
TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ?? 1

Fast and Scalable
Position-Based Layout Synthesis

Tomer Weiss, Alan Litteneker, Noah Duncan, Masaki Nakada, Chenfanfu Jiang,
Lap-Fai Yu, Member, IEEE, and Demetri Terzopoulos, Fellow, IEEE

Abstract—The arrangement of objects into a layout can be challenging for non-experts, as is affirmed by the existence of interior
design professionals. Recent research into the automation of this task has yielded methods that can synthesize layouts of objects
respecting aesthetic and functional constraints that are non-linear and competing. These methods usually adopt a stochastic
optimization scheme, which samples from different layout configurations, a process that is slow and inefficient. We introduce an
physics-motivated, continuous layout synthesis technique, which results in a significant gain in speed and is readily scalable. We
demonstrate our method on a variety of examples and show that it achieves results similar to conventional layout synthesis based on
Markov chain Monte Carlo (McMC) state-search, but is faster by at least an order of magnitude and can handle layouts of
unprecedented size as well as tightly-packed layouts that can overwhelm McMC.

Index Terms—Automatic layout synthesis; 3D scene modeling; Automatic content creation; Position-based methods; Constraints

F

1 INTRODUCTION

THE arrangement of objects into a desirable layout is
an everyday problem that is nonetheless surprisingly

complex. For example, to find a desirable furniture arrange-
ment for a living-room, one must consider the visibility of
the television, a suitable separation of sofas, and access to
adjacent rooms, among other factors that differ according to
taste and style. It is often difficult for people to solve layout
problems, as is affirmed by the existence of professional
interior layout designers and self-help resources.

The principal motivation in computer graphics for au-
tomatic or semi-automatic layout synthesis is the need
to model realistic virtual worlds [1]. Methods that can
automatically synthesize realistic, large-scale virtual envi-
ronments (Fig. 1) are useful for gaming, educational, and
training purposes. Such methods are more useful in practice
if they can generate larger, more complex environments and
execute faster.

In recent years, researchers have proposed several meth-
ods for synthesizing layouts that pose layout synthesis as
a highly non-convex optimization problem subject to nu-
merous constraints. Due to the challenging nature of these
problems, previous work applied stochastic optimization to
sample viable layout candidates. Markov chain Monte Carlo
(McMC) methods [2] are the preferred technique because
the constraints are often difficult to express as differentiable
functions. Unfortunately, these techniques become ineffi-
cient when dealing with large numbers of objects.

To overcome this problem, we introduce a continuous
framework for layout synthesis. Our main observation is
that there are commonalities between layout synthesis and

• T. Weiss, A. Litteneker, M. Nakada, and D. Terzopoulos are with the
University of California, Los Angeles.

• N. Duncan is with WorkPatterns, Inc.
• C. Jiang is with the University of Pennsylvania.
• L.-F. Yu is with the University of Massachusetts, Boston.

Manuscript received ?? ??, 2018; revised ?? ??, 2018.

Fig. 1: A tightly-packed picnic layout (top), and a theater
layout with a large number of chairs (bottom), automatically
placed by our method given user-specified constraints that
include distance, viewing angle, and spaciousness criteria.

the elastic simulation of deformable objects. Elasticity pe-
nalizes the deformation of an object—the energy increases
proportionally to the magnitude of the deformation—and
layout synthesis penalizes the magnitude of constraint vio-
lation. Both can be formulated as optimization problems,

ar
X

iv
:1

80
9.

10
52

6v
1

 [
cs

.G
R

]
 2

7
Se

p
20

18

2 TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ??

Fig. 2: Tightly-packed picnic layouts (comprised of various numbers of different object types) synthesized by our method.

Fig. 3: Variations of the theater scenes synthesized by our method.

and both can be tackled using continuous optimization
procedures. Our new, continuous approach enables the
fast generation of large-scale, tightly-packed layouts that
are intractable using previous approaches. However, like
stochastic methods, our deterministic approach can synthe-
size multiple viable layouts for a given environment (Fig. 2,
Fig. 3). To our knowledge, ours is the first physics-motivated
approach to layout synthesis.

Our method takes as input an environment, a set of
objects, and prescribed aesthetic and/or functional layout
constraints that can be easily modified. Initially the positions
and orientations of the objects are randomized, which is
analogous to choosing a random initial guess in an itera-
tive solver. Object positions and orientations are iteratively
modified to achieve a viable layout. At each iteration, the
objects are moved so as to satisfy competing constraints.
Hard constraints such as observing layout boundaries and
preventing collisions between layout objects are enforced by
default. The procedure converges when all the prescribed
constraints are adequately satisfied. We show that a diverse
set of constraints, which have been applied in prior layout
synthesis schemes, can be formulated within our frame-
work. Layout objects can also be grouped, and each group
assigned aesthetic or functional layout constraints. Groups
are reusable in defining other layout groups, and they are
also easily modifiable both in terms of the participating
objects and the group layout constraints.

Our main contributions in this paper are as follows:

1) We propose a novel, physics-motivated approach to
layout synthesis.

2) We formulate a set of common layout constraints within
our framework.

3) We develop a novel, continuous and deterministic
layout synthesis algorithm with significantly reduced
computational cost, making large-scale layout synthesis
problems tractable.

The remainder of the paper is organized as follows:
Section 2 reviews relevant prior work. Section 3 presents
the technical details of our approach. Section 4 describes
our experiments and presents our results. In Section 5, we
further discuss our framework, including its strengths and
limitations, and suggest avenues for future work.

2 RELATED WORK

2.1 Layout Synthesis

We focus on layout synthesis problems in which a set of
objects is to be arranged in an open space. The objects are
assumed to be rigid bodies. The goal of the layout problem
is to position and orient the objects such that they satisfy
several functional and aesthetic criteria. These criteria are
encoded as the terms of a non-convex objective function.
The main challenge stems from finding an arrangement that
respects conflicting terms, resulting in a multitude of possi-
ble layout outcomes, some of which may be unsatisfactory.
Relevant publications in this category include the following:

WEISS et al.: FAST AND SCALABLE POSITION-BASED LAYOUT SYNTHESIS 3

Yu et al. [3] and Merrell et al. [4] introduced an McMC-
based approach to furniture arrangement. Yeh et al. [5]
formulated layout constraints with factor graphs, allowing
a variable number of elements in the synthesized layout.
These McMC-based, stochastic sampling methods can syn-
thesize scenes that respect a complex and conflicting set
of constraints, but they have been shown to work only
on layouts with a limited number of objects and relaxed
spacing. The underlying inefficiency of these approaches
stems from the fact that they do not employ local gradient
information—they merely sample a new position of a furni-
ture item by applying a shift move to the current position.

Fu et al. [6] synthesize layouts from object relation
graphs learned from a database of floor plans. Feng et al. [7]
optimized mid-scale layouts by stochastically optimizing
an objective function derived from agent-based simulation.
Fisher et al. [8] generated small, local layouts of objects in
a scene, guided by exemplars—e.g., the layout of items on
a desk. Layouts are generated by sampling probabilistically
from an occurrence model distribution. Additionally, the au-
thors report that since the layout generation is probabilistic,
it cannot handle hard constraints such as rigid grid layouts
or exact alignment relationships.

