
1

Enabling Plug-and-Play and Crowdsourcing

SLAM in Wireless Communication Systems
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Abstract

Simultaneous localization and mapping (SLAM) during communication is emerging. This tech-

nology promises to provide information on propagation environments and transceivers’ location, thus

creating several new services and applications for the Internet of Things and environment-aware com-

munication. Using crowdsourcing data collected by multiple agents appears to be much potential

for enhancing SLAM performance. However, the measurement uncertainties in practice and biased

estimations from multiple agents may result in serious errors. This study develops a robust SLAM

method with measurement plug-and-play and crowdsourcing mechanisms to address the above problems.

First, we divide measurements into different categories according to their unknown biases and realize a

measurement plug-and-play mechanism by extending the classic belief propagation (BP)-based SLAM

method. The proposed mechanism can obtain the time-varying agent location, radio features, and

corresponding measurement biases (such as clock bias, orientation bias, and received signal strength

model parameters), with high accuracy and robustness in challenging scenarios without any prior

information on anchors and agents. Next, we establish a probabilistic crowdsourcing-based SLAM

mechanism, in which multiple agents cooperate to construct and refine the radio map in a decentralized

manner. Our study presents the first BP-based crowdsourcing that resolves the “double count” and

“data reliability” problems through the flexible application of probabilistic data association methods.

Numerical results reveal that the crowdsourcing mechanism can further improve the accuracy of the

mapping result, which, in turn, ensures the decimeter-level localization accuracy of each agent in a

challenging propagation environment.
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I. INTRODUCTION

Future mobile communication systems will evolve into a brilliant and software-reconfigurable

functionality paradigm that can provide ubiquitous communication and the perception, control,

and optimization of wireless environments [1]. Toward this end, simultaneous localization and

mapping (SLAM) during communication has become an increasingly critical function that en-

ables the applications of robotics, autonomous driving, and indoor localization. Ascertaining

the locations of agents (or user equipment) and obtaining a map of the propagation environ-

ment can also significantly improve the communication rate and reliability of future wireless

communication systems [2], [3]. However, obtaining accurate and reliable information about

agents’ locations and their propagation environment in wireless communication systems faces

the following challenges, especially in scenarios with severe multipath effect: (a) practicability

requirements, for which imprecise synchronization, an unknown heading direction, and other

unknown measurement biases caused by hardware impairments may generate serious errors in

localization; (b) data association ambiguities, for which corrupted or missing measurements

caused by complicated multipath propagation environments and the scalability of the number

of features in the radio map may lead to data association ambiguities; and (c) multi-agent

cooperation, for which biased estimations from multiple agents may result in data inconsistency,

thereby preventing crowdsourcing data from gaining benefits from cooperatives.

Radio frequency (RF) signals have been widely used for locating mobile devices. In particular,

[4] is conducted according to the range measurements extracted from ultra-wideband signals.

Wireless fidelity (Wi-Fi) is popularly applied to provide signals of opportunity for localization

[5] because of its easy and cost-effective deployment. Mobile devices can listen to beacon

frames broadcast from nearby Wi-Fi access points, thereby obtaining received signal strength

(RSS). RSS has been employed as a primary source for positioning solutions in line with

trilateration or fingerprinting methods [6]. However, RSS is affected by many factors, such

as small-scale fading and body shadowing, resulting in the degradation of localization quality.

For this reason, many studies have focused on fine-grained channel state information (CSI)

[7]. Distinguishable multipath components (MPCs) with high resolution of the angle of arrival

(AOA), angle of departure (AOD), time of arrival (TOA), and frequency of arrival (FOA) can

be extracted from the CSI, especially in high-frequency bands with large antenna arrays and

highly directional transmission, such as millimeter-wave (mmWave) multiple-input multiple-
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output (MIMO) communication systems. Then, highly-accurate localization can be achieved

without installing additional dedicated infrastructure [8]–[12]. As mmWave signals follow quasi-

optical propagation patterns [13], MPCs arising from specular reflections are used in [2], [12],

and all the other diffuse MPCs are modeled as interference.

Although localization using RF signals is promising, the resulting performances degrade in

practice because of the measurement biases. For example, each anchor (or base station) may use

different transmission power levels, and the surrounding environment of each anchor may vary.

Therefore, the RSS model parameters of each anchor are distant and unknown. Moreover, the

clock and orientation biases are also unknown, which deteriorate the localization performance

on the basis of the TOA and AOA measurements, respectively. A feasible solution to solve the

practical issues entails using multiple shots-based methods (utilizing measurements obtained in

successive time slots) and integrating multi-domain information collected from RF signals and

sensors.

SLAM takes advantage of the unchanging nature of the location and state of landmarks in the

environment. Through accumulating measurements in consecutive time slots, the landmark can

be estimated by employing numerous measurements, thereby extending the single-shot solution

to a multiple-shot one. Different branches of SLAM are overviewed in [14]. The majority of

classical SLAM approaches rely on a priori information of the environment. Loop closure is

applied in SLAM algorithms to recognize a previously mapped place [15]–[17]. A low-cost

solution is proposed in [18] for the automatic generation of a precise lane-level map concerning

the local map segments. Recently, in-depth research has been conducted on communication-

driven localization and mapping [2], [12], [19]–[23]. The state and location of anchors are

assumed known in [12], [20]–[22], or effectively-known in [2], [23]. Robust localization from

radio signals in indoor scenarios is challenging because of the complex multipath propagation

and high probability of false alarm and missed detection. The feature-based SLAM algorithm

proposed in [2], [12], [23], which performs sequential estimation of the states of a mobile agent

and of “potential features” characterizing the map, has low computational complexity and can

cope with clutter, missed detections, and data associations. However, the SLAM algorithm should

not have the anchors’ locations in advance to be viable for practical communication systems. The

anchors’ state may be flexible, e.g., the anchors may be temporarily connected or disconnected.

Therefore, realizing SLAM in such challenging scenarios, in which anchors and agents’ prior

information is unavailable, is worth exploring.
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Most of the existing research on SLAM only considers a single agent. However, the connec-

tivity of people and machines continues to increase in the age of the Internet of Everything,

thereby providing the possibility for agents to cooperate in the process of SLAM. A central-

ized multi-agent collaborative mapping and positioning approach is proposed in [24]. Under

the crowdsourcing framework, location users have also become radio map providers, which

can avoid labor-intensive data collection [25], [26]. For centralized crowdsourcing approaches,

communications are all directed to one entity, thereby agglomerating and fusing all data, and

then sending the SLAM result back to the agents. Recent trends move these processes from one

entity to the cloud to take advantage of the available processing power. Decentralized systems

assume that each agent can build its decentralized map while communicating with the other

agents or an entity. One of the main challenges is the “double count” phenomenon arising from

the inconsistency caused by the repeated counting of landmarks in the estimation process based

on decentralized crowdsourcing. Another difficulty involves selecting the most valuable data

and filtering out the unreliable ones [25], [27]. Note that this field is still fairly recent, and the

problems mentioned above need to be solved urgently.

This study intends to develop a novel framework of SLAM with measurement plug-and-play

and crowdsourcing capacities. We use limited radio features to describe the radio environment and

then construct a radio feature map. Our study is inspired by the recently introduced belief propa-

gation (BP) algorithm [2], [12], [23], and we inherit the idea of probabilistic data associations and

sequential estimations. First, our development is in accordance with the existing BP-based SLAM

algorithm [2] with the enhancement from allowing different categories of measurements with

biases, denoted as measurement plug-and-play mechanism. This mechanism leads to significant

improvement in real-world applications. Second, a probabilistic crowdsourcing mechanism is

proposed to enhance the SLAM performance, thereby enabling multi-agent cooperation. Our

main contributions are presented in detail as follows:

• Various measurements can be obtained through different sensors and RF signals. We realize

a measurement plug-and-play mechanism by extending the classic BP-based SLAM method.

We divide the measurements into three categories according to their unknown biases: agent

dependent, agent-anchor dependent, and agent-feature dependent. Then, we explain the

mechanism in detail by taking TOA, AOA, and RSS measurements as examples, for which

the measurements have uncertain values, such as clock bias, orientation bias, and unknown

RSS model parameters. We show that these uncertain values can be estimated automatically
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by the proposed plug-and-play SLAM mechanism.

