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The Sixth Generation Heterogeneous Network (6G HetNet) is a global interconnected system that serves a myriad variety of
applications and services across multiple domains such as satellite, air, ground, and underwater networks. It provides a platform for
the development of novel Internet of Things (IoT) applications and services, particularly for the Internet of Vehicles (IoV), which
encompasses all devices involved in intra-vehicle and inter-vehicle communications. However, this evolution towards a unified and
huge cellular infrastructure creates new security challenges that require an intelligent attack detection framework to safeguard the
network against cyber-security threats.

This paper proposes a hierarchical attack detection framework for 6G-enabled IoV. This framework relies on the processing
capacities of edge nodes to satisfy the main 6G Key Performance Indicators (KPIs), such as trustworthiness, latency, connectivity,
data rate and energy consumption. Federated Learning (FL) and non-cooperative gaming are used to train attack models and
improve the detection process over time. The cooperative detection process based on FL is executed by security entities, IoV devices,
edge servers and Security Information and Event Management (SIEM) to improve the detection accuracy over time. To harden
the security of the proposed attack detection framework, a robust Stackelberg security game is developed to identify malicious
IoV devices and edge servers, and select suitable IoV devices and edge servers to participate in the training and attack detection
processes. The identification and selection process mainly relies on computing a reputation score based on the activities of these IoV
devices and edge servers. As compared to current security monitoring and detection solutions, our framework balances detection
accuracy and reduced network overhead, specifically as the system scales up, i.e., when the malicious traffic is high. In addition, it
mitigates threats from both external and internal adversaries.

Index Terms—6G, Internet of Vehicles, Federated Learning, Stackelberg Game, Intrusion and attacks detection.

I. INTRODUCTION

Telecommunication operators envision the 6G HetNet ar-
chitecture to extend the 5G network by adding satellite and
underwater networks, as presented in Fig. 1. As such the
6G network will encompass the following heterogeneous
domains: (a) The underwater network will interconnect un-
derwater devices such as wireless sensor nodes, underwater
drones and submarines [1]–[3]. (b) The ground network will
interconnect static and mobile nodes such as industry 5.0
sensors, actuators and processes, smart meters, and vehicles.
These distributed IoT devices will use TeraHertz (THz) and
millimeter Wave (mmWave) communications [2]. (c) The air
network will interconnect flying devices, such as airplanes,
Unmanned Aerial Vehicles (UAVs) and drones [4], [5]. To
prevent disconnections and hence reduce the end-end network
delay, the flying devices will establish wireless communication
links with the devices deployed in the underwater and ground
areas. (d) The satellite network will offer a variety of safety
and infotainment services such as weather forecast, system
navigation and television broadcasting. The main purpose of
incorporating the satellite network in the 6G architecture is
to enhance data broadcasting and forwarding at a large scale,
while guaranteeing a high and reliable quality of service in a
disaster-recovery communications network [6].
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Some recent works have already discussed the main building
blocks of the 6G architecture [3], [7], [8]. Letaief et al. [8] in-
troduced a roadmap for 6G deployment and a set of AI-enabled
use cases for 6G, targeting mainly QoS improvement. Gui et
al. [3] described four communication services that will be sup-
ported by the 6G architecture: Massive Low Latency Machine
Type communication (MLLMT), Mobile Broad Bandwidth
and Low Latency communication (MBBLL), Massive Broad
Bandwidth Machine Type communication (MBBMT) and 6G-
Lite. 6G-Lite is dedicated for Cooperative Intelligent Trans-
portation Systems (C-ITS) and Internet of Vehicles (IoV). Mao
et al. [7] highlighted the main characteristics of 6G-enabled
IoT applications. Note that in this work, we will be considering
the use-case of 6G-enabled Internet of Vehicles (IoV) as a
particular scenario of IoT. [7] investigated and analysed the
use of Machine Learning (ML) algorithms for adapting radio
resources from high-frequency bands to short-range ones.

As it will interconnect a huge number of heterogeneous
devices and transport an ever-growing amount of data, the
6G architecture will raise new cyber-security challenges. For
example, new breaches originating from the malicious use of
virtualization functions targeting network functions employed
for QoS improvement [9]. Indeed, 6G threats will target the
edge intelligence and intelligent network management [10]
(e.g., threats related to critical infrastructures and SDN/NFV)
via the adoption of old attacks such as Denial of Services
(DoS), man in the middle, or deception attacks [11]. For-
tunately, integrating AI models by design in 6G will not
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only enhance network management capabilities but will also
serve to provide self-monitoring and self-healing from new
threats [12]. In fact, by pushing AI elements the closest
possible to data-owners or devices to reduce latency, 6G
will indirectly provide a way to integrate efficiently intrusion
detection systems using deep or collaborative learning.

AI-based intrusion detection systems in practice often rely
on hybrid detection techniques [13], [14]. These systems
combine detection rules (i.e., signatures) defined by security
experts and machine learning techniques such as deep learning,
reinforcement learning and Federated Learning (FL) [14].
As compared to conventional attack detection techniques,
AI-based intrusion detection systems can potentially identify
unknown attacks with high accuracy, and reduce the number
of false positives and false negatives. In this paper, we propose
a novel attack detection framework specifically designed for
hierarchical 6G networks, with a focus on the IoV use-case.
Our framework relies on two levels of FL involving a set of
distributed IoV devices and edge servers, and a centralized
security system (e.g.,Security Information and Event Manage-
ment (SIEM)). The goal of our framework is to detect both
internal and external attacks on the IoV network, while satis-
fying the main 6G Key Performance Indicators (KPIs), which
include latency, connectivity degree, energy consumption, and
data rate. Furthermore, to improve the detection rate, both IoV
devices and edge servers run a security game based on the
Stackelberg approach. This non-cooperative game involves a
leader (i.e., a security agent) and a follower (i.e., an attacker),
and only allows trusted IoV devices and trusted edge servers to
participate in network monitoring. According to experimental
results, our framework outperforms state-of-the-art solutions
for intrusion detection solutions in 6G wireless networks in
terms of attack detection accuracy and network overhead.

