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Abstract- In this paper, two novel hybrid beamforming methods are proposed to reduce the cost and

power consumption of hybrid beamformers with subconnected phase shifter network structure in massive

multiple-input multiple-output (MIMO) systems. This is achieved by replacing some of the phase shifters

with switches which, in general, are cheaper and have lower power consumption compared to phase shifters.

The proposed methods and the closed-form expressions of their performance are derived according to the

properties of the elements of the singular vectors of the channel matrix. In the first approach, it is shown that

by combining the subconnected phase shifter network with a fully-connected switch architecture, the number

of the phase shifters can be reduced up to 50% while the spectral efficiency is preserved. Then, in order

to simplify the structure of the switch network, the fully-connected switches is replaced by subconnected

switch network, e.g. binary switches. The analytical and simulation results indicate that just by using 25%

of phase shifters 90% spectral efficiency can be achieved. Finally, simulation results indicate that similar

behavior is observed when the wireless channel is considered to be sparse or correlated.

Index Terms

Antenna selection, hybrid beamforming, massive MIMO.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) technology with digital beamforming can increase the spectral

efficiency in wireless communication systems. However, a dedicated RF chain per antenna increases the cost of

this technology. In order to reduce the number of RF chains, hard and soft antenna selection techniques have been

proposed [1]. In the hard selection, the RF chains are connected to the antennas by a network of switches. The

drawback of this approach is that large beamforming gains cannot be achieved as only a small fraction of the

antennas are used [1], [2]. In the soft antenna selection, also known as hybrid beamforming, the RF chains and

the antennas are connected through a network of phase shifters [1], [3]–[5]. Such architectures have lower cost and

power consumption compared to digital beamformers and they achieve a higher spectral efficiency compared to

hard selection. There are two types of phase shifter networks known as fully-connected and subconnected [5]. In

the fully-connected structure, each RF chain is connected to all the antennas as in [1], [3], [4]. It can exploit the

http://arxiv.org/abs/1706.01304v3
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full array gain, however, its power consumption can be very high due to the massive number of the phase shifters

it requires [3], [5]. In the subconnected configuration, each RF chain is connected to a subset of antennas which

results in a simpler circuit but with lower spectral efficiency compared to that of the fully-connected configuration

[5]. In general, the design of the optimal soft antenna selection schemes is a challenging task due to the nonconvex

constant modulus constraint imposed by the phase shifters [1], [3]–[5]. In this context, [3], [5], [6] used switches that

are cheaper and power efficient alternatives to phase shifters. Similar to the phase shifter networks, switch networks

have fully-connected and subconnected structures. However, due to the requirement of large number of switches,

a fully-connected configuration with switches has high hardware complexity and experiences insertion losses and

cross talk distortion [7]. Hence, subconnected switch network,for example binary switches, is also preferred in

practice despite the less degrees of freedom in antenna selection [7]. It is noted that the work in [1], [2], [4]–[7],

and references therein, only focus on antenna selection with either phase shifters or switches, and do not consider

the combination of the two methods.

Recently, the authors in [8] used for the first time a combination of switches and non-tunable phase shifters

to show that the spectral efficiency of hybrid beamforming with fully-connected phase shifter network can be

achieved using such combination. While the approach in [8] requires a relatively low computational complexity

and low power consumption, it demands a massive number of RF routes which could result in a complex hardware

and high levels of crosstalk. Within the same context of designing the joint switches and phase-shifter based hybrid

beamforming, [3] considers a fully-connected phase shifter network where each phase shifter was equipped with

a switch. It was shown that it is possible to reduce the power consumption of the RF beamformer by turning off

almost 50% of the phase shifters while achieving the same spectral efficiency. With the motivation to reduce the

power consumption of massive MIMO systems while achieving high spectral efficiency, there is still a need for

investigating new techniques to jointly design the beamforming weights at the baseband as well as the phase shifter

and switch networks.

In this paper, two such novel combinations of phase shifters and switches are proposed and their performances

in terms of the achievable sum-rate are evaluated. To this end, first we derive the closed-form expression of the

beamformer and its achievable sum-rate over uncorrelated independent and identically distributed (i.i.d.) channel

when the RF beamformer has subconnected structure. This approach offers lower computational complexity and

similar performance compared to the successive interference cancellation based method in [5] when a small number

of RF chains are connected to a large number of antennas. Second, based on the presented approach for the

subconnected phase shifter network and using phase shifter selection technique, in [3], for fully-connected phase

shifter network, it is shown that a combination of subconnected phase shifter and fully-connected switch networks

