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Abstract

This two-part paper investigates cache replacement schemes with the objective of developing a

general model to unify the analysis of various replacement schemes and illustrate their features. To

achieve this goal, we study the dynamic process of caching in the vector space and introduce the concept

of state transition field (STF) to model and characterize replacement schemes. In the first part of this

work, we consider the case of time-invariant content popularity based on the independent reference

model (IRM). In such case, we demonstrate that the resulting STFs are static, and each replacement

scheme leads to a unique STF. The STF determines the expected trace of the dynamic change in

the cache state distribution, as a result of content requests and replacements, from any initial point.

Moreover, given the replacement scheme, the STF is only determined by the content popularity. Using

four example schemes including random replacement (RR) and least recently used (LRU), we show that

the STF can be used to analyze replacement schemes such as finding their steady states, highlighting

their differences, and revealing insights regarding the impact of knowledge of content popularity. Based

on the above results, STF is shown to be useful for characterizing and illustrating replacement schemes.

Extensive numeric results are presented to demonstrate analytical STFs and STFs from simulations for

the considered example replacement schemes.
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I. INTRODUCTION

Caching has been attracting an increasing amount of attention in the research of wireless

communications, especially in the context of mobile edge caching [1] and the joint study of

communication, computation, and caching with the objective of deploying services close to

mobile users [2], [3]. The research on the performance of caching in wireless communication

systems may adopt various metrics. The focus can be decreasing the content delivery latency [4],

alleviating congestion over the backhaul [5], reducing energy consumption [6], or a combination

of the above [7]. While metrics can be different, the underlying caching performance is largely

centered around one measurement, i.e., the cache hit ratio. Since a cache can only accommodate

a limited portion of all contents, the cache hit ratio is determined by how the cached contents

are selected and how they are updated.

Selecting the contents to be cached is relevant in the context of proactive caching. For example,

an edge node can cache contents in advance during off-peak hours to reduce peak-hour network

traffic load [8]- [10]. The key to proactive caching is adapting to unknown content popularity or

network environment, usually leading to a Markov decision problem [11] or a learning problem

[12].

Updating the cached contents is relevant in the context of online caching. Specifically, a

cached content may be evicted and replaced by a new content whenever a cache miss occurs,

which leads to a dynamic process that updates cached contents on the fly [13]. The guiding

rule in updating the contents is referred to as a cache replacement scheme. Evidently, the cache

replacement scheme has a significant impact on the performance of caching. In fact, even if the

contents are cached proactively, cache replacement can still play an important roll in updating

the cached contents while requests are being received.

Due to the importance of cache replacement schemes, related topics have been extensively

studied in various scenarios [14]. Classic replacement schemes include first in first out (FIFO),

least recently used (LRU), least frequently used (LFU), random replacement (RR), etc. and their

variants. Some early works adopted simple probabilistic models with primitive assumptions

on the request distribution [15] or focused on bounding the performance of the aforementioned

schemes [16]. More recent works adopted Markov chains to model and analyze cache replacement

schemes [17]- [20]. This class of studies generally focused on deriving the steady states of the

aforementioned schemes and the mixing time of their underlying Markov chains [21] [22]. In
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our previous work [23], we considered the problem in reverse and designed the Markov chain

underlying the replacement scheme so that a target set of content caching probabilities can be

achieved.

Most recent works in the communications field tended to evaluate existing replacement schemes

in their considered network scenarios or propose new schemes that suit their specific objectives.

Chang et al. studied the joint problem of cache replacement and bandwidth allocation in the

scenario of peer-assisted video-on-demand systems and compared different cache replacements

through simulations [24]. Fiore et al. developed a replacement scheme for boosting content

diversity in a wireless ad hoc network based on the estimated content presence at peer nodes

[25]. A least fresh first scheme was designed in [26] to maintain the freshness of cached data for

the scenario of the Internet of Things based on named data networking. Two replacement schemes

were proposed for the video-on-demand service in femtocells [27], the first of which exploits

content access history for improving cache hit ratio while the second exploits information on

user access delay to promote service fairness. Kamiyama et al. proposed a replacement scheme

for content delivery networks based on the hop count from end users to the content server

with an objective to reduce network traffic load [28]. Chattopadhyay et al. investigated content

replacement based on the knowledge of cached contents at neighbor base stations for a cellular

network with densely deployed base stations [29]. A similar scenario was studied in [30], in

which the authors proposed replacement schemes that implicitly coordinate contents at caches

over the network to maximize the overall hit ratio of the considered system.

While there has been abundant research on the topic of cache replacement, a model that can

conveniently unify the analysis of different replacement schemes, characterize their features,

and intuitively illustrate their differences is not yet available. The objective of this two-part

paper is to develop such a model. Specifically, we have three targets. First, we aim to integrate

cache replacement schemes under a unified general probabilistic cache replacement model and

demonstrate this using several specific schemes as examples. Second, we target at studying the

general cache replacement model from a novel perspective, the state transition field (STF), which

characterizes replacement schemes in the vector space and captures the insights on their features.

Third, we strive toward the goal of developing the model and methodology for studying cache

replacements using the SFT.

The first part of this work focuses on the case when the content popularity is time-invariant

while the second part investigates the scenario of time-varying content popularity [31]. Through
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the two parts of this paper, we demonstrate that a replacement scheme corresponds to a unique

state transition matrix, which in turn generates a unique STF, and the resulting STF jointly

determines the performance of the replacement scheme with the content request statistics. Fur-

thermore, although such an extension is not directly included, we provide the motivation, basic

model, and methodology for studying the problem in reverse: given a performance target, can a

replacement scheme be designed through determining the state transition matrix, which is in turn

generated based on creating the STF according to the performance target and content request

statistics?

The contributions of the first part are the followings.

First, we propose a general content replacement model based on probabilistic state transition as

a unified model for cache replacement schemes. Unlike existing general model based on Markov

chains, e.g., [21], we focus not just on the steady states but more on the dynamic change of the

cache state distribution and describe this dynamic change in the vector space of state caching

probabilities. Moreover, we introduce new ideas and results, such as the decomposition of state

transition probability matrices based on contents and the mapping between state and content

caching probabilities, to form a complete toolset for establishing our model.