The remainder of this paper is organized are follows. Sec-
tion II reviews the related works and introduces security and
functional requirements and Section III details the adversary
model. Section IV presents the proposed intrusion detection
framework. Section V discusses the implementation results of
the IoV use case before concluding in Section VI.

II. CYBER SECURITY IN 6G WIRELESS NETWORKS

In this section, we present state-of-the-art security solutions
to protect the 6G network from attackers. The advantage and
weakness of each solution is highlighted.

A. Application and data levels

Li et al. [2] conceived a blockchain solution to secure the AI
applications of the 6G network from tampering threats using
a reputation metric. This solution relies on four components:
distributed edge servers, a blockchain module, a trusted entity,
and users’ equipment. These components cooperate together
to prevent external attacks. Mousa et al. [15] proposed an
authentication scheme based on robust public key encryption
to secure the 6G wireless network from external attacks,
such as man in the middle and spoofing attacks. The user
equipment, base station, and authentication server run the
authentication protocol and only the authenticated equipment

is allowed to join the network. In the security analysis, they
proved that their scheme is robust against network attacks,
while being lightweight. Li et al. [16] developed an efficient
edge caching system for 6G architecture to thwart attacks
targeting data confidentiality. This caching system relies on
physical layer security mechanisms and a probabilistic caching
model. Although the aforementioned security mechanisms [2],
[15], [16] are robust against external threats, they fail to detect
internal attacks, such as infected virtual networking functions,
and compromised fog and cloud servers.

B. Network level

Stergiou et al. [17] presented a novel approach to protect 6G
wireless networks from attacks targeting IoT, cloud computing,
and fog devices. They have proposed a data management
mechanism that employs a cache decision system to reduce
end-to-end latency and ensure energy efficiency. This sys-
tem is monitored by both centralized cloud and distributed
edge servers, to detect and prevent known attacks through
different edge points. On the other hand, Liu et al. [18]
applied FL algorithms in 6G communications to address
privacy concerns. They introduced three defense modules: an
aggregation algorithm to collaboratively aggregate updates, a
reputation framework to select relevant and honest entities,
and a detection system. However, their solution has not been
evaluated through simulations. Mao et al. [7] developed an
intrusion detection system that uses Kalman filters to detect
attackers that target the energy consumption of IoT devices.
They assessed the trade-off between energy consumption
and quality of service, and demonstrated that their simu-
lated solution ensures low computation overhead and high
network throughput. Nevertheless, their detection system has
not been evaluated against attacks that occur in constrained
IoT networks, namely, targeting connectivity and network
latency. Finally, Zhou et al. [19] addressed task offloading
in the context of 6G networks. They have proposed a multi-
layer solution that provides efficient data computation and
transmission, and secure computation services at the user’s
side. Their approach includes a quantitative security analysis
model to assess the trust level of the task offloading model
implemented by user equipment.

C. Key Performance Indicators (KPIs)

Table I presents a comparison among the current cyber
security solutions applied in the 6G architecture in terms of
attack detection performances and their impact on the main
6G KPIs. In the following, we highlight the main considered
6G KPIs and examples of attacks impacting those KPIs.

• Energy: Various network attacks can target energy-
constrained devices in a 6G network. The resource ex-
haustion attack is an example of these attacks, which
consists of forcing the victim device to perform computa-
tionally expensive tasks that leads to its energy depletion.

• Connectivity degree: The connectivity degree is consid-
ered as a main KPI of MBBMT services because the
distributed IoT devices in MBBMT require a massive
connectivity in order to share and process a huge amount
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Fig. 1: Architecture of 6G Enabled Networks

TABLE I: Comparison among different cybersecurity solutions for 6G-enabled IOT applications
Solution Approach Internal attacks External attacks Accuracy of detection Energy consumption Connectivity Latency Data rate

[2] Blockchain Non detectable Detectable Medium High Medium High N.A.
[16] Cryptographic-based solution Non detectable Detectable Medium High Medium Low N.A.
[15] Caching system Non detectable Detectable Medium N.A. N.A. High N.A.
[17] Caching system Detectable Detectable Medium Medium Medium Low High
[18] Federated Learning (FL) Detectable Detectable N.A. N.A. High Low High
[7] Kelman Filtering N.A. Detectable High Medium N.A. Low High
[19] Rules-based attacks detection N.A. Detectable N.A. Low High Low High

Proposed solution Hierarchichal FL Detectable Detectable High Medium Medium Low High

NOTE: N.A. is the abbreviation for Not Applicable

of data [7]. Mao et al. [7] noticed that positioning
accuracy could be one of the parameters used to enhance
the quality of connectivity in the 6G network. However,
positioning accuracy can be the target of GPS spoofing
attack [20].