• Numerous agents must cooperate in the construction, exploitation, and refinement of the

radio map. We develop a probabilistic crowdsourcing SLAM mechanism to achieve such

cooperation and design a corresponding physical layer frame structure. We provide clear

definitions of radio feature maps in the local agent and in the cloud. We propose an

effective solution to the “double count” and “data reliability” problems by embedding

the probabilistic data association algorithm to the crowdsourcing mechanism, calculating

the weighted existence probability of features, and pruning. We reveal that the proposed

crowdsourcing mechanism can further improve the performance of the proposed plug-and-

play SLAM.

• Compared with existing SLAM methods, the proposed plug-and-play SLAM with crowd-

sourcing can work successfully in more realistic and challenging scenarios without prior

information about the floor plan, anchors, or agents. Moreover, the proposed technique can

work under different measurement conditions according to devices’ capabilities, thereby

making the method suitable for heterogeneous IoT devices. The information exchange is

facilitated by abstracting the radio environment into the radio feature map, thus reducing

data exchange. The privacy of each agent can also be protected by only sharing radio feature

maps.

The rest of this paper is organized as follows: in Section II, we introduce the system model.

The SLAM with measurement plug-and-play and crowdsourcing mechanisms is proposed in

Section III. Our simulation results are presented in Section IV, and we conclude the paper in

Section V.

II. SYSTEM MODEL

We consider an indoor scenario with M static physical anchors (PAs) and a mobile agent

(multi-agent scenarios are considered in Section III-C). An antenna array with NR elements is

equipped at the mobile agent. At time slot n, the received signal of the mobile agent from the

m-th PA is given by

y(m)
n (t) =

L
(m)
n∑
l=1

α
(m)
n,l aR(θ

(m)
n,l )s(m)(t− τ (m)

n,l ) + n(m)(t), (1)
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Fig. 1. Floor plan with 3 PAs (denoted by crossed boxes). Each PA has the associated first-order virtual anchors (VAs)
(represented by squares), and the trajectory of a mobile agent is depicted by a blue double-dotted line.

where L(m)
n is the total number of line-of-sight (LOS) and first-order specular non-line-of-sight

(NLOS) propagation paths; α(m)
n,l is the complex path gain; aR(·) ∈ CNR×1 is the steering vector;

θ
(m)
n,l is the AOA; τ (m)

n,l is the TOA; s(m)(t) is the pilot signal, and we assume that the pilot

sent by different PAs are orthogonal to each other; and n(m)(t) ∈ CNR×1 includes the diffuse

multipath interfere and the additive white Gaussian noise. As shown in Fig. 1, the mobile agent

receives one LOS path and three first-order specular NLOS paths from the PA 2 at the time slot

n1. For brevity, we only take PA 2 as an example for illustration in Fig. 1.

The geometrical relationship between the mobile agent and PAs can be established by the

specular MPCs. The state of the mobile agent at time n is denoted as un = [xun , yun , ẋun , ẏun ],

where [xun , yun ] indicates the location and [ẋun , ẏun ] is the velocity. As the GPS is blocked

indoors, the trajectory of the agent is unknown. Let p(m)
n,1 = [x

p
(m)
n,1
, y
p
(m)
n,1

] represent the location

of the m-th PA at time n, for m = 1, . . . ,M . We denote VAs as mirror images of PAs at the

reflecting surfaces. Therefore, one first-order specular NLOS path corresponds to one VA. The

location of the l-th VA of the m-th PA at time n is represented as p
(m)
n,l = [x

p
(m)
n,l
, y
p
(m)
n,l

], where

l = 2, . . . , L
(m)
n . VAs have two characteristics, that is, a (i) static location and (ii) changing

presence. The first characteristic is due to the assumption that PAs and scatterers are static. The

second characteristic arises from the fact that the agent encounters different scatterers while

moving. As illustrated in Fig. 1, where we take PA 2 and the associated VAs as an example, at

the time slot n1, the agent observes three VAs associated with PA 2, whereas, at the time slot

n2, the agent moves to another location and sees only two VAs associated with PA 2. Although
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TABLE I
NOTATIONS OF IMPORTANT VARIABLES.

Notation Definition Notation Definition

p
(m)
n,l l = 1: location of the m-th PA at time n z

(m)
n,l measurement vector corresponding to the l-th VA

l > 1: location of the l-th VA of the m-th PA at time n of the m-th PA at time n

un state of the mobile agent at time n a
(m)
n feature-oriented data association vector

L
(m)
n number of features corresponding to the m-th PA b

(m)
n measurement-oriented data association vector

s
(m)
n,l unknown measurement biases associated v

(m)
n,l state of the l-th feature of the m-th PA at time n

with the l-th feature of the m-th PA at time n v
(m)
n,l = [p

(m)
n,l , s

(m)
n,l , r

(m)
n,l ]

r
(m)
n,l binary variable indicates the existence of feature cn number-of-measurements vector at time n

αn unknown orientation bias of the agent ω
(m)
n unknown clock bias between agent and the m-th PA

β
(m)
n,l path loss exponent of the l-th VA of the m-th PA ξ

(m)
n,l reference RSS of the l-th VA of the m-th PA

K(m)
n−1 set of legacy features from time slot n− 1 M(m)

n set of obtained MPC measurement indexes of the m-th PA

D(m)
n set of legacy feature indexes which generate measurement D̄(m)

n D̄(m)
n = K(m)

n−1\D
(m)
n

N (m)
n set of measurement indexes originate from new features N̄ (m)

n N̄ (m)
n =M(m)

n \N (m)
n

F(m)
n set of measurement indexes of false alarms Lk LRF-Map of the k-th agent, Lk =

{
L(1)k , . . . ,L(M)

k

}
O ORF-Map,O =

{
O(1), . . . ,O(M)

}
ϕk,n′ weight coefficient of the k-th agent at time n′

∗̃ legacy ∗, ∗ = {p(m)
n,l , s

(m)
n,l , r

(m)
n,l ,v

(m)
n,l , β

(m)
n,l , ξ

(m)
n,l } ?̆ new ?, ? = {p(m)

n,l , s
(m)
n,l , r

(m)
n,l ,v

(m)
n,l , β

(m)
n,l , ξ

(m)
n,l }

the presence of VAs changed (the number of observed VAs changed from three to two), the

location of each VA remained unchanged.

Obtaining the location of the PAs and VAs is useful for communication and localization.

For example, if a mobile agent knows the location of PAs and VAs, then beam training can

be easily accomplished by directing the beams to the PAs and VAs. When the location of PAs

and VAs is known, multi-point localization can also be realized. Therefore, constructing a radio

map indicating the location of PAs and VAs in a range of interest (ROI) is important. PAs and

VAs are regarded as features of a radio map. In an unfamiliar environment, the floor plan is

typically unknown. Therefore, the location of features, that is, p
(m)
n,l for l = 1, . . . , L

(m)
n and

m = 1, . . . ,M , is unknown in advance. In addition, given that VAs have a changing presence,

L
(m)
n , the total number of features corresponding to the m-th PA, is unknown and varies with

time. We assume that M PAs and V VAs exist in the ROI, and thus there are 2(M + V )

unknowns, because the location of each feature is described by 2-dimensional (2-D) coordinates.

Estimating 2(M + V ) unknowns with the measurements obtained by one agent at one time slot

is impossible. Nevertheless, as the locations of PAs and VAs are static, we have a chance to

obtain their estimates with a large number of measurements accumulated over time.

LetM(m)
n represent a set of obtained MPC measurement indexes of the m-th PA at time n. The

MPC measurements, including the extracted RSS |α̂(m)
n,l |, TOA τ̂

(m)
n,l , and AOA θ̂

(m)
n,l , where l =
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1, . . . , |M(m)
n |, can be effectively obtained from the received signal y(m)

n (t) by advanced channel

parameters extraction algorithms [28]–[31]. Note that | · | denotes the amplitude of a complex

value or the number of elements in the set. Moreover, let z(m)
n,l denote a vector of measurements of

the l-th MPC corresponding to the m-th PA at time n, e.g., z(m)
n,l = [α̂

(m)
n,l , τ̂

(m)
n,l , θ̂

(m)
n,l ]. We can then

define the stacked measurement vectors z
(m)
n = [z

(m)
n,1 , · · · , z

(m)

n,|M(m)
n |

] and zn = [z
(1)
n , . . . , z

(M)
n ].

