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Abstract

This paper studies unmanned aerial vehicle (UAV) enabled wireless communication, where a rotary-

wing UAV is dispatched to send/collect data to/from multiple ground nodes (GNs). We aim to minimize

the total UAV energy consumption, including both propulsion energy and communication related energy,

while satisfying the communication throughput requirement of each GN. To this end, we first derive an

analytical propulsion power consumption model for rotary-wing UAVs, and then formulate the energy

minimization problem by jointly optimizing the UAV trajectory and communication time allocation

among GNs, as well as the total mission completion time. The problem is difficult to be optimally

solved, as it is non-convex and involves infinitely many variables over time. To tackle this problem,

we first consider the simple fly-hover-communicate design, where the UAV successively visits a set

of hovering locations and communicates with one corresponding GN when hovering at each location.

For this design, we propose an efficient algorithm to optimize the hovering locations and durations, as

well as the flying trajectory connecting these hovering locations, by leveraging the travelling salesman

problem (TSP) and convex optimization techniques. Next, we consider the general case where the UAV

communicates also when flying. We propose a new path discretization method to transform the original

problem into a discretized equivalent with a finite number of optimization variables, for which we

obtain a locally optimal solution by applying the successive convex approximation (SCA) technique.

Numerical results show the significant performance gains of the proposed designs over benchmark

schemes, in achieving energy-efficient communication with rotary-wing UAVs.
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I. INTRODUCTION

Wireless communication using unmanned aerial platforms is a promising technology to achieve

wireless coverage in areas without or with insufficient terrestrial infrastructures. Early efforts

have been primarily focusing on using high altitude platforms (HAPs), which are deployed in

stratosphere at altitude around 20 km, aiming to provide ubiquitous coverage in rural or remote

areas. These include the Project Loon by Google with the mission of “Balloon-powered Internet

for everyone”, as well as the Project Skybender by Google and the Project Aquila by Facebook,

both using solar-powered drones to provide internet access from the sky. On the other hand,

wireless communication using low altitude platforms (LAPs), typically below a few kilometers

above the ground, has received growing interests recently. LAPs can be implemented in various

ways, such as helikite [1] and unmanned aerial vehicles (UAVs) [2]–[6]. In particular, compared

to other airborne solutions such as HAPs and helikite, UAV-enabled wireless communication

brings new advantages [2], such as on-demand and more swift deployment, superior link qual-

ity in the presence of shorter-distance line-of-sight (LoS) communication channel with ground

nodes (GNs), and higher network flexibility with the fully controllable UAV movement in three

dimensional (3D) airspace. Therefore, UAV-enabled wireless communication has many potential

use cases, including public safety communication, temporary traffic offloading for cellular base

stations (BSs), information dissemination and data collection for Internet of Things (IoTs), as

well as emergency response and fast service recovery after natural disasters.

Prior researches on UAV-enabled wireless communications can be loosely classified into two

categories. In the first category, UAVs are deployed as (quasi-)stationary aerial BSs. In this

case, UAVs resemble the conventional static terrestrial BSs, but at a much higher altitude and

thus possesses new channel characteristics [7]–[11]. In particular, it was shown that as the

UAV altitude increases, the LoS probability between the UAV and GNs also increases [12]. By

exploiting such unique channel characteristics, significant efforts have been devoted to study-

ing the various aspects of UAV-enabled BSs, such as UAV placement optimization [12]–[17],

performance analysis [18]–[20], spectrum sharing [21], and cell association [22]. In contrast,

the other category considers the application scenarios where UAVs are employed as mobile

BSs/relays/access points (APs) [23]–[28], whose trajectories can be designed to optimize the

communication performance. For example, a UAV as a mobile relay or data collector can fly

closer to its associated GNs for communication to improve the overall spectrum efficiency [23]
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and/or save the communication energy of GNs [26]. In [23], a new framework of joint power

allocation and UAV trajectory optimization was proposed for the UAV-enabled mobile relaying

system, which has been extended to various other setups such as UAV-enabled data collection

[26], multi-UAV coordinated/cooperative communication [27], [29], and UAV-enabled wireless

power transfer [30].

One critical issue of UAV-enabled wireless communication lies in the limited on-board energy

of UAVs [2], which needs to be efficiently used to enhance the communication performance and

prolong the UAV’s endurance. Compared to conventional terrestrial BSs, UAVs incur additional

propulsion energy consumption to maintain airborne and support their movement. In practice,

the UAV propulsion power is usually much higher than the communication related power. As

a result, the energy-efficient wireless communication design with UAV is significantly different

from that in conventional terrestrial communication systems. An initial attempt for designing

energy-efficient UAV communication via trajectory optimization was made in [25], where the

energy efficiency in bits/Joule of a fixed-wing UAV enabled communication system is maximized

for a given flight duration. To that end, a generic energy model as a function of the UAV’s

velocity and acceleration was derived for fixed-wing UAVs. Based on the energy model in [25],

the authors in [31] further revealed an interesting trade-off between UAV’s energy consumption

and that of the GNs it communicating with. However, the above results for fixed-wing UAVs

cannot be applied for rotary-wing UAVs, due to their fundamentally different mechanical designs

and hence drastically different propulsion energy models. This thus motivates our current work

to investigate energy-efficient communication for rotary-wing UAVs.

In this paper, we study a wireless communication system enabled a rotary-wing UAV. Com-

pared to fixed-wing UAVs, rotary-wing UAVs have several appealing advantages such as the

ability to take off and land vertically, as well as for hovering, which render them more popular

in the current UAV market. We consider the scenario where a rotary-wing UAV is dispatched as a

flying AP to communicate with multiple GNs, each of which has a target number of information

bits to be transmitted/received to/from the UAV. Such a setup corresponds to many practical

applications, such as UAV-enabled data collection for periodic sensing, UAV-enabled caching

where the UAV pre-fetches the data and then transmits to the designated caching nodes [32],

etc. Our objective is to minimize the UAV’s energy consumption, including both propulsion

energy and communication energy, while ensuring that the communication requirement for each

GN is satisfied. The main contributions of this paper are summarized as follows.
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First, we derive an analytical model for the propulsion power consumption of rotary-wing

UAVs, based on the results in aircraft literature [33], [34]. As expected, the obtained model is

significantly different from that for fixed-wing UAVs derived in our prior work [25].

Based on the derived power consumption model, we formulate the energy minimization prob-

lem that jointly optimizes the UAV trajectory, the communication time allocation among the

multiple GNs, as well as the total mission completion time. The problem is difficult to be

optimally solved, as it is non-convex and constitutes infinite number of optimization variables

that are coupled in continuous functions over time. To tackle this problem, we first consider

the simple fly-hover-communicate design [17] to gain useful insights. Under this design, the

UAV successively visits a set of optimized hovering locations, and communicates with each of

the GNs only when hovering at the corresponding location. In this case, the problem reduces

to finding the optimal hovering locations and hovering duration at each location, as well as the

visiting order and flying speed among these locations. The problem is still NP hard, as it includes

the classic NP hard travelling salesman problem (TSP) as a special case [35]. By leveraging the

existing TSP-solving algorithm [36] and convex optimization techniques, an efficient high-quality

approximate solution is obtained for our problem.

Next, we propose a general solution to the energy minimization problem where the UAV

communicates also when flying. To this end, we first propose a novel discretization technique,

called path discretization, to transform the original problem with infinitely many variables into

a more tractable form with a finite number of variables. Different from the widely used time

discretization approach for UAV trajectory design (see e.g. [23] and [25]), path discretization

does not require the mission completion time to be pre-specified. This is particularly useful for

problems where the mission completion time is also one of the optimization variables, as for

the energy minimization problem studied in this paper. However, the path-discretized problem is

still non-convex, and thus it is challenging to find its optimal solution. By utilizing the succes-

sive convex approximation (SCA) technique [23], an efficient iterative algorithm is proposed to

simultaneously update the UAV trajectory and communication time allocation at each iteration,

which is guaranteed to converge to at least a locally optimal solution satisfying the Karush-

Kuhn-Tucker (KKT) conditions. Last, simulation results are provided to validate the proposed

designs and show their significant performance gains over benchmark schemes.