• Network Latency: Intelligent transportation systems such
as vehicular ad-hoc network and drones network are ones
of the 6G-Lite scenarios, where the latency is a main
KPI. Remote cyber-attacks can target network latency by
infecting mobile devices (such as automotive and drone
nodes). Once infected, they start running unnecessary
computations and sharing extra information which in-
creases the end-to end network latency.

• Data rate: Augmented reality and virtual reality are main
MBBLL applications of 6G-enabled IoT network. To
achieve a high quality of service and high quality of
experience, the data rate and latency should be taken
into account [7]. However, attacks such as Black Hole
and Selective forwarding attacks drop relevant network
packets, thus leading to a rapid decrease of data rate, and
subsequently causing an increase on the network latency.

Several other KPIs are important in the context of the
Internet of Vehicles (IoV). In addition to energy, connectiv-

ity, latency, and data rate, the Quality of Experience (QoE)
is another indictor driving the implementation of mission-
critical applications in 6G-enabled IoV, as explained in [5].
Furthermore, given different personalized needs of vehicles for
computing-intensive applications, how to utilize heterogeneous
computing resources in 6G networks to ensure personalized
QoE for vehicles has become a challenge. In the context of 6G
edge computing offloading, QoE depends on the computation
overhead. The proposed security architecture utilizes QoE to
address the security concerns associated with offloading and
computation tasks. Furthermore, the trustworthiness of the
edge nodes and IoV devices is taken into consideration during
the offloading and computation process. The QoE metric is
inherently integrated into the task offloading procedure, in
conjunction with the trust metric that reflects the level of trust
for both the IoV device and the edge server.

III. SECURITY MODEL

In this work, we consider a Dolev and Yao attacker
model [21]. That is, the attacker is able to Read, Drop and
Send valid messages. A Read action refers to receiving or
intercepting messages. Meanwhile, a Send action refers to
forging and replaying messages. A Drop action refers to
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filtering. In practice, we consider two types of adversaries
defined as follows:

• External adversaries — malicious entities that seek to hi-
jack main security properties such as data confidentiality
or integrity, as well as network service availability. They
may also include other form of attacks, such as the one
aiming to deteriorate the featured 6G KPIs, by increasing
latency, exhausting network resources, generating over-
head, or increasing the energy footprint (e.g., altering
the signal strength intensities). Examples of external
attacks include DoS, man in the middle, black hole,
eavesdropping and poisoning. Some of these attacks can
be targeting 6G virtualisation functions, network configu-
ration modules and AI algorithms for QoS management.

• Internal adversaries — malicious IoV devices and mali-
cious edge servers. Legitimate devices can become mali-
cious after the installation of a malware or a fake update.
Once infected, malicious devices will target network con-
figuration and ML configuration [10]. In addition, they
can start misbehaving by dropping neighbours packets
and injecting malicious messages.

Both external and internal adversaries are capable of exe-
cuting known and unknown attacks. In a known attack, the
adversary exhibits a known malicious action defined by an
attack signature. They refer to the security threats that have
already been identified within the security community. In this
context, known attacks may include traditional attack vectors,
such as malware, phishing, denial-of-service (DoS) attacks,
and ransomware. However, in an unknown attack, also known
as a zero-day exploit attack, the adversary launches an attack
that has not been executed before (i.e., new malicious action)
or at least has not reported yet. These attacks are often
more difficult to defend against because there is no existing
knowledge for them. To protect against unknown attacks, the
security model should include measures for identifying and
responding to security incidents. By addressing both known
and unknown attacks in the security model, we establish a
proactive approach to securing the system against a range of
potential threats.

IV. DETECTION FRAMEWORK FOR HIERARCHICAL IOV
NETWORKS IN THE 6G ERA

In this section, we propose a cyber-detection framework for
the 6G network. It prevents the occurrence of internal and
external threats, e.g., attacks targeting wireless communica-
tions and private data. The proposed framework leverages a
collaborative monitoring and detection performed by security
entities deployed in a hierarchical way within the network. In
the following subsections, we first introduce the considered
architecture by presenting the involved entities and detailing
the attack detection process (Section IV-A). Then, we present a
new trust model based on a non-cooperative game (relying on
the Stackelberg security game) for the detection of non-trusted
security entities (Section IV-B).

A. Architecture
Our solution applies federated learning between all the

involved security entities to train attack detection models to

detect malicious behaviors at different levels of the network
architecture.

1) Entities
Our solution relies on three types of security entities for

securing the network from attackers: IoV devices, edge devices
and a Security Information and Event Management (SIEM), as
illustrated in Fig. 2. These entities collaborate together during
the monitoring and detection process as follows:

• IoV devices are denoted by D. Two kinds of IoV
devices are defined, Cluster Member (CM) and Cluster
Head (CH) devices. Each CH manages a set of CMs,
and is elected by different members, according to its
performances indicators and its Maliciousness Degree
(MD). For more details on how to compute the MD for
the IoV network, we refer readers to Reference [22].
The MD and aforementioned 6G’s KPIs are the main
selectors for the CH’s election. For example, the device
that exhibits a low MD (as compared to its neighboring
devices), while considering the 6G’s KPIs will be elected
as CH. The latter runs the hierarchical FL-security frame-
work (as explained in subsection IV.A.2) to detect the
malicious CM, located within its neighborhood. When a
malicious CM is detected, an Alert message is sent from
the monitoring CH to SIEM (through the edge server)
for further investigation. This Alert message contains
the identity of the malicious CM, and the values of its
KPIs. Note that the CH could also act as a malicious
device. Consequently, to overcome this security issue,
CM devices monitor the behavior of their CH by running
a rule-based attack detection technique. In our security
architecture as illustrated in Fig. 2, the CH responsible
for managing its set of cluster members is ideally located
within the range of an edge server. However, in cases
when the CH is not within the range of the edge server, a
cluster head election is launched to select a new CH close
to the edge (i.e., a device that has a high connectivity
degree). Furthermore, the device with a lower malicious
degree (as compared to its neighboring devices), while
taking into account the 6G’s KPIs, particularly the con-
nectivity degree, will be elected as the new CH.