can reduce the number of the phase shifters by 50% without any performance loss over uncorrelated i.i.d. Rayleigh

fading channels. The simulation results for sparse scattering and correlated Rayleigh fading channels indicate that

the achievable sum-rates almost remain at the same level when the number of the phase shifters are reduced to

half. However, as the proposed structure requires a fully-connected switch network, which may not be suitable for

practical applications, it is desirable to substitute the complex switch network with simpler structures, for example

binary switches. Hence, we present another novel beamforming method that provides a slightly lower performance
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but with a much simpler hardware structure. In this approach, the fully-connected switches are replaced with simple

subconnected switches, e.g. binary switches. Finally, the simulation results indicate that the asymptotic closed-form

expressions of the spectral efficiency provide a good approximation of the performance for moderate number of

antennas and phase shifters.

This paper is organized as following, the system model and hybrid beamforming with subconnected phase shifter

network are described in sections II and III. In section IV, the proposed method for hybrid beamforming with

subconnected phase shifters and fully-connected switches are presented. The analysis for the subconnected phase

shifters that are connected to subconnected switch network are discussed in V. Finally, the simulation results and

conclusion are presented in sections VI and VII.

Notations: Bold capital and small letters A and a represent a matrix and a vector, respectively. Amn denotes

the (m,n)-th element of A, am is the m-th column of A and A1:m is a matrix containing the first m columns

of A. det(A), AH and trace(A) denote determinant, Hermitian and trace of A, respectively. Moreover, |A| and ∠A

denote the magnitude and angle of complex number A. Im is an m×m identity matrix. Finally, fA(a), FA(a) and

E[A] denote the probability density function (pdf), cumulative distribution function (cdf) and expected value of A,

respectively.

II. SYSTEM MODEL

In this work, a narrowband single-cell multiuser scenario in downlink where the base station with N omni-

directional antennas serves K single-antenna users is considered. The wireless channel matrix H ∈ C
K×N follows an

uncorrelated Rayleigh fading model with i.i.d. elements as Hkn ∼ CN (0, 1), ∀k ∈ {1, ..., K} and ∀n ∈ {1, ..., N}.
In this case, the relationship between the channel input vector x ∈ CN×1 and output vector y ∈ CK×1 is expressed

as y = Hx + z where z ∈ CK×1 is i.i.d. additive white Gaussian noise vector with zk ∼ CN (0, σ2
z ) and noise

variance of σ2
z . It is assumed that the transmitter has perfect channel state information. A vector of K symbols

u ∈ CK×1 with E[uuH] = IK are precoded using the precoding matrix F. Then, the signal at the transmitter

antennas is x =
√

P
Γ Fu where P is the total transmit power per stream and Γ = E

[

trace(FFH)
]

/K is a power

normalization factor. Assuming that equal power is allocated to the users, the ergodic sum-capacity of downlink

channel is [9]

C(H,P) = E

[

log2 det
(

IK +
P

σ2
z

HHH
)

]

. (1)

In massive MIMO systems, it has been shown that linear precoders such as zero-forcing (ZF) can achieve a close

to optimal performance [10]. Applying ZF precoding matrix HH(HHH)−1, the sum-rate becomes [3]

RZF = K log2
(

1 +
P

ΓZFσ2
z

)

, (2)

where ΓZF = E
[

trace
(

(HHH)−1
)]

/K is the power normalization factor for ZF precoder. When H follows i.i.d.

Rayleigh fading model, then ΓZF = 1/(N − K) as for central complex Wishart matrices it was shown that

E[trace
(

(HHH)−1
)

= K/(N − K) [11]. To maximize multiplexing gain in the high signal-to-noise ratio (SNR)

regime, it is assumed that M = K where M is the number of the RF chains.
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Fig. 1. Block diagram of antenna selection techniques.

Figure 1a presents the diagram of a fully-connected antenna selection structure where each RF chain is connected

to all antennas through a network of switches or phase shifters. Depending on the performance metric, e.g.

maximizing the spectral efficiency, the hard antenna selection chooses the best M out of N antennas using its

switching network. In this paper, a matrix that includes the state of the switches, i.e. on or off which are represented

by zero and one, is referred as the select matrix. The disadvantage of hard antenna selection is that large array

gains cannot be achieved when M ≪ N . In general, soft antenna selection techniques provide a better performance

compared to hard selection [1], [3], [4]. However, the fully-connected structure in Fig. 1a requires MN switches

or phase shifters which becomes very large in massive MIMO scenarios [5]. This introduces high insertion losses

and hardware complexity. Hence, the subconnected configuration, as shown in Fig. 1b, is preferred in practice.