It is worth noting that another related line of work is on mobile robotics, which exploits

the mobility of ground robots for various applications [37], [38]. However, the design for UAV
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communication systems are significantly different from that for ground robotics due to the dis-

tinct air-to-ground channel characteristics [7]–[11] as well as the fundamentally different energy

consumption models. For example, the power consumption of mobile robots can usually be

modeled as a polynomial and monotonically increasing function with respect to its moving

speed [37], which is much simpler than that for fixed-wing UAVs as in [25] and rotary-wing

UAVs in Section II-B of the current work.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a wireless communication system where a rotary-wing UAV is dispatched to

communicate with K GNs, which are denoted by the set K = {1, · · · , K}. The horizontal

location of the GN k ∈ K is denoted as wk ∈ R2×1. We assume that the UAV flies at a constant

altitude H and the total number of information bits that need to be communicated with GN k

is Q̃k. Let Tt denote the total time required for the UAV to complete the mission, which is a

design variable. Denote by q(t) ∈ R2×1 with 0 ≤ t ≤ Tt the UAV trajectory projected onto

the horizontal plane. Let Vmax denote the maximum UAV speed. We then have the constraint

‖q̇(t)‖ ≤ Vmax. At any time instant t ∈ [0, Tt], the distance between the UAV and GN k is given

by dk(t) =
√
H2 + ‖q(t)−wk‖2, k ∈ K.

We assume that the wireless channels between the UAV and GNs are dominated by LoS

links. Thus, the channel power gain between the UAV and GT k can be modeled based on the

free-space path loss model as

hk(t) = β0d
−2
k (t) =

β0

H2 + ‖q(t)−wk‖2
, (1)

where β0 represents the channel power gain at the reference distance of 1 meter (m). Furthermore,

assuming a fixed transmission power P by the transmitter when it is scheduled for communica-

tion, the achievable rate in bits per second (bps) between GN k and the UAV at any time instant

t is expressed as

Rk(t) = B log2

(
1 +

Phk(t)

σ2Γ

)
= B log2

(
1 +

γ0

H2 + ‖q(t)−wk‖2

)
, (2)

where B denotes the channel bandwidth in hertz (Hz), σ2 is the noise power at the receiver,

Γ > 1 accounts for the gap from the channel capacity due to the practical modulation and coding

scheme employed, and γ0 , Pβ0/(σ
2Γ) is defined as the received signal-to-noise ratio (SNR)

at the reference distance of 1 m.
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We assume that the time-division multiple access (TDMA) protocol is applied for the UAV

to serve the K GNs, in order to fully exploit the time-varying channels with trajectory design.

Let a binary variable λk(t) ∈ {0, 1} denote the user scheduling indicator at time instant t, with

λk(t) = 1 indicating that GN k is scheduled for communication at instant t and λk(t) = 0

otherwise. As at most one GN can be scheduled at each time instant t, we have
K∑
k=1

λk(t) ≤ 1,∀t ∈ [0, Tt]. (3)

Therefore, the aggregated communication throughput for GN k is a function of Tt, q(t), and

λk(t), which can be expressed as

R̄k

(
Tt, {q(t)}, {λk(t)}

)
=

∫ Tt

0

λk(t)Rk(t)dt

= B

∫ Tt

0

λk(t) log2

(
1 +

γ0

H2 + ‖q(t)−wk‖2

)
dt. (4)

To ensure the target communication throughput requirement for each GN k, we must have

R̄k

(
Tt, {q(t)}, {λk(t)}

)
≥ Q̃k, ∀k ∈ K. (5)

B. Energy Consumption Model for Rotary-Wing UAV

The UAV energy consumption is in general composed of two main components, namely the

communication related energy and the propulsion energy. The communication related energy

includes that for communication circuitry, signal processing, signal radiation/reception, etc. In

this paper, we assume that the communication related power is a constant, which is denoted as

Pc in watt (W). On the other hand, the propulsion energy consumption is needed to keep the

UAV aloft and support its movement, if necessary. In general, the propulsion energy depends on

the UAV flying speed as well as its acceleration. In this paper, for the purpose of exposition and

drawing the essential design insight, we ignore the additional energy consumption caused by UAV

acceleration, which is valid for typical communication applications where UAV manoeuvring

time only takes a small portion of the total operation time. As derived in Appendix A, for a

rotary-wing UAV flying with speed V , the propulsion power consumption can be modeled as

P (V ) =P0

(
1 +

3V 2

U2
tip

)
︸ ︷︷ ︸

blade profile

+Pi

(√
1 +

V 4

4v4
0

− V 2

2v2
0

)1/2

︸ ︷︷ ︸
induced

+
1

2
d0ρsAV

3︸ ︷︷ ︸
parasite

, (6)

where P0 and Pi are two constants defined in (61) of Appendix A representing the blade profile

power and induced power in hovering status, respectively, Utip denotes the tip speed of the rotor
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blade, v0 is known as the mean rotor induced velocity in hover, d0 and s are the fuselage drag

ratio and rotor solidity, respectively, and ρ and A denote the air density and rotor disc area,

respectively. The relevant parameters are explained in details in Table I and Appendix A. It is

observed from (6) that the propulsion power consumption of rotary-wing UAVs consists of three

components: blade profile, induced, and parasite power. The blade profile power and parasite

power, which increase quadratically and cubically with V , respectively, are needed to overcome

the profile drag of the blades and the fuselage drag, respectively. On the other hand, the induced

power is that required to overcome the induced drag of the blades, which decreases with V .

By substituting V = 0 into (6), we obtain the power consumption for hovering status as

Ph = P0 + Pi, which is a finite value depending on the aircraft weight, air density, and rotor

disc area, etc. (see (61) in Appendix A for details). As V increases, it can be verified that

P (V ) in (6) firstly decreases and then increases with V , i.e., hovering is in general not the most

power-conserving status. It can be verified that the power function P (V ) in (6) is neither convex

nor concave with respect to V . It is much more involved compared to the power model for

fixed-wing UAV (cf. Equation (7) of [25]), which is a convex function consisting of two simple

terms: one increasing cubically and the other decreasing inversely with V .

When V � v0, by applying the first-order Taylor approximation (1 + x)1/2 ≈ 1 + 1
2
x for

|x| � 1, (6) can be approximated as a convex function, i.e.,

P (V ) ≈ P0

(
1 +

3V 2

U2
tip

)
+
Piv0

V
+

1

2
d0ρsAV

3. (7)

A typical plot of P (V ) versus UAV speed V is shown in Fig. 1, together with the three individual

power components and the convex approximation given in (7).

Two particular UAV speeds that are of high practical interests are the maximum-endurance

(ME) speed and the maximum-range (MR) speed, which are denoted as Vme and Vmr, respectively.

ME speed: By definition, the ME speed Vme is the optimal UAV speed that maximizes the

UAV endurance under any given onboard energy E. With E given, the UAV endurance with

constant speed V is given by E
P (V )

. Thus, Vme is the optimal UAV speed that minimizes the

power consumption, i.e., Vme = arg min
V≥0

P (V ) Though a closed-form expression for Vme is

difficult to obtain due to the complicated expression of P (V ) in (6), it can be efficiently found

numerically.