Second, based on the aforementioned model, we introduce STF, which is a vector field defined

over the state transition domain. We demonstrate that STF can characterize and illustrate cache

replacement schemes. The STF determines the expected change of the dynamic cache state

distribution just like an electromagnetic field determines the movement of a charged particle

placed in it (although the STF can have more than 3 dimensions). Moreover, we show that the

steady state of replacement schemes can be conveniently found based on the STF.

Third, we analyze the STF using four example replacement schemes of three types as case

studies: RR, replace less popular (LP) and replace the least popular (TLP), and LRU. RR

exploits no knowledge of content popularity, LP and TLP exploit perfect knowledge based

on an assumption of perfect prediction, and LRU exploits imperfect knowledge from historical

requests. We compare their STF and analyze the impact of the exploited knowledge on their

steady states through the STF. Moreover, we conduct extensive simulations to generate the STF

of the above example schemes to demonstrate the impact of replacement schemes and content

popularity on the STF.
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Fig. 1: Illustration of the timeline model. D(n) represents the duration between the nth and the

(n+ 1)th replacement points.

II. SYSTEM MODEL

The scenario of Nc contents and a cache with size L is considered. The set of all contents is

denoted by C. Without loss of generality, we assume that all contents are of identical and unit

size. We do not target at a specific scenario as the model can be applied to a cache located at a

small-cell base station in a cellular network, a road side unit (RSU) in a vehicular network, or

even a user device for D2D caching.

A. Content Request and Replacement

The fundamental assumption in the first part of this paper is that the requested contents at all

instants, as integer random variables, are independent and identically distributed. This follows

from the widely used independent reference model (IRM), a simplification of the actual request

process that can be accurate with a large number of requesting users [21] or within a short time

frame [32]. As the requested content follows a distribution that is time-invariant, the probability

of content l ∈ C being requested can be denoted by υl. The probabilities {υl}∀l are organized

into the request probability vector υ and referred to as the content popularity.

If content l is requested but not being cached, it will be downloaded and, depending on the

replacement scheme, may replace one cached content. It is assumed that the download and

replacement can be completed before the next content request arrives at the cache.

The timeline of the considered dynamic caching is illustrated in Fig. 1. For simplicity of

notation, we place a replacement point after each request regardless of whether a replacement

actually happens or not. If a replacement occurs following the nth request, it is completed by

the nth replacement point.
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Fig. 2: An illustration of states with Nc = 5 and L = 2. Each circle represents a state. The

number above a circle represents the state ID, and the set inside a circle represents the set of

cached contents in that state. For example, state 7 caches contents 2 and 5.

B. Cache State

The cache state is introduced to describe the combination of cached contents. There are

Ns =
(

Nc

L

)

different possible combinations of cached contents, corresponding to Ns caching

states. The set of all cache states is denoted by S. The set of contents cached in state k is

denoted by Ck. The cache state vector for state k is defined as a Nc × 1 vector with elements

determined as follows:

sk(l) =







1, if l ∈ Ck,

0, if l /∈ Ck,
∀l ∈ C, ∀k ∈ S, (1)

where the lth element of vector sk corresponds to the lth content. An example with Nc = 5 and

L = 2 is illustrated in Fig. 2. In this example, there are
(

5
2

)

= 10 states. Each circle in the figure

represents a state, while the number above the circle represents the state ID. The set given in

the circle of state k is the set of cached contents in state k, i.e., Ck, and the vector beneath state

k is sk. For example, state 7 caches contents {2, 5} and is represented by the cache state vector

s7 = [0 1 0 0 1]T, where ·T stands for transpose, given beneath the circle of state 7 in Fig. 2.

A state is a neighbor of state k if its cached contents differ from those cached in state k by

just one element. The set of neighbors of state k is denoted as Hk. For any content l /∈ Ck, a

content-l neighbor of state k is a neighboring state that caches l. The set of content-l neighboring
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states of state k is denoted as Hk,l. Using Fig. 2 and state 8 as an example, H8 is the set of all

colored states, and H8,1 is the two states with deep color.

C. State and Content Caching Probabilities

The cached contents and the cache state remain constant in the durations between consecutive

replacement points (shown in Fig. 1). The state caching probability (SCP) for state k and the

nth duration, denoted by η
(n)
k , is the probability that the cache is in state k in the nth duration.

The content caching probability (CCP) for content l and the nth duration, denoted by λ
(n)
l , is

the probability that the content l is cached in the nth duration.

Define the SCP vector η(n) and CCP vector λ(n) such that η(n)(k) = η
(n)
k and λ(n)(l) = λ

(n)
l .

Evidently, 1Tη(n) = 1 and 1Tλ(n) = L. Based on the time line in Fig. 1, the SCP and the CCP

vectors at the instant of the (n+ 1)th request are η(n) and λ(n), respectively.

The SCP and the CCP are connected through cache states. Using Fig. 2 as an example, the

probability that content 5 is cached is equal to the sum of the probabilities that the states in the

dotted box are cached. Define a cache state matrix Cs = [s1, . . . , sNs ]. In general, the relation

between the SCP η(n) and CCP λ(n) is given by:

λ(n) = Csη
(n). (2)

D. Cache Hit Probability

Given that content l is being requested at the (n+1)th request, the conditional instantaneous

cache hit probability is λ
(n)
l . The instantaneous cache hit probability at the (n + 1)th request,

denoted by γ(n+1) is given by:

γ(n+1) = υTλ(n). (3)

The symbols used in this paper are listed in Table I. Throughout the paper, we use lower-case

bold letters for vectors, upper-case bold letters for matrices, and calligraphic letters for sets. The

superscript (·)(n) is used on letters related to the nth request or replacement. Greek letters are

used to represent various probabilities. The indexes m and k are used to denote cache states,

while the indexes l and q are used to denote contents.
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TABLE I: List of Symbols

Nc The number of all contents

Ns The number of all cache states

L The cache size limit

C The set of all contents, i.e., {1, . . . , Nc}

S The set of all cache states, i.e., {1, . . . , Ns}

Sl The set of all cache states that cache content l

sk The kth cache state vector

Ck The set of contents cached in state k

Cs The cache state matrix, i.e., [s1, . . . , sNs
]