The precoder matrix F = FsubFB for the structure of Fig. 1b consists of a block diagonal RF beamforming

matrix Fsub ∈ CN×M and a baseband precoder FB ∈ CM×K . The RF beamformer has to be designed such

that the spectral efficiency Rsub is maximized subject to Fsub,nm = ejθnm , ∀θnm ∈ [0, 2π) and ∀n ∈ Im where

Im = {NM (m − 1) + 1, ..., N
Mm}, otherwise |Fsub,nm| = 0. In this case, Γsub =

[

trace(FsubFH
sub)

]

/M = N/M . In

general, soft selection (hybird beamforming) is a challenging task as the maximization of the spectral efficiency is

a nonconvex problem due to the constant modulus constraint imposed by the phase shifters [1], [3]–[5].

In this paper, firstly the closed-form expression for an asymptotically optimal beamformer will be presented. In
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order to reduce the power consumption of the structure in Fig. 1b, it will be shown that the configuration of Fig. 1c

can replace 50% of the phase shifters with switches and without a performance loss. Finally, in Fig. 1d, we propose a

simpler structure that the complicated fully-connected switch network is replaced with low-cost 1-out-of-S switches

where S is the ratio of the number output-to-input ports.

III. SUBCONNECTED STRUCTURE WITH PHASE SHIFTERS

The singular value decomposition (SVD) of the channel matrix is denoted as H = UΣVH, where V ∈ CN×N

and U ∈ CK×K contain the right and left singular vectors. The diagonal matrix Σ ∈ RK×N includes the singular

values of H. It is noted that H = UΣ1:MVH
1:M as H has only M nonzero singular values. The statistical properties

of the elements of V when N →∞ was analyzed in [3] and it was shown that

1)
√
NVnn′ ∼ CN (0, 1), ∀n, n′ ∈ {1, ..., N} are i.i.d.,

2) |
√
NVnn′ | is a Rayleigh variable with parameter 1√

2
,

3)
√
NE[|Vnn′ |] = √π/2.

When the impact of the beamforming matrix of the subconnected phase shifter network is considered, the achievable

sum-rate in (1) is expressed as

Rsub = log2 det
(

IK +
P

Γsubσ2
z

HFsubFH
subHH

)

(3)

= log2 det
(

IK +
P

Γsubσ2
z

UΣVHFsubFH
subVΣ

HUH
)

(a)
= log2 det

(

IK +
PΣ

H
1:MΣ1:MVH

1:MFsubFH
subV1:M

Γsubσ2
z

)

(b)

≤ log2

(

M
∏

m=1

(1 +
Pσ2

mmQmm

σ2
z

)
)

,

where (a) results from log2det(I + AB) = log2 det(I + BA), Γsub = N/M , matrix Q is defined as Q =

MVH
1:MFsubFH

subV1:M

N , and the inequality (b) comes from linear algebra as for any positive semidefinite matrix A ∈
C

M×M , det(A) ≤∏

m Amm. If Q is a diagonal matrix, then (b) in (3) turns into equality. Hence, Fsub that upper

bounds Rsub should i) diagonalize Q = GGH where G =
√

M/NVH
1:MFsub. This requires M/N |vH

m′ fsub,m|2 = 0

when m 6= m′ and ∀m,m′ ∈ {1, ...,M}, ii) maximize the diagonal elements of GGH. In Appendix A, it is shown

that these conditions are held and (3) is maximized when

Fsub,nm =











ej∠Vnm if n ∈ Im,

0 if n /∈ Im.

(4)

Moreover, according to Appendix A, using (4) results in

lim
N→∞

M
∑

∀n∈Im
|
√
NVnm|

N
√
M

=
E[
√
N |Vnm|]√
M

=

√
π

2
√
M

, (5)

due to the law of large numbers. Similarly, limN→∞ |
√
NvH

nfsub,m| = 0, ∀m 6= n as E[
√
NVmn] = 0.

Remark 1: The proposed RF beamformer in (4) for Fig. 1b, is derived under the assumption that M is fixed and

L→∞. Hence, it provides a suboptimal solution for relatively small values of L compared to the RF beamformer of
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[5]. It is noted that the computational complexity of [5] grows with O(ML2) whereas the complexity of calculating

V1:M is related to O(M3L) [3], [12]. In our scenario of interest where M is fixed and L → ∞, the associated

computational complexities of (4) and [5] are proportional to O(L) and O(L2), respectively.