MR speed: On the other hand, the MR speed Vmr is the optimal UAV speed that maximizes

the total traveling distance with any given onboard energy E. For any given E, the range with
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Fig. 1: Propulsion power consumption versus speed V for rotary-wing UAV.

constant traveling speed V can be expressed as EV
P (V )

. Define the function

E0(V ) ,
P (V )

V
= P0

(
1

V
+

3V

U2
tip

)
+ Pi

(√
V −4 +

1

4v4
0

− 1

2v2
0

)1/2

+
1

2
d0ρsAV

2, (8)

which physically represents the UAV energy consumption per unit travelling distance in Joule/meter

(J/m) with speed V . Thus, Vmr can be found as Vmr = arg min
V≥0

E0(V ) Though a closed-form

expression for Vmr is difficult to obtain, it can be efficiently found numerically. Alternatively, Vmr

can also be obtained graphically based on the power-speed curve P (V ), by drawing the tangen-

tial line from the origin to the power curve that corresponds to the minimum slope (and hence

power/speed ratio) [34], as illustrated in Fig. 1. In practice, we usually have Vme ≤ Vmr ≤ Vmax.

With given UAV trajectory {q(t)}, the propulsion energy consumption can be expressed as

E1(Tt, {q(t)}) =

∫ Tt

0

P (‖v(t)‖)dt, (9)

where v(t) , q̇(t) is the UAV velocity and ‖v(t)‖ is the UAV speed at time instant t.

By combining both the communication related energy and the propulsion energy, the total

UAV energy consumption can be expressed as

E(Tt, {q(t)}, {λk(t)}) = E1(Tt, {q(t)}) + Pc

∫ Tt

0

(
K∑
k=1

λk(t)

)
dt. (10)

C. Problem Formulation for UAV Energy Minimization

Our objective is to minimize the UAV total energy consumption, while satisfying the target

communication throughput requirement for each of the K GNs. The problem can be formulated
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as

(P1) : min
Tt,{q(t)},{λk(t)}

E(Tt, {q(t)}, {λk(t)})

s.t. R̄k(Tt, {q(t)}, {λk(t)}) ≥ Q̃k, ∀k ∈ K, (11)

‖q̇(t)‖ ≤ Vmax, ∀t ∈ [0, Tt], (12)

q(0) = qI , q(Tt) = qF , (13)

λk(t) ∈ {0, 1}, ∀k ∈ K, t ∈ [0, Tt], (14)

K∑
k=1

λk(t) ≤ 1, ∀t ∈ [0, Tt], (15)

where qI ,qF ∈ R2×1 represent the UAV’s initial and final locations projected onto the horizontal

plane, respectively. Note that depending on practical application scenarios, the constraints on the

initial/final UAV locations in (13) may or may not be present.

Problem (P1) requires optimizing the UAV trajectory {q(t)} and communication scheduling

{λk(t)}, which are both continuous functions with respect to time t. Therefore, (P1) essentially

involves infinite number of optimization variables. Furthermore, (P1) includes a complicated

cost function for the UAV energy consumption, as well as non-convex constraints in (11) and

binary constraints in (14). Therefore, (P1) is difficult to be directly solved. In Section III, we

first consider the simple fly-hover-communicate protocol to make the problem more tractable,

by which (P1) reduces to a problem with a finite number of optimization variables that only

depends on the number of GNs K, instead of the (a priori unknown) mission completion time Tt.

Then in Section IV, we propose a general solution to (P1) by utilizing the new path disretization

technique to convert it into a discretized equivalent problem with a finite number of optimization

variables, for which at least a locally optimal solution can be found via the SCA technique.

III. FLY-HOVER-COMMUNICATE PROTOCOL

Fly-hover-communicate is a very intuitive protocol that is also easy to implement in practice. In

this protocol, the UAV successively visits K optimized hovering locations, each for one GN, and

communicates with each GN only when it is hovering at the corresponding location. As a result,

problem (P1) reduces to finding the optimal hovering locations and hovering (communication)

time allocations for the K GNs, as well as the optimal flying speed and path connecting these

hovering locations. In the following, we first consider the special case with only one GN to draw

useful insights, and then extend the study to the general case with multiple GNs.
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A. Optimal Fly-Hover-Communicate Scheme for One Single GN

For the special case with one single GN, the GN index k is omitted for brevity. Without loss

of generality, we assume that the GN is located at the origin with w = 0, and the UAV’s initial

horizontal location is qI = [D̄, 0]T . To illustrate the fundamental trade-off between hovering

energy and flying energy minimization, we assume that there is no constraint on the UAV’s

final location in this subsection, where the general case with such a constraint will be studied

in Section III-B and Section IV. It is not difficult to see that under such a basic setup, the UAV

should only fly along the line segment connecting qI and the GN w.

One extreme case of the fly-hover-communicate protocol is that the UAV simply hovers at the

initial location qI and communicates with the GN until the aggregated information bits reach the

target value Q̃. However, when the initial horizontal distance D̄ is large, such a strategy usually

leads to a very low data rate and hence requires very long mission completion time Tt. This in

turn leads to high UAV hovering and communication energy consumption. Alternatively, the UAV

could fly closer to the GN and hover at a certain location with a shorter link distance to achieve

a higher data rate. This strategy, though requiring additional energy for UAV traveling, reduces

the time for data transmission (or hovering), and hence requires less energy for hovering and

communication. Therefore, with the fly-hover-communicate protocol, in order to minimize the

total UAV energy consumption, there must exist an optimal UAV hovering location that strikes an

optimal balance between minimizing the traveling energy and hovering/communication energy.

Denote by Ttr the UAV traveling time before reaching the hovering location and by V (t)

the instantaneous traveling speed towards the GN. Thus, the total traveling distance is Dtr =∫ Ttr

0
V (t)dt, where we should have 0 ≤ Dtr ≤ D̄. The total required energy consumption for

traveling is

Etr(Ttr, {V (t)}) =

∫ Ttr

0

P (V (t))dt. (16)

Furthermore, based on (2), the achievable data rate in bps when the UAV hovers at the point

after traveling distance Dtr is

R(Dtr) = B log2

(
1 +

γ0

H2 + (D̄ −Dtr)2

)
. (17)

Thus, the required communication time (or equivalently the UAV hovering time Thov) to complete

the transmission of Q̃ bits is

Thov =
Q̃

R(Dtr)
=

Q

log2

(
1 + γ0

H2+(D̄−Dtr)2

) , (18)
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where Q , Q̃/B is the bandwidth-normalized throughput requirement in bits/Hz. Thus, the total

required UAV hovering and communication energy consumption is

Ehc(Dtr) = (Ph + Pc)Thov =
(Ph + Pc)Q

log2

(
1 + γ0

H2+(D̄−Dtr)2

) . (19)

Therefore, the total UAV energy consumption is

Etot(Ttr, {V (t)}, Dtr) = Etr(Ttr, {V (t)}) + Ehc(Dtr). (20)

Thus, the energy minimization problem (P1) reduces to

(P2) min
Ttr,{V (t)},Dtr

Etot(Ttr, {V (t)}, Dtr)

s.t. 0 ≤ V (t) ≤ Vmax,∀t ∈ [0, Ttr],∫ Ttr

0

V (t)dt = Dtr,

0 ≤ Dtr ≤ D̄. (21)

It is not difficult to see that with the fly-hover-communicate protocol, the scheduling variable

λ(t) in problem (P1) can be directly determined once the UAV traveling time Ttr and hovering

time Thov are obtained.

Lemma 1. The optimal solution to problem (P2) satisfies Ttr = Dtr/Vmr and V (t) = Vmr,

∀t ∈ [0, Dtr/Vmr].

Proof: Lemma 1 can be shown by change of variables. The details are omitted for brevity.