Through the accumulation of N time slots, the agent can obtain a sequence of measurements

z1:N = [z1, . . . , zN ].

III. SLAM WITH MEASUREMENT PLUG-AND-PLAY AND CROWDSOURCING MECHANISMS

We consider a challenging scenario in which an agent enters an unfamiliar indoor environment

(e.g., a large shopping mall or underground garage), where the conventional GPS is blocked.

Therefore, un and p
(m)
n,l are unknown for l = 1, . . . , L

(m)
n , m = 1, . . . ,M , and n = 1, . . . , N .

Only the location of the entrance may be known and provides an approximate starting point for

the agent. The aim of this study is to estimate the agent’s state un and the features’ locations

p
(m)
n,l for l = 1, . . . , L

(m)
n , m = 1, . . . ,M , and n = 1, . . . , N with the obtained sequence of

measurements z1:N = [z1, . . . , zN ]. We establish plug-and-play and crowdsourcing mechanisms

for SLAM to realize such a goal. The important variables are summarized in Table I.

A. Theoretical Foundation for BP-based SLAM

Given the data association uncertainty, a measurement can originate from a legacy feature,

new feature, or did not originate from any feature (i.e., a false alarm). A legacy feature means

the feature already exists at time n−1. Let p̃(m)
n,l denote the location of a legacy feature, and D(m)

n

denote the set of legacy feature indexes which generate measurement at time n. By contrast, a

new feature means the feature does not exist at time n−1. Let p̆(m)
n,l denote the location of a new

feature, and N (m)
n denote the set of measurement indexes originate from new features. Finally,

let F (m)
n denote the set of measurement indexes of false alarms. Therefore, we classify the

measurement indexes inM(m)
n into three subsets according to their origins and obtain |M(m)

n | =

|D(m)
n |+ |N (m)

n |+ |F (m)
n |.

To associate measurements with features, we define the following two data association vectors

according to [2], [32]. First, let K(m)
n−1 represent a set of legacy features indexes from time slot
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n−1. The |K(m)
n−1|-dimensional feature-oriented vector is a(m)

n =
[
a

(m)
n,1 , . . . , a

(m)

n,|K(m)
n−1|

]
, the element

of which are given by

a
(m)
n,i =

j ∈M
(m)
n , legacy feature i of PA m generates measurement j at time n,

0, legacy feature i of PA m does not generate any measurement at time n,
(2)

where i = 1, . . . , |K(m)
n−1|. We also define the stacked vector an = [a

(1)
n , . . . , a

(M)
n ]. Second,

the |M(m)
n |-dimensional measurement-oriented vector is b

(m)
n =

[
b

(m)
n,1 , . . . , b

(m)

n,|M(m)
n |

]
, where we

obtain

b
(m)
n,j =

i ∈ K
(m)
n−1, measurement j is generated by legacy feature i of PA m at time n,

0, measurement j is not generated by any legacy feature at time n,
(3)

for j = 1, . . . , |M(m)
n |. We also define the stacked vector bn = [b

(1)
n , . . . ,b

(M)
n ]. The two vectors

an and bn, which are equivalent, as one can be determined from the other, can ensure the

scalability properties of the BP algorithm. A constraint exists such that each measurement

originates from a maximum of one feature or one false alarm, and one feature can generate at

most one measurement each time. The exclusion-enforcing function used to ensure the constraint

is defined as

Ψ(a(m)
n ,b(m)

n ) =

|M(m)
n |∏
i=1

|K(m)
n−1|∏
j=1

Ψ(a
(m)
n,i , b

(m)
n,j ), (4)

where

Ψ(a
(m)
n,i , b

(m)
n,j ) =

 0, a
(m)
n,i = j, b

(m)
n,j 6= i or b(m)

n,j = i, a
(m)
n,i 6= j,

1, otherwise.
(5)

We define the likelihood function, that is, the distribution of measurements conditional on the

unknown state of agent and features, and two data association vectors as

f(z(m)
n |un,v(m)

n , a(m)
n ,b(m)

n ) =
∏

i∈D(m)
n

f(z
(m)

n,a
(m)
n,i

|un, ṽ(m)
n )

∏
j∈N (m)

n

f(z
(m)
n,j |un, v̆(m)

n )
∏

k∈F(m)
n

ffalse(z
(m)
n,k ), (6)

where D(m)
n ,

{
i ∈ {1, . . . , |K(m)

n−1|} : a
(m)
n,i 6= 0

}
; ṽ(m)

n and v̆
(m)
n denote the state of legacy and

new features, respectively; and v
(m)
n = [ṽ

(m)
n , v̆

(m)
n ]. The elements in v

(m)
n are defined as v

(m)
n,l =

[p
(m)
n,l , s

(m)
n,l , r

(m)
n,l ] for l = 1, . . . , |D(m)

n−1| + |N
(m)
n |, where s

(m)
n,l represents unknown measurement

biases associated with the (m, l)-th feature at time n, and a binary variable r(m)
n,l ∈ {0, 1} indicates

the existence of the (m, l)-th feature at time n, that is, the feature exists at time n if and only if
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Fig. 2. Framework of a classic BP-based SLAM algorithm.

r
(m)
n,l = 1. Similarly, the elements in ṽ

(m)
n and v̆

(m)
n are denoted as ṽ

(m)
n,l = [p̃

(m)
n,l , s̃

(m)
n,l , r̃

(m)
n,l ] for

l = 1, . . . , |D(m)
n−1| and v̆

(m)
n,l = [p̆

(m)
n,l , s̆

(m)
n,l , r̆

(m)
n,l ] for l = 1, . . . , |N (m)

n |, respectively. The number

of false alarms and newly detected features follows a Poisson distribution with a mean of µ(m)
false

and µ
(m)
new, respectively. The distribution of each false alarm measurement is described by the

probability density function (pdf) ffalse(·).

The joint posterior probability distribution of the state of the agent and features and the data

association vectors conditioned on measurements for all time slots up to N is defined as

f(u1:N ,v1:N , a1:N ,b1:N |z1:N) =
N∏
n=1

M∏
m=1

f(un,v
(m)
n , a(m)

n ,b(m)
n |z(m)

n ), (7)

which can then be computed according to Bayes’ theorem as

f(u1:N ,v1:N , a1:N ,b1:N |z1:N)∝
N∏
n=1

M∏
m=1

f(un, ṽ
(m)
n |un−1,v

(m)
n−1)︸ ︷︷ ︸

(a)

f(z(m)
n |un,v(m)

n , a(m)
n ,b(m)

n )︸ ︷︷ ︸
(b)

× f(a(m)
n ,b(m)

n , c(m)
n , v̆(m)

n |ṽ(m)
n ,un)︸ ︷︷ ︸

(c)

, (8)

where c(m)
n = |M(m)

n | and cn = [c
(1)
n , . . . , c

(M)
n ] is the number-of-measurements vector at time

n, and we have an implies bn and zn implies cn. The framework of a classic BP-based SLAM

algorithm is derived from (8). Note that (a), (b), and (c) of (8) correspond to the state transition,

measurement evaluation, and data association phases, respectively. The entire process of (8)

realizes the data fusion phase (Fig. 2).

Given the posterior probability, a minimum mean square error (MMSE) estimator for the

agent’s state uN at time slot N is given as

ûN =

∫
uNf(uN |z1:N)duN , (9)
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where f(uN |z1:N) =
∫
w
f(u1:N ,v1:N ,a1:N ,b1:N|z1:N)dw is a marginal posterior distribution in (8),

and w = [u1:N−1,v1:N ,a1:N ,b1:N ]. The posterior existence probability p(r
(m)
N,l = 1|z1:N) is given

as

p(r
(m)
N,l =1|z1:N)=

∫∫
f(p

(m)
N,l ,s

(m)
N,l ,r

(m)
N,l =1|z1:N)dp(m)

N,l ds
(m)
N,l , (10)

where f(p
(m)
N,l ,s

(m)
N,l ,r

(m)
N,l =1|z1:N) is a marginal posterior distribution in (8). According to Bayes’

theorem, we obtain

f(p
(m)
N,l |r

(m)
N,l =1, z1:N)=

∫
f(p

(m)
N,l, s

(m)
N,l, r

(m)
N,l =1|z1:N)ds(m)

N,l

p(r
(m)
N,l = 1|z1:N)

. (11)

The MMSE estimator for the feature location p
(m)
N,l can be obtained similarly as

p̂
(m)
N,l =

∫
p

(m)
N,l f(p

(m)
N,l |r

(m)
N,l = 1, z1:N)dp(m)

N,l . (12)

Direct marginalization from (8) is infeasible. Hence, the BP algorithm can be applied to approx-

imate marginal posterior pdfs [33]. The detection phase in Fig. 2 is according to (10), and the

estimation phase is according to (9) and (12).