• Edge Server is denoted by E . It is a powerful device that
monitors the behavior of CH located within its range.
It also analyzes the Alert messages received from the
CH device to confirm or refute the malicious behaviors
of suspected CM devices. The edge device runs an
attack detection technique using the FL algorithm (as
explained in subsection IV-A.2). The edge server sends
a Report message to SIEM for further investigation in
order to provide final decisions (i.e., confirm or reject
the malicious behavior of a suspected CM and CH). This
Report message contains the identities of suspected CHs
and CMs, and their related KPIs and MDs.

• SIEM is denoted by S. It is a trusted cloud server that
monitors the behaviors of distributed edge servers to
detect malicious ones. In addition, it analyzes the Alert
and Report messages to verify the malicious behaviors
of suspected CMs and CHs. First, S performs the ag-
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gregation process, which consists of aggregating all the
relevant information (MDs and KPIs) related to suspected
Es, CHs and CMs. Then, the updated values of MDs and
KPIs are used as inputs for the FL algorithm to accurately
detect malicious Es, CHs and CMs.

2) Hierarchical FL-security framework Workflow
FL introduced by Google in 2016 [23], is a collaborative

machine learning approach that enables multiple clients to col-
lectively train a shared model without revealing their sensitive
local data to a central aggregation server. In FL, each client
trains its own machine learning model locally by using its own
data. Afterwards, the resulting model weights are transmitted
to an aggregation server. The server then combines all the
clients’ models, typically by averaging their weights. Finally,
the updated global model is distributed back to all the clients.
This iterative training process is repeated multiple times.
FL is intriguing because it safeguards the confidentiality of
clients’ sensitive data by keeping them undisclosed. Moreover,
it allows for the expansion of the training dataset since the
dataset for training the global model can be perceived as
an aggregation of all the clients’ datasets. FL has found
effective applications in various domains, such as facilitating
collaborative training of disease detection models among hos-
pitals without exposing patient health data or enabling security
companies to collaborate on training threat detection models
while maintaining the privacy of their attack repositories and
logs.

We present in this section our FL-based framework for
intrusion detection in a hierarchical 6G-IoV network (Fig 2).

The FL algorithm based on an unsupervised approach is
divided into three phases: clustering, training and detection.
During the clustering process, a trusted and reliable CH
device is elected based on the monitored MDs and KPIs.
It corresponds to the CM that presents a low MD with
interesting KPIs (i.e., low energy consumption and network
latency; high connectivity degree and data rate). The elected
CHs share their training models and the list of malicious CMs
with their neighboring edge server. For the training process,
we assume that, at time t, all the CHs and their associated
CMs possess the same global training model ψt, which is
also shared with the edge servers. We denote by:

• ψi
t the global model at E , where i = {1, . . . ,m} and m

is the total number of involved edge servers,
• ψj

t the global model at CH, where j = {1, . . . ,m′} and
m′ is the number of CHs located within the range of each
edge server.

First, each CH gathers data from its associated CMs. Then, it
trains a local model ψj

t+1. Next, CH uploads its local training
model ψj

t+1’s updates to the edge server E . E aggregates
the local training models of its CHs to obtain the updated
global training model ψi

t+1. Afterwards, S receives the ψi
t+1’s

updates from Es, and aggregates them to obtain a global
model. The latter is also trained with S’s local data to obtain
the final global model ψt+1. At the end of this iteration, ψt+1

is shared with all the framework’s entities.
During the detection phase, the updated training model ψt+1

(i.e., anomaly detection model) is used by CHs and E to detect

malicious behaviors and monitor their respective targets. Alert
and Report messages are sent to S for further investigation
and verification.

The proposed framework consists of a two-layer system that
gathers heterogeneous entities with different trust levels. The
IoV layer involves several groups of CMs, where each group
is managed by a selected CH, as explained in Section IV. The
exchanged data flows between CMs and CH include sensitive
information such as logs information, alerts, etc..., that may
expose the vulnerabilities of the vehicles’ devices. In order
to avoid this issue, our framework proposes a combination of
a symmetric encryption scheme and a signature mechanism
to ensure the confidentiality and integrity of the exchanged
data between devices. We rely on the Advanced Encryption
Standard (AES) as a symmetric encryption scheme, which
is a well-established block-cipher. The communicating parties
within the same cluster share the same encryption key k. Be-
fore sharing data with CH, each cluster member CMl encrypts
them as Cl = EncAES(Dl, k) where l = {1, . . . ,m”}, m”
is the number of CMs whithin a particular cluster, and Dl is
the collected data by CMl. Then, the enciphered data Cl will
be signed by CMl, using an asymmetric encryption scheme
such as Elliptic Curve Digital Signature Algorithm (ECDSA)
[24] and its private key denoted by skCMl

. The resulting
signature is σCMl

. A lightweight alternative to the signature is
computing a Hashed Message Authentication Code (HMAC)
on Cl. Computing HMAC requires sharing a symmetric key
between CMl and CH. The edge level includes different edge
servers Es connected to the SIEM. Es share models’ updates
and relay Alert and Report messages that include sensitive
information that can enable external adversaries to conduct
various attacks [25], [26] such as membership inference at-
tacks, reconstruction and inversion attacks, etc. To mitigate
these issues, our framework proposes the same combination
of encryption and signatures schemes, as in the IoV level,
applied at each edge server E . This combination guarantees
the confidentiality and integrity of exchanged data.