Lemma 1 shows that with the fly-hover-communicate protocol, the UAV should travel with

a constant speed, which is given by the MR speed, Vmr. Let E?
0 = E0(Vmr) be the minimum

UAV energy consumption per unit traveling distance obtained by substituting Vmr into (8). Then

problem (P2) reduces to the following uni-variate optimization problem

min
0≤Dtr≤D̄

DtrE
?
0 +

(Ph + Pc)Q

log2

(
1 + γ0

H2+(D̄−Dtr)2

) . (22)

Note that the first term of (22) increases linearly with the traveling distance Dtr, while the second

term decreases monotonically with Dtr. Therefore, the optimal solution of Dtr to problem (22)

should balance the energy consumption for traveling and hovering, which can be efficiently

obtained via a one-dimensional search.

For the asymptotical case in the low-SNR regime, e.g., γ0 � H2, by applying the approxi-
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mation ln(1 + x) ≈ x for |x| � 1, the optimal solution to (22) can be obtained in closed-form

as D∗tr = max
{

0, D̄ − γ0E?0
(2 ln 2)(Ph+Pc)Q

}
. Define Q′ , γ0E?0

(2 ln 2)(Ph+Pc)D̄
. The above result shows that

the UAV should move closer (i.e., D∗tr > 0) to the GN for communication only when Q > Q′.

Otherwise, it should simply hover at the initial location qI for communication. Furthermore, the

larger the throughput requirement Q is, the closer the UAV should move towards the GT for

communication. As Q gets sufficiently large, we have D∗tr → D̄, i.e., the UAV should hover on

top of the GN for commutation.

B. Fly-Hover-Communicate for Multiple GNs

In this subsection, the fly-hover-communicate protocol is extended to the general case with

multiple GNs. In this case, (P1) reduces to finding the optimal set of K hovering locations, each

for communicating with one GN, as well as the traveling path and speed among these hovering

locations.

Let q̃k ∈ R2×1 denote the horizontal coordinate of the UAV hovering location when it com-

municates with GN k. Based on (2), the instantaneous communication rate in bps can be written

as

Rk(q̃k) = B log2

(
1 +

γ0

H2 + ‖q̃k −wk‖2

)
. (23)

As a result, the total required communication time (or the hovering time at location q̃k) to ensure

the target throughput Q̃k is given by

Tk(q̃k) =
Q̃k

Rk(q̃k)
=

Qk

log2

(
1 + γ0

H2+‖q̃k−wk‖2

) , (24)

where Qk , Q̃k/B is the normalized throughput requirement in bits/Hz. Thus, the total required

hovering and communication energy at the K locations is a function of {q̃k}, which can be

expressed as

Ehc({q̃k}) = (Ph + Pc)
K∑
k=1

Tk(q̃k) =
K∑
k=1

(Ph + Pc)Qk

log2

(
1 + γ0

H2+‖q̃k−wk‖2

) . (25)

On the other hand, the total required traveling energy depends on the total traveling distance

Dtr to visit all the K hovering locations {q̃k}, as well as the traveling speed V (t) among

them. Similar to Lemma 1, it can be shown that with the fly-hover-communicate protocol, the

UAV should always travel with the MR speed Vmr. Furthermore, for any given set of hovering

locations {q̃k} and initial/final locations qI and qF , the total traveling distance Dtr depends on

the visiting order of all the K locations, which can be represented by the permutation variables
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π(k) ∈ {1, · · · , K}. Specifically, π(k) gives the index of the kth GN served by the UAV.

Therefore, we have

Dtr ({q̃k}, {π(k)}) =
K∑
k=0

‖q̃π(k+1) − q̃π(k)‖, (26)

where for convenience, we have defined q̃π(0) = qI and q̃π(K+1) = qF . Thus, the total required

UAV traveling energy with the optimal traveling speed Vmr can be written as

Etr ({q̃k}, {π(k)}) = E?
0Dtr ({q̃k}, {π(k)}) . (27)

The total UAV energy consumption is thus given by

Etot ({q̃k}, {π(k)}) = Ehc({q̃k}) + Etr ({q̃k}, {π(k)}) . (28)

As a result, the energy minimization problem (P1) with the fly-hover-communicate protocol

reduces to

(P3) : min
{q̃k},{π(k)}

Etot ({q̃k}, {π(k)})

s.t.
[
π(1), · · · , π(K)

]
∈ P , (29)

where P represents the set of all the K! possible permutations for the K GNs. Note that with the

fly-hover-communicate protocol, the user scheduling parameter {λk(t)} in (P1) can be directly

obtained based on the solution to (P3).

Problem (P3) is a non-convex optimization problem, whose optimal solution is difficult to

obtain. In fact, even with fixed hovering locations {q̃k}, problem (P3) reduces to the classic

TSP [35] with pre-determined initial and final locations [28], which is known to be NP hard.

Therefore, problem (P3) is also NP hard as it is more general. Fortunately, by utilizing the

existing techniques for solving TSP and applying convex optimization, an efficient approximate

solution to (P3) can be obtained.

To this end, we first introduce the slack variables Dtr and zk = ‖q̃k−wk‖2, by which problem

(P3) can be equivalently written as

(P3.1) : min
Dtr,{q̃k},{π(k)},{zk}

E?
0Dtr +

K∑
k=1

(Ph + Pc)Qk

log2

(
1 + γ0

H2+zk

)
s.t.
[
π(1), · · · , π(K)

]
∈ P , (30)

K∑
k=0

‖q̃π(k+1) − q̃π(k)‖ ≤ Dtr, (31)

‖q̃k −wk‖2 ≤ zk, ∀k ∈ K. (32)



14

Note that at the optimal solution to (P3.1), all the constraints in (31) and (32) must be satisfied

with strict equality, since otherwise, we may reduce Dtr or zk to further reduce the cost function

of (P3.1).

Problem (P3.1) can be interpreted as follows. For each GN k, constraint (32) specifies a

disk region centered at the GN location wk with radius
√
zk. The smaller zk is, the shorter the

communication link distance between the UAV and GN k, and hence the less hovering-and-

communication energy required (the second term of the cost function in (P3.1)). However, due

to constraint (31), this would generally require longer traveling distance Dtr and hence more

traveling energy. In fact, for any fixed {zk} such that the hovering-and-communication energy is

fixed, problem (P3.1) essentially reduces to minimizing the total traveling distance Dtr, while

ensuring that each of the hovering location q̃k has a distance no greater than
√
zk from the GN

k. This is essentially the classical traveling salesman problem with neighborhood (TSPN), with

pre-determined initial and final locations. TSPN is a generalization of the TSP and hence is

NP hard as well, where both the visiting order {π(k)} and the locations {q̃k} inside the disk

region need to be optimized. One effective method for solving TSPN is to firstly ignore the disk

radius and solve the TSP problem over the K GN locations {wk} to obtain the visiting order

[π̂(1), · · · , π̂(K)] [28]. Though NP hard, TSP can be approximately solved with high-quality

solutions by many existing algorithms [36]. As such, the TSPN then reduces to finding the

optimal waypoints {q̃k} with the obtained order {π̂k}, which is a convex optimization problem

and hence can be optimally solved [28].