B. Measurement Plug-and-Play Mechanism

In this subsection, we establish a flexible fusion mechanism in which measurements can be

plugged in and played. First, we classify the measurements into three categories according to the

unknown biases as agent dependent, agent-anchor dependent, and agent-feature dependent. The

agent-dependent measurements represent the unknown bias of measurements dependent only

on the agent device. Measurements from the built-in sensors of the agent device, such as a

gyro or accelerator, are agent-dependent measurements. In this study, we take measurements

extracted from RF signals as examples. The AOA measurements at the agent side are agent-

dependent measurements, and the relationship between the AOA measurements and agent and

feature locations is given as

AOA(un,p
(m)
n,l )=arctan

(
y
p
(m)
n,l
−yun

x
p
(m)
n,l
−xun

)
+αn, (13)

where αn is the unknown orientation bias of the agent. The agent-anchor dependent measurements

stand for the unknown bias of the measurements and are dependent on different agent-anchor
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pairs (the anchor here means a PA). For instance, the relationship between TOA measurements

and agent and feature locations is given as

TOA(un,p
(m)
n,l ) =

∥∥un[1 : 2]− p
(m)
n,l

∥∥− ω(m)
n

c
, (14)

where ‖ · ‖ signifies the L2-norm, c is the speed of light, and ω
(m)
n is the unknown clock bias

that depends on different agent-anchor pairs. The agent-feature dependent measurements mean

that the unknown bias of the measurements is dependent on different agent-feature pairs, such

as RSS measurements. In practice, each anchor may use different transmission powers, and the

surrounding environment of each feature may differ. Therefore, the RSS model parameters of

each agent-feature pair vary and are unknown. To relate the determined RSS values to the agent

and feature locations, the path loss model [6] is given by

RSS(un,p
(m)
n,l ) = −10β

(m)
n,l log10

∥∥un[1 : 2]− p
(m)
n,l

∥∥+ ξ
(m)
n,l , (15)

where β(m)
n,l is the path loss exponent (PLE), which varies depending on the environment, and

ξ
(m)
n,l is a fixed constant that accounts for the transmit power (called reference RSS, RefRSS).

The unknown parameters β
(m)
n,l and ξ

(m)
n,l correspond to different agent-feature pairs. Despite

taking AOA, TOA, and RSS as examples, they merely represent three different categories of

measurements, and measurements are not limited to the RF signals.

Remark 1. Although a subscript n exists in αn, ω(m)
n , β(m)

n,l , and ξ(m)
n,l , these parameters are time-

invariant, similar to the location of features p
(m)
n,l . The orientation of the mobile agent changes,

but the relative orientation is recorded by the built-in gyro. For simplicity, we regard the relative

orientation as zero and denote αn in (13) as the orientation bias.

Different categories of measurement are integrated into the SLAM system in distinct ways.

The statistical formulas presented in Section III-A undergo the following changes. According to

the previously defined vector v(m)
n,l = [p

(m)
n,l , s

(m)
n,l , r

(m)
n,l ], where s

(m)
n,l is a vector of unknown biases.

Taking AOA, TOA, and RSS measurements as examples, we obtain s
(m)
n,l = [αn, ω

(m)
n , ξ

(m)
n,l , β

(m)
n,l ].

As αn and ω
(m)
n are irrelevant to the state of VAs, we remove these two elements from s

(m)
n,l .

Therefore, we obtain s
(m)
n,l = [ξ

(m)
n,l , β

(m)
n,l ] and the vector v

(m)
n,l = [p

(m)
n,l , ξ

(m)
n,l , β

(m)
n,l , r

(m)
n,l ]. Let

ξ̃
(m)
n,l and β̃

(m)
n,l denote parameters corresponding to legacy features and ξ̆

(m)
n,l and β̆

(m)
n,l represent

parameters corresponding to new features. We denote stacked vectors as α1:N=[α1, . . . , αN ] and
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ω1:N=[ω1, . . . ,ωN ], where ωn = [ω
(1)
n , . . . , ω

(M)
n ].

1) State Transition: The agent state un and legacy feature state ṽ
(m)
n,l are assumed to inde-

pendently evolve according to Markovian state dynamics given by

f(un,αn,ωn,ṽn|un−1,αn−1,ωn−1,vn−1)=f(un|un−1)f(αn|αn−1)
M∏
m=1

f(ω(m)
n |ω

(m)
n−1)

|K(m)
n−1|∏
l=1

f(ṽ
(m)
n,l |v

(m)
n−1,l).

(16)

The state transition function of agent f(un|un−1) is defined by a linear, near constant-velocity

motion model [34], given as uT
n = AuT

n−1 + dn, where (·)T represents the transpose, and

A =


1 0 ∆T 0

0 1 0 ∆T

0 0 1 0

0 0 0 1

 , (17)

where ∆T is the sampling period, and dn is the driving process, which follows the independently

identically Gaussian distribution across n with zero-mean and covariance matrix σ2
dI. We express

the state transition function of feature as f(p̃
(m)
n,l , ξ̃

(m)
n,l , β̃

(m)
n,l , r̃

(m)
n,l |p

(m)
n−1,l, ξ

(m)
n−1,l, β

(m)
n−1,l, r̃

(m)
n−1,l). If

a feature does not exist at time slot n − 1, then it cannot exist as a legacy feature at time slot

n. Therefore, for r̃(m)
n−1,l = 0, we obtain

f(p̃
(m)
n,l , ξ̃

(m)
n,l , β̃

(m)
n,l , r̃

(m)
n,l |p

(m)
n−1,l, ξ

(m)
n−1,l, β

(m)
n−1,l, 0)=

fD(p̃
(m)
n,l , ξ̃

(m)
n,l , β̃

(m)
n,l ), r̃

(m)
n,l = 0,

0, r̃
(m)
n,l = 1,

(18)

where fD(·) is an arbitrary “dummy pdf”, which is explained in detail in [32] to ensure that

f(ṽ
(m)
n,l |v

(m)
n−1,l) integrates to one. If a feature exists at time slot n− 1, then the probability that

it still exists at time slot n is determined by the survival probability and the state of the feature

is distributed according to the state transition pdf. Therefore, for r̃(m)
n−1,l = 1, we obtain

f(p̃
(m)
n,l , ξ̃

(m)
n,l , β̃

(m)
n,l , r̃

(m)
n,l |p

(m)
n−1,l, ξ

(m)
n−1,l, β

(m)
n−1,l, 1)=


(
1−Ps(p

(m)
n−1,l)

)
fD(p̃

(m)
n,l , ξ̃

(m)
n,l , β̃

(m)
n,l ), r̃

(m)
n,l = 0,

Ps(p
(m)
n−1,l)f(p̃

(m)
n,l |p

(m)
n−1,l) r̃

(m)
n,l = 1,

×f(ξ̃
(m)
n,l |ξ

(m)
n−1,l)f(β̃

(m)
n,l |β

(m)
n−1,l),

(19)

where Ps(·) ∈ (0, 1] represents the survival probability of a feature.

Remark 2. State transition functions (18) and (19) imply that only the existence probability
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of features should be updated. As αn, ω(m)
n , β(m)

n,l , ξ(m)
n,l , and p

(m)
n,l are time-invariant, the state

transition pdfs are given by f(∗|?) = δ(∗ − ?), where δ(·) is a Dirac delta function; ∗ = {αn,

ω
(m)
n , β̃(m)

n,l , ξ̃(m)
n,l , p̃

(m)
n,l }; and ? = {αn−1, ω(m)

n−1, β(m)
n−1,l, ξ

(m)
n−1,l, p

(m)
n−1,l}. For initialization, we

obtain f(∗1|∗0) = f(∗1), where ∗ = {u, α, ω(m)}. As v
(m)
0,l is empty, ṽ(m)

1,l is empty as well, and

we obtain f(ṽ
(m)
1,l |v

(m)
0,l ) = 1.