Peng et al. [9] introduced a method that creates layouts
from deformable templates, which differs from prior work
that assumed objects are rigid. They incorporated a contin-
uous method in their approach, but use it only to deform
objects, whereas we use ours to position objects. Recently,
Wu et al. [10] proposed a mixed integer-linear programming
formulation for floor plan synthesis.

Layout research has also addressed contexts other than
interior design. Majerowicz et al. [11] focused on adding
objects to shelves in a 2D setting. Bao et al. [12] uses a
combined stochastic and numerical optimization approach
to explore and refine building layouts. Zhu et al. [13] syn-
thesized layouts of mechanical components to control the
motion of a toy. Cao et al. [14], [15] synthesized manga
layouts. Reinert et al. [16] introduced an interactive layout
generation method of arranging shapes according to aes-
thetic attributes, such as color and size. We focus on interior
and exterior design layouts, but our method generalizes to
other contexts.

2.2 Physics-Based vs Position-Based Methods

Physics-based modeling techniques have been used in var-
ious contexts, from animation [17], [18], to geometric de-
sign [19], [20], to architectural floor plan design [21], [22].
Position-Based Dynamics (PBD), independently introduced
by Muller et al. [23] and by Stam [24], was originally
proposed as a means of simulating physical models in
situations, such as games, where speed and robustness
takes priority over physical realism. Researchers have since
applied the approach to a variety of simulations, from soft
and rigid bodies [25], fluids [26], to crowd simulation [27].
PBD is part of a larger family of simulation methods called
position-based methods. Bender et al. [28] present a survey.
The common characteristic of these methods is that they
work directly with positions rather than with forces as does
true Newtonian dynamics (so PBD should more properly
be called Position-Based Kinematics). The method works

Algorithm 1

1: for Object i do
2: Initialize pi = p0

i ; θi = θ0i
3: Set l = 1
4: while SolverIteration l < max do
5: UpdateStiffnesses(C1, . . . , Cm)
6: ProjectConstraints(C1, . . . , Cm)
7: for Object i do
8: GenerateCollisionConstraints()
9: ProjectCollisionConstraints()

by iteratively adjusting particle positions to satisfy a set of
constraints. To our knowledge, we are the first to pursue
this approach in the context of layout synthesis.

3 ALGORITHM

Starting from random initial layouts, our method explores
sequences of possible object arrangements by iteratively
solving user-prescribed layout constraints.

A layout is represented by a set of n oriented particles,
each of which denotes the position and orientation of an as-
sociated 3D object mesh. Each particle i has three attributes:

1) a position pi,
2) an orientation θi, and
3) a massmi, and corresponding inverse mass wi = 1/mi,

determined by the volume of the bounding box of the
associated object.

Our algorithm modifies the position and orientation of
each particle in order to satisfy a set of m layout constraints,
which restrict the positions and orientations of several lay-
out items. A constraint comprises
• a scalar constraint function C ,
• a stiffness parameter k ∈ [0, 1], and
• a constraint type,

either an equality constraint C(p) = 0 or an inequality
constraint C(p) ≥ 0, where p = [pT

1 , θ1, . . . ,p
T
n , θn]T .

Starting from a uniformly distributed random initial po-
sition for each object in the layout, our algorithm solves each
constraint independently. The constraint’s spring-like stiff-
ness determines the magnitude of the positional correction
toward satisfying the constraint. The positional corrections
are either processed sequentially, or averaged in a batch.

To measure the quality of a layout, we employ the energy
function

E =

(m∑
j=1

γjC
2
j

)1/2

, (1)

where Cj denotes constraint j with respective weight γj .
Algorithm 1 overviews our method. Line 2 initializes

object i to a random location p0
i and orientation θ0i . In each

iteration of the main loop, starting at Line 4, each constraint
Ci is calculated and immediately projected, so that the next
constraint uses the updated result (details in Section 3.3).
Collision constraints require special treatment, since they
may change in each iteration, and are generated in Line 8
using a spatial hash (details in Section 3.3.9).

Each constraint Ci has an associated stiffness parameter
ki which is updated in each iteration (Line 5). Depending on

4 TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ??

the constraint type, the stiffness either decreases, increases
or remains constant. For example, the pairwise distance con-
straint decreases over time, the collision constraint increases,
and for hard constraints, like the layout boundary, the
stiffness is constant. This is a type of numerical continuation
method [29]. Increasing the number of iterations results in
more physically-plausible solutions. In addition, since some
constraints are conflicting, we evaluate them in different
orders, by interleaving them, similar to Stam’s proposal [24].

3.1 Constraint Projection

PBD satisfies a system of constraints by iteratively solv-
ing each constraint independently. According to Bender et
al. [28], the correction ∆p is derived using the first-order
approximation 0 = C(p + ∆p) ≈ C(p) + ∇pC(p) · ∆p
and restricting the correction to be in the direction of the
constraint gradient: i.e., ∆p = λ∇pC(p). This leads to the
following formula for the positional correction to particle i:

∆pi = −s∇pi
C(p), (2)

with scale factor

s =
kwiC(p)∑n

i=1 wi ‖∇pi
C(p)‖2

, (3)

where the stiffness parameter k determines the influence
of the constraint. The stiffness kl at each iteration l varies
according to kl = 1 − (1 − k0)M/l, where k0 is the initial
stiffness and M ≥ 1 determines the rate at which kl

approaches zero.
We employ two different schemes for satisfying con-

straints. Each constraint is either solved independently and
projected, the updated particle position pi immediately be-
coming visible to other constraints, or a subset of constraints
is solved as a batch. In the batch case, we average the
positional corrections of all the constraints affecting pi, with
averaging coefficient 1.2, as suggested by Macklin et al. [30].

A formula similar to (2) can be written for constraints
involving particle orientations, but we treat them differently.
We simply determine the smallest rotational correction that
satisfies the constraint, and apply it to rotate the correspond-
ing layout object (see Sections 3.3.10 and 3.3.11).

3.2 Parenting and Grouping

Layout objects can be grouped; for example, tiers of seats in
a theater, or a table and chairs. In our framework, the group
is also represented by an oriented particle. The dimensions
and size of the group is approximated by a bounding box.
Furthermore, we can hierarchically define layout constraints
within the group.

Constraints internal to a group can be rigid or nonrigid.
In the rigid case, we simply apply positional corrections
only to the particle representing the group, such that the
grouped objects remain fixed relative to each other. In the
nonrigid case, the particle representing the group can move,
but so can the grouped objects with respect to one another
subject to the layout constraints internal to the group.

For example, Fig. 4 illustrates objects grouped along
line segments and circular arcs, which enables us to design
seating tiers and add pathways in the theater scenes of Fig. 3

(a) (b)

Fig. 4: Layout objects can be constrained relative to curves,
such as line segments (a) or circular arcs (b), enabling the
imposition of nonrigid group relationships.

while maintaining pairwise distances between the chairs.
Segments are defined by the medial axis of the group’s
bounding box. An arc is defined by its endpoints along
with the center of the circle. When the particle representing
the group moves, for each object in the group, a pairwise
distance constraint (Section 3.3.1) is applied between a
member object and the nearest point on the curve, which
is represented by a particle with infinite mass. Since the
curve is represented parametrically, the parametric ordering
of the associated layout objects can be used to apply the
pairwise distance and other group constraints, and the
ordered application of constraints can improve convergence.
We interleave the application of constraints, as proposed by
Umetani et al. [31].