With the above idea, an efficient algorithm is proposed to solve problem (P3.1). Specifically,

the visiting order {π(k)} is firstly set as {π̂(k)} obtained by solving the TSP over the GNs’

locations {wk}. As such, problem (P3.1) reduces to

(P3.2) : min
Dtr,{q̃k},{zk},{ηk}

E?
0Dtr +

K∑
k=1

(Ph + Pc)Qk

ηk

s.t.
K∑
k=0

‖q̃π̂(k+1) − q̃π̂(k)‖ ≤ Dtr, (33)

‖q̃k −wk‖2 ≤ zk, ∀k ∈ K (34)

ηk ≥ 0, ∀k ∈ K, (35)

ηk ≤ log2

(
1 +

γ0

H2 + zk

)
, ∀k ∈ K, (36)

where we have introduced the slack variables {ηk}. It is noted that the cost function of (P3.2)
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and constraints (33)–(35) are all convex. However, the newly introduced constraint (36) is non-

convex. Fortunately, as the right hand side (RHS) of (36) is a convex function, a global lower

bound can be obtained based on the first-order Taylor approximation at the local point z(l)
k , with

the superscript (l) denoting the lth iteration:

log2

(
1 +

γ0

H2 + zk

)
≥ log2

(
1 +

γ0

H2 + z
(l)
k

)
+ ρk(zk − z(l)

k ), (37)

where ρk = −γ0 log2(e)

(H2+z
(l)
k )(H2+z

(l)
k +γ0)

.

By replacing the RHS of (36) with its lower bound, we have the following problem:

(P3.3) : min
Dtr,{q̃k},{zk},{ηk}

E?
0Dtr +

K∑
k=1

(Ph + Pc)Qk

ηk

s.t. (33)− (35),

ηk ≤ log2

(
1 +

γ0

H2 + z
(l)
k

)
+ ρk(zk − z(l)

k ), ∀k ∈ K. (38)

It can be verified that problem (P3.3) is convex, which can thus be efficiently solved by existing

convex optimization toolbox such as CVX [39]. Furthermore, due to the global lower bound in

(37), the optimal value of (P3.3) provides an upper bound to that of (P3.2). By successively

updating the local point {z(l)
k }, the SCA-based algorithm for solving (P3.2) is summarized in

Algorithm 1.

Algorithm 1 SCA-based algorithm for Solving (P3.2).

1: Initialization: set the initial hovering locations {q̃(0)
k } and let z(0)

k = ‖q̃(0)
k −wk‖, ∀k ∈ K.

Let l = 0.
2: repeat
3: Solve the convex problem (P3.2) and denote the optimal solution as D∗tr, {q̃∗k}, {z∗k}, {η∗k}.

4: Update the local point as z(l+1)
k = z∗k,∀k ∈ K.

5: Update l = l + 1.
6: until the fractional decrease of the objective value of (P3.2) is below a given threshold ε.

By following similar arguments as in [25] and [40], it can be shown that Algorithm 1 is

guaranteed to converge to at least a locally optimal solution to problem (P3.2) that satisfies the

KKT conditions.
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IV. GENERAL SOLUTION TO (P1) WITH PATH DISCRETIZATION AND SCA

The fly-hover-communicate protocol in the preceding section gives an efficient solution to

(P1), where the number of optimization variables only depends on K, rather than the mis-

sion completion time Tt. However, this protocol is strictly sub-optimal since the UAV does not

communicate while flying. In this section, we propose a general solution to (P1) without this

assumption via jointly optimizing the UAV trajectory and communication time allocation.

A. Path Discretization

Problem (P1) essentially involves an infinite number of optimization variables coupled in time-

continues functions q(t) and λk(t), as well as the unknown mission completion time Tt, thus

making it difficult to be directly solved. To obtain a more tractable form with a finite number of

optimization variables, (P1) can be reformulated by disretizing the variables {q(t)} and {λk(t)}.

To this end, prior works such as [23] and [25] mostly adopted the method of time discretization,

where the time horizon [0, Tt] is discretized into a finite number of time slots with sufficiently

small slot length δt. However, this method requires that the UAV mission completion time Tt

to be pre-specified, which is not the case for our considered energy minimization problem with

Tt being an optimization variable as well. One method to address the above issue is by firstly

assuming a certain operation time Tt, based on which the time discretization method is applied to

solve the corresponding optimization problem, and then exhaustively search for the optimal Tt.

However, this would require to solve a prohibitively large number of optimization problems, each

for a given assumed Tt, thus making it impractical especially when the optimal Tt is moderately

large. To address this issue, in the following, we propose an alternative discretization method,

called path discretization, with which only one optimization problem needs to be solved.

We first clarify the terminologies of trajectory versus path. Generally, a path specifies the route

that the UAV follows, i.e., all locations along the UAV trajectory, and it does not involve the

time dimension. On the other hand, a trajectory includes its path together with the instantaneous

travelling speed along the path, and thus it involves the time dimension. With path discretization,

the UAV path (instead of time) is discretized into M+1 line segments, which are represented by

M+2 waypoints {qm}M+1
m=0 , with q0 = qI and qM+1 = qF . We impose the following constraints:

‖qm+1 − qm‖ ≤ ∆max, ∀m, (39)
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where ∆max is an appropriately chosen value so that within each line segment, the UAV is

assumed to fly with a constant velocity and the distance between the UAV and each GN is

approximately unchanged. For instance, ∆max could be chosen such that ∆max � H . Let Tm

denote the duration that the UAV remains in the mth line segment. The UAV flying velocity

along the mth line segment is thus given by vm = qm+1−qm
Tm

, ∀m. Furthermore, the total mission

completion time Tt is given by Tt =
∑M

m=0 Tm.

As a result, with path discretization, the UAV trajectory {q(t)} is represented by the M + 2

waypoints {qm}M+1
m=0 , together with the duration {Tm}Mm=0 representing the time that the UAV

spends within each line segment. With the given ∆max, M is chosen to be sufficiently large so

that (M + 1)∆max ≥ D̂, where D̂ is an upper bound of the required total UAV flying distance.

With such a discretization approach, there is no need to specify the mission completion time Tt in

advance, since it can be directly determined once {Tm} are obtained. In addition, to characterize

the special hovering status, path discretization only requires two discretization points, i.e., by

simply letting qm = qm+1, regardless of the hovering duration Tm. This is in a sharp contrast

to the existing time discretization approach, where the number of discretization points needs to

increase linearly with Tm, even when the UAV is hovering and its location remains unchanged.

As such, the distance between the UAV and each GN k can be written as

dmk =
√
H2 + ‖qm −wk‖2,∀k,m, (40)

where dmk represents the distance between the UAV and GN k when the UAV is at the mth line

segment along its path. As a result, the corresponding achievable rate expression in (2) for GN

k when the UAV is at the mth line segment can be represented as

Rmk = B log2

(
1 +

γ0

H2 + ‖qm −wk‖2

)
. (41)

Furthermore, for each line segment m along the UAV path, with TDMA among the K GNs, let

τmk ≥ 0 denote the allocated time for the UAV to communicate with GN k. Then constraint (3)

can be written as
∑K

k=1 τmk ≤ Tm, ∀m ∈ {0, · · · ,M}.

The aggregated communication throughput for GN k in (4) can be written as

R̄k({qm}, {τmk}) = B
M∑
m=0

τmk log2

(
1 +

γ0

H2 + ‖qm −wk‖2

)
. (42)
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Furthermore, the UAV energy consumption in (10) can be written as

E({Tm}, {qm}, {τmk}) =

M∑
m=0

TmP

(
∆m

Tm

)
+ Pc

M∑
m=0

K∑
k=1

τmk

= P0

M∑
m=0

(
Tm +

3∆2
m

U2
tipTm

)
+ Pi

M∑
m=0

(√
T 4
m +

∆4
m

4v40
− ∆2

m

2v20

)1/2

+
1

2
d0ρsA

M∑
m=0

∆3
m

T 2
m

+ Pc

M∑
m=0

K∑
k=1

τmk,

(43)

where ∆m , ‖qm+1−qm‖ is the length of the mth line segment. Note that in (43), we have used

the expression (6) and the fact that the UAV speed at the mth line segment is ‖vm‖ = ∆m/Tm.