In this following, the spectral efficiency for the configuration of Fig. 1b will be calculated when (4) is used. From

(5), it could be easily shown that
√

M/NHFsub =
√
π/(2
√
M)UΣ1:M . Applying ZF to

√

M/NHFsub to cancel

the interference between the users, the precoding matrix becomes F = FsubFB where FB = (HFsub)
−1. Then, the

power normalization factor is

Γ = E
[

trace
(

Fsub(HFsub)
−1(FH

subHH)−1FH
sub

)]

/M (6)

= E
[

trace
(

(FH
subHH)−1FH

subFsub(HFsub)
−1

)]

/M

= E
[

trace
(

(

√

M

N
FH

subHH)−1(

√

M

N
HFsub)

−1
)]

/M

=
4

π
E
[

trace
(

(HHH)−1
)]

=
4M

π
ΓZF,

as limN→∞ M/NFH
subFsub = IM . Hence, the achievable sum-rate by the proposed hybrid beamformer is

Rsub = M log2
(

1 +
πP

4MΓZFσ2
z

)

, (7)

when N → ∞. It is observed that in the high SNR regime, the fully-digital scheme results in −M log2(
π

4M )

bits/Hz/s higher spectral efficiency compared to the hybrid beamforming with subarray structure.

Remark 2: The presented approach to derive (7) will be used in the rest of this paper. These steps can be

summarized as

1) Diagonalization of Q.

2) Use the i.i.d. and zero-mean properties of Vnm to conclude 1/
√
Γsub|
√
NvH

nfsub,m| → 0, ∀m 6= n.

3) Calculate limN →∞1/
√
Γsub|
√
NvH

mfsub,m| = E[|
√
NVnn′ |].

4) Calculate the power normalization factor of the hybrid beamforming, as in (6), when the RF beamformer and

baseband ZF precoder are combined.

5) Replace ΓZF in (2) with the power normalization factor from step 4.

IV. SUBCONNECTED PHASE SHIFTER NETWORK - FULLY-CONNECTED SWITCH NETWORKS

The performance of the proposed soft selection for Fig. 1b depends on |Vnm|. It is noted that the phase shifters

that are multiplied with smaller |Vnm| have a relatively smaller contribution to the spectral efficiency. Moreover,

turning off such shifters in Fig. 1b is equivalent to switching the corresponding antenna off. Thus, the structure of

Fig. 1c is proposed to reduce the number of the phase shifters by employing switch networks. By this means, the

power consumption of the RF beamformer is reduced as switches require significantly smaller power to operate

compared to phase shifters [3], [6], [8]. Let L denote the number of the phase shifters connected to each RF chain,

and α be a predefined threshold. Then, by employing a fully-connected switch network and ML phase shifters,

the RF beamformer in (4) is modified such that the phase shifters which are corresponding to |
√
NVnm| ≤ α are

turned off, i.e. Fsub,nm = 0, where α is a predefined threshold.
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Defining V as an i.i.d. random variable with the same Rayleigh distribution as |
√
NVnm|, then fV (α ≤ v) =

exp(−α2) = ML/N is a measure of the reduction in the number of the phase shifters. In the rest of the analysis,

it is noted that α should be chosen carefully to make sure that M, L, N are integer numbers. For the practical

implementations, however, once the hardware parameters are set, the corresponding α will be fixed. When the

number of antennas goes large and the deterministic behavior of massive MIMO are observed, fV (α ≤ v) =

exp(−α2) = ML/N will hold.

Let FSFC
N×M denote the RF beamforming matrix for the subconnected phase shifters with fully-connected

switch networks. For n ∈ Im, the elements of FSF are expressed as

FSF,nm =











0 if
√
N |Vnm| ≤ α,

exp(j∠Vnm) if α <
√
N |Vnm|.

(8)

The received signal power is related to 1√
ΓSF

vH
mfSF,m where ΓSF = L = fV (α ≤ v)N/M . This term can be obtained

as a function of α

vH
mfSF,m√
ΓSF

= lim
N→∞

M
∑

∀n∈Im
|
√
NV ∗

mnFSF,nm|
√

MfV (α ≤ v))N
(9)

=
E[Ṽ ]

√

MfV (α ≤ v))

(a)
=

√
π
2 + αe−α2 −

√
π
2 erf(α)

√

MfV (α ≤ v))
,

where Ṽ is defined as

Ṽ =











0 if
√
N |V | ≤ α,

√
N |V | if α <

√
N |V |,

(10)

and (a) in (9) is a consequence of Lemma 6 in [3]. In this case, (9) results in 1/
√
LHFSF = E[Ṽ ]UΣ1:M/

√

MfV (α ≤ v)).