Hk The set of all neighbors of state k

Hk,l The set of all content-l neighbors of state k

e(k,m) The unique element in the set Ck − Cm, where m ∈ Hk

υl The request probability of content l

υ The content request probability vector, i.e., [υ1, . . . , υNc
]T

φl,q,k The conditional probability that content l replaces content q given that cache is in state k and content l

is requested

Θ The state transition probability matrix

Θl The conditional state transition probability matrix given that content l is requested

Θ(m, k) The probability of transitioning from state k to state m

Θl(m, k) The probability of transitioning from state k to state m given that content l is requested

η
(n)
k The SCP for state k in the duration from the nth to the (n+ 1)th replacement

η(n) The SCP vector in the duration from the nth to the (n+ 1)th replacement, i.e, [η
(n)
1 , . . . , η

(n)
Ns

]T

λ
(n)
l The CCP for content l in the duration from the nth to the (n+ 1)th replacement

λ(n) The CCP vector in the duration from the nth to the (n+ 1)th replacement, i.e., [λ
(n)
1 , . . . , λ

(n)
Nc

]T

γ(n) The instantaneous cache hit probability at the nth request

u(η) The state transition field at η

ul(η) The content-l state transition field at η

um,l(η) The mth element of the state transition field at η

um,l(η) The mth element of the content-l state transition field at η

III. GENERAL CONTENT REPLACEMENT MODEL AND STATE TRANSITION FIELD

If the cache is at state k while content l /∈ Ck is requested, the cache downloads content l and

decides whether to replace a cached content with content l. In the general model, the probability
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of replacing content q with content l when the cache is at state k is denoted by φl,q,k, for any

q ∈ Ck and l /∈ Ck. For each state, there are L(Nc − L) possible replacements.

A. General Cache State Transition Model

A content replacement triggers a cache state transition. For neighboring states k and m which

satisfies m ∈ Hk,l and k ∈ Hm,q, replacing content q with l triggers a transition from state k to

state m. The conditional cache state transition probabilities given that content l is requested can

be organized into the following matrix Θl:

Θl(m, k)=



































1, if k = m and l ∈ Ck,

1−
∑

m′∈Hk,l

φl,e(k,m′),k, if k = m and l /∈ Ck,

φl,e(k,m),k, if m ∈ Hk,l,

0, otherwise,

(4)

where e(k,m) denotes the unique content that is cached by state k but not state m given that

k ∈ Hm. Accordingly, the overall cache state transition probability matrix in the general case is

given by:

Θ =
∑

l∈C

υlΘl. (5)

From the definition of the SCP vector η(n) and state transition probability matrix Θ, it can

be seen that:

η(n) = Θη(n−1). (6)

It is worth mentioning that the model can be extended to the scenario in which each content

request (and replacement) involves multiple contents. In such case, assuming that each request

is for a block of B contents (B < L), there are NB =
(

Nc

B

)

different blocks. Then, eq. (5) can

be extended as follows:

ΘB =

NB
∑

b=1

υB
b Θ

B
b , (7)

where υB
b is the probability that the bth block is requested, and ΘB

b is the conditional cache

state transition probabilities given that block b is requested. The size of ΘB
b remains Ns × Ns.

However, for any given state, e.g., state k, the set of its neighbors Hk will contain more states

under block replacement, and the set of its content-l neighbors Hk,l will be replaced by a set of

block-b neighbors. The extension is straightforward and the details are omitted here.
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B. STF

Denote the general SCP without specifying any time instant as η. Consider η as a point in the

Ns-dimensional vector space. Driving by the requests and replacements, η varies in the following

domain:

D=

{

(

η1, . . . , ηNs

)

∣

∣

∣

∣

0 ≤ ηk ≤ 1, ∀k ∈ S;
∑

k

ηk = 1

}

. (8)

The expected ‘movement’ of η in D after the nth replacement point, assuming a replacement

actually happens, is characterized by η(n) − η(n−1). This difference, in turn, is determined by

three factors:

• the current position of η in D, i.e., the value of η(n−1)

• the content popularity υ

• the state transition probability matrix Θ,

while Θ is determined by the replacement scheme and generally dependent on υ (and such

dependence is shown in eq. (5)).

Define the STF at the point η(n−1) using the aforementioned difference:

u(η(n−1)) = η(n) − η(n−1). (9)

Substituting eq. (6) into eq. (9), it follows that:

u(η(n−1)) = Θη(n−1) − η(n−1). (10)

The STF is a vector field defined over the domain D. It can be seen that understanding the STF

can provide insight into the design and performance analysis of replacement schemes. Similar

to a magnetic or electric field, the STF can vary in direction and strength at different points in

the domain (although the STF exists mathematically but not physically).

In the definition eq. (9), the η(n−1) in the brackets specifies a point in the domain D. If the

STF is known at all points in D, then a path can be identified from any initial point, as illustrated

in Fig. 3, the end of which gives the steady state of the replacement scheme while the number

of steps in the path reflects the time for the underlying Markov chain to attain its stationary state

from that initial point. Different replacement schemes yield different STFs, and the impact is

conveyed through Θ. Therefore, the STF is a complete characterization of replacement schemes.

It is worth noting that the STF does not change over time under the IRM in general, as υ

and Θ are both constant.
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Fig. 3: An illustration of STF at four points, i.e., η(0) to η(3). The end point η⋆ represents the

steady state, at which the STF diminishes to an all-zero vector.

C. Content-specific STF

The STF can be decomposed. Define:

ul(η
(n−1)) = Θlη

(n−1) − η(n−1). (11)

It follows that:

∑

l∈C

υlul(η
(n−1))=

∑

l∈C

υlΘlη
(n−1)−η(n−1)=u(η(n−1)), (12)

where the last step uses eq. (5). Accordingly, ul(η
(n−1)) can be considered as the content-specific

STF that represents the ‘movement’ of η from the point η(n−1) after content l is requested. The

superposition of all content-specific STFs, weighted by the corresponding content popularity,

yields the overall STF.