3.3 Constraint Types
The following sections discuss the constraints that we em-
ploy to produce layouts that are consistent with design
standards [32].

3.3.1 Pairwise Distance Constraint
In interior design, two furniture objects i and j (e.g., a chair
and a table) are often required to be at a certain distance
from each other in order for the layout to be deemed
comfortable. We impose a desired distance d between the
particles i and j representing the objects (Fig. 5a) with the
constraint function

C(p) = ‖pij‖ − d, (4)

where pij = pi − pj , with gradients

∇piC(p) = p̂ij ; ∇pjC(p) = −p̂ij , (5)

where p̂ij = pij/ ‖pij‖. Imposed as an equality constraint
C(p) = 0, the particle positional corrections are [23]

∆pi = − wiC(p)

wi + wj
p̂ij ; ∆pj =

wjC(p)

wi + wj
p̂ij . (6)

3.3.2 Focal Point Distance Constraint
An object, such as the stage in a theater or a TV in a living-
room, can be deemed a focal point for a group of objects [33],
[34], and the objects may be constrained to be at a distance
d from the focal point. We enforce such constraints simply
by adding a pairwise distance constraint (4) between the
particle pj that represents the focal point object and each of
the surrounding objects represented by particles pi (Fig. 5b).
The focal point object can be prevented from correcting its
position by setting its inverse mass wj to zero.

WEISS et al.: FAST AND SCALABLE POSITION-BASED LAYOUT SYNTHESIS 5

d

(a) Pairwise distance (b) Focal point distance

(c) Traffic lane

m

(d) Focal point symmetry

Fig. 5: Different positional layout constraints. Note that in
(d), C denotes the center of mass of particles j1 and j2. vproj

denotes the projection of C onto the vector starting at focal
point i.

3.3.3 Traffic Lane Constraint
Objects should often be arranged to accommodate traffic
lanes that introduce space between objects or groups of
objects to allow easy access [33], [34]; e.g., walkways in a
theater (Fig. 3). To this end, we enforce a clearance around
a vector extending from a particle. This is implemented
analogously to a pairwise distance constraint (4) between
a particle pi and the closest point pvproj on a vector v from
another particle pj (Fig. 5c):

C(p) =
∥∥pi − pvproj

∥∥− d, (7)

where
pvproj

= pj +
pij · v
v · v

v, (8)

is the point along v nearest to pi, and d is the desired
minimal distance of pi from v; i.e., (7) is enforced as an
inequality constraint, C(p) ≥ 0. We treat pvproj as a ghost
particle that is rigidly attached to pj . Hence, any positional
correction of pvproj is applied to pj . The ghost particle has
inverse mass wj , which may be set to 0 if need be to prevent
the constraint from affecting the position of pj .

3.3.4 Heat Point Constraint
For an object or group of n objects, the heat point p̃ is
the position where the center of mass, m = w

∑n
i=1mipi

with w = 1/m and m =
∑n

i=1mi, of the particles pi

representing the objects is required to be. For example, a
computer display, keyboard, and mouse should be located
near the middle of the front of a tabletop for easy access. To
this end, we define the constraint function

C(p) =
1

2
‖m− p̃‖2 , (9)

whose gradient for particle pj is

∇pjC(p) = mjw(m− p̃). (10)

(a) (b)

Fig. 6: (a) Visual balance. (b) Stacking constraint: h denotes
the vertical distance between the centers of objects i and j.

3.3.5 Focal Point Symmetry Constraint
We can constrain a group of objects to be positioned sym-
metrically around a vector v directed away from the group’s
focal point pj—e.g., two chairs positioned symmetrically in
front of the television—by projecting the center of mass m of
their representative particles onto v (Fig. 5d). We constrain
m to coincide with the projection pvproj

using a constraint
function analogous to (9):

C(p) =
1

2

∥∥m− pvproj

∥∥2 . (11)

3.3.6 Visual Balance Constraint
Placing all the furnishings at one end of a room would create
an imbalanced, inharmonious ambiance, which prompted
Merrell et al. [4] to propose a visual balance constraint.
To create a sense of equilibrium, we want to arrange the
furnishings such that the mean of the visual weights is
close to the center of the room [33], [35]. Since larger objects
have more visual weight, we define the visual weight of an
object in accordance to its dimensions projected onto the
ground plane. We implement a visual balance constraint
analogously to (9) between the room’s centroid c and the
center of mass m of particles representing the visual weights
of furnishings (Fig. 6a):

C(p) =
1

2
‖m− c‖2 , (12)

where denotes the center of the room. Since the room’s
centroid is static, particle c is assigned zero inverse mass.

3.3.7 Layout Boundaries and Distance to Wall Constraint
Large furnishings usually work best when placed near a
wall [33]. For example, we usually avoid placing book-
shelves in the center of a room. Also, in realistic use cases,
furnishings should not collide with walls. Finally, all layout
objects are constrained by layout boundaries.

We define both inequality and equality constraints for
object i constrained to be near a wall with distance d (Fig. 7a)
as follows:

C(p) = ‖pi − pwall‖ − d, (13)

where pwall is the point on the wall nearest to the position
pi of the particle representing object i (in case of multiple
nearest points, we simply choose the first point found). The
positional corrections are analogous to (6), but note that
since pwall is fixed, corrections are applied only to pi.

6 TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ??

(a) (b)

Fig. 7: (a) Wall distance and orientation constraint (pi de-
notes the center of object i and bi is the size of its bounding
box). (b) adik denotes the accessibility distance of the re-
spective accessibility center aik.

3.3.8 Accessibility Constraint
Clearance between furniture items is essential for human
comfort [33]. For instance, a coffee table should be close,
but not too close, to a sofa in a living-room. We employ
a modified version of an accessibility constraint proposed
by Yu et al. [3]. Every object j is associated with a bounding
box, where the faces of the bounding box that are orthogonal
to the ground plane are identified with accessibility centers
ajk, where k ∈ {1, 2, 3, 4} correspond to the back, left, front,
and right faces, respectively.

Our accessibility constraint is defined using a pairwise
distance constraint function between particle pi represent-
ing object i and ajk, accessibility center k of object j
(Fig. 7b):

C(p) = ‖pi − ajk‖ − d. (14)

Distance d = bi + adjk, where bi is the diagonal of the
bounding box of the object, and adjk is the diagonal of
the accessibility center. The accessibility constraint is an
inequality constraint C(p) ≥ 0, which is activated only if
the respective cuboids defined by the accessibility distances
intersect. The positional correction to pj is applied as if
accessibility point ajk is rigidly attached.