When the impact of ZF at the baseband is considered, the achievable rate RSF is

RSF = M log2

(

1 +

(

√
π
2 + αe−α2 −

√
π
2 erf(α)

)2

MfV (α ≤ v))ΓZFσ2
z

P

)

. (11)

It is noted that (11) is a generalization of (7) as for L = N/M (equivalently α = 0), then RSF = Rsub.

Remark 3: The proposed FSF includes the effects of both subconnected phase shifter and fully-connected switch

networks. In order to set the beamforming weights of the phase shifters and the select matrix of the switches in

Fig. 1c according to FSF, please refer to Appendix B.

V. SUBCONNECTED PHASE SHIFTER NETWORK - SUBCONNECTED SWITCH NETWORKS

As it will be discussed in the next section, the performance of hybrid selection with a fully-connected switch

network and L = N/(2M) phase shifters is almost equal to the subarray structure. This is equivalent to 50%

reduction in the number of phase shifters and significantly smaller power consumption. However, employing a

fully-connected switch network requires a complex hardware with high insertion losses and crosstalk distortions.

Hence, we evaluate the performance of the proposed hybrid beamformer when subconnected switch networks are

employed. In this structure, as shown in Fig. 1d, each phase shifter is connected to only one of the S adjacent

antennas. In other words, the lth, l ∈ Im, phase shifter connected the mth RF chain is able to choose one of the
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Algorithm Calculate the RF beamformer for Fig. 1d

1: FSS = 0N×M ,

2: for m = 1 : M do

3: Nm = ∅,

4: Im = {NM (m− 1) + 1, ..., N
Mm},

5: for q = 1 : N/S do

6: Jq = {(l− 1)S + 1, ..., lS},
7: if Jq ⊂ Im then

8: n̂ = argmax
n∈Jq

|Vnm|,
9: FSS,n̂m = exp j∠Vn̂m,

10: Nm ← Nm ∪ {n̂},
11: end if

12: end for

13: end for

14: Return FSS.

antennas which its index is in Jq = {(q−1)S+1, ..., qS}, ∀Jq ⊂ Im where q ∈ {1, ..., N/S}. Following a similar

argument as for the phase shifter selection technique, the lth phase shifter will be connected to the corresponding

antenna element n̂ according to n̂ = argmax
n∈Jq

|Vnm|. Let Nm = Jl∩Im be a set that contains n̂, where its cardinality

is L, and V̂ be a random variable that has the same distribution as max
n∈Jl

|
√
NVnm|.

The RF beamforming matrix FSS ∈ CN×M for this scenario can be derived according to Algorithm 1. Since

N = MLS and ΓSS = L, the received power at user side is related to

vH
mfSS√
ΓSS

= lim
N→∞

1√
ΓSSN

∑

n∈Im

√
NV ∗

mnFSS,nm (12)

= lim
N,L→∞

1

L
√
MS

∑

n∈Nm

|
√
NVmn| =

1√
MS

E[V̂ ].

In order to calculate E[V̂ ] =
∫ +∞
−∞ fV̂ (v̂)v̂dv̂, first we calculate FV̂ (v̂). Since V̂ is the maximum of S i.i.d. Rayleigh

distributed elements when N →∞, then

FV̂ (v̂) = FV (v)
S = (1 − e−v̂2

)S (13)

where FV (v) = 1− e−V 2

as V follows Rayleigh distribution. Then, the pdf of V̂ is calculated as

fV̂ (v̂) =
d

dv̂
(1− e−v̂2

)S = 2Sv̂(1 − e−v̂2

)S−1e−v̂2

(14)

(b)
= 2Sv̂e−v̂2

S−1
∑

s=0

(

S − 1

s

)

(−1)se−sv̂2

= 2Sv̂

S−1
∑

s=0

(

S − 1

s

)

(−1)se−(s+1)v̂2

,
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where (b) is the binomial expansion of (1− e−v̂2

)S−1. The expected value of V̂ is expressed as

E[V̂ ] =

∫ +∞

−∞
fV̂ (v̂)v̂dv̂ (15)

= 2S

S−1
∑

s=0

(

S − 1

s

)

(−1)s
∫ +∞

0

v̂2e−(s+1)v̂2

dv̂

(c)
=

S−1
∑

s=0

(

S − 1

s

)

(−1)sS√π
2(s+ 1)3/2

,

where (c) results from
∫ +∞
0

v̂2e−(s+1)v̂2

dv̂ =
√
π/4(s+ 1)3/2 [13]. As a result of (12) and (15),

1√
L

HFSS =
UΣ1:MVH

1:MFSS√
L

(16)

=

S−1
∑

s=0

(

S − 1

s

)

(−1)s
√
Sπ

2
√
M(s+ 1)3/2

UΣ1:M .