As a result, the energy minimization problem (P1) can be expressed in the discrete form as

(P4) : min
{qm},{Tm},{τmk}

E({Tm}, {qm}, {τmk})

s.t.
M∑
m=0

τmk log2

(
1 +

γ0

H2 + ‖qm −wk‖2

)
≥ Qk, ∀k, (44)

‖qm+1 − qm‖ ≤ min{∆max, TmVmax}, ∀m ∈ {1, · · · ,M}, (45)

q0 = qI , qM+1 = qF , (46)

K∑
k=1

τmk ≤ Tm, ∀m ∈ {0, · · · ,M}, (47)

τmk ≥ 0, ∀k ∈ K,m ∈ {0, · · · ,M}. (48)

where (45) corresponds to the maximum UAV speed constraint as well as the maximum segment

length constraint.

Notice that in problem (P4), the constraints (45)–(48) are all convex. However, both the

cost function E({Tm}, {qm}, {τmk}) in (43) and the throughput constraint (44) are non-convex.

Therefore, problem (P4) is non-convex and it is difficult to find its globally optimal solution.

In the following, we propose an efficient algorithm to find (at least) a locally optimal solution

to (P4) based on the SCA technique.

B. Proposed Solution to (P4)

Firstly, we deal with the non-convex cost function of (P4). A closer look at the expression

in (43) reveals that the first, third, and fourth terms are all convex functions with the respect to

{qm}, {Tm}, and τmk, which can be shown by using the fact that perspective operation preserves

convexity [41]. However, the second term is non-convex. To tackle this issue, we introduce slack
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variables {ym ≥ 0} such that

y2
m =

√
T 4
m +

∆4
m

4v4
0

− ∆2
m

2v2
0

, ∀m ∈ {0, · · · ,M}, (49)

which is equivalent to
T 4
m

y2
m

= y2
m +

∆2
m

v2
0

, ∀m ∈ {0, · · · ,M}. (50)

Therefore, the second term of (43) can be replaced by the linear expression Pi
∑M

m=0 ym, with

the additional constraint (50).

On the other hand, to deal with the non-convex constraint (44), we introduce slack variables

{Amk} such that

A2
mk = τmk log2

(
1 +

γ0

H2 + ‖qm −wk‖2

)
. (51)

As a result, the constraint (44) can be equivalently written as
∑M

m=0A
2
mk ≥ Qk, ∀k. With the

above manipulations, (P4) can be written as

(P4.1) : min
{qm},{Tm},{τmk}
{ym},{Amk}

P0

M∑
m=0

(
Tm +

3∆2
m

U2
tipTm

)
+ Pi

M∑
m=0

ym +
1

2
d0ρsA

M∑
m=0

∆3
m

T 2
m

+ Pc

M∑
m=0

K∑
k=1

τmk

s.t.
M∑
m=0

A2
mk ≥ Qk, ∀k, (52)

T 4
m

y2
m

≤ y2
m +
‖qm+1 − qm‖2

v2
0

, ∀m, (53)

A2
mk

τmk
≤ log2

(
1 +

γ0

H2 + ‖qm −wk‖2

)
, ∀m, k, (54)

ym ≥ 0,∀m, (55)

(45)–(48).

Note that in (P4.1), the constraints (53) and (54) are obtained from (50) and (51) by replacing the

equality sign with inequality constraints. This does not affect the equivalence between problem

(P4) and (P4.1). To see this, suppose that at the optimal solution to (P4.1), if any of the

constraint in (53) is satisfied with strict inequality, then we may reduce the corresponding value

of the slack variable ym to make the constraint (53) satisfied with strict equality, and at the same

time reduce the cost function. Therefore, at the optimal solution to (P4.1), all constraints in (53)

must be satisfied with equality. Similarly, there always exists an optimal solution to (P4.1) that

makes all constraints in (54) satisfied with equality as well. Thus, problem (P4) and (P4.1) are

equivalent.
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Problem (P4.1) is still non-convex due to the non-convex constraints (52)–(54). However, all

these three constraints can be effectively handled with the SCA technique by deriving the global

lower bounds at a given local point. Specifically, for the constraint (52), it is noted that the left

hand side (LHS) is a convex function with respect to Amk. By using the fact that the first-order

Taylor expansion is a global lower bound of a convex function, we have the following inequality

A2
mk ≥ A

(l)2
mk + 2A

(l)
mk(Amk − A

(l)
mk), (56)

where A(l)
mk is the value of Amk at the lth iteration.

Similarly, for the non-convex constraint (53), the LHS is already a jointly convex function

with respect to ym and Tm, and the RHS of the inequality constraint is also a convex function.

By applying the first-order Taylor expansion of the RHS, the following global lower bound can

be obtained as

y2
m +
‖qm+1 − qm‖2

v2
0

≥ y(l)2
m + 2y(l)

m (ym − y(l)
m )−

‖q(l)
m+1 − q

(l)
m ‖2

v2
0

+
2

v2
0

(q
(l)
m+1 − q(l)

m )T (qm+1 − qm),

(57)

where y(l)
m and q

(l)
m are the current value of the corresponding variables at the lth iteration.

Furthermore, for the non-convex constraint (54), the LHS is already a jointly convex function

with respect to Amk and τmk. In addition, with similar derivation as in [23] and [25], for any

given value {q(l)
m } at the lth iteration, a global concave lower bound can be obtained for the

RHS of (54) as

log2

(
1 +

γ0

H2 + ‖qm −wk‖2

)
≥ R

(l)
mk(qm), (58)

where

R
(l)
mk(qm) = log2

(
1 +

γ0

H2 + ‖q(l)
m −wk‖2

)
− βmk

(
‖qm −wk‖2 − ‖q(l)

m −wk‖2
)
, (59)

with βmk = (log2 e)γ0

(H2+‖q(l)
m −wk‖2)(‖q(l)

m −wk‖2+γ0)
.

By replacing the non-convex constraints (52)–(54) of (P4.1) with their corresponding lower
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bounds at the lth iteration obtained above, we have the following optimization problem:

(P4.2) : min
{qm},{Tm},{τmk}
{ym},{Amk}

P0

M∑
m=0

(
Tm +

3∆2
m

U2
tipTm

)
+ Pi

M∑
m=0

ym +
1

2
d0ρsA

M∑
m=0

∆3
m

T 2
m

+ Pc

M∑
m=0

K∑
k=1

τmk

s.t.
M∑
m=0

(
A

(l)2
mk + 2A

(l)
mk(Amk − A

(l)
mk)
)
≥ Qk, ∀k,

T 4
m

y2
m

≤ y(l)2
m + 2y(l)

m (ym − y(l)
m )−

‖q(l)
m+1 − q

(l)
m ‖2

v2
0

+
2

v2
0

(q
(l)
m+1 − q(l)

m )T (qm+1 − qm), ∀m,

A2
mk

τmk
≤ R

(l)
mk(qm), ∀m, k,

ym ≥ 0,∀m,

(45)–(48).

It can be verified that problem (P4.2) is a convex optimization problem, which can thus be

efficiently solved by using standard convex optimization techniques or existing software toolbox

such as CVX. Note that due to the global lower bounds in (56)–(58), if the constraints of problem

(P4.2) are satisfied, then those for the original problem (P4.1) are guaranteed to be satisfied as

well, but the reverse is not necessarily true. Thus, the feasible region of (P4.2) is in general a

subset of that for (P4.1), and the optimal value of (P4.2) provides an upper bound to that of

(P4.1). By successively updating the local point at each iteration via solving (P4.2), an efficient

algorithm is obtained for the non-convex optimization problem (P4.1) or its original problem

(P4). The algorithm is summarized as Algorithm 2.

Algorithm 2 SCA-based algorithm for (P4).

1: Initialization: obtain a feasible {q(0)
m }, {T (0)

m }, and {τ (0)
mk} to (P4). Let l = 0.