2) Measurement Evaluation: The measurements are divided into three subsets according to

their origins, as described in (6). The likelihood function is updated to

f(z(m)
n |un, αn,ω(m)

n ,v(m)
n , a(m)

n , c(m)
n )=

|M(m)
n |∏
i=1

ffalse(z
(m)
n,i )

∏
j∈D(m)

n

f(z
(m)

n,a
(m)
n,j

|un, αn,ω(m)
n , ṽ

(m)
n )

ffalse(z
(m)

n,a
(m)
n,j

)

×
∏

k∈N (m)
n

f(z
(m)
n,k |un, αn,ω

(m)
n , v̆

(m)
n )

ffalse(z
(m)
n,k )

. (20)

As
∏|M(m)

n |
i=1 ffalse(z

(m)
n,i ) is a constant on condition that c(m)

n is known, we obtain

f(z(m)
n |un, αn,ω(m)

n ,v(m)
n , a(m)

n , c(m)
n ) ∝

∏
j∈D(m)

n

f(z
(m)

n,a
(m)
n,j

|un, αn,ω(m)
n , ṽ

(m)
n )

ffalse(z
(m)

n,a
(m)
n,j

)

×
∏

k∈N (m)
n

f(z
(m)
n,k |un, αn,ω

(m)
n , v̆

(m)
n )

ffalse(z
(m)
n,k )

. (21)

Eq. (21) means that the measurement evaluation is determined in the perspective of legacy and

new features on the condition that the total number of measurements is known.

3) Data Association: The joint prior pdf of the data association vectors a(m)
n and b

(m)
n , number-

of-measurements c(m)
n , and state of new features v̆

(m)
n conditioned on the state of legacy features

ṽ
(m)
n and agent un, and unknown measurement biases αn and ω(m)

n is

f(a(m)
n ,b(m)

n , c(m)
n , v̆(m)

n |ṽ(m)
n ,un, αn,ω

(m)
n ) ∝ Ψ(a(m)

n ,b(m)
n )µ(m)|N (m)

n |
new µ

(m)(−|N (m)
n |−|D(m)

n |)
false

×
∏

j∈D(m)
n

Pd(un,p
(m)

n,a
(m)
n,j

)
∏

j′∈D̄(m)
n

(
1−Pd(un,p

(m)
n,j′)

)∏
k∈N (m)

n

fnew(v̆
(m)
n,k |un,αn,ω

(m)
n )
∏

k′∈N̄ (m)
n

fD(v̆
(m)
n,k′), (22)

where D̄(m)
n = K(m)

n−1\D
(m)
n , N̄ (m)

n = M(m)
n \N (m)

n , “\” represents the complement operator,

Pd(·) ∈ (0, 1] is the probability that a feature is “detected” in the sense that it generates a
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measurement z(m)
n,l , and fnew(·) represents some pdf of the newly detected features. The detailed

derivation is given in Appendix A. Note that the factorization given in (22) is also in the

perspective of legacy and new features.

4) Data Fusion: The joint posterior distribution of the agent state, measurement biases,

feature state, and data association vectors conditioned on measurements for all N time slots

is f(u1:N ,α1:N ,ω1:N ,v1:N , a1:N ,b1:N |z1:N). According to (8), the joint posterior distribution is

the product of (16), (21), and (22). As the factorizations of (21) and (22) are in the perspective

of legacy and new features, we rewrite equations (21) and (22) in a more concise form. Note that

D(m)
n is the set of legacy feature indexes that generate measurement at time n. It is implied that

for j ∈ D(m)
n we have r̃n,j = 1 and a(m)

n,j 6= 0. On the contrary, D̄(m)
n is the set of legacy feature

indexes which do not generate measurement at time n, and for j ∈ D̄(m)
n we have r̃n,j = 1 and

a
(m)
n,j = 0. We define a function g(un, αn,ω

(m)
n , ṽ

(m)
n,j , a

(m)
n,j ; z

(m)
n,j ), when r̃n,j = 1, and we have

g(un, αn,ω
(m)
n , ṽ

(m)
n,j , a

(m)
n,j ; z

(m)
n,j ) =


f(z

(m)

n,a
(m)
n,j

|un, αn,ω(m)
n , ṽ

(m)
n )Pd(un,p

(m)

n,a
(m)
n,j

)

µ
(m)
falseffalse(z

(m)

n,a
(m)
n,j

)
, a

(m)
n,j 6=0,

1− Pd(un,p
(m)
n,j ), a

(m)
n,j =0,

(23)

and when r̃n,j=0, we have g(un, αn,ω
(m)
n ,ṽ

(m)
n,j ,a

(m)
n,j ; z

(m)
n,j )=1. Moreover, N (m)

n denotes the set of

measurement indexes generated by new features, which means that for k ∈ N (m)
n we have r̆n,k=1

and b
(m)
n,k =0. By contrast, N̄ (m)

n denotes the set of measurements that are not generated by new

features, and we have r̆n,k=0, for k ∈ N̄ (m)
n . We define a function h(un, αn,ω

(m)
n ,v̆n,k,b

(m)
n,k ; z

(m)
n,k ),

when r̆n,k = 1, we have

h(un, αn,ω
(m)
n ,v̆n,k,b

(m)
n,k ; z

(m)
n,k ) =


0, b

(m)
n,k 6=0,

µ
(m)
newfnew(v̆

(m)
n,k|un,αn,ω

(m)
n )f(z

(m)
n,k|un,αn,ω

(m)
n ,ṽ

(m)
n )

µ
(m)
falseffalse(z

(m)
n,k )

, b
(m)
n,k=0,

(24)
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Fig. 3. Factor graph represents the factorization in (25).

and when r̆n,k=0, we have h(un, αn,ω
(m)
n ,v̆n,k,b

(m)
n,k ; z

(m)
n,k )=fD(v̆n,k). Finally, the joint posterior

pdf is given by

f(u1:N ,α1:N ,ω1:N ,v1:N , a1:N ,b1:N |z1:N)

∝
N∏
n=1

f(un|un−1)f(αn|αn−1)
M∏
m=1

f(ω(m)
n |ω

(m)
n−1 )

|K(m)
n−1|∏
j=1

f(ṽ
(m)
n,l |v

(m)
n−1,l)︸ ︷︷ ︸

(a)

×
N∏
n=1

M∏
m=1

Ψ(a(m)
n ,b(m)

n )︸ ︷︷ ︸
(c)

|K(m)
n−1|∏
j=1

g(un,αn,ω
(m)
n ,ṽ

(m)
n,j ,a

(m)
n,j ;z

(m)
n,j )

|M(m)
n |∏

k=1

h(un,αn,ω
(m)
n ,v̆

(m)
n,k,b

(m)
n,k;z

(m)
n,k )︸ ︷︷ ︸

(b)

,

(25)

where (a), (b), and (c) corresponds to those in (8).

Remark 3. The AOA, TOA, and RSS measurements can be combined according to the agent’s

hardware facilities and measurement acquisition conditions. The measurements can be easily

added to or removed from the BP-based SLAM algorithm according to (25). For example, if

TOA measurements are unavailable, then we obtain f(ω
(m)
1 ) = 1 and f(ω

(m)
n |ω(m)

n−1) = 1, which

is similar for AOA and RSS measurements.
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The factor graph representing the factorization in (25) is depicted in Fig. 3. The messages are

only sent forward in time. We adopt a widely accepted order [32] that the messages should be

computed. The messages first undergo the state transition phase, in which the messages from time

n−1 pass through factor nodes fu, fα, f (m)
ω , and f̃ (m)

l for m = 1, . . . ,M , and l = 1, . . . , |K(m)
n−1|

to generate prediction messages. Then, measurement evaluation calculations are processed by

factor node g
(m)
l for legacy features and factor node h

(m)
l′ for new features in parallel, where

l′ = 1, . . . , |M(m)
n |. Next, the output messages of factor nodes g(m)

l and h
(m)
l′ are passed to

the data association variable nodes a
(m)
n,l and b

(m)
n,l′ , respectively. The messages are calculated

iteratively among a
(m)
n,l and b

(m)
n,l′ , and this process is called the loopy data association phase.