It is not difficult to see that the following equalities hold:

1Tul(η
(n−1)) = 0, ∀l ∈ C, ∀η(n−1) ∈ D (13)

1Tu(η(n−1)) = 0, ∀η(n−1) ∈ D. (14)

IV. STATE TRANSITION MATRICES OF SPECIFIC REPLACEMENT SCHEMES

In this section, we demonstrate how four specific replacement schemes, i.e., RR, LP, TLP, and

LRU, fit into the general content replacement model in the preceding section. As the impact of

replacement schemes on the STFs is conveyed through the state transition matrix Θ, the focus

will be on finding Θ for the considered schemes.
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The four replacement schemes can be categorized into three groups based on the content

popularity information that they exploit.

• RR does not use any content popularity information;

• Both LP and TLP rely on the prediction of content popularity, and a perfect prediction will

be assumed.

• LRU exploits imperfect content popularity information from request history, i.e., the infor-

mation of recent content requests.

The impact of the difference in the exploited content popularity information on the STF will be

presented in subsequent sections of this paper.

A. RR

For RR, the conditional content replacement probability φl,q,k reduces to a constant:

φl,q,k = φ ∈ (0, 1/L], ∀q ∈ Ck, l /∈ Ck. (15)

Accordingly, the conditional state transition probability matrix Θl is given by:

ΘRR,l(m, k) =



























1, if l ∈ Ck and k = m,

1− Lφ, if l /∈ Ck and k = m,

φ, if m ∈ Hk,l,

0, otherwise,

(16)

i.e., the probabilities of content l replacing a cached content and no replacement are Lφ and

1− Lφ, respectively.

The overall state transition probability matrix ΘRR is given by:

ΘRR(m, k) =























1− Lφ
∑

l /∈Ck

υl, if k = m,

φυe(m,k), if m ∈ Hk,

0, otherwise.

(17)

B. LP

Denote the predicted content popularity by υ̃. Using LP, the requested content l /∈ Ck may

replace a cached content q in state k if υ̃l > υ̃q, i.e., the requested content is more popular. The
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conditional state transition probability is given by:

ΘLP,l(m, k)

=



























1, if l ∈ Ck and k = m,

1− α, if l /∈ Ck, k = m, and υ̃l > υ̃q,

αφl,q,k, if m ∈ Hk,l, k ∈ Hm,q, and υ̃l > υ̃q,

0, otherwise,

(18)

where α is a parameter that controls the probability of a replacement.

The conditional replacement probability, assuming that υ̃l > υ̃q, is set to be proportional to

υ̃l − υ̃q, as follows:

φl,q,k =
υ̃l − υ̃q

∑

t∈C↓
k,l

(υ̃l − υ̃t)
, (19)

where

C↓
k,l = {t|t ∈ Ck, υ̃t < υ̃l}. (20)

Order the states based on
∑

t∈Ck
υ̃t, i.e., the summation of the predicted content request

probability of each state, in a non-decreasing order. Then, it can be shown that the state transition

matrix ΘLP becomes a lower-triangular matrix:

ΘLP(m, k)

=























∑

q∈Ck

υq+
∑

l∈C̄↓
k

υl+
∑

l∈C̄↑
k

υl(1−α), if m = k,

αυe(m,k)φe(m,k),e(k,m),k, if m>k and m∈Hk,

0, otherwise.

(21)

in which

C̄↓
k =

{

l | l /∈ Ck, υ̃l ≤ min
t∈Ck

{υ̃t}

}

, (22a)

C̄↑
k =

{

l | l /∈ Ck, υ̃l > min
t∈Ck

{υ̃t}

}

. (22b)

C. TLP

Denote the least popular content of state k based on the prediction by q†(k), i.e.,

q†(k) = argmin
t∈Ck

{υ̃t}. (23)
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Using TLP, the requested content l /∈ Ck can only replace q†(k) when the cache is in state k,

and the replacement can happen only if υ̃l > υ̃q†(k). The conditional state transition probability

is given by:

ΘTLP,l(m, k)

=



























1, if l ∈ Ck and k = m,

1− φl,q†(k),k, if l /∈ Ck and k = m, and υ̃l>υ̃q†(k),

φl,q†(k),k, if m∈Hk,l, k∈Hm,q†(k), and υ̃l>υ̃q†(k),

0, otherwise.

(24)

Two choices of the replacement probability φl,q†(k),k are considered when υ̃l > υ̃q†(k): φl,q†(k),k =

1 and φl,q†(k),k = υ̃l − υ̃q†(k). In the first case, the replacement always occurs, and the TLP in

such case will be referred to as TLP-A. In the second case, the replace occurs probabilistically,

and the the TLP in such case will be referred to as TLP-P. Intuitively, TLP-A would lead to

faster convergence while TLP-P could be useful when each replacement incurs a replacement

cost.

Order the states based on
∑

t∈Ck
υ̃t, i.e., the summation of the predicted content request

probability of each state, in a non-decreasing order. Then, the state transition matrix ΘTLP

also becomes a lower-triangular matrix:

ΘTLP(m, k)

=























∑

q∈Ck

υq+
∑

l∈C̄↓
k

υl +
∑

l∈C̄↑
k

υl(1− φl,q†(k),k), ifm = k,

υe(m,k)φe(m,k),q†(k),k, if m>k and e(k,m) = q†(k),

0, otherwise.

(25)

D. LRU

When the cache is in state k while content l is requested, the conditional state transition

probability matrix Θl is given by:

ΘLRU,l(m, k) =



















1, if l ∈ Ck and k = m,

ρLRU
e(k,m)|k, if m ∈ Hk,l,

0, otherwise.

(26)

where ρLRU
e(k,m)|k represents the conditional probability that content e(k,m) is the least recently

used content given that the cache is in state k. The probability ρLRU
e(k,m)|k can be found, as a
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simplified special case under IRM, based on Lemma 1 in the second part of this two-part paper,

which addresses the more general case of time-varying content popularity [31].

The overall state transition probability matrix ΘLRU is given by:

ΘLRU(m, k) =



















∑

l∈Ck

υl, if k = m,

υe(m,k)ρ
LRU
e(k,m)|k, if m ∈ Hk,

0, otherwise.

