Proof: As in Lemma 12, we denote by Ω := ω
(
{(zt,ut,λt, z̃t,ut−1, zt−1)}t≥1

)
, which is a

nonempty and compact set. From the proof of Lemma 12 and the continuity of ςt, it follows that

lim
t→∞

ςt = ς∗, for all (z∗,u∗,λ∗, z∗,u∗, z∗) ∈ Ω. (S.102)

Moreover, from Lemma 9, we have

C3∥yt+1 − yt∥2 ≤ ςt − ςt+1, ∀ t ≥ 1. (S.103)

where C3 := min{c, 1, ρ4 , C0}. We consider two cases.

1) If there exists an integer t̄ ≥ 0 such that ς t̄ = ς∗, then using the decreasing property obtained by

Lemma 9 and (S.103), we have

C3∥yt+1 − yt∥2 ≤ ςt − ςt+1 ≤ ς t̄ − ς∗ = 0, t ≥ t̄.

Thus, yt+1 = yt for any t ≥ t̄, and it is clear that
∑∞

t=1 ∥yt+1 − yt∥ < +∞ holds.

2) Since ςt is non-increasing from Lemma 9, we have ςt ≥ ς∗ for all t. Therefore, let us assume that

ςt > ς∗ for all t. Again from (S.102), we know that for any η > 0, there exists t0 > 0 such that

ςt < ς∗ + η, t ≥ t0.

According to Lemma 12, we know that lim
t→∞

dist
[(
zt,ut,λt, z̃t,ut−1, zt−1

)
,Ω

]
= 0. This implies

that for any ε > 0, there exists t1 ≥ 1 such that dist
[(
zt,ut,λt, z̃t,ut−1, zt−1

)
,Ω

]
< ε for all

t ≥ t1. Summing up all these facts, we obtain the following inequalities for any η, ε > 0

dist
[(
zt,ut,λt, z̃t,ut−1, zt−1

)
,Ω

]
< ε, and ς∗ < ςt < ς∗ + η, for all t ≥ t2 := max{t0, t1}.

According to Lemma 12, it has been established that ς is a constant on Ω. Moreover, we note that ςt

is semi-algebraic (a polynomial function) and satisfies the KL property (see [ [34], Theorem 6.1]).

Therefore, we can apply Lemma 13 with Ω. Consequently, for any t ≥ t2, we have

φ′ (ςt − ς∗
)
· dist

(
0, ∂ςt

)
≥ 1. (S.104)
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Due to the concavity of φ, we get

φ
(
ςt − ς∗

)
− φ

(
ςt+1 − ς∗

)
≥ φ′ (ςt − ς∗

) (
ςt − ςt+1

)
. (S.105)

From (S.85) of Lemma 11, we also have

dist
(
0, ∂ςt

)
≤ C2∥yt − yt−1∥, C2 > 0.

By combining this with (S.105), (S.104), and φ′ (ςt − ς∗
)
> 0, we obtain

ςt − ςt+1 ≤φ
(
ςt − ς∗

)
− φ

(
ςt+1 − ς∗

)

φ′ (ςt − ς∗)

≤C2∥yt − yt−1∥ ·
[
φ
(
ςt − ς∗

)
− φ

(
ςt+1 − ς∗

)]
. (S.106)

For convenience, we define the following for two arbitrary nonnegative integers p and q

∆p,q := φ (ςp − ς∗)− φ (ςq − ς∗) .

Combining (S.106) with (S.103), we conclude that for any t ≥ t2, the following inequality holds

C3∥yt+1 − yt∥2 ≤ ςt − ςt+1 ≤ C2∥yt − yt−1∥∆t,t+1,

Using the fact that 2
√
ab ≤ a+ b for all a, b ≥ 0, we can infer

2∥yt+1 − yt∥ ≤ ∥yt − yt−1∥+ C2

C3
∆t,t+1. (S.107)

Let us now prove that for any t > t2, the following inequality holds
t∑

k=t2+1

∥yk+1 − yk∥ ≤ ∥yt2+1 − yt2∥+ C2

C3
∆t2,t+1.