The performance of the proposed system with ZF at the baseband can be derived following the steps in (6) and

(7). In this case the spectral efficiency by the proposed scheme is

RSS = M log2

(

1 +

(
∑S−1

s=0

(

S−1
s

) (−1)s

(s+1)3/2

)2
PSπ

4MΓZFσ2
z

)

. (17)

It is noted that (17) is a generalization of (7) as for S = 1, then RSS = Rsub.

Remark 4: The proposed FSS includes the effects of the ML phase shifters and the ML subconnected switches.

In order to set the weights of the phase shifters and switches in Fig. 1d according to FSS, please refer to Appendix

C.

VI. SIMULATION RESULTS

In this section, computer simulations are used to evaluate the performance of the proposed antenna selection

techniques for the structures in Fig. 1b to Fig. 1d. In addition, the closed-form expressions in (7), (11) and (17)

will be examined when N → ∞ does not hold. Monte-Carlo simulations over 1000 realizations for M = K = 4

and P/σ2
z = 10 dB are used to assess the performance. At the end of this section, the performance of the proposed

methods over sparse scattering channels as well as correlated Rayleigh fading channels will be examined.

Figure 2 shows the tradeoffs between the spectral efficiency and the total number of the phase shifters ML when

N is fixed. In order to guarantee that the properties of massive MIMO are observed and the hybrid beamformer of

(4) is close to optimal, N is set to a large number as N = 512. It is noted that the fully-connected switch network

provides more flexibility between the number of the input and output ports which is not possible with 1-out-of-

S switches. When ML/N = 0.75, Fig. 2 indicates that the fully-connected switch networks with phase shifter

selection provides slightly higher spectral efficiency compared to the structure of Fig. 1b. In addition, compared to

the scenario that each antenna has a phase shifter, the number of the phase shifters can be reduced to 50% without

a performance loss when a fully-connected switch networks with ML/N = 0.5 is used. Figure 2 also shows that

when a simple binary switch is used, i.e. S = 2, the loss of the achievable rate is less than 1 bits/Hz/s compared

to soft selection with subconnected structure. It is observed that the proposed method with S = 4, or equivalently
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Fig. 2. Spectral efficiency by the proposed techniques versus the number of the phase shifters, N = 512, M = 4 and P/σ2
z = 10 dB.

ML = 128 phase shifters, achieves around 93% of the spectral efficiency compared to the scenario that ML = 512.

Figure 2 also shows that there is good match between the simulation results and the closed-form expressions of

(7), (11) and (17) for various ratios of the number of inputs to outputs. Figure 3 shows the impact of the number

of the antennas on the accuracy of the closed-form expressions of spectral efficiency. It is assumed that the ratio

of inputs to outputs is ML/N = 0.5. At N = 32, 12% error between the simulation results and (11) and (17) is

observed. This is due to the fact that L = N/2M = 4 is small and, hence, the law of large numbers does not hold.

When L increases to 8, the error between the simulations and analytical results reaches to around 3%. Figure 3

indicates that equations (7), (11) and (17) can provide a good approximation of the performance when 16 ≤ L.

Figure 4 presents the achievable rates by the proposed beamformer with binary switches when P/σ2
z varies.

Compared to the structure of Fig. 1b with L = N/M phase shifters, it is observed that the performance loss due to

the use of binary switches is almost negligible at the high SNR regime. In addition, Fig. 4 provides a comparison

between our RF beamformer in (4) for the structure in Fig. 1b and its asymptotic performance expression (7),

which was derived under asymptotically large number of antennas, and the RF beamformer of [5]. In both cases,

ZF is applied to the effective channel matrix He = 1/
√
ΓsubHFsub at the baseband. It is observed that [5] achieves

a constant 1.5 bits/Hz/s higher spectral efficiency, which is at the cost of higher complexity, compared to the

beamformer in (4). When a simple binary switch is used and the number of the phase shifters is reduced from 128

to 64, the achievable sum-rate is around 2.7 bits/Hz/s less than [5] with 128 phase shifters.

Although i.i.d. Rayleigh fading channel model is commonly used in the literature on massive MIMO to present

theoretical studies, as in [14] and references therein, this channel model may not be suitable for practical applications.