(27)

Note that, unlike RR and LRU, LP and TLP are not practical replacement schemes. However,

the latter two are considered here for the purpose of analyzing what the STF of a replacement

scheme would become in the ideal case with perfect content popularity information, as a com-

parison to the cases with no and imperfect content popularity information (e.g., RR and LRU,

respectively).

V. STF BASED ANALYSIS FOR CACHE REPLACEMENT UNDER TIME-INVARIANT CONTENT

POPULARITY

In this section, we analyze specific replacement schemes using the STF to demonstrate that

analysis based on STF can characterize the features of different replacement schemes and reveal

insights regarding their steady states.

A. RR

Using the definition of content-specific STF in eq. (11) and the state transition probability

matrix of RR in eq. (16), it can be shown that the mth element of the content-specific STF at

η is given by:

um,l,RR(η) =











φ
∑

{k|m∈Hk,l}

ηk, if l ∈ Cm,

−Lφηm, otherwise.

(28)

Using the STF in eq. (28), the following result becomes straightforward.

Theorem 1: The steady state of RR, denoted by η⋆, is independent on the parameter φ and

satisfies the following property:

η⋆m
∑

l /∈Cm

υl =
1

L

∑

k∈Hm

η⋆kυe(m,k), ∀m ∈ S. (29)

Proof : See Section A in Appendix.
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The property in Theorem 1 can be used to obtain a closed-form expression of the steady state.

Define Ns vectors, one for each state, so that

am(k) =



















∑

l /∈Cm

υl, if k = m,

− 1
L
υe(m,k), if m ∈ Hk,

0, otherwise.

(30)

where am(k) represents the kth element of the vector for the mth state. Then, Ns − 1 out of the

Ns vectors are linearly independent. Define matrix A as follows:

A = [a1, . . . , aNs−1, 1]
T, (31)

where 1 is an all-one vector. Then, the steady state η⋆ can be given by

η⋆ = A−1g, (32)

in which g = [0, . . . , 0, 1]T is the vector that has 0 as its first Ns − 1 elements and 1 as its last

element.

Evidently, the steady state of RR does not maximize cache hit probability as RR does not

exploit any content popularity information. The property in Theorem 1 characterizes the steady

state of RR. Specifically, eq.(29) shows that the steady state of RR achieves such balance that,

if a randomly selected cached content is to be replaced by a random content not cached, the

resulting expected cache miss probability due to this replacement should be equal to the cache

miss ratio of the steady state without any replacement.

The rate of convergence of a finite-state ergodic Markov chain is decided by the second largest

eigenvalue of its transition probability matrix [33]. Specifically, it holds that [34]:

‖Θtη(0) − η⋆(Θ)‖2 ≤ dt2(Θ)‖η(0)‖2 (33)

for any initial state distribution η(0), where Θ represents any ergodic Markov chain, η⋆(Θ)

represents the corresponding steady state, d2(Θ) represents the second largest eigenvalue of Θ,

and t is the number of steps since the initial point. While it is generally impossible to derive an

eigenvalue of an arbitrary transition matrix Θ in closed-form, the bounds on the second largest

eigenvalue of a reversible transition matrix can be estimated [35]. The STF provides another

intuitive perspective for analyzing the rate of convergence. In the case of RR, a larger φ implies

stronger STF while the direction of the STF at all points remains the same. Therefore, a larger

φ generally leads to a shorter mixing time.
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B. LP and TLP

Note that, in practice, the L most popular contents can be placed in the cache from the

beginning without using LP or TLP for replacements if the content popularity is known. However,

as we intend to analyze the impact of content popularity information adopted by a replacement

scheme on the path of state cache distribution starting from an arbitrary state, the analysis of

LP and TLP is of interest.

For LP and TLP, the steady state is straightforward. Sort the contents based on a nondecreasing

order of their predicted popularity so that υ̃l ≥ υ̃q if l ≥ q. Sort the states based on
∑

t∈Ck
υ̃t,

i.e., the summation of the predicted content request probability of each state, in a non-decreasing

order. Then, the L least popular contents are cached in state 1, and the L most popular contents

are cached in state Ns.

Lemma 1: The steady state for both LP and TLP is η⋆ = [0, . . . , 0, 1].

The proof is straightforward given that, for any k ∈ S, the following two facts hold: 1). State

k can only transition to state m if m > k; and 2). State k transitions to at least one neighboring

state in Hk with a positive probability. The two observations can be made based on eq. (21) and

eq. (25).

Compared to the steady state of RR, the result in Lemma 1 reflects the impact of exploiting

content popularity information on the steady state of a replacement scheme.

Since both ΘLP and ΘTLP are lower-triangular matrices, the eigenvalues of ΘLP and ΘTLP are

their respective diagonal elements. Evidently, neither of ΘLP and ΘTLP is ergodic. Nevertheless,

the second largest eigenvalue of both falls in (0, 1) in both cases, and the result in eq. (33) still

holds for ΘLP and ΘTLP. The largest eigenvalue is 1 in both cases. The second largest eigenvalue,

which determines the mixing time of LP and TLP, is given by the following result.

Lemma 2: The second largest eigenvalues of ΘLP and ΘTLP are given by

g2(ΘLP) = 1− αυ̃l̂ (34)

g2(ΘTLP) = 1− υ̃l̂φl̂,l̂−1,Ns−1 (35)

where l̂ = Nc − L+ 1.

Proof : See Section B in Appendix.

Based on Lemma 2, the rate of convergence depends on α in the case of LP and φl̂,l̂−1,Ns−1

in the case of TLP. Furthermore, it can also be seen from Lemma 2 that the rate of convergence
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in both cases also depends on the popularity of a particular content, i,e., the (Nc − L + 1)th

content, or equivalently, the Lth most popular content.

Unlike RR and LRU, which do not rely on the content popularity information, prediction error

in the content request probabilities could have an impact on either the STF or both the STF and

the steady state of LP and TLP. Specifically, if there are errors in the prediction but the set of

the L most popular contents is predicted correctly, then the predicted STF can differ from the

actual STF but the steady state will not be affected. By contrast, if the predicted L most popular

contents are different from the actual L most popular contents, then both the STF and the steady

state from the prediction will differ from their respective actual values.