B. Stackelberg game for the detection of non-trusted devices
The proposed framework relies on a Stackelberg security

game [27] to identify malicious CHs and Es. It is a non-
cooperative game between the leader player ( a security
agent) and the follower player (an opponent agent, i.e.,
attacker) [27]. The principle of the Stackelberg security game
entails the leader player aiming to detect the maximum
number of opponent agents, and the follower player setting
to launch attacks without being detected by the security agents.

1) Security game definition
As detailed in Section IV, the CH is elected based on its

MD and KPIs. However, the MD value can be altered and
cannot be considered as reliable. Thereby, to elect the most
trusted CHs and edge servers E , two security games are set-
up: (i) E and CH play respectively the roles of leader and
follower players, where the goal of the leader is to detect the
non-trusted CH, and (ii) the SIEM S and edge server E play
respectively the roles of leader and follower players, where
the goal of the leader is to detect the non-trusted server.
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Fig. 2: FL-based defense architecture

The Stackelberg security games are denoted by:
{θCH(i,t), θ

E
(i,t), θ

′E
(i,t), θ

′S
(i,t)}, where i ∈ {1, . . . , I} and I

is the maximum number of iterations considered in the game;
θCH(i,t), θ

E
(i,t), θ

′E
(i,t), θ

′S
(i,t) correspond to the follower CH, the

leader edge E , the follower edge E , and the leader SIEM S,
respectively.

In the following, we denote by ϕ1i (t), ϕ
2
i (t), ϕ

3
i (t) and ϕ4i (t),

the number of malicious entities and i is the ith iteration of the
game: ϕ1i (t) is the number of malicious CHs that are located in
the neighborhood of leader edge server E , ϕ2i (t) corresponds to
the number of malicious CHs detected by leader edge server,
ϕ3i (t) is the number of malicious edge servers that are located
in the neighborhood of leader SIEM S, ϕ4i (t) is the number
of malicious edge servers detected by the leader SIEM.

In addition, we refer to the pure strategies of the different
leader and follower players by S1

i (t), S
2
i (t), S

3
i (t) and S4

i (t),
where i is the ith iteration of the game. These strategies are
represented by S1

i (t) = s1i (t) ∈ ϕ1i (t), S
2
i (t) = s2i (t) ∈ ϕ2i (t),

S3
i (t) = s3i (t) ∈ ϕ3i (t) and S4

i (t) = s4i (t) ∈ ϕ4i (t),
where s1i (t), s

2
i (t), s

3
i (t) and s4i (t) correspond respectively to

a malicious behavior executed by a CH node, a malicious
CH detected by E , a malicious behavior executed by an edge
server, and a malicious edge server detected by S.

To evaluate the success of different security games, we
consider p1i as the probability of follower CH adopting the
strategy s1i (t), p

2
i as the probability of the leader edge adopting

the strategy s2i (t), p
3
i as the probability of the follower E

adopting the strategy s3i (t), and p4i as the probability of the
leader S adopting the strategy s4i (t). Note that

∑I
i=1 p

1
i = 1,∑I

i=1 p
2
i = 1,

∑I
i=1 p

3
i = 1, and

∑I
i=1 p

4
i = 1.

2) Utility
The utility functions of the leader and follower players

depend on their rewards and required costs. Leaders’ rewards
correspond to the detection accuracy of both malicious CHs
and Es, and the leaders’ costs are the amounts of computation

and communication overheads required by leader players to
reach a high detection accuracy. Followers’ rewards are the
attacks success rates of both malicious CHs and Es, while
followers’ costs are the required computation overhead re-
quired by both malicious CHs and Es to initiate attacks without
being detected by leaders. The utility functions of leader
and follower players are defined in Eqs. (1), (4), and (7),
respectively.

UE
(i,t)(S

2
i (t), S

1
i (t))

= RE
(i,t)(S

2
i (t), S

1
i (t))− CE

(i,t)(S
2
i (t), S

1
i (t)), (1)

where RE
( i, t) and CE

( i, t) correspond to the reward and the
generated cost of the leader edge server, respectively, which
are computed according to Eq. 2.

RE
(i,t)(S

2
i (t), S

1
i (t)) = DE

(i,t)(S
2
i (t), S

1
i (t))

−[F E
(i,t)(S

2
i (t), S

1
i (t)) + F ′E

(i,t)(S
2
i (t), S

1
i (t))], (2)

DE
(i,t) is the detection rate of malicious CH, and F E

(i,t) and
F ′E
(i,t) correspond respectively to the false positive and false

negative rates against a legitimate CH, calculated by the edge
server. Note that DE

(i,t), F
E
(i,t) and F ′E

(i,t) ∈ [0, 1].