2: repeat
3: Calculate the current values {y(l)

m } and {A(l)
mk} based on (49) and (51), respectively.

4: Solve the convex problem (P4.2), and denote the optimal solution as {q∗m}, {T ∗m}, {τ ∗mk}.

5: Update the local point q(l+1)
m = q∗m, T (l+1)

m = T ∗m, and τ (l+1)
mk = τ ∗mk.

6: Update l = l + 1.
7: until the fractional decrease of the objective value of (P4.2) is below a given threshold ε.

By following similar arguments as in [25] and [40], it can be shown that Algorithm 2 is

guaranteed to converge to at least a locally optimal solution that satisfies the KKT conditions

of problem (P4.1).
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Remark 1. While Algorithm 2 is proposed to minimize the UAV energy consumption, it can

be similarly applied for UAV communication with other design metrics, such as the following

mission completion time minimization problem, by replacing the cost function of (P4) with∑M
m=0 Tm.

V. NUMERICAL RESULTS

This section provides numerical results to validate the proposed designs. The UAV altitude

is set as H = 100 m and the total communication bandwidth is B = 1 MHz. The received

SNR at the reference distance of 1 m is γ0 = 60 dB. As a result, the maximum received SNR

when the UAV is just above each GN is γ0/H
2 = 20 dB. The communication related power

consumption at the UAV is fixed as Pc = 50 W. For the UAV’s propulsion power consumption,

the corresponding parameters are specified in Table I. The maximum flying speed is Vmax = 60

m/s. The UAV’s initial and final locations are set as qI = [0, 0]T and qF = [800 m, 800 m]T ,

respectively. We consider the setup with K = 3 GNs, with their locations shown in red squares

in Fig. 3. We assume that all GNs have identical throughput requirements, i.e., Q̃k = Q̃, ∀k ∈ K.

First, we study the convergence of Algorithm 2 (Note that the convergence of Algorithm 1 can

be shown similarly, for which the result is omitted due to the space limitation). The UAV initial

path {q(0)
m } is set as that obtained by the optimized fly-hover-communicate protocol proposed

in Section III, and the initial duration {T (0)
m } at each line segment and communication time

allocation {τ (0)
mk} is obtained by letting T

(0)
m = T̄ , ∀m, and τ

(0)
mk = T̄ /K, ∀m, k, where T̄ is

the minimum value that makes (P4) feasible. Fig. 2 shows the convergence of Algorithm 2 for

throughput requirement Q̃ = 200 Mbits. The curve “Upper bound” corresponds to the obtained

objective value of (P4.2), while “Exact” refers to the true UAV energy consumption value

calculated based on (43). It is firstly observed that the two curves match quite well with each

other, which demonstrates that the upper bound for UAV energy consumption via solving the

convex optimization problem (P4.2) is practically tight. Furthermore, Fig. 2 shows that the

proposed algorithm converges in a few iterations, which demonstrates the effectiveness of SCA

for the proposed joint trajectory and communication time allocation design.

For Q̃ = 50 Mbits and 200 Mbits, Fig. 3 and Fig. 4 respectively show the obtained UAV tra-

jectories and the corresponding UAV speed with three different designs: i) Optimized fly-hover-

communicate protocol proposed in Section III; ii) The SCA-based energy minimization design

in Algorithm 2; and iii) The SCA-based time minimization design by similarly applying Algo-
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Fig. 2: Convergence of Algorithm 2 for UAV energy minimization.

rithm 2. For the SCA-based energy minimization trajectory, Fig. 3 also shows the corresponding

time instant when the UAV reaches the nearest position from each GN, for the convenience of

illustrating the corresponding UAV speed shown in Fig. 4. It is firstly observed from Fig. 3

that for the proposed fly-hover-communicate protocol, the optimized hovering locations are in

general different from the GN locations. This is expected due to the following trade-off: while

hovering exactly above each GN achieves the minimal communication link distance and hence

reduces the total communication time, it requires the UAV to travel longer distance and hence

more energy consumption is needed for UAV flying. With the optimized fly-hover-communicate

protocol, a balance between the above two conflicting objectives is achieved via optimizing the

hovering locations for communication. By comparing Fig. 3(a) and Fig. 3(b), it is observed that

the higher the throughput requirement is, the closer the optimized hovering locations will be

from the GN locations, as expected. It is further observed from Fig. 4 that with the optimized

fly-hover-communicate protocol, the UAV speed has only two status: flying with the MR speed

Vmr between different optimized locations, or hovering above those locations for communicating

with the corresponding GN.

For the proposed SCA-based algorithm for energy minimization, it is found from Fig. 3 that

for the case with relatively low throughput requirement of Q̃ = 50 Mbits, the resulting UAV

trajectory is almost a straight flight from qI to qF . By contrast, as Q̃ increases to 200 Mbits,

the UAV needs to deliberately detour its path towards the GNs. Interestingly, it is observed from

Fig. 3(b) and Fig. 4(b) that as the UAV approaches the GN, it tends to keep flying around it with

a certain speed, instead of hovering directly above it. This is due to the fact that hovering is not

the most power-conserving UAV status, as shown in Fig. 1. Therefore, the UAV tends to maintain

a certain speed in order to reduce power consumption, though this may make the UAV slightly
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(a) Q̃ = 50 Mbits. (b) Q̃ = 200 Mbits.

Fig. 3: UAV trajectories with three different designs. Red squares denote GNs, and blue circles
represent the optimized hovering locations in the fly-hover-communicate protocol.

(a) Q̃ = 50 Mbits. (b) Q̃ = 200 Mbits.

Fig. 4: UAV speed versus time for different trajectories in Fig. 3.

further away from the GN (thus with smaller instantaneous communication rate). By combining

Fig. 3 and Fig. 4, it is found that for the SCA-based trajectory for energy minimization, the

UAV will reduce its flying speed when it is close to each GN, as expected.

With the SCA-based algorithm for time minimization, Fig. 3 shows that for both Q̃ = 50

Mbits and Q̃ = 200 Mbits, the UAV tends to fly to the top of each GN. This is expected since

for time minimization without considering the UAV energy consumption, it is preferable for the

UAV to fly at high speed so as to approach the GN as soon as possible to enjoy the favorable

communication channel. This is verified by the speed plot in Fig. 4.

For the proposed SCA-based design for energy minimization with Q̃ = 200 Mbits, Fig. 5 shows

the fraction of the allocated communication time among GNs at each time instant, namely the

values of τmk/Tm. By combining Fig. 3 and Fig. 5, it is found that at each UAV location, more

communication time is allocated to the nearer GN, which is expected since allocating resources

to better channels in general leads to higher spectrum efficiency.
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Fig. 5: Fraction of allocated communicate time for SCA-based energy minimization.

Last, Fig. 6 shows the required UAV energy consumption and mission completion time versus

the communication throughput requirement Q̃, respectively. Besides the three designs mentioned

above, we also consider two alternative benchmark schemes, namely hovering at geometric

center and hovering above GNs. Note that these two benchmark schemes correspond to the

special cases of the general fly-hover-communicate protocol studied in Section III, where the

hovering locations are fixed to either the geometric center of the K GNs or each GN, instead

of being optimized. It is firstly observed that in terms of both energy consumption and required

mission completion time, “hovering at the geometric center” outperforms “hovering above GNs”

for low throughput requirement, whereas the reverse is true as Q̃ increases. On the other hand, the

optimized fly-hover-communicate scheme always outperforms both benchmark schemes, which

is expected since it adaptively optimizes the hovering locations according to the communication

requirement. Furthermore, with the proposed SCA algorithm either for energy minimization or

time minimization, significant performance gains can be achieved. By comparing the two plots

in Fig. 6, it is concluded that while minimizing the mission completion time can to certain extent

help reduce the energy consumption and vice versa, the two design objectives in general lead

to different solutions, and the explicit consideration of UAV energy consumption (instead of via

the heuristic time minimization) results in further performance gains in terms of energy saving.