3.3.9 Collision Constraint
The collision constraint is complementary to the accessibility
constraint. Simply put, to ensure a realistic layout, the
bounding cuboids of the layout objects should not collide.
To that end, collisions between objects are resolved by a
pairwise distance inequality constraint between the bound-
ing spheres (Fig. 8a). Let pi and pj represent objects i and j
whose bounding sphere radii are ri and rj . Our inequality
collision constraint function is

C(p) = ‖pi − pj‖ − (ri + rj). (15)

Since checking for all pairwise object collisions is compu-
tationally expensive, we employ a spatial hash in order to
reduce the number of collision checks.

If during the constraint projection objects i and j are
colliding, and both are constrained to be next to a wall
(Section 3.3.7), we perform an additional collision constraint
projection between their respective closest wall points
(Fig. 8b). These wall points are considered rigidly attached
ghost particles. This allows us to satisfy both the pairwise
distance constraint and the distance to wall constraint. If
there are multiple candidate wall points, we simply choose
the first one found.

(a) (b)

Fig. 8: (a) Our method resolves collisions between layout
item’s by resolving collisions between the respective bound-
ing spheres. (b) Additional collision constraint between two
layout items i and j that are also constrained to be next to
the wall.

3.3.10 Pairwise Orientation Constraint

In layout design, the proper orientation of an object relative
to another object in the same furnishing group can promote
intimacy or improve functionality [36]. For example, a sofa
should face a TV, a coffee table should be parallel to a sofa,
and a seat in a theater should face the stage.

Yu et al. [3] propose a pairwise orientation constraint
between interacting layout objects. Similarly, we define an
equality orientation constraint between interacting particles
i and j. Let θi and θ′i be the current and desired orientation
of particle i relative to pj , and let θj and θ′j be the current
and desired orientation of particle j relative to pi. Then the
pairwise orientation constraint functions are defined as

Ci(p) = |θi − θ′i|; Cj(p) = |θj − θ′j |, (16)

where we calculate the smallest angular difference ∆θi
between θi and θ′i, and similarly for particle j. This ro-
tational correction is then applied to the particles with
corresponding stiffness k. The corrected particle orientations
are θi + k∆θi and θj + k∆θj . The particle positions pi and
pj remain unchanged.

3.3.11 Orientation to Wall Constraint

Some furnishings work best when placed parallel to a wall
(e.g., a table or TV shelf [33]). Following Yu et al. [3], we
formulate an equality constraint between particle i and the
nearest wall using the constraint function

C(p) = |θi − θwall|, (17)

where θi is the orientation of the represented object with
respect to the closest wall point and θwall is its desired ori-
entation. To satisfy this constraint, we proceed analogously
to the previous section.

3.3.12 Vertical Stacking Constraint

In layout design, accessories serve either a functional or
decorative purpose [33]. Vertical stacking is a common way
to arrange accessories. For example, books may be stacked
in order to conserve space.

WEISS et al.: FAST AND SCALABLE POSITION-BASED LAYOUT SYNTHESIS 7

Th
ea

te
r

(o
ve

rh
ea

d)
Th

ea
te

r
(fr

on
ta

l)
Pi

cn
ic

Li
vi

ng
-R

oo
m

D
es

k

(a) Initial Layout (b) Intermediate State (c) Final Layout

Fig. 9: Various synthesized layouts.

Objects to be stacked can be prespecified. If object j is
to be stacked on object i, the vertical distance between the
particles representing these objects should be equal to half
the sum of the objects’ heights h = (hi+hj)/2. We formulate
the constraint function

C(p) = zj − (zi + h), (18)

involving the z components of pi and pj , with z axis normal
to the ground plane. Hence, particle j should be placed
above particle i (Fig. 6b). Additionally, we constrain the
ground plane coordinates of particle j to match those of

particle i:

C(p) = ‖xj − xi‖ ; C(p) = ‖yj − yi‖ . (19)

4 EXPERIMENTS AND RESULTS

We implemented our layout synthesis system in Python and
Cython, and ran our experiments on a 2.5 GHz Intel i7
Macintosh system.

Fig. 9 shows examples of our experimental scenarios. In
each experiment, the initial object locations and orientations
were set randomly, as shown in Fig. 9a. Accessibility and

8 TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ??

Theater-1 Constraints:
Wall distance — stage
Distance — between each tier of seats and the stage
Traffic Lanes — between the seats and two vectors from the stage
Orientation — between the stage and each seat, which should face the stage
Focal point — for each seat in a seating tier, oriented toward the stage

Theater-2 Constraints:
Heat point — stage
Distance — between each tier of seats and the stage
Traffic Lanes — between all the seats and two vectors from the stage
Orientation — between the stage and each seat, which should face the stage
Grouping — between all the tiers
Grouping — between chairs in each seating tier

Picnic Constraints:
Focal point — each table is a focal point for a group of 4 chairs
Distance — between each chair in an associated group
Distance — the BBQ grills are linked together
Distance — between each pair of trash cans
Heat point — between each group of trash cans and a picnic layout location
Heat point — on each table to a different layout area
Heat point — on the Carousel to the top-middle corner of the layout
Orientation — between chairs and respective table

Living-Room Constraints:
Focal point — couch as focal point to table
Focal point — TV as focal point to couch, sofa chairs
Focal point — Table as focal point to office chair
Wall distance and orientation — TV, book case, coat rack, door, plants
Visual balance
Orientation — between objects and their respective focal points

Desk Constraints:
Stacking — between books, divided into two groups
Heat point — on laptop, to be located near the front middle of the desk.
Heat point — on notepad to front right of desk
Heat point — on Rubik’s cube to front left of desk
Distance — between potted plant and book stack
Distance — between book stack and desk binder
Distance — between binder and photo frame
Distance — between photo frame and mug
Distance — between pencils
Focal point — laptop as focal point to fruit plate
Focal point — Rubik’s cube as focal point to pencil group
Focal point — Rubik’s cube as a focal point to stack of books
Wall distance — on one stack of books

Tightly-Packed Bedroom Constraints:
Focal point — each table is a focal point for a group of 4 chairs
Distance — between floor lamp, table and chair
Distance — between chair and table
Distance — between bookcase and coat rack
Orientation — between chair and table
Wall distance — for beds, bookcase and table

Tightly-Packed Picnic Constraints:
Distance — the BBQ grills are linked together
Distance — between each pair of trash cans
Heat point — between each group of trash cans and a picnic layout location
Heat point — on the Carousel to the top-middle corner of the layout

Fig. 10: The constraints used in our experiments.

collision constraints apply and are generated in all exper-
iments. We ran our layout synthesis algorithm with the
constraints described below (refer to Fig. 10). Since colli-
sion, accessibility, and wall constraints are treated as hard
constraints, for weights in the energy function (1) we chose
150.0 for the collision and accessibility constraints, 20.0 for
the wall constraints, and 1.0 for the remaining constraints.
We determined these to be suitable weights experimentally.
The iterative procedure terminates when there has been
no improvement to the minimum layout energy for the
previous 50 iterations.