CE
(i,t)(S

2
i (t), S

1
i (t))

= α1.O
E
(i,t)(S

2
i (t), S

1
i (t))− α2.O

′E
(i,t)(S

2
i (t), S

1
i (t)), (3)

OE and O′E are respectively the computation and commu-
nication overheads generated by the edge server to detect
accurately the malicious behaviors of a monitored CH. Note
that CE

(i,t) ∈ [0, 1] and the weights α1 and α2 are in [0, 1].

US
(i,t)(S

4
i (t), S

3
i (t))
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= RS
(i,t)(S

4
i (t), S

3
i (t))− CS

(i,t)(S
4
i (t), S

3
i (t)), (4)

Similar to E , we, hereafter, express both the reward and the
cost of the SIEM S, as follows:

RS
(i,t)(S

4
i (t), S

3
i (t)) = DS

(i,t)(S
4
i (t), S

3
i (t))

−[FS
(i,t)(S

4
i (t), S

3
i (t)) + F ′S

(i,t)(S
4
i (t), S

3
i (t))], (5)

CS
(i,t)(S

4
i (t), S

3
i (t))

= α3.O
S
(i,t)(S

4
i (t), S

3
i (t))− α4.O

′S
(i,t)(S

4
i (t), S

3
i (t)), (6)

DS
(i,t), F

S
(i,t) and F ′S

(i,t) ∈ [0, 1] correspond respectively to
the detection rate of a malicious edge server, false positive rate
and false negative rate. CS

(i,t) ∈ [0, 1] is the required compu-
tation and communication overheads to accurately detect the
malicious behaviors of edge server, where α3, α4 ∈ [0, 1]. In
the following, we denote by F and L the follower and the
leader players, respectively.

UF
(i,t)(S

F
i (t), SL

i (t))

= RF
(i,t)(S

F
i (t), SL

i (t))− CF
(i,t)(S

F
i (t), SL

i (t)), (7)

Here, SF
i (t) could be either S1

i (t) or S3
i (t), while SL

i (t) could
be either S2

i (t) or S4
i (t).

RF = CH(i,t) = −RE
(i,t)(S

2
i (t), S

1
i (t)), (8)

RF = E(i,t) = −RS
(i,t)(S

4
i (t), S

3
i (t)), (9)

CF
(i,t)(S

F
i (t), SL

i (t)) = β.OF
(i,t)(S

F
i (t), SL

i (t)), (10)

where OF
(i,t) is the computed overhead generated by a

malicious follower player (i.e., either a malicious CH or a
malicious E) to execute malicious behaviors without being
detected by the leader player (i.e., edge server E or SIEM S).
Note that β ∈ [0, 1] is the weight parameter.

3) Stackelberg security equilibrium solution
In order to reach an equilibrium, we first recall that the

strategies of leader players, θE(i,t) and θS(i,t), depend on the
strategies of follower players, θCH(i,t) and θE(i,t), at each iteration
i and subsequent iterations I , and vice-versa. Thus, as shown
in [28], the Stackelberg equilibrium is determined, recursively.
The optimal utility functions of the players at the equilibrium
point are defined as min and max functions below.

U∗E
(i,t)(S

∗2
i (t), S∗1

i (t))

= max
p2
i

min
p1
i

Q1.UE
(i,t)(S

2
i (t), S

1
i (t)), (11)

U∗S
(i,t)(S

∗4
i (t), S∗3

i (t))

= max
p4
i

min
p3
i

Q2.US
(i,t)(S

4
i (t), S

3
i (t)), (12)

U∗F
(i,t)(S

∗F
i (t), S∗L

i (t))

= max
pF
i

min
pL
i

QF .UF
(i,t)(S

F
i (t), SL

i (t)), (13)

where Q1 = p2i .p
1
i and Q2 = p4i .p

3
i . In Eq. 13, when SF

i (t)
is S1

i (t), S
L
i (t) will be S2

i (t). Hence, pFi = p1i , pLi = p2i and
QF = p1i .p

2
i = Q1. In addition, when SF

i (t) is S3
i (t), S

L
i (t)

will be S4
i (t). Hence, pFi = p3i , pLi = p4i and QF = p3i .p

4
i =

Q2.
The total utility functions of the leader and follower players

are computed as shown in Eqs. (14)-(16).

UE
Total(S

2
i (t), S

1
i (t)) =

Q1.[

I∑
i=1

U∗E
(i,t+1)(S

∗2
i (t+1), S∗1

i (t+1))+

I∑
i=1

UE
(i,t)(S

2
i (t), S

1
i (t))],

(14)

US
Total(S

4
i (t), S

3
i (t)) =

Q2.[

I∑
i=1

U∗S
(i,t+1)(S

∗4
i (t+1), S∗3

i (t+1))+

I∑
i=1

US
(i,t)(S

4
i (t), S

3
i (t))],

(15)

UF
Total(S

F
i (t), SL

i (t)) =

QF .[

I∑
i=1

U∗F
(i,t+1)(S

∗F
i (t+1), S∗L

i (t+1))+

I∑
i=1

UF
(i,t)(S

F
i (t), SL

i (t))],

(16)
As shown in Eqs. (17) and (18), the leader players, θE(i,t)

and θS(i,t), aim to maximize their total utility functions, while
considering the best responses from follower players (as
defined in Eq. (16)).