VI. CONCLUSION

This paper studies the energy-efficient UAV communication with rotary-wing UAVs. The

propulsion power consumption model of rotary-wing UAVs is derived, based on which an opti-

mization problem is formulated to minimize the total UAV energy consumption, while satisfying

the individual target communication throughput requirement for multiple GNs. We first propose
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Fig. 6: Energy consumption and mission completion time versus throughput requirement.

an efficient solution based on the simple fly-hover-communicate protocol, which leverages the

TSP and convex optimization techniques to find the optimized hovering locations and dura-

tions, as well as the visiting order and speed among these locations. Furthermore, we propose

a general solution, with which the UAV communicates also when flying, by applying a new

path discretization approach and the SCA technique. Numerical results show that the proposed

designs achieve significant energy saving than other benchmark schemes for rotary-ring UAV

enabled wireless communication systems.

APPENDIX A

POWER CONSUMPTION MODEL FOR ROTARY-WING UAVS

In this appendix, we derive the power consumption model for rotary-wing UAVs. Note that

most of the notations and results follow from the textbook [33]. This appendix is NOT intended

to introduce a new physical model for the power consumption of rotary-wing UAVs. Instead, it

mainly aims to solicit the existing results in classic aircraft textbooks such as [33] and [34], to

derive an analytical energy model that is suitable for research in UAV communications. Interested

readers may refer to [33] and [34] for more detailed theoretical derivations based on actuator

disc theory and blade element theory. The notations and terminologies used in this appendix are

summarized in Table I.

For rotary-wing aircrafts in hovering status, the torque coefficient qc is given by Equation

(2.45) of [33], i.e., qc = δ
8

+ (1 + k)
√

s
2
t
3/2
c . By substituting tc = T

ρsAΩ2R2 and noting that the

thrust T balances the aircraft weight in hovering status, i.e., T = W , we have

qc =
δ

8
+ (1 + k)

W 3/2

√
2ρ3/2sA3/2Ω3R3

. (60)
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TABLE I: Notations and terminologies for rotary-wing aircraft.

Notation Physical meaning Simulation value
W Aircraft weight in Newton 100
ρ Air density in kg/m3 1.225
R Rotor radius in meter (m) 0.5

A Rotor disc area in m2, A , πR2 0.79
Ω Blade angular velocity in radians/second 400

Utip Tip speed of the rotor blade, Utip , ΩR 200
b Number of blades 4
c Blade or aerofoil chord length 0.0196
s Rotor solidity, defined as the ratio of the total blade area bcR to the

disc area A, or s , bc
πR

0.05

SFP Fuselage equivalent flat plate area in m2 0.0118

d0 Fuselage drag ratio, defined as d0 , SFP
sA

0.3
k Incremental correction factor to induced power 0.1
T Rotor thrust –
κ Thrust-to-weight ratio, κ , T

W
–

tc Thrust coefficient based on total blade area, defined as tc , T
ρsAΩ2R2 –

TD Thrust component along the disc axes. TD ≈ T in practice (Equation
(1.39) of [33])

–

tcD Thrust coefficient referred to disc axes, tcD , TD
ρsAΩ2R2 ≈ tc –

v0 Mean rotor induced velocity in hover, with v0 =
√

W
2ρA

(see Equation
(2.12) of [33] and Equation (12.1) of [34])

7.2

vi0 Mean rotor induced velocity in forward flight –
λi Mean induced velocity normalized by tip speed, λi , vi0

ΩR
–

δ Profile drag coefficient. 0.012
V Aircraft forward speed in m/s –
V̂ Forward speed normalized by tip speed, V̂ , V

ΩR
–

αT Tilt angle of the rotor disc, which is small in practice –
µ Advance ratio, µ ≈ V̂ = V

ΩR
–

qc Torque coefficient, which, by definition, is directly related to the re-
quired power P as P = qcρsAΩ3R3. Note that in many text books,
the required rotor power is usually given in terms of qc.

–

Therefore, by definition of the torque coefficient, the corresponding required power for hovering

can be obtained based on the relationship P = qcρsAΩ3R3, which can be expressed as (see also

Equation (12.13) of [34])

Ph =
δ

8
ρsAΩ3R3︸ ︷︷ ︸

,P0

+ (1 + k)
W 3/2

√
2ρA︸ ︷︷ ︸

,Pi

. (61)

The derivation of power required for forward flight of a rotary-wing aircraft is much more

complicated than that of the fixed-wing counterpart [25]. Fortunately, under some mild assump-

tions, e.g., the drag coefficient of the blade section is constant, the torque coefficient qc for an

aircraft in forward level flight (zero climbing angle) with speed V is given by Equation (4.20)

of [33], i.e.,

qc =
δ

8
(1 + 3µ2) + (1 + k)λitcD +

1

2
V̂ 3d0. (62)
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Fig. 7: Schematics of the main forces acting on the aircraft in straight flight.

By substituting with µ ≈ V̂ = V
ΩR

and tcD = T
ρsAΩ2R2 , qc in (62) can be explicitly written as a

function of the forward speed V and rotor thrust T as

qc(V, T ) =
δ

8

(
1 +

3V 2

Ω2R2

)
+

(1 + k)Tλi
ρsAΩ2R2

+
1

2
d0

V 3

Ω3R3
. (63)

By the definition of the torque coefficient, the required power can be written as a function of V

and T as

P (V, T ) , qc(V, T )ρsAΩ3R3

= P0

(
1 +

3V 2

Ω2R2

)
+ (1 + k)Tvi0 +

1

2
d0ρsAV

3, (64)

where vi0 = λiΩR is the mean induced velocity. Furthermore, based on Equation (3.2) of [33],

for a rotary-wing aircraft with forward speed V and rotor thrust T , the mean induced velocity

can be calculated as

vi0 =

(√
T 2

4ρ2A2
+
V 4

4
− V 2

2

)1/2

= v0

(√
κ2 +

V 4

4v4
0

− V 2

2v2
0

)1/2

, (65)

where v0 ,
√

W
2ρA

is the mean induced velocity in hover and we have defined κ as the thrust-to-

weight ratio, i.e., κ , T
W

. It can be shown that for any given thrust T or κ, vi0 is a decreasing

function of V . By substituting (65) into (64), the required power for forward flight can be more

explicitly written as

P (V, κ) =P0

(
1 +

3V 2

Ω2R2

)
︸ ︷︷ ︸

blade profile

+Piκ

(√
κ2 +

V 4

4v4
0

− V 2

2v2
0

)1/2

︸ ︷︷ ︸
induced

+
1

2
d0ρsAV

3︸ ︷︷ ︸
parasite

, (66)

where P0 and Pi are two constants defined in (61).

To obtain a more explicit expression of the required power in (66), we need to determine

the rotor thrust T or the thrust-to-weight ratio κ. Fig. 7 shows simplified schematics of the

longitudinal forces acting on the aircraft in straight level flight (see also Figure 13.2 of [34]),
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which include the following forces: (i) T : rotor thrust, normal to the disc plane and directed

upward; (ii) D: drag of fuselage, which is in the opposite direction of the aircraft velocity;

and (iii) W : the aircraft weight. Due to the balance of forces in vertical direction, we have

T cosαT = W , where αT is the tilt angle of the rotor disc. Note that in practice, αT is usually

very small, so we have T ≈ W or κ ≈ 1 (see also Equation (4.3) of [33]). As a result, the

expression in (66) reduces to (6) shown in Section II-B.
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