After the last iteration, the messages are passed back from a
(m)
n,l to g(m)

l and from b
(m)
n,l′ to h(m)

l′ .

The messages are subsequently updated by factor nodes g(m)
l and h

(m)
l′ . Finally, the messages

are fused at variable nodes un, ω(m)
n , αn, ṽ(m)

n,l′ , and v̆
(m)
n,l′ . Once the messages are available, the

belief approximating the desired marginal posterior pdfs are obtained.

C. Probabilistic Crowdsourcing Mechanism

In this subsection, we aim at further improving the performance of the proposed plug-and-

play SLAM by the cooperation among agents. We establish a crowdsourcing mechanism to

construct and refine the radio map. Moreover, agents can download the generated radio map

from the cloud to assist and accelerate their own communication and SLAM processes. In the

proposed crowdsourcing mechanism, we assume that the mobile agents would honestly provide

the information they obtain. A reputation and pseudonym manager can be introduced in the

proposed system for future research, according to [35] and [36], to achieve trust evaluation and

privacy preservation.

Definition 1. We define a set Lk, which contains the features’ state estimated by agent k, as the

local radio feature map (LRF-Map) of agent k, given as

Lk =
{
L(1)
k , . . . ,L(M)

k

}
, (26)

and

L(m)
k =

{
[p̃

(m)
k,n′,l, Pe

(m)
k,n′,l]

∣∣∣l = 1, . . . , |K(m)
k,n′ |
}
, (27)

where n′ denotes the convergent time of the SLAM algorithm at agent k, and Pe
(m)
k,n′,l represents

the existence probability of feature p̃
(m)
k,n′,l calculated by (10). Note that we add the subscript k in
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Fig. 4. The proposed crowdsourcing method which consists of three parts, including the construction, usage, and refinement of
the open radio feature map.

The first period of the successive SLAM processes The second period of the successive SLAM processes 

Fig. 5. Physical layer frame structure of an agent corresponding to the proposed crowdsourcing mechanism.

p̃
(m)
k,n′,l and K(m)

k,n′ to distinguish different agents. Moreover, we define a set O in the cloud as the

open radio feature map (ORF-Map), which contains radio features in the ROI. The ORF-Map

O is a weighted combination of the LRF-Map Lk for k = 1, . . . , K, where K denotes the total

number of accessed agents. The ORF-Map is a dynamic set and keeps receiving information

from agents for updates.

The idea of the proposed crowdsourcing mechanism is shown in Figs. 4 and 5. At the very

beginning, the ORF-Map O is empty. The frame structure of each agent is illustrated in Fig.

5, where no prior information can be download at the very beginning. Channel estimation

and SLAM are executed at the same time slots on the agent side. The initial phase involves

constructing an ORF-Map of a new environment. Each agent can analyze the environment
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separately through its own received RF signals and sensors by using the method proposed in

Section III-B. The agents are not necessary to enter the environment at the same time. The data

transmission comes after each channel estimation and SLAM slot. After several time slots of

channel estimation and SLAM processes, a threshold is set to ensure that the SLAM result of

each agent converges. The radio environment observed by each agent from their own perspective

is incomplete or biased. The LRF-Maps obtained by three agents are subsets of the total radio

features in the ROI (Fig. 4). According to the frame structure in Fig. 5, each agent uploads its

LRF-Map to the cloud when the mapping result converges. As illustrated in Fig. 4, the fusion of

three LRF-Maps can generate a complete ORF-Map in the cloud. Let K1 represent the number

of the first batch of accessed agents in the initial construction phase. Then, we construct the

ORF-Map O at the cloud by

O(m) =

K1⋃
k=1

L(m)
k , (28)

for m = 1, . . . ,M , and

O =
{
O(1), . . . ,O(M)

}
. (29)

The generated ORF-Map is stored at the cloud.

The established ORF-Map can be downloaded with various applications. Here, we take SLAM

as an example. For newly accessed agents, the ORF-Map is downloaded at the first slot according

to the frame structure in Fig. 5, and the downloaded information can be considered as a good

initial value. For the already accessed agents, the downloaded information can be used to

complete their own LRF-Maps. Specifically, the ORF-Map can provide candidate legacy features

to each agent in need. Let n denote the current time slot, for agent k, we have K(m)
k,n−1 = O(m)

for m = 1, . . . ,M . Note that the agent only needs to download features corresponding to the

anchors it can access. The data association of measurements obtained by agent k at the current

time slot n and legacy features in K(m)
k,n−1 is denoted by two data association vectors given in

(2) and (3) and executed at the agent side. Then, the SLAM is processed at agent k using the

method proposed in Section III-B. Note that although data association is executed at the agent

side, with the accumulation of time, the ORF-Map is constantly updated, thereby solving the

double-counting issue in the ORF-Map as discussed in detail in Remark 4.

The ORF-Map in the cloud is constantly updated. According to the frame structure in Fig.

5, the agent keeps uploading the newly estimated LRF-Map to the cloud over time. Note that
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the LRF-Maps obtained by different agents have distinct qualities. On the one hand, agents are

equipped with different hardware conditions, which affect the quality of extracted measurements.

On the other hand, agents visiting at different time slots inherit a priori information with different

precisions. During the refinement phase of the crowdsourcing mechanism, we introduce a weight

coefficient ϕk,n′ to indicate the reliability of the LRF-Map obtained by the k-th agent at the time

slot n′. The weighted LRF-Map generated by the k-th agent is calculated by

L(m)
k =

{
[p̃

(m)
k,n′,l, ϕk,n′Pe

(m)
k,n′,l]

∣∣∣l = 1, . . . , |K(m)
k,n′|
}
, (30)

where m = 1, . . . ,M , and the product ϕk,n′Pe
(m)
k,n′,l represents the reliability of feature p̃

(m)
k,n′,l.

After the weighted LRF-Map estimated by agent k is uploaded to the cloud, it is combined with

the existing ORF-Map to generate a complete radio feature map by

O(m) = O(m) ∪ L(m)
k . (31)

The ORF-Map becomes more accurate over time given the increase in its contributions, thereby

providing more precise prior information. On the basis of the observation that the LRF-Map

estimated by the former agents is less accurate than that of the later agents, the weight of the

estimated LRF-Map is set to be proportional to the upload time (that is, the convergent time of

the estimated LRF-Map). For weight coefficients ϕ∗,n1 and ϕ∗,n2 , where n1 < n2 and ∗ denotes

any agents, we have ϕ∗,n1 < ϕ∗,n2 . Namely, the weights of the LRF-Map estimated and uploaded

later are larger than that of the former.

As the ORF-Map O is stored at the cloud, to prevent the continuous increase of data in set O,

pruning is executed according to the reliability of each feature. Specifically, let Pwn,l denote the

reliability of the l-th feature in O(m) at time slot n. Then, the elements in O(m) can be represented

as [p̃
(m)
n,l , Pwn,l] for l = 1, . . . , |O(m)|. If Pwn,l < Pthreshold, the l-th feature [p̃

(m)
n,l , Pwn,l] is deleted

in O(m). The pruning process can save storage resource and exclude unreliable features.

Remark 4. The first challenge of crowdsourcing is the “double count”, which means that some

different estimations in the set O may correspond to the same feature in reality because of the

estimation error of different agents. Although the union operation in (28) leads to the double

count problem, the proposed probabilistic data association-based crowdsourcing mechanism can

solve this problem. Specifically, as we have K(m)
k,n−1 = O(m) for m = 1, . . . ,M , the double

count problem happens in the set of the legacy features for each agent. With the probability
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data association mentioned in Section III-B, each agent can associate its measurements to the

more reliable legacy features and thus can filter out legacy features with large errors. Finally,

the number of estimated features by each agent converges to the number of measurements

approximately. Moreover, the feature estimations become increasingly accurate over time, where

accurate estimations of the same feature from different agents converge to the same location.

Remark 5. The second challenge of crowdsourcing is “data reliability”, which indicates that

valuable and unreliable data are mixed together during crowdsourcing. The proposed proba-

bilistic crowdsourcing mechanism can solve this problem by calculating the reliability (weighted

existence probability) of each feature. Through the pruning process, the unreliable data (features

with small weighted existence probability) are filtered out.