∀S′1
i (t),∀p′

1
i ,max

p2
i

min
p′1
i

UE
Total(S

2
i (t), S

′1
i (t)) (17)

such that:

Q1.[

I∑
i=1

U∗E
(i,t+1)(S

∗2
i (t+1), S∗1

i (t+1))+

I∑
i=1

UE
(i,t)(S

2
i (t), S

1
i (t))]

≤ Q′1.[
I∑

i=1

U∗E
(i,t+1)(S

∗2
i (t+1), S∗1

i (t+1))+
I∑

i=1

UE
(i,t)(S

2
i (t), S

′1
i (t))]

where Q′1 = p2i .p
′1
i and p′1i ≥ p1i.

∀S′3
i (t),∀p′

3
i ,max

p4
i

min
p′3

i

US
Total(S

4
i (t), S

′3
i (t)) (18)

such that:

Q2.[

I∑
i=1

U∗S
(i,t+1)(S

∗4
i (t+1), S∗3

i (t+1))+

I∑
i=1

US
(i,t)(S

4
i (t), S

3
i (t))]

≤ Q′2.[

I∑
i=1

U∗S
(i,t+1)(S

∗4
i (t+1), S∗3

i (t+1))+

I∑
i=1

US
(i,t)(S

4
i (t), S

′3
i (t))]

where Q′2 = p4i .p
′3
i and p′3i ≥ p3i .
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In this Stackelberg security game, the leader players, θE(i,t)
and θS(i,t), aim to determine the optimal strategies of follower
players, θCH(i,t) and θ′E(i,t), defined as S∗1

i (t) and S∗3
i (t) by

solving Eqs. (17) and (18).
Non-cooperative games are considered between the follower

and leader players, since the leader players aim to maximize
their utility functions, while minimizing the utility functions
of their opponents (i.e., malicious CH and malicious edge
server E), and vice-versa. The goal of the leader players, θE(i,t)
and θS(i,t), is to predict the future strategies of malicious CH
and malicious edge server E , defined as S∗1

i (t) and S∗3
i (t).

Therefore, as shown in Algorithm 1, the CH and edge server
are categorized as non-trusted devices when their utility
functions, UE

Total(S
2
i (t), S

1
i (t)) and US

Total(S
4
i (t), S

3
i (t)),

reach maxp2
i
minp′1

i
UE
Total(S

2
i (t), S

′1
i (t)) and

maxp4
i
minp′3

i
US
Total(S

4
i (t), S

′3
i (t)), respectively. In this

case, the malicious CH and malicious edge server E will be
deprecated from the network, and only the trusted devices
(CHs and edge servers) will afterwards participate in the
monitoring and attack detection process.

1: i← 1;
2: while i ≤ I do
3: Leader θE computes UE

(i,t)(S
2
i (t), S

1
i (t));

4: Leader θS computes US
(i,t)(S

4
i (t), S

3
i (t));

5: if UE
(i,t)(S

2
i (t), S

1
i (t)) = UE

(i,t)(S∗2i (t), S∗1i (t)) then
θE Monitors UCH

(i,t)(S
2
i (t), S

1
i (t))

else
if p′1i ≥ p1i then

θE computes UE
Total(S

2
i (t), S

1
i (t))

else
if UE

Total(S
2
i (t), S

1
i (t)) =

maxp2i
minp′1i

UE
Total(S

2
i (t), S

′1
i (t))) then

CH device that executes the strategy
S1
i (t) is categorized as a malicious device

and will be ejected from the network.
end

end
end
if US

(i,t)(S
4
i (t), S

3
i (t)) = US

(i,t)(S∗4i (t), S∗3i (t))
then

θS Monitors UCH
(i,t)(S

4
i (t), S

3
i (t))

else
if p′3i ≥ p3i then

θS computes US
Total(S

4
i (t), S

3
i (t))

else
if US

Total(S
4
i (t), S

3
i (t)) =

maxp4i
minp′3i

US
Total(S

4
i (t), S

′3
i (t))) then

Edge server that executes the strategies
S3
i (t) is categorized as malicious server and

will be ejected from the network.
end

end
end

6: i← i+ 1
end

Algorithm 1: Algorithm for detection of non-trusted
devices (CH and edge server E)

Fig. 3 illustrates the interaction between the hierarchical
security framework and the security game to accurately detect
malicious IoV devices and malicious edge servers.

CHs and Edge server use the 
trained model to detect attacks

Eject and blacklist 
the malicious CM

Eject the malicious
Edge server

Eject and blacklist 
the malicious CH

The Alert and Report messages are sent to
SIEM (S) for further verification and detection

Launch the Stackelberg security game: run
the non-cooperative game betweem the leader

and follower players

CH or/and CMs are
malicious devices

CM is malicious

Yes

Yes

Yes

Yes

No

No

No

No

No

No

CH is malicious

Yes

Fig. 3: Flowchart of the attack detection process

V. CASE STUDY

The 6G-enabled IoV network involves a set of underwater,
underground and air sub-networks as described in Fig 1. The
IoV network is characterized by the high mobility of IoV
devices. Main KPIs of IoV are the latency, the data rate and
the connectivity degree [3].

A. Simulation Results

For our experiments, we simulate a set of distributed devices
that play the role of IoV nodes (e.g., ground vehicles, drones
and underwater vehicles). The total number of distributed de-
vices is equal to 40 nodes. At the beginning of our simulation,
we randomly set the values of the main KPIs (e.g., data rate,
latency, energy consumption, and connectivity degree).
The FL algorithm trains a feed-forward neural network with
47 inputs and 2 hidden layers, each with 20 and 10 neurons,
respectively. The considered loss function is the cross-entropy.
The number of iterations for FL training varies from 5 to 50
iterations. The learning rate is equal to 0.01. The batches sizes
of CH, edge server E and the SIEM S are equal respectively to
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5, 30 and 60. We used the network attack data set introduced
in [29], which includes nine types of network attacks and
one normal traffic behavior. This data set contains 175341
training and 82332 testing records. It corresponds to the real
IoT attacks that may be performed against the radio access
network (for example, of a 6G network).