Table 1 reports the run-times of our experiments. As
shown in Fig. 11, most of the computation time is expended
in solving the accessibility and collision constraints,

4.1 Layout Synthesis
We next describe the experimental scenarios of Fig. 9.

Objects Our Method (sec) SA-McMC (sec)

Theater-1 201 39.50 5852
Theater-2 (arc-0) 181 1.27 ∞
Theater-2 (arc-1) 181 1.31 ∞
Theater-2 (arc-2) 181 1.36 ∞
Theater-2 (seg-0) 169 0.48 ∞
Theater-2 (seg-1) 169 0.52 ∞
Theater-2 (seg-2) 246 0.73 ∞
Picnic 77 4.77 253
Living-Room 10 0.62 27
Desk 21 0.69 37
TP Bedroom 12 0.67 22
TP Picnic 53 2.42 109

TABLE 1: Comparing the run-times of our method versus
the baseline SA-McMC method. Times shown are the mean
of 10 runs with the same starting conditions for both meth-
ods. TP denotes “tightly-packed”. For the Theater-2 scene,
{arc,seg}-# denotes the number of pathways. Collision de-
tection is disabled in Theater-2. For Theater-2, we failed to
achieve reasonable synthesis results in finite time with our
SA-McMC implementation; better-designed SA-McMC shift
moves may help.

Fig. 11: Run-times of our method. TP denotes “tightly-
packed”. The major computational cost stems from resolv-
ing the accessibility and collision constraints, especially
when increasing the number of layout objects.

4.1.1 Theater Variations

We demonstrated the efficacy of our method by running our
algorithm in a theater scene with various seating arrange-
ments and two different constraint strategies:

1) Each chair is at a predefined distance to the stage due to
a focal point constraint, and is constrained not to collide
with other chairs. The chairs are not associated with
tiers, and there are no pairwise distance constraints
between chairs in the same tier (Fig. 9).

2) Each chair is part of a seating tier that is either a
segment or an arc group. Each particle is constrained
to have the same distance from neighboring particles in
the tier. Tiers are constrained to be centered before the
stage (Fig. 3), or layouts like that in Fig. 12 may result.

The stage is initially located at the front midpoint of the
theater. There are up to 2 traffic lanes for stage pathways.

With Approach 1, we allocated 200 chairs and further
tested the scalability of our algorithm by running additional
experiments with varying numbers of chairs. Fig. 13 plots
the run-times. Distances are enforced through accessibility
and collision constraints; even without distance constraints,
the chairs maintain nearly regular intra-tier distributions.

WEISS et al.: FAST AND SCALABLE POSITION-BASED LAYOUT SYNTHESIS 9

Fig. 12: Theater with tiers not restricted to front of stage.

Ti
m

e
(s

ec
)

0

350

700

1050

1400

Layout Objects
100 140 180 220 260 300 340 380 420 460 500 540 580 620 660 700 740 780

Fig. 13: Run-times for increasing numbers of theater seats in
the Theater-1 scenario.

The scenes synthesized with Approach 2 involve be-
tween 168 to 246 layout objects. Within tiers, the distribution
of chairs is constrained to be around the center of the tier,
using a heat point constraint. The traffic lanes conflict with
the pairwise distance constraints of the chairs in each tier.

4.1.2 Picnic
The picnic scene consists of 14 tables, 48 chairs, 8 trash
cans, 6 BBQ grills, and a carousel. The main constraints are
focal point constraints between each group of chairs and
their table, distances between chairs around tables, distances
between tables, and heat point constraints to position BBQ
grills, trash cans, and picnic tables.

4.1.3 Living-Room
The living-room layout (Fig. 14) contains 2 chairs, 2 indoor
plants, a sofa and armchairs, a coat rack, a door, a desk, an
office chair, and a TV. The main constraints are focal point
constraints between the TV, sofa, and armchairs, as well as
wall constraints on the big furniture objects and plants.

4.1.4 Desk
We also demonstrated the performance of our algorithm for
a desk with small objects, including 12 books, 3 pencils, a
food plate, a binder, a photo frame, a potted plant, a laptop
computer, and a mug. The main constraints are focal point
constraints between certain objects, heat point constraints on
different desk parts, and a stacking constraint for the books.

4.2 Layout Synthesis in Tightly-Packed Scenarios

Our method copes well with highly constrained and tightly-
packed settings.

Fig. 14: Optimized living room layout satisfying criteria
such as distance, viewing angle, focal point grouping, and
visual balance, starting from the initial random layout
shown beneath.

4.2.1 Tightly-Packed Bedroom
The tightly packed bedroom contains multiple beds and
pieces of furniture. The beds are rigidly grouped together
with army style accessories. The beds, bookcase and table
are constrained to be next to the wall. The coat rack is
constrained to be at a certain distance from the bookcase. We
demonstrate that using different initial conditions results
in different suggested layouts. Even though the space is
tight, our method successfully synthesizes different layout
suggestions (Fig. 15).

4.2.2 Tightly-Packed Picnic
This tightly-packed setting demonstrates our method’s abil-
ity to synthesize diverse layouts with different numbers and
types of furniture objects. We synthesize a tightly-packed
picnic scenario in two stages. In the first stage, we randomly
vary the number of layout objects of each type, similar to
Yeh et al. [5]. The available layout objects are a superset of
the previous picnic scenario, with an additional rectangular
picnic table. For a more uniform layout, we rigidly attached
4 chairs to each round picnic table. In the second stage of
the synthesis, we run our method for 270 iterations. Fig. 2
shows these synthesized layouts.

4.3 Comparison to Simulated Annealing
We compared the performance of our method to a baseline
layout synthesis approach that applies simulated annealing
with a Metropolis-Hastings McMC state-search step, which
we denote SA-McMC. Our implementation is based on code
used in [3]. In this implementation, the proposal function
shifts an attribute of one layout object in each state-search
step. We employed the same energy function (1) to track the
quality of the synthesized layouts and ran the comparison
several times, with different conditions, such as varying
constraint weights γi and temperature schedules for the

10 TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ??

Fig. 15: Different layout suggestions (top) synthesized by initializing from different random initial conditions (bottom).

(a) (b)

Fig. 16: (a) A baseline SA-McMC approach struggles with a tightly-packed bedroom. Using stochastically sampled shift
moves results in objects becoming “locked” in configurations that are probabilistically hard to escape. (b) Our method does
not. Since the table, rack and closet are colliding and constrained to be next to the wall, the objects manage to escape this
configuration following a positional correction that enforces collision and distance to wall constraints. See Section 3.3.9.

SA-McMC algorithm. For all our experiments, we used
linear, evenly-spaced schedules for about 20,000 iterations,
with an additional stopping condition in case the energy
function value did not improve by more than 0.1% during
the previous 1,500 iterations.

Experimentally, we noticed that a baseline SA-McMC
approach has trouble accommodating tightly-packed and
constrained layouts, as in the tightly-packed bedroom and
picnic scenarios described in the previous section. Superfi-
cially, synthesized layouts appeared satisfactory; however,
upon closer inspection, they suffered from unresolved colli-
sions (Fig. 16a). A possible explanation is that, unlike our ap-
proach, SA-McMC does not exploit local constraint gradient
information when shifting between layout configurations.
In theory, SA-McMC can escape such collisions through the
choice of different parameter settings, using more complex
hand-crafted SA-McMC shifts moves, and/or tuning the
weights of different constraints in the energy. Unfortunately,
none of the settings with which we experimented yielded
collision-free layout suggestions for the tightly-packed sce-
narios.