In order to further investigate the performance of our proposed methods under more realistic channels, in the

following we present the achievable sum-rates by these techniques over correlated Rayleigh fading and sparse

geometry-based channel models. An exponentially correlated MIMO channel model will be used to model correlation

[15]. We assume that the correlation effects are observed at the base station according to H = HwR1/2 where
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Fig. 4. Spectral efficiency by the proposed techniques versus P/σ2
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Hw ∈ CK×N is zero-mean i.i.d. Rayleigh fading channel matrix, and R ∈ CN×N is the correlation matrix as

R =

















1 ρ · · · ρN−1

ρ 1 · · · ρN−2

...
...

. . .
...

ρN−1 ρN−2 · · · 1

















, (18)

where 0 ≤ ρ ≤ 1 is the correlation coefficient. To evaluate the performance of the proposed methods over sparse

channels, we use the geometry-based model with uniform and linearly spaced antennas at the base station. Assuming

there are C multipath components (MPCs) in the channel between the base station and user k, the channel vector

hT
k ∈ C

N×1 for user k is

hT
k =

√

N

C

C
∑

c=1

βcka∗(φck), (19)
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Fig. 5. Spectral efficiency by the proposed techniques versus the number of the phase shifters, N = 512, M = 4. The parameters for the

sparse channel are P/σ2
z = 20 dB and C = 2, for the correlated Rayleigh fading r = 0.7 and P/σ2

z = 10 dB, for the uncorrelated Rayleigh

fading P/σ2
z = 0 dB.

where βck ∼ CN (0, 1) is the multipath coefficient, φck is the angle-of-departure of the cth multipath. The steering

vector a(φck) for linear arrays is expressed as

a(φck) =
1√
N

(1, e
j2πd

λ cos(φck) ..., e
j2πd

λ (N−1) cos(φck))T (20)

where φck ∈ [0, π], λ is the wavelength and d is the antenna spacing. In our simulations, it is assumed that d = λ/2.

Similar to Fig. 2, the tradeoffs between the spectral efficiency and the total number of the phase shifters ML

is studied in Fig. 5 when different channel models are considered. In order to make a comprehensive comparison

in a single plot, P/σ2
z is set to 0 dB, 10 dB, and 20 dB to perform the computer simulations to evaluate the

performance over uncorrelated Rayleigh fading, correlated Rayleigh fading and sparse channels, respectively. For

the sparse channel model, we assume that there are only 2 MPCs, i.e. C = 2 in (19), from the base station to each

user. For the correlated Rayleigh fading channel, it is assumed that ρ = 0.7 in (18). In addition, we use the RF

beamformer of [5] as reference to evaluate the performance of our methods. Figure 5 shows that the RF beamformer

in (4) and [5] have almost the same performance for the sparse channels, and the difference in sum-rate is less

than 1.2 bits/Hz/s for the other two channels. When the structure in Fig. 1c is used and the number of the phase

shifters is reduced by 50%, the performance of our methods is, at most, 1.3 bits/Hz/s lower than [5] which requires

512 phase shifters. For 75% reduction, the beamformer of [5], with 512 phase shifters, has 4.65 bits/Hz/s, 3.03

bits/Hz/s and 2.55 bits/Hz/s higher achievable rate compared to the sparse, correlated and uncorrelated channels,

respectively. Replacing the fully-connected with binary switches, the performance difference between our method

and [5] becomes 2.43 bits/Hz/s, 2.86 bits/Hz/s and 1.73 bits/Hz/s for the sparse, correlated and uncorrelated channels,

respectively.
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VII. CONCLUSION

In this paper, we investigated the performance of hybrid beamformers when the RF beamformer consists of

a combination of subconnected phase shifter network with fully-connected/subconnected switch networks. The

proposed beamforming methods and the closed-form expressions of their spectral efficiencies were derived based

on the properties of the singular vectors of the channel matrix when the propagation environment is modeled by

Rayleigh fading. The simulation results indicated that the proposed methods can perform well when channel sparsity

and correlation effects are considered. Such structures reduce the power consumption of hybrid beamformers with

phase shifters only as switches require significantly lower power to operate compared to the phase shifters. Specially,

in massive MIMO systems where the number of the required phase shifters is large. It was shown that the fully-

connected switch network provides slightly better performance compared to the subbonnected structure. However,

due to the simplicity of the subconnected approach and lower insertion losses and crosstalks, it is preferred in

practice.

The power consumption of switches is negligible compared to phase shifters, as a result, our methods can signif-

icantly reduce the power consumption. On the other hand, such structures can complicate the channel estimation.

Hence, in future we are aiming to analyze the joint optimization of spectral and energy efficiencies to choose the

system parameters, i.e. number of the switches, phase shifters and antennas. In addition, further research is required

to investigate the impact of channel estimation when the proposed structures are used.