Remark 6. The proposed plug-and-play mechanism for SLAM with crowdsourcing has the

following advantages, which make it applicable for IoT devices. First, although the IoT systems

exhibits heterogeneity and different devices have different capabilities to obtain measurements,

the proposed measurement plug-and-play mechanism can work flexibly with different categories

of measurements, even for the partial category (such as one of AOA, TOA, or RSS) of measure-

ments. Second, by abstracting the radio environment into the radio feature map, the information

exchange format is unified to the features’ 2-D coordinates and existence probability, thereby

reducing the amount of data and solving the challenge of information exchange among IoT

devices. Third, as the construction, refinement, and storage of the ORF-Map are carried out

at the cloud, the computing and storage resource requirements of each agent can be relaxed.

Moreover, as only the LRF-Map is uploaded in the proposed mechanisms and the trajectory is

not required, the privacy of each agent can be protected.

IV. NUMERICAL RESULT

A. Simulation Setup

In this section, we assess the performance of the proposed algorithm. We use the floor plan

shown in Fig. 1, the size of which is approximately 20× 12 m2. The ROI is a circular disk with

a radius of 40 m. Most of the messages leaving the factor nodes cannot be solved in a closed

form owing to the contained integrals. We use particle-based implementation to approximate the

continuous messages [32].
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1) Measurement Model: True AOA, TOA, and RSS are generated according to (13), (14),

and (15), respectively. The measurement noise follows a zero-mean additive white Gaussian

distribution, and the standard deviation is set to σa = 1 degree for the AOA, σt = 0.15 m for

the TOA, and σr = 2.5 dBm for the RSS.

2) State Transition Model: The state transition of the agent is given by uT
n = AuT

n−1 + dn

in Section III-B1. In the following simulations, we set the variance of the driving process dn to

σ2
d = 0.0278 and the sampling period to ∆T = 1 s. For features, the state-transition pdfs is given

by Dirac delta functions. According to [2], we introduced a small driving process for the sake of

numerical stability. Here, we have ṽ
(m)
n,l = v

(m)
n−1,l +$

(m)
n,l , and $(m)

n,l follows the independently

identically Gaussian distribution across n with zero-mean and covariance matrix σ2
$I, and we

set σ2
$ = 10−8.

3) Initialization: The initial location of the agent is not known exactly, as we know only the

approximate location of the entrance. The particles for the initial agent location are drawn from a

uniform distribution within a circle, with [xe, ye] as the center and λ as the radius, where [xe, ye]

is the center of the actual entrance. In the following simulations, λ is set to 0.5 m. The particles

for the initial value of the measurement biases, such as the orientation bias, clock bias, and RSS

model parameters, are drawn from a uniform distribution with ranges of αn∼U [−0.5, 0.5] rad,

ω
(m)
n ∼U [0, 50] m, ξ

(m)
n,l ∼ U [−45,−25] dBm, and β

(m)
n,l ∼ U [2, 5]. The parameters involved in

the algorithm are given as Pd = 0.95, Ps = 0.999, µfalse = 1, µnew = 10−4; the unreliability

threshold is set to 10−4; the detection threshold is set to 0.5; and the number of particles is set

to 105. 1

B. Performance of the Measurement Plug-and-Play Mechanism

1) Without Measurement Biases: Fig. 6 shows the SLAM performance of the AOA, TOA, and

RSS measurements, for which we assume that the orientation bias, clock bias, and RSS model

parameters are perfectly known. This experiment seeks to analyze the characteristics of different

measurements, such as the AOA, TOA, and RSS measurements. The particles generated by AOA

measurements are radially distributed (Fig. 6 [a]). The particles generated by the TOA and RSS

measurements are distributed in concentric circles and rings (Figs. 6 [c] and [e]), respectively.

1When Ns = 105, and AOA and TOA measurements are used, the average runtime per time step for the proposed SLAM
method is 1.15 seconds for a MATLAB implementation on a desktop computer with a 3.3 GHz Intel(R) Xeon(R) W-2155 CPU
and 64 GB of RAM, using Windows 10 and MATLAB 2018b (64-bit).
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Fig. 6. SLAM results for an agent with single category of
measurements without measurement biases.
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Fig. 7. SLAM results for an agent with single category of
measurements.

At n = 60, most of the features converge for the AOA and TOA measurements (Figs. 6 [b] and

[d]). Compared with the AOA and TOA measurements, RSS has a slower convergence speed

because of more unknowns (Fig. 6 [f]). As no prior information of the floor plan, anchors, or

agents are available, a single measurement category is unable to achieve accurate SLAM results.

The trend of the overall rotation and deviation of the SLAM result by a single measurement

category is explained in Section IV-B2.

2) With Measurement Biases: Fig. 7 shows the SLAM results for the AOA, TOA, and RSS

measurements, for which we assume that the orientation bias, clock bias, and RSS model

parameters are unknown. The SLAM results indicate a trend of overall scaling (Fig. 7 [a]),

rotation (Fig. 7 [c]), and scaling and rotation (Fig. 7 [e]), when only the AOA, TOA, and RSS
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Fig. 8. SLAM results for an agent with mixed categories of measurements.

measurements are used, respectively. The calibrated SLAM results, with the calibration of the

built-in sensors, such as the gyro (rotation calibration) and accelerator (scaling calibration), are

shown in Figs. 7 (b), (d), and (f). The positioning performance is satisfactory, as shown in Figs.

7 (b), (d), and (f). However, the mapping error is large owing to the measurement biases.

Fig. 8 presents the SLAM results for mixed measurements (AOA + TOA and AOA + RSS)

with unknown measurement biases and without sensor calibration. When n = 5, AOA + TOA has

a faster convergence speed than AOA + RSS. For mapping, as the mapping deviation between the

AOA and TOA measurements is large owing to the unknown clock bias, the outcome typically

does not converge to an acceptable mapping result when mixed AOA and TOA measurements

are employed, thereby causing feature loss (red and blue features in Fig. 8 for AOA + TOA

when n = 90). Although a slight scaling is observed for AOA + RSS, feature loss does not

occur (Fig. 8 for AOA + RSS when n = 90). For positioning, AOA + TOA outperforms AOA

+ RSS, as RSS measurements have substantial unknown parameters.

The results in Figs. 9 (a)-(d) are obtained from 100 independent Monte Carlo simulations. Let

OBE denote the error of the orientation bias estimate and CBE represent the error of the clock
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Fig. 9. SLAM results obtained from 100 independent Monte Carlo simulations for an agent with mixed categories of
measurements.

bias estimate. The Euclidean distance-based mean optimal sub-pattern assignment (MOSPA)

metric [32] is calculated to evaluate the mapping performance. For average positioning error,

AOA + TOA outperforms AOA + RSS (Fig. 9 [a]). For average mapping performance, AOA

+ RSS is more accurate than AOA + TOA (Fig. 9 [b]). These results are consistent with those

shown in Fig. 8. The measurement biases are estimated during SLAM (Figs. 9 [c] and [d]).

The orientation and clock biases almost converge at n = 2 (Fig. 9 [c]). The RSS parameters

approximately converge at n = 20 (Fig. 9 [d]). This result also explains the phenomenon that

TOA and AOA measurements converge faster than RSS measurements.

Next, we compare the proposed method with the classic BP-SLAM method without measure-

ment biases, which is denoted as “Without Bias Est.”. Table II compares the maximum value of

the mean absolute error (MAE) of the agent trajectory, and this metric measures the maximum

deviation of the estimated trajectory. Table III compares the MOSPA of the physical and virtual

anchors, and this metric evaluates the mapping performance. The numerical results show that
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TABLE II
MAXIMUM OF THE MAE (m) OF AGENT TRAJECTORY.

Bias Level
ω
(m)
n = 1 m ω

(m)
n = 5 m ω

(m)
n = 10 m

αn = 0.1 rad αn = 0.2 rad αn = 0.5 rad

Proposed Method 1.58 1.75 2.31
Without Bias Est. 1.98 2.93 7.25

TABLE III
MOSPA (m) MAPPING PERFORMANCE COMPARISON.

Bias Level
ω
(m)
n = 1 m ω

(m)
n = 5 m ω

(m)
n = 10 m

αn = 0.1 rad αn = 0.2 rad αn = 0.5 rad

Proposed Method 1.38 1.85 2.41
Without Bias Est. 2.86 6.57 9.92

the proposed method outperforms the “Without Bias Est.” in both localization and mapping. The

performance gain increases with the bias level. Specifically, when clock and orientation biases

are set to 10 m and 0.5 rad, the proposed method can achieve 68% and 76% performance gain

in localization and mapping, respectively.