Fig. 17 plots the energy as a function of iteration number
for SA-McMC and our method for the tightly-packed picnic
scenario shown in Fig. 1. Generally, we observed that SA-

Fig. 17: Energy plot (linear scale) of our method versus SA-
McMC [3] for the tightly packed picnic layout. The total
run-time for SA-McMC was approximately 163 seconds,
versus 4.7 seconds for our method. Our method converged
to a satisfactory layout at around iteration 220. SA-McMC
converged to a less satisfactory, higher-energy layout after
9,500 iterations.

WEISS et al.: FAST AND SCALABLE POSITION-BASED LAYOUT SYNTHESIS 11

McMC is slower by at least an order of magnitude compared
to our method (Table 1). The computational cost of SA-
McMC increases dramatically with the number of objects to
be synthesized. Hence, our method is the one that is more
suitable for interactive applications.

5 DISCUSSION

We have demonstrated that continuous, deterministic,
point-based simulation methods can produce satisfactory
layout synthesis results at low computational cost, at least
an order of magnitude faster than previous methods, which
makes it suitable for augmented reality applications (Ap-
pendix A). Layout synthesis objectives are represented by a
set of positional and orientational constraints. Our approach
satisfies the conflicting set of constraints iteratively, resulting
in fast layout synthesis with quality similar to or better than
that of previous stochastic, McMC-based alternatives.

Previous work in layout synthesis does not incorporate
constraint gradient information, but instead uses manually
crafted McMC moves that augment a layout configuration.
While this type of method provides an easy mechanism
to explore different layout variations, we achieve the same
effect via different initializations. As observed in our com-
parison, the run-times of the baseline SA-McMC method
increases significantly with the number of layout objects.
In these approaches, a user can define a more relaxed set
of constraints, which at least in principle could lead to a
desired layout, but at much greater computational cost. In
practice, we observed that these methods perform poorly
in tightly-packed layouts, resulting in unrealistic collisions
between layout items. By contrast, our method is dramati-
cally faster due to its continuous nature. Notably, it requires
only a few seconds of run-time for dozens of objects and it
naturally scales to hundreds of objects with only moderately
increasing computational cost.

Since layout synthesis poses a non-convex problem, it is
difficult—and fortunately unnecessary—to find the global
optimum. We experimented with nonlinear global optimiza-
tion solvers (NLopt [37]), but the results were either poor in
quality (i.e., unrealistic layouts with many colliding layout
items), or the run-times were intractable. In contrast to
these solvers, our method does not directly try to minimize
the global energy, but rather iteratively satisfies individual
constraints. This induces positional corrections to layout
items that propagate throughout the layout, transforming
an initially poor, high-energy layout to a satisfactory low-
energy layout. The global energy quantifies the quality of
layouts and enables our comparisons to prior work.

The intended workflow of layout synthesis methods is
for the automated approach to synthesize a variety of viable
layouts, from which the user can select one or more that they
prefer. Our method supports this workflow. It can generate
a variety of layouts by repeatedly running from different
random initial conditions (Fig. 15). Ultimately, the quality
of configurations is a subjective matter. Hence, at least from
the user’s perspective, a global optimum is not definitive.

5.1 Limitations
We observed that solving constraints sequentially, where the
new positions are immediately visible to other constraints,

makes quick progress at first, but the convergence rate
slowly decreases as the iterations progress. For example,
in the living-room experiment, the first few iterations yield
a layout that is visually similar to the final one, whereas
later iterations produce smaller refinements of the layout
and resolve cuboid accessibility area intersections.

Like SA-McMC, the layout’s energy can increase from
one iteration to the next, which allows to escape suboptimal
local minima. Unlike SA-McMC, our method may not con-
verge in the traditional optimization sense; however, our ter-
mination criterion is based on the satisfaction of most of the
constraints, which is ultimately what matters. In practice,
we never observed outcomes that failed to satisfy layout
objectives. Most starting seeds lead to a satisfactory layout,
all lead to a collision free layout. Although conceptually
simple, our method produces impressive results.

5.2 Future Work

In the present study, we did not encode all the constraints
that may be relevant in layout design; however, our method
can easily be extended to a broader set of layout constraints.
Incorporating GPU parallelization can further speed up
the procedure, as could a hierarchical approach, where the
layout synthesis problem is broken into stages. It will also
be interesting to adjust the stiffness factors in a nonuniform
manner in an effort to converge to better global solutions.

Due to the sequential, local constraint satisfaction ap-
proach of our position-based method, we may observe
oscillations and collisions between objects. For example,
when there is a collision between the accessibility areas
of two objects, the constraint may be partially resolved by
projecting one of these objects into a collision with a third
object. In future work, we plan to design automatic schemes
for detecting and resolving these conditions.

The layout objects and their relationship to their corre-
sponding groups can be stochastically sampled from prede-
fined distributions; e.g., from real-world scene datasets. This
is similar to but faster than applying factor graphs [5].

APPENDIX A
AUGMENTED REALITY LAYOUT SYNTHESIS

As another use-case example of our method, we demon-
strate the fast synthesis of furniture layouts from and into
2D images of vacant spaces. After the user uploads an image
of an indoor or outdoor space, selects furnishings, and
specifies layout objectives, our system then automatically
analyzes the space using scene understanding algorithms
from computer vision, and finally renders into the original
image optimal layouts of the selected furnishings satisfying
the given objectives. The system works as follows:

1) Semantic scene segmentation: Our system employs Seg-
Net [38], a state-of-the-art, pixel-wise semantic seg-
mentation network, trained on the SUN-RGBD dataset
[39] with common indoor scene objects, to output 37
categories of per-pixel semantic image labels. GrabCut
[40] is then applied to segment the pixels labeled ’floor’.
Fig. 18 shows examples of the segmentation.

2) 3D scene estimation: We ask users to place a checker-
board calibration marker into the imaged scene, from

12 TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. ??, NO. ??

In
do

or
O

ut
do

or

(a) (b) (c)

Fig. 18: Segmentation and edge detection. (a) Original im-
ages. (b) Segmented floor/ground. (c) Edge maps.

(a) (b)

Fig. 19: Synthesized results from user-provided images. (a)
Synthesized indoor layout. (b) Synthesized outdoor layout.

which our system estimates the camera parameters, the
orientation and scale of the floor/ground, and (using
Holistically-Nested Edge detection [41]) the height of
the scene perpendicular to the estimated ground plane.

3) Layout synthesis and visualization: The system runs
our layout synthesis method to generate optimal lay-
outs, which it then renders into the image via a virtual
camera with the aforementioned estimated camera pa-
rameters. Fig. 19 shows examples of the results.

Reference [42] provides additional details.

REFERENCES

[1] R. M. Smelik, T. Tutenel, R. Bidarra, and B. Benes, “A survey
on procedural modelling for virtual worlds,” in Comp. Graphics
Forum, vol. 33, no. 6, 2014, pp. 31–50.

[2] S. Chib and E. Greenberg, “Understanding the Metropolis-
Hastings algorithm,” The American Statistician, vol. 49, no. 4, pp.
327–335, 1995.