APPENDIX A

DIAGONALIZATION OF Q IN (3)

In order to analyze Q, we investigate the behavior of the elements of G ∈ C
M×M , defined as G =

√

M/NVH
1:MFsub.

It is noted that our choice of fsub,m will result in either case 1:

√

M
N vH

mfsub,m′ = 0, or case 2:

√

M
N vH

mfsub,m′ 6= 0,

∀m 6= m′. In the first case that

√

M
N vH

mfRF,m′ = 0, ∀m 6= m′, it could be easily shown that all of the elements of

G except the Gmm become zero, and (b) in (3) turns into equality. Then,

Gmm =

√
MvH

mfsub,m√
N

=

√

M

N

∑

n∈Im

V ∗
nmejθnm (21)

≤
√

M

N

∑

n∈Im

|Vnm|,

where the equality holds when

Fsub,nm =











ej∠Vnm if n ∈ Im,

0 if n /∈ Im.

(22)

Using this beamforming matrix and in the limit of large numbers, when N →∞, (21) becomes

lim
N→∞

M
∑

∀n∈Im
|
√
NVnm|

N
√
M

=
E[
√
N |Vnm|]√
M

=

√
π

2
√
M

. (23)

In the following, we analyze the impact of setting Fsub, according to (22), on the off-diagonal elements of G. For

the uncorrelated i.i.d. Rayleigh channel, the elements of singular vectors of the channel matrix are zero-mean i.i.d.
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random variables and their phases are uniformly distributed over [0, 2π] [3]. As a consequence of law of large

numbers

lim
N→∞

√

M

N
vH
mfsub,m′ = lim

N→∞

√
M

N

∑

∀n∈Im′

√
NV ∗

nmej∠Vnm′ (24)

=
√
ME[
√
NVnm] = 0.

As a result, it could be concluded that all of the elements of G except the diagonal elements become zero. This

means that choosing Fsub according to (22) will fulfill the condition of case 1. Moreover, this matrix can diagonalize

Q and maximize its diagonal element. Hence, the achievable sum-rate in (3) is maximized.

�

APPENDIX B

THE WEIGHTS FOR THE SWITCHES AND PHASE SHIFTERS OF FIGURE 1C

In order to set the phases of the phase shifters and the select network of the switches in Fig. 1c according to

FSF, the following procedure can be applied:

1) Select the elements of FSF,nm ∀n ∈ Im. With the same index order, store them in vector f̃
(m)

SF ∈ C
N
M ×1. It

is noted that f̃
(m)

SF has only L nonzero elements.

2) Create the vector f̄
(m)
SF ∈ CL×1 which includes all the nonzero elements of f̃

(m)

SF with the same order. The

vector f̄
(m)
SF contains the beamforming weights of the phase shifters that are connected the mth RF chain.

3) Let the matrix S(m) ∈ C
N
M ×L represent the select network of the fully-connected switch on the mth RF chain

where f̃
(m)

SF = S(m)f̄
(m)
SF . Initially, set all the elements of S(m) to zero.

4) If f̃
(m)
SF,i 6= 0, then set S

(m)
il = 1 such that f̃

(m)
SF,i = f̄

(m)
SF,l , ∀i ∈ {1, ..., N/M} and ∀l ∈ {1, ..., L}.

It is noted that each row of S(m) can have at most one nonzero element. In addition, the presented method to set

the phase shifter and switches is just one solution, and it is not unique. �

APPENDIX C

THE WEIGHTS FOR THE SWITCHES AND PHASE SHIFTERS OF FIGURE 1D

In order to set the phase of the lth phase shifter on the mth RF chain, and the select network of the switches in

Fig. 1d according to FSS, the following procedure can be applied:

1) Select the elements of FSS,nm where n ∈ {(m−1)LS+(l−1)S+1, ..., (m−1)LS+ lS} and l ∈ {1, ..., L}.
With the same index order, store them into f̃

(ml)

SS ∈ C
S×1. Let ŝ denote the index of the only nonzero element

of f̃
(ml)

SS where ŝ ∈ {1, ..., S}.
2) Set the lth phase shifter on the mth RF chain according to the nonzero element of f̃

(ml)

SS .

3) Let vector s(ml) ∈ CS×1, represent the select network of the subconnected switch which connects the lth

phase shifter on the mth RF chain to one of the n ∈ {(m − 1)LS + (l − 1)S + 1, ..., (m − 1)LS + lS}
antennas. Except s

(ml)
ŝ = 1, set all the elements of s(ml) to zero.

�
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