C. LRU

Using the definition of content-specific STF in eq. (11) and the state transition probability

matrix of LRU in eq. (26), it can be shown that the mth element of the content-specific STF at

η is given by:

um,l,LRU(η) =











∑

{k|m∈Hk,l}

ρLRU
e(k,m)|kηk, if l ∈ Cm,

−ηm, otherwise.

(36)

Under the IRM model, the probabilities {ρLRU
e(k,m)|k}∀k,∀m∈Hk

are constants and can be calculated.

Given {ρLRU
e(k,m)|k}, the following result regarding the steady state in the case of LRU can be found

using the STF.

Theorem 2: The steady state η⋆ in the case of LRU satisfies the following property:

η⋆m
∑

l /∈Cm

υl =
∑

k∈Hm

υe(m,k)ρ
LRU
e(k,m)|kη

⋆
k. (37)

Proof : See Section C in Appendix.

Comparing eq. (37) and eq. (29) reveals an interesting insight. Denote the steady state SCP
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in the case of RR by η⋆
RR. The STF at the point η⋆

RR in the case of LRU is given by:

um,LRU(η
⋆
RR)

=
∑

l∈Cm

υl · um,l,LRU(η
⋆
RR) +

∑

l /∈Cm

υl · um,l,LRU(η
⋆
RR)

=
∑

l∈Cm

υl
∑

{k|m∈Hk,l}

ρLRU
e(k,m)|kη

⋆
k,RR −

∑

l /∈Cm

υlη
⋆
m,RR

=
∑

l∈Cm

υl
∑

{k|m∈Hk,l}

ρLRU
e(k,m)|kη

⋆
k,RR −

1

L

∑

k∈Hm

η⋆k,RRυe(m,k)

=
∑

l∈Cm

υl
∑

{k|m∈Hk,l}

ρLRU
e(k,m)|kη

⋆
k,RR −

∑

l∈Cm

υl
1

L

∑

{k|m∈Hk,l}

η⋆k,RR

=
∑

l∈Cm

υl
∑

{k|m∈Hk,l}

(

ρLRU
e(k,m)|k −

1

L

)

η⋆k,RR, (38)

where the second step uses eq. (37) and the third step uses the property in eq. (29). The term

ρLRU
e(k,m)|k − 1/L in eq. (38) is interesting as it shows the difference between the steady states in

RR and LRU. Specifically, (38) shows that, compared to RR, the steady state of LRU favors

states with popular contents.

As an example, consider the case when state m caches the L most popular contents. Then

it follows that ρLRU
e(k,m)|k > 1/L in eq. (38) for any k such that m ∈ Hk. This is true because

content e(k,m) is less popular than the other L− 1 contents in state k, which are also cached

by state m and therefore among the L most popular contents. Note that the constant 1/L can

be considered as the probability that e(k,m) is the LRU content when all cached contents have

exactly the same request probability. As ρLRU
e(k,m)|k > 1/L for any k such that m ∈ Hk in eq. (38),

um,LRU(η
⋆
RR) > 0, which shows that the STF of the LRU at η⋆

RR points towards a direction that

increases the probability of caching state m. Similarly, it can be shown that um′,LRU(η
⋆
RR) < 0

if m′ caches the least popular contents.

The above difference between the steady states of the RR and LRU roots from the difference

in the information exploited in the two schemes. Unlike RR, which exploits no information and

treats each cached content indifferently in every single replacement, the LRU exploits historical

request information, which reflects the content popularity. As a result, LRU can converge to a

steady state that caches popular contents with larger probabilities.
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⋆)‖.

Fig. 4: Illustration of decomposing the STF at the steady state.

VI. DISCUSSIONS

In this section, we discuss the benefits of using the proposed STF to analyze replacement

schemes in practice. First, we use an example to show how the STF can characterize the property

of the stationary states. Then, we use another example to show how the STF can be used to

compare the convergence rate of replacement schemes.

A. On the Steady State

Given two replacement schemes (or the same replacement scheme with different parameters),

can we tell more about their steady states besides the cache hit probability?

At the steady state, the overall STF must be equal to 0 regardless of the replacement scheme.

However, this does not mean that no replacement happens after the steady state is achieved.

Instead, contents can still be evicted from or accepted into the cache, while the probabilities of

the two events must be equal for any content at the steady state. Therefore, it is not difficult

to see that, there can be more frequent replacements at the steady state of one replacement

scheme than that of another. This frequency of replacement at a steady state can be analyzed by

decomposing the STF into content-specific STF using eq. (12), as illustrated in Fig. 4. In the

illustrated cases, we assume the same content request probabilities, while the content-specific

STFs in Fig. 4a have much smaller norms than those in Fig. 4b. Correspondingly, there can be

less frequent replacements at the steady state η⋆ in Fig. 4a than at the steady state η̃⋆ in Fig. 4b.

In the case when each replacement incurs a cost or when cache wear-out is a concern,

characterizing the frequency of replacement can be of interest. Based on the above discussion,

the weighted sum of the norm of content-specific STF can be used as a metric for comparing
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ηb

Fig. 5: Illustration of sampling the STF for characterizing the convergence rate.

the frequency of content replacement at the steady state of different replacement schemes. For

example, a metric can be calculated as follows:

M(η⋆) =
∑

l∈C

υl‖ul(η
⋆)‖, (39)

where the weights are the content request probabilities.

B. On the Convergence to the Steady State

We mentioned the rate of convergence and its relation with the second largest eigenvalue of

the transition probability matrix Θ in Section V. Since STF is a derivative of state transition

probability matrix, it does not provide a new characterization of the rate of convergence in theory.

However, we could use STF to develop a metric for comparing the convergence rate of different

replacement schemes in practice.