[3] L.-F. Yu, S. K. Yeung, C.-K. Tang, D. Terzopoulos, T. F. Chan, and
S. Osher, “Make it home: Automatic optimization of furniture
arrangement,” ACM Trans. Graphics, vol. 30, no. 4, p. 86, 2011.

[4] P. Merrell, E. Schkufza, Z. Li, M. Agrawala, and V. Koltun, “Inter-
active furniture layout using interior design guidelines,” in ACM
Trans. Graphics, vol. 30, no. 4, 2011, p. 87.

[5] Y.-T. Yeh, L. Yang, M. Watson, N. D. Goodman, and P. Hanra-
han, “Synthesizing open worlds with constraints using locally
annealed reversible jump McMC,” ACM Trans. Graphics, vol. 31,
no. 4, p. 56, 2012.

[6] Q. Fu, X. Chen, X. Wang, S. Wen, B. Zhou, and H. Fu, “Adaptive
synthesis of indoor scenes via activity-associated object relation
graphs,” ACM Trans. Graphics, vol. 36, no. 6, p. 201, 2017.

[7] T. Feng, L.-F. Yu, S.-K. Yeung, K. Yin, and K. Zhou, “Crowd-driven
mid-scale layout design,” ACM Trans. Graphics, vol. 35, no. 4, 2016.

[8] M. Fisher, D. Ritchie, M. Savva, T. Funkhouser, and P. Hanra-
han, “Example-based synthesis of 3D object arrangements,” ACM
Trans. Graphics, vol. 31, no. 6, p. 135, 2012.

[9] C.-H. Peng, Y.-L. Yang, and P. Wonka, “Computing layouts with
deformable templates,” ACM Trans. Graphics, vol. 33, no. 4, p. 99,
2014.

[10] W. Wu, L. Fan, L. Liu, and P. Wonka, “Miqp-based layout design
for building interiors,” in Comp. Graphics Forum, 2018.

[11] L. Majerowicz, A. Shamir, A. Sheffer, and H. H. Hoos, “Filling your
shelves: Synthesizing diverse style-preserving artifact arrange-
ments,” IEEE Trans. on Visualization and Comp. Graphics, vol. 20,
no. 11, pp. 1507–1518, 2014.

[12] F. Bao, D.-M. Yan, N. J. Mitra, and P. Wonka, “Generating and
exploring good building layouts,” ACM Trans. Graphics, vol. 32,
no. 4, 2013.

[13] L. Zhu, W. Xu, J. Snyder, Y. Liu, G. Wang, and B. Guo, “Motion-
guided mechanical toy modeling.” ACM Trans. Graphics, vol. 31,
no. 6, p. 127, 2012.

[14] Y. Cao, A. B. Chan, and R. W. Lau, “Automatic stylistic manga
layout,” ACM Trans. Graphics, vol. 31, no. 6, p. 141, 2012.

[15] Y. Cao, R. W. Lau, and A. B. Chan, “Look over here: Attention-
directing composition of manga elements,” ACM Trans. Graphics,
vol. 33, no. 4, p. 94, 2014.

[16] B. Reinert, T. Ritschel, and H.-P. Seidel, “Interactive by-example
design of artistic packing layouts,” ACM Trans. Graphics, vol. 32,
no. 6, p. 218, 2013.

[17] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, “Elastically
deformable models,” ACM Trans. Graphics, vol. 21, no. 4, pp. 205–
214, 1987.

[18] P.-L. Manteaux, C. Wojtan, R. Narain, S. Redon, F. Faure, and M.-P.
Cani, “Adaptive physically based models in computer graphics,”
in Comp. Graphics Forum, 2016.

[19] H. Qin and D. Terzopoulos, “D-nurbs: a physics-based framework
for geometric design,” IEEE Trans. on Visualization and Comp.
Graphics, vol. 2, no. 1, pp. 85–96, 1996.

[20] R. Attar, R. Aish, J. Stam, D. Brinsmead, A. Tessier, M. Glueck,
and A. Khan, “Physics-based generative design,” in CAAD Futures
Conf., 2009, pp. 231–244.

[21] M. Harada, A. Witkin, and D. Baraff, “Interactive physically-
based manipulation of discrete/continuous models,” ACM Trans.
Graphics, pp. 199–208, 1995.

[22] S. A. Arvin and D. H. House, “Modeling architectural design
objectives in physically based space planning,” Automation in
Construction, vol. 11, no. 2, pp. 213–225, 2002.

[23] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff, “Position
based dynamics,” Virtual Reality Interactions and Physical Simula-
tions (VRIPHYS), vol. 18, no. 2, pp. 109–118, 2007.

[24] J. Stam, “Nucleus: Towards a unified dynamics solver for com-
puter graphics,” in Proc. IEEE Int. Conf. on Comp.-Aided Design and
Comp. Graphics, 2009, pp. 1–11.

[25] C. Deul, P. Charrier, and J. Bender, “Position-based rigid-body
dynamics,” Comp. Animation and Virtual Worlds, vol. 27, no. 2, pp.
103–112, 2016.

[26] M. Macklin and M. Müller, “Position based fluids,” ACM Trans.
Graphics, vol. 32, no. 4, p. 104, 2013.

[27] T. Weiss, A. Litteneker, C. Jiang, and D. Terzopoulos, “Position-
based multi-agent dynamics for real-time crowd simulation,” in
Motion in Games, ser. MIG ’17. ACM, 2017, pp. 10:1–10:8.

[28] J. Bender, M. Müller, M. A. Otaduy, M. Teschner, and M. Macklin,
“A survey on position-based simulation methods in computer
graphics,” in Comp. Graphics Forum, vol. 33, no. 6, 2014, pp. 228–
251.

[29] E. L. Algower and K. Georg, Introduction to Numerical Continuation
Methods. SIAM, 2003, vol. 45.

[30] M. Macklin, M. Müller, N. Chentanez, and T. Kim, “Unified parti-
cle physics for real-time applications,” ACM Trans Graph, vol. 33,
no. 4, p. 104, 2014.

[31] N. Umetani, R. Schmidt, and J. Stam, “Position-based elastic
rods,” in Proc. of the ACM SIGGRAPH/Eurographics Symp. on Comp.
Animation, 2014, pp. 21–30.

[32] J. DeChiara, J. Panero, and M. Zelnik, Time-Saver Standards for
Interior Design and Space Planning. McGraw-Hill, 2001.

[33] L. M. Jones and P. S. Allen, Beginnings of Interior Environments.
Pearson, 2014.

[34] C. Deasy and T. E. Lasswell, Designing Places for People. Whitney,
1990.

[35] S. Lok, S. Feiner, and G. Ngai, “Evaluation of visual balance for
automated layout,” in Proc. of the 9th Int. Conf. on Intelligent user
interfaces, 2004, pp. 101–108.

WEISS et al.: FAST AND SCALABLE POSITION-BASED LAYOUT SYNTHESIS 13

[36] C. Talbott, M. Matthews, and C. Cosentino, Decorating for Good: A
Step-by-step Guide to Rearranging What You Already Own. C. Potter,
1999.