Relevant features and data points used for training the
model and inferencing are extracted from the network attack
data set [29]. Basically, the main features used during the
training and attack detection process include the total source
bytes, destination bytes, the number of source packets, the
number of destination packets, protocol types, the number of
packets dropped and forwarded, the number of normal and
abnormal records, and the number of unique source/destination
IP addresses.

1) Stackelberg security game
As illustrated in Fig. 4, we analyze the security performance

of the proposed detection framework with and without activat-
ing the Stackelberg security game. Specifically, we compute
the robustness metric, which is defined as the attack detection
rate minus the false positive rate. The duration of the game
varies from 2 seconds to 10 seconds, during which the leader
and follower players interact between each other to increase
their utility functions and decrease the utility function of their
opponents. The leader players aims to determine the optimal
strategies for each follower player and execute their specific
strategies to increase their utility functions over time. At the
end of each game duration, we compute the mean value of
the robustness metric by summing up the robustness values
of the leader players and dividing it by the total number of
leader players. It is apparent from Fig. 4 that by activating the
proposed Stackelberg game to monitor the suspected devices
and hence detect the non-trusted devices, the mean robustness
metric increases, specifically when the game duration reaches
10 seconds. This is in contrast the case where the Stackelberg
security game is not activated, which results in a high false
positive rate against the legitimate follower players (CHs and
Es).

2) Detection Accuracy
We define the detection accuracy as the metric, computed by

dividing the number of trusted IoV clusters by the total number
of IoV clusters. The trusted IoV clusters are the clusters where
CHs have the lowest MDs (as compared to their neighbors
CMs) and satisfy the network requirement KPIs. The number
of iterations varies from 5 to 50 iterations as illustrated in
Fig. 5. At each iteration, the FL algorithm and Stackelberg
game are executed at the IoV and edger levels, and cover
the clustering, training and detection process as explained in
Section IV.

Fig. 5 shows that the detection accuracy increases with
respect to the number of iterations during the training. Indeed,
the FL based cooperative detection reduces the false positives
and false negatives. Meanwhile, the Stackelberg security game
detects accurately the suspected CH or edge server that
exhibits malicious behaviors.

3) Detection and false positive rates
As compared to current centralized attack detection frame-

works for 6G such as [16], [17], the proposed detection system
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Fig. 5: Detection accuracy of the proposed framework

shows a high detection rate and low false positive rate when
analyzing attack detection rates. This is especially true when
the amount of malicious traffic reaches 45% (of all data
traffic), as shown in Figs. 6(a) and 6(b). The proposed solution
achieves a high level of security by monitoring the suspected
behaviors of CHs and edge servers using the Stackelberg
game. Equilibrium states are reached where the follower CH
launches an attack, and the leader edge detects this attack;
or when the follower edge server runs an attack and the
leader SIEM detects this malicious behavior. In addition, our
cooperative attack detection is improved by the inputs of the
different devices at different hierarchical levels.

4) Computation overheads
As shown in Fig. 6(c), we vary the amount of malicious

traffic from 10% to 45% and analyze the computation over-
head generated by our proposed solution and the centralized
detection frameworks from the state-of-the-art [16], [17]. As
illustrated in Fig. 6(c), the centralized detection framework
requires a high computation overhead to achieve a high
accuracy detection, specifically when the amount of malicious
traffic is close to 45%. This is mainly due to huge amount
of data collected at the centralized node (e.g., SIEM) to carry
out the training and attack detection process. However, in our
proposed solution, a low computation overhead is required to
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Fig. 6: Hierarchical vs Centralized detection framework

prevent the occurrence of internal and external adversaries.
Indeed, to accelerate the attack detection process at the IoV
and edge levels, two detection layers (at IoV devices, edge
devices and SIEM) are combined together.

VI. CONCLUSION

Provisioning applications and services for the emerging 6G
network has drawn much attention from IT and telecom-
munications operators. However, ensuring efficient security
mechanisms in the context of 6G architectures remains largely

unexplored. In this research work, we have proposed a new
collaborative cyber security framework, based on a multi-level
FL algorithm and Stackelberg security games, to secure 6G-
enabled IoV networks from attacks that target the main KPIs
of 6G architectures. Specifically, we have proposed a concrete
construction of a hierarchical attack detection framework
that leverages the processing capabilities of IoV nodes, edge
servers and SIEM. The proposed attack detection framework
presents a crucial step in the research and development of
cyber security and AI systems in emerging 6G-enabled IoV
networks, and is expected to benefit the academic and indus-
trial communities.

Our future work will focus on evaluating alternative ML
models and integrating the proposed solution into dynamic
environments to demonstrate the versatility of the proposed
methodology in ever-evolving settings. In addition, we will
explore the use of fully homomorphic encryption as discussed
by [30]–[33] to make the intrusion detection more privacy-
preserving. However, using homomorphic encryption will re-
quire the adaptation of the used models and may result in a
loss of accuracy, and we will carefully evaluate this trade-off
in our future research.
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