Summing up (S.107) for k = t2 + 1, t2 + 2, . . . , t yields

2

t∑

k=t2+1

∥yk+1 − yk∥ ≤
t∑

k=t2+1

∥yk − yk−1∥+ C2

C3

t∑

k=t2+1

∆k,k+1

≤
t+1∑

k=t2+1

∥yk − yk−1∥+ C2

C3

t∑

k=t2+1

∆k,k+1

≤
t∑

k=t2+1

∥yk+1 − yk∥+ ∥yt2+1 − yt2∥+ C2

C3
∆t2+1,t+1,

where the last inequality follows from the fact that ∆p,q + ∆q,r = ∆p,r for arbitrary nonnegative

integers p, q, and r. Since φ ≥ 0, we have for any t > t2 that
t∑

k=t2+1

∥yk+1 − yk∥ ≤ ∥yt2+1 − yt2∥+ C2

C3
· φ

(
ςt2+1 − ς∗

)
.
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As the right hand-side of the inequality above does not depend on t at all, it immediately follows

that the sequence {yt}t∈N has finite length, that is
∞∑

t=1

∥yt+1 − yt∥ < ∞.

This means that the sequence {yt}t≥1 is a Cauchy sequence and hence a convergent sequence.

Thanks to Lemma 12, there exists y∗ ∈ critL such that lim
t→∞

yt = y∗ and y∗ is also a KKT point of

problem (15). We complete the proof.

Lemma 15 Suppose cBT
i Bi takes the form of (25), and the sequence

{(
zti,u

t
i,λ

t
i

)}
is generated by the

Algorithm 1. Then we have

∑

i∈N
∥zti − projX ,Z

(
zti −

(
∇zi

Fi

(
zti,u

t
i

)
+AT

i λ
t
i

))
∥2

≤
∑

i∈N

[
σ1∥z̃t+1

i − zti∥2 + σ2∥zti − zt+1
i ∥2 + 3c2 (Nmax + 1)2 ∥Aiz

t
i∥2

]
,

where

σ1 = 3 (2 (c+ 1)Nmax − 1)2 + 6max

{
(1 + c)2 ,

(
1 +

1

c

)2
}
,

σ2 =
3

2
max

{
(1 + c)2 ,

(
1 +

1

c

)2
}
. (S.108)

Proof: Using (35) and the definition of the Fi given in problem (15), we have

∇zi
Fi

(
zti,u

t
i

)
+AT

i λ
t
i =QT

i Qiz
t
i −QT

i Diu
t
i +AT

i λ
t
i

=−Wi(z̃
t+1
i − zti) + cAT

i Aiz
t
i.

Hence, with the above equality, we have

∥zti − projX ,Z
(
zti −

(
∇zi

Fi

(
zti,u

t
i

)
+AT

i λ
t
i

))
∥

=∥zti − projX ,Z
(
z̃t+1
i

)
+ projX ,Z

(
z̃t+1
i

)
− projX ,Z

(
zti +

(
Wi(z̃

t+1
i − zti) + cAT

i Aiz
t
i

))
∥

≤∥zti − projX ,Z
(
z̃t+1
i

)
∥+ ∥ (Ii −Wi)

(
z̃t+1
i − zti

)
− cAT

i Aiz
t
i∥, (S.109)

where the inequality dues to the triangle inequality and the nonexpansive property of the projection

operator [46]. By completing the square and using the Cauchy-Schwarz inequality, we further obtain

∥zti − projX ,Z
(
zti −

(
∇zi

Fi

(
zti,u

t
i

)
+AT

i λ
t
i

))
∥2

≤3∥zti − projX ,Z
(
z̃t+1
i

)
∥2 + 3c2∥AT

i Aiz
t
i∥2 + 3∥ (Ii −Wi)

(
z̃t+1
i − zti

)
∥2. (S.110)
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Now, let us consider solving projX ,Z
(
z̃t+1
i

)
. Since

projX ,Z
(
z̃t+1
i

)
= argmin

z

1

2

∑

i∈N

∥∥zi − z̃t+1
i

∥∥2

subject to z ∈ X , z ∈ Z.