For example, we can generate sample points in the state transition region, as illustrated using

hollow circles in Fig. 5. Hypothetically, if the STF at every point of the state transition region

points toward the steady state η⋆, then the rate of convergence is determined by the strength

(norm) of the STF. In practice, the STF at the sample points generally does not point straight

toward the steady state. Nevertheless, we can project the STF at a sample point onto the

connection line between that sample point and the steady state. This is illustrated with two

example sample points, i.e., ηa and ηb, in Fig. 5. In this figure, the solid circle filled with

red represents the steady state η⋆. The black arrows at sample points ηa and ηb represent the

STF u(ηa) and u(ηb), respectively. The two dashed lines connect ηa and ηb with the steady

state η⋆. The two blue arrows on the dashed lines represent the projection of u(ηa) and u(ηb),

respectively. The norm of the projection, aggregated over all sample points, can provide a metric
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(b) STF of RR, Nc = 30, L = 3, in a 3-D

subspace.

Fig. 6: STF of RR in 3-D.

for characterizing the rate of convergence of replacement schemes. The accuracy of this approach

depends on the number and locations of the chosen sample points.

VII. NUMERICAL RESULTS

The numerical examples are organized into three sections. The first section demonstrates STFs

obtained from analysis. The second section demonstrates STFs obtained from simulations and

compare it with the analytical results. The third section demonstrates and compares the CCP

and cache hit probability of the considered schemes to reveal the impact of different STFs.

A. STF - Analytical

In this section, the analytical STFs of RR, LP, TLP, and LRU are demonstrated. In general, STF

can be of high dimensions. We limit most of our demonstration to the case of three dimensions,

as three-dimensional fields can be very well visualized and illustrated. A three-dimensional

subspace in a high-dimensional STF is also illustrated.

Fig. 6a demonstrates a three-dimensional STF of RR. In this figure, Nc = 3, L = 2, and

therefore there are only three cache states (i.e., C1 = {1, 2}, C2 = {1, 3}, C3 = {2, 3}). The x, y,

and z axes correspond to the SCP for the cache states 1, 2, and 3, respectively. The triangular

area is the state transition domain D, the square marker represents the center of the triangle,

and the circle represents the steady-state SCP η⋆ in this example. The STF at a point in D

is represented by an arrow originating from that point, while the strength and direction of the
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(a) STF of RR, φ = 0.2,υ = [0.5, 0.29, 0.21]T .
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(b) STF of RR, φ = 0.45, υ=[0.55, 0.35, 0.1]T .

Fig. 7: The impact of υ and φ on the STF of RR.

STF are shown by the length of the arrow and the direction of the arrowhead, respectively. The

straight lines in the x-y plane show the contour of the cache hit probability for the SCP.

Fig. 6b demonstrates part of a high-dimensional STF over the surface of an ellipsoid in a three-

dimensional subspace. In this example, Nc = 30, L = 3, and there are 4060 cache states. Three

mutually-neighbor cache states are selected, corresponding to the three-dimensional subspace

in the figure. The STF over the surface of an ellipsoid in this subspace is demonstrated as an

example. The x, y, and z axes correspond to the SCP for the three selected cache states. Unlike

the case in Fig. 6a, the SCPs in 6b are small and do not sum up to 1 since there are many

other states. Fig. 6b serves as an example of high-dimensional STF.

Fig. 7 demonstrates the impact of the content popularity υ and the parameter φ on the STF

of RR. Fig. 7a shows the STF under the same settings as in Fig. 6a except that φ is decreased

from 0.45 to 0.2. Two observations can be made by comparing Fig. 7a with Fig. 6a. First, the

steady-state SCP in both cases are identical, which confirms Theorem 1. Second, the strength

of STF at any given point in Fig. 7a is weaker as compared to that in Fig. 6a, which implies

a longer mixing time. Fig. 7b shows the STF under the same settings as in Fig. 6a except a

change in the content popularity υ. It can be seen from this figure that the steady state also

changes following the change in content popularity. Comparing Fig. 7b with Fig. 6a, the impact

of content popularity on the STF can be observed.

Fig. 8 demonstrates three-dimensional STFs of LP, TLP, and LRU. In all three plots in Fig. 8,

υ is set to [0.5, 0.29, 0.21]T. In Figs. 8a and 8b, the steady state is the vertex of the triangle

with the highest cache hit probability. The difference is that the STF in Fig. 8a lead to a ‘curvy’
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(c) STF of LRU

Fig. 8: The STF of LP, TLP, and LRU in 3-D.

path towards the steady state in Fig. 8a while the curvature of paths in Fig. 8b is much smaller.

This reflects the fact that TLP makes replacements along the path which increases the cache

hit probability most rapidly, bearing a certain resemblance to the ‘steepest ascent’ in gradient

ascent. Fig. 8c appears similar to Fig. 6a. However, it can be observed that, compared to RR, the

steady state of LRU assigns a larger caching probability to states with more popular contents.

This is consistent with eq. (38) and the fact that RR exploits no historical information while

making cache replacements.

B. STF - Numerical

In this section, we demonstrate, using RR and LRU as examples, STFs obtained from simu-

lations and compare them with the analytical STF from the preceding section.

Fig. 9 shows the STF of RR generated from simulations. The settings on φ and υ in Fig. 9

are exactly the same as those in Fig. 6a. For each point in the STF, M realizations of states are

generated based on the corresponding SCP. For each realization, R content requests are generated
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(a) STF of RR from simulation, M = 100, R =

100.
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(b) STF of RR from simulation, M = 1000, R =

1000.

Fig. 9: The STF of RR from simulations.

0

0.5

1
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
LRU, Nc = 3, L = 2, υ =[0.5 0.29 0.21]T

η2η1

η
3

(a) STF of LRU from simulation, R = 500.
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(b) STF of LRU from simulation, R = 10000.

Fig. 10: The STF of LRU from simulations.

based on the content popularity. Each data point (i.e., each arrow) in Figs. 9a and 9b is obtained

from averaging the state transitions following the M × R requests. In Fig. 9a, M and R are

both set to 100. It can be seen that the STF is not accurate, especially in the area close to the

steady state, due to insufficient samples. In addition, the arrows point to a steady state slightly

deviated from the true steady state in Fig. 6a. In Fig. 9b, M and R are both increased to 1000.

It can be seen that the resulting STF generated based on simulation in Fig. 9b becomes an exact

match for the analytical STF in Fig. 6a.