[37] S. G. Johnson, The NLopt nonlinear-optimization package, 2011.
[Online]. Available: http://ab-initio.mit.edu/nlopt

[38] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep
convolutional encoder-decoder architecture for image segmenta-
tion,” arXiv preprint arXiv:1511.00561, 2015.

[39] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “Sun
database: Large-scale scene recognition from abbey to zoo,” in
Comp. Vis. and Pattern Recognition (CVPR), 2010, pp. 3485–3492.

[40] C. Rother, V. Kolmogorov, and A. Blake, “Grabcut: Interactive
foreground extraction using iterated graph cuts,” ACM Trans.
Graphics, vol. 23, no. 3, pp. 309–314, 2004.

[41] S. Xie and Z. Tu, “Holistically-nested edge detection,” in Proc. of
the Int. Conf. on Comp. Vis. (ICCV), 2015, pp. 1395–1403.

[42] T. Weiss, M. Nakada, and D. Terzopoulos, “Automated layout
synthesis and visualization from images of interior or exterior
spaces,” in IEEE CVPR Workshop on Vis. Meets Cognition, 2017, pp.
41–47.

Tomer Weiss received his PhD degree in com-
puter science at the University of California, Los
Angeles, in 2018 and his BSc degree in Com-
puter Science from Tel Aviv University in 2013.
Currently, he is an operations research engineer
at Wayfair, Inc., and a research scientist in the
UCLA Computer Graphics & Vision Laboratory.
His research interests include computer graph-
ics and optimization methods.

Alan Litteneker is a PhD student at the Uni-
versity of California, Los Angeles, and a mem-
ber of the UCLA Computer Graphics & Vision
Laboratory. He received his BSc degree in com-
puter science from Chapman University in 2013.
His research interests include computer graph-
ics and cinematography.

Noah Duncan is Co-Founder and Chief Tech-
nology Officer at WorkPatterns, Inc. He received
his PhD degree in computer science from the
University of California, Los Angeles, in 2017
and his BSc degree in computer science from
Harvey Mudd College in 2012. His research in-
terests include computer graphics, with a focus
on open-ended design problems.

Masaki Nakada is a postdoctoral scholar in the
UCLA Computer Graphics & Vision Laboratory.
He obtained his PhD degree in computer sci-
ence from the University of California, Los An-
geles, in 2017 and his MS and BSc degrees
in Applied Physics from Waseda University in
Tokyo, Japan. His main research interests span
machine learning, neuroscience, computer vi-
sion, computer graphics, and biomechanics.

Chenfanfu Jiang is an assistant professor of
Computer and Information Science at the Uni-
versity of Pennsylvania. He received his PhD
degree in Computer Science from the Univer-
sity of California, Los Angeles, in 2015 and was
awarded the 2015 UCLA Henry Samueli School
of Engineering and Applied Science Edward
K. Rice Outstanding Doctoral Student Award. He
received his BS degree in Physics in the Class
for the Gifted Young (SCGY) of the University
of Science and Technology of China (USTC) in

2010. His primary research focus is physics-based simulation and visual
computing, and their overlap with computer vision, robotics, cognitive
science, and medicine.

Lap-Fai (Craig) Yu is an assistant professor at
the University of Massachusetts Boston, where
he directs the Graphics and Virtual Environment
Laboratory. He received his BEng and MPhil de-
grees in computer science from the Hong Kong
University of Science and Technology (HKUST)
in 2007 and 2009, respectively, and his PhD
degree in computer science from the Univer-
sity of California, Los Angeles, in 2013, where
he received the Cisco Outstanding Graduate
Research Award. He is also a recipient of the

Award of Excellence from Microsoft Research Asia. He has been a
visiting scholar at Stanford University and a visiting scientist at the
Massachusetts Institute of Technology. His research interests include
computer graphics, computer vision, and virtual reality.

Demetri Terzopoulos is a Chancellor’s Profes-
sor of Computer Science at the University of
California, Los Angeles, where he holds the rank
of Distinguished Professor and directs the UCLA
Computer Graphics & Vision Laboratory. He is
also Co-Founder and Chief Scientist of Voxel-
Cloud, Inc. He graduated from McGill University
and received his PhD degree (’84) in artificial
intelligence from MIT. He is or was a Guggen-
heim Fellow, a Fellow of the ACM, a Fellow of the
IEEE, a Fellow of the Royal Society of London,

a Fellow of the Royal Society of Canada, a member of the European
Academy of Sciences and the New York Academy of Sciences, and a
life member of Sigma Xi. His many awards include an Academy Award
for Technical Achievement from the Academy of Motion Picture Arts and
Sciences for his pioneering work on physics-based computer animation,
and the inaugural Computer Vision Distinguished Researcher Award
from the IEEE for his pioneering and sustained research on deformable
models and their applications. ISI and other indexes list him among the
most highly-cited authors in engineering and computer science, with
more than 400 published research papers and several volumes, primar-
ily in computer graphics, computer vision, medical imaging, computer-
aided design, and artificial intelligence/life. He has given hundreds of
invited talks around the world about his research, including more than
100 distinguished lectures and keynote/plenary addresses. He joined
UCLA in 2005 from New York University, where he held the Henry and
Lucy Moses Professorship in Science and was Professor of Computer
Science and Mathematics at NYU’s Courant Institute of Mathematical
Sciences. Previously, he was Professor of Computer Science and Pro-
fessor of Electrical & Computer Engineering at the University of Toronto.
Before becoming an academic in 1989, he was a Program Leader at
Schlumberger corporate research centers in California and Texas.

http://ab-initio.mit.edu/nlopt

	1 Introduction
	2 Related Work
	2.1 Layout Synthesis
	2.2 Physics-Based vs Position-Based Methods

	3 Algorithm
	3.1 Constraint Projection
	3.2 Parenting and Grouping
	3.3 Constraint Types
	3.3.1 Pairwise Distance Constraint
	3.3.2 Focal Point Distance Constraint
	3.3.3 Traffic Lane Constraint
	3.3.4 Heat Point Constraint
	3.3.5 Focal Point Symmetry Constraint
	3.3.6 Visual Balance Constraint
	3.3.7 Layout Boundaries and Distance to Wall Constraint
	3.3.8 Accessibility Constraint
	3.3.9 Collision Constraint
	3.3.10 Pairwise Orientation Constraint
	3.3.11 Orientation to Wall Constraint
	3.3.12 Vertical Stacking Constraint

	4 Experiments and Results
	4.1 Layout Synthesis
	4.1.1 Theater Variations
	4.1.2 Picnic
	4.1.3 Living-Room
	4.1.4 Desk

	4.2 Layout Synthesis in Tightly-Packed Scenarios
	4.2.1 Tightly-Packed Bedroom
	4.2.2 Tightly-Packed Picnic

	4.3 Comparison to Simulated Annealing

	5 Discussion
	5.1 Limitations
	5.2 Future Work

	Appendix A: Augmented Reality Layout Synthesis
	References
	Biographies
	Tomer Weiss
	Alan Litteneker
	Noah Duncan
	Masaki Nakada
	Chenfanfu Jiang
	Lap-Fai (Craig) Yu
	Demetri Terzopoulos