By a similar argument as the proof of Remark 2, we can derive

projX ,Z
(
z̃t+1
i

)
= W̃i

(
z̃t+1
i − zt+1

i

)
+ z̃t+1

i , (S.112)

where x̃t+1
i,i = ai if i ∈ A and

W̃i =
1

2
· Diag

([
0, (c+ 1) · 1TNi

,
c+ 1

c
· 1TNi

])
⊗ In. (S.113)

Then, by (S.112) and Cauchy–Schwartz inequality, we have

∥zti − projX ,Z
(
z̃t+1
i

)
∥2 =∥zti − z̃t+1

i − W̃i

(
z̃t+1
i − zti + zti − zt+1

i

)
∥2

≤2∥
(
Ii + W̃i

) (
zti − z̃t+1

i

)
∥2 + 2∥W̃i

(
zti − zt+1

i

)
∥2

≤2∥Ii + W̃i∥2∥zti − z̃t+1
i ∥2 + 2∥W̃i∥2∥zti − zt+1

i ∥2. (S.114)

For the third part of (S.110), by using the Cauchy–Schwartz inequality again

∥ (Ii −Wi) (z̃
t+1
i − zti)∥2 ≤ ∥Ii −Wi∥2∥z̃t+1

i − zti∥2. (S.115)

Substituting (S.114)-(S.115) into (S.110), we have

∥zti − projX ,Z
(
zti −

(
∇zi

Fi

(
zti,u

t
i

)
+AT

i λ
t
i

))
∥2

≤
(
6∥Ii + W̃i∥2 + 3∥Ii −Wi∥2

)
∥zti − z̃t+1

i ∥2 + 6∥W̃i∥∥zti − zt+1
i ∥2 + 3c2∥AT

i Aiz
t
i∥2

=σ1∥zti − z̃t+1
i ∥2 + σ2∥zti − zt+1

i ∥2 + 3c2 (Nmax + 1)2 ∥Aiz
t
i∥2,

where the last equality follows from (26), (29) and (S.113), and σ1, σ2 are defined by (S.108). Hence we

finish the proof of Lemma 15.

Note that it follows from (65), Lemma 8, and Lemma 15 that the sequence {(zi,ui,λi)} generated

by SP-ADMM algorithm converges to critical point of the original problem (15) when the parameters

satisfy (62)-(64).

Finally, we prove the third part of the Theorem 1. Let us scale the upper bound of F (z,u,λ) even

further. Using the Cauchy-Schwarz inequality, we have

∥Aiz
t
i∥2 = ∥Ai

(
zti − zt+1

i + zt+1
i

)
∥2 ≤ 2∥Ai

(
zti − zt+1

i

)
∥2 + 2∥Aiz

t+1
i ∥2. (S.116)
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Together (65) with Lemma 15 and (S.116), we have

F
(
zt,ut,λt

)
(S.117)

≤
∑

i∈N
σ1∥z̃t+1

i − zti∥2 + σ2∥zti − zt+1
i ∥2 + ∥ut

i − ut−1
i ∥2 + 2σ3∥Ai

(
zti − zt+1

i

)
∥2 + 2σ3∥Aiz

t+1
i ∥2

≤
∑

i∈N
σ1∥z̃t+1

i − zti∥2 + (σ2 + 2σ3(Nmax + 1))∥zti − zt+1
i ∥2 + ∥ut

i − ut−1
i ∥2 + 2σ3

c2
∥λt+1

i − λt
i∥2,

where σ1 and σ2 are defined in (S.108), σ3 = 3c2 (Nmax + 1)2 + 1. The last inequality holds due to the

update step of λt+1
i and ∥AT

i Ai∥ = Ni + 1. Matching the bounds of Lemma 9 with those of (S.117),

we obtain

F(zt,ut,λt) ≤ ϵ
(
ςt − ςt+1

)
, (S.118)

where ϵ =
min{c,1, ρ

4
,C0,C1,

ρ

4
−d2

max(κ1+κ2)}
max{σ1,σ2+2σ3(1+Nmax),1,

2σ3
c2

} . Suppose that F(zt,ut,λt) reaches the lower bound ϵ1 for the

first time in step T , with Lemma 7 and add up the inequality (S.118) of the previous T step, we can get

ϵ1 ≤
1

T − 1

T∑

t=1

F(zt,ut,λt)

≤ 1

T − 1
ϵ(ς1 − ςT+1)

≤ 1

T − 1
ϵ(ς1 − ς) =

ϵ2
T − 1

. (S.119)

because of ϵ2 = ϵ(ς1 − ς) > 0 is a constant, we can deduce that F(zt,ut,λt) converges at O(1/T ) rate.
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