Fig. 10 shows the STF of LRU generated from simulations. The settings on υ in Fig. 10

is exactly the same as that in Fig. 8c. Since LRU depends on request history, the simulation

method used for Fig. 9 based on randomly generated states cannot be applied. Instead, for each

point in the STF, R content requests are generated based on the content popularity. The STF is
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Fig. 11: Demonstration of instantaneous CCP of the replacement schemes, Nc = 1000, L = 30.

generated based on the state transitions following the R requests. Figs. 10a and 10b demonstrate

a similar result as that from Figs. 9a and 9b: the STF from simulations can deviate from the

analytical STF when the number of samples is small, while the two become an almost exact

match when the sampled number of requests is sufficiently large.

C. Instantaneous CCP

This section demonstrates the instantaneous CCP of RR, LP, TLP, and LRU, and relate the

results to the STF demonstrated in the preceding sections.

The number of contents Nc and the cache size L are set to 1000 and 30, respectively. For

each of the four considered replacement schemes, the simulation consists of 5000 rounds. For

each round, 2000 content requests are generated randomly based on a Zipf’s distribution with

parameter 0.8. The contents are sorted based on the request probability in a decreasing order.
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The cache is empty at the beginning. The instantaneous CCP for each content after each request

is obtained and averaged over the 5000 rounds.

The resulting CCP for three selected contents, i.e., contents 1, 10, and 35, are shown in Fig. 11.

It can be seen from Figs. 11a and 11d that, starting with an empty cache, RR and LRU becomes

stationary faster than LP and TLP, which are shown in Fig. 11b and Fig. 11c, respectively. In

addition, by comparing Figs. 11a and 11d, it can be seen that LRU caches popular contents,

e.g., content 1, with larger probabilities than RR. This is consistent with the observation from

comparing Fig. 8c and Fig. 6a. The impact of α on the performance of LP can be seen from

Fig. 11b, while the difference between TLP-A and TLP-P can be seen from Fig. 11c. In the

cases of LP and TLP, the cache hit probability of content 35 first increases and then decreases

to zero. This corresponds to the ‘curvy’ paths in the STF as shown in Fig. 8a and Fig. 8b.

VIII. CONCLUSION

We have revisited the problem of modeling and analyzing cache replacement schemes under

IRM with the objective of providing a rigorous yet intuitive general model from a novel per-

spective. Through this work, we have developed a basic tool set based on STF to characterize

and illustrate cache replacement schemes. Our investigation has also been targeted at revealing

insights regarding the relation between content popularity, knowledge of content popularity

exploited by replacement schemes, and the resulting STFs. The model and methodology we

have established in this paper can also be applied to multi-level cache and cache networks after

appropriate extensions.

APPENDIX

A. Proof of Theorem 1

We first prove, using the STF, that the steady state is independent on φ. It can be seen from

eq. (28) that φ is just a scaling factor in um,l,RR. Moreover, the scaling factor is the same for

any state m and content l. Therefore, we can define a base STF such that at point η it satisfies:

ūm,l,RR(η) =











∑

{k|m∈Hk,l}

ηk, if l ∈ Cm

−Lηm, otherwise.

(40)

Then, it is easy to show that:

ul,RR(η) = φūl,RR(η), (41a)

uRR(η) = φūRR(η). (41b)
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Accordingly, a change in φ can change the strength of the STF but does not alter the direction

of the STF at any point in the state transition domain. Therefore, the steady state of RR must

be independent on φ.

Next, we prove the property of the steady state. Based on the definition of STF in eq. (9), the

STF at the steady state SCP η⋆ must be equal to 0. It follows that:

um,RR(η
⋆) =

∑

l∈Cm

υl · um,l,RR(η
⋆) +

∑

l /∈Cm

υl · um,l,RR(η
⋆)

=
∑

l∈Cm

υlφ
∑

{k|m∈Hk,l}

η⋆k +
∑

l /∈Cm

υl(−Lφ)η⋆m

=0, (42)

which must hold for any m ∈ S. Based on the definition of neighbors and content-specific

neighbors, it can be seen that:

∑

l∈Cm

υl
∑

{k|m∈Hk,l}

η⋆k =
∑

k∈Hm

υe(m,k)η
⋆
k. (43)

Combining eq. (43) and eq. (42) gives eq. (29). �

B. Proof of Lemma 2

First, we will prove that the second largest eigenvalue of both ΘLP and ΘTLP is the (Ns −

1, Ns − 1)th element. In the case of LP, the sum probability of state k transitioning into any

other state is given by α
∑

l∈C
k̄↑
υl, which is non-increasing with k. Accordingly, ΘLP(m,m) ≥

ΘLP(k, k) if m > k. Similarly, the same result can be shown for the TLP.

Second, as the states are sorted based on the sum predicted request probability of their cached

contents, it can be seen that e(Ns, Ns − 1) is the (Nc − L+ 1)th content. Based on eq. (21), it

can be seen that ΘLP(Ns − 1, Ns − 1) is equal to 1−αυ̃l̂ with l̂ denoting Nc −L+1. Similarly,

ΘTLP(Ns − 1, Ns − 1) is equal to 1− υ̃l̂φl̂,l̂−1,Ns−1 based on eq. (25). �

C. Proof of Theorem 2

The STF at the steady state SCP η⋆ must be equal to 0. It follows that:

um,LRU(η
⋆) =

∑

l∈Cm

υl · um,l,LRU(η
⋆) +

∑

l /∈Cm

υl · um,l,LRU(η
⋆)

=
∑

l∈Cm

υl
∑

{k|m∈Hk,l}

ρLRU
e(k,m)|kη

⋆
k −

∑

l /∈Cm

υlη
⋆
m

=0, (44)
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which must hold for any m ∈ S. It can be shown that:

∑

l∈Cm

υl
∑

{k|m∈Hk,l}

ρLRU
e(k,m)|kη

⋆
k =

∑

k∈Hm

υe(m,k)ρ
LRU
e(k,m)|kη

⋆
k. (45)

Combining eq. (45) and eq. (44) gives eq. (37). �
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