Through combining different categories of measurements, we obtain better SLAM results

than those from a single measurement category, thereby verifying the performance gain of the

proposed measurement plug-and-play mechanism. However, a single agent cannot obtain the

entire features in the ROI because of the feature loss caused by measurement biases, such as

the clock bias (the subfigure in the upper right corner of Fig. 8). Therefore, we explore the

performance of the proposed crowdsourcing mechanism for multi-agent collaboration in the

following subsection.

C. Performance of the Probabilistic Crowdsourcing Mechanism

1) Case 1 - Single category of measurements is used with agents from different entrances:

We consider eight agents, and the start point of each agent is shown in the left subfigure of

Fig. 10. We divide the eight agents into three batches. Agents 1, 4, 5, 6, and 7 constitute the

first batch, which enters the ROI at time slot n = 1. Agents 2 and 3 are in the second batch,

which enters the ROI at time slot n = 5. Agent 8 enters the ROI at time slot n = 10. Only

the AOA measurements are used by each agent. The SLAM result of Agent 8 is shown in the
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Fig. 10. SLAM results for Case 1 with the proposed crowdsourcing mechanism.
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Fig. 11. Mapping results obtained from 100 independent Monte Carlo simulations for Case 2 with the proposed crowdsourcing
mechanism.

right subfigure of Fig. 10, where the average positioning error is less than 0.5 m and the average

mapping error is less than 1 m. With the proposed crowdsourcing mechanism in the case of

agents from different entrances, the scaling phenomenon in the SLAM result caused by the

AOA measurement is eliminated.

2) Case 2 - Multiple categories of measurements are used with agents from the same entrance:

We consider eight agents with the combination of AOA and TOA measurements. The time of the

agents enter the ROI are n = 1 for Agents 1, 2, and 3; n = 5 for Agent 4, n = 10 for Agent 5,
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Fig. 12. Positioning results obtained from 100 independent Monte Carlo simulations for Case 2 with the proposed crowdsourcing
mechanism.

n = 15 for Agent 6, n = 20 for Agent 7, and n = 25 for Agent 8. The total times of Monte-Carlo

simulations are set to 100. Fig. 11 shows the average mapping performance of the proposed

crowdsourcing mechanism. As Agents 1, 2, and 3 have no prior information to inherit, the

mapping error converges at approximately 4 m. Then, the mapping results are gradually improved

from Agents 4 to 8. The dotted lines of Agent 8 show the mapping result without crowdsourcing,

which is approximately three times worse than those of the solid lines on average. Fig. 12 shows

the positioning performance of the proposed crowdsourcing mechanism. The average positioning

accuracy of Agent 8 improved by 42.5% at n = 60 with the proposed crowdsourcing method.

The simulation result verifies the effectiveness of the proposed crowdsourcing method.

V. CONCLUSION

This study proposed a SLAM method with measurement plug-and-play and crowdsourcing

mechanisms in a Bayesian framework. First, we extended the classic BP-based SLAM method

by considering practical requirements and thus realized a measurement plug-and-play function.

In particular, we divided the measurements into three categories according to their unknown

biases. We explained the mechanism in detail by taking TOA, AOA, and RSS measurements

as examples. The simulation results showed that the proposed algorithm estimates the time-

varying agent’s and features’ states and corresponding measurement biases (such as clock bias,

orientation bias, and unknown RSS model parameters) with high accuracy and robustness in
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challenging scenarios. The proposed plug-and-play SLAM can do the estimates without prior

information on the floor plan, anchors, or agents. We also established a probabilistic crowd-

sourcing mechanism and designed a corresponding physical layer frame structure. Our study

is the first BP-based crowdsourcing solving “double count” and “data reliability” problems

through probabilistic data association’s flexible application. Our mechanism does not require

the location information of agents for privacy and security considerations. Simulation results

revealed that the proposed crowdsourcing mechanism could further enhance the plug-and-play

SLAM’s performance through cooperation among agents.

APPENDIX A

In this subsection, we derive the factorization of data association pdf in (22). First, according

to [32], we have

f(a
(m)
n ,b

(m)
n , c

(m)
n , v̆

(m)
n

∣∣ṽ(m)
n ,un, αn,ω

(m)
n )

= p(a
(m)
n ,b

(m)
n , c

(m)
n , r̆

(m)
n

∣∣ṽ(m)
n ,un, αn,ω

(m)
n )f(v̆

(m)
n

∣∣r̆(m)
n ,un, αn,ω

(m)
n , c

(m)
n ),

(32)

where r̆
(m)
n = [r̆

(m)
n,1 , . . . , r̆

(m)

n,|N (m)
n |

]. Since a
(m)
n determines b

(m)
n , we have

p(a(m)
n ,b(m)

n , c(m)
n , r̆(m)

n

∣∣ṽ(m)
n ,un, αn,ω

(m)
n ) ∝ p(a(m)

n , c(m)
n , r̆(m)

n

∣∣ṽ(m)
n ,un, αn,ω

(m)
n ). (33)

Let µ(m)
n denote the indicate vector of a(m)

n , where µ(m)
n,i = 1 when a(m)

n,i 6= 0; and µ(m)
n,i = 0 when

a
(m)
n,i = 0. Therefore, we have

p(a(m)
n , c(m)

n , r̆(m)
n

∣∣ṽ(m)
n ,un, αn,ω

(m)
n )=p(a(m)

n , r̆(m)
n ,µ(m)

n , |N (m)
n |, |F (m)

n |
∣∣ṽ(m)

n ,un, αn,ω
(m)
n ). (34)

According to the chain rule, we obtain

p(a
(m)
n , r̆

(m)
n ,µ

(m)
n , |N (m)

n |, |F (m)
n |

∣∣ṽ(m)
n ,un, αn,ω

(m)
n )

=Ψ(a
(m)
n ,b

(m)
n )p(r̆

(m)
n

∣∣a(m)
n ,µ

(m)
n , |N (m)

n |, |F (m)
n |, ṽ(m)

n ,un, αn,ω
(m)
n )

×p(a(m)
n

∣∣µ(m)
n , |N (m)

n |, |F (m)
n |, ṽ(m)

n ,un, αn,ω
(m)
n )p(µ

(m)
n

∣∣ṽ(m)
n ,un, αn,ω

(m)
n )p(|N (m)

n |)p(|F (m)
n |).
(35)

As r̆
(m)
n is a |N (m)

n |-dimensional vector, given µ(m)
n , |N (m)

n |, and |F (m)
n | (|D(m)

n | and |M(m)
n | can

be known), there are C
|N (m)

n |
|M(m)

n |−|D(m)
n |

kinds of combination of r̆(m)
n . Hence, the probability is given

as

p(r̆
(m)
n

∣∣a(m)
n ,µ

(m)
n , |N (m)

n |, |F (m)
n |, ṽ(m)

n ,un, αn,ω
(m)
n ) =

|N (m)
n |!|F (m)

n |!
(|M(m)

n | − |D(m)
n |)!

. (36)
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Note that a(m)
n is an ordered vector. Given µ(m)

n , |N (m)
n |, and |F (m)

n | (|D(m)
n | and |M(m)

n | can be

known), there are A
|D(m)

n |
|M(m)

n |
kinds of combination of a(m)

n , then, we obtain

p(a
(m)
n

∣∣µ(m)
n , |N (m)

n |, |F (m)
n |, ṽ(m)

n ,un, αn,ω
(m)
n ) =

(|M(m)
n | − |D(m)

n |)!
|M(m)

n |!
. (37)

As µ(m)
n is an indicator vector of the legacy features, it is determined by the detection probability

of a feature as

p(µ
(m)
n

∣∣ṽ(m)
n ,un, αn,ω

(m)
n ) =

∏
j∈D(m)

n

P
(m)
d (un,p

(m)

n,a
(m)
n,j

)
∏

j′∈D̄(m)
n

(
1− P (m)

d (un,p
(m)
n,j′)

)
. (38)

The number of newly detected features and false alarms follows Poisson distributions, therefore

the probabilities are given as

p(|N (m)
n |) = e−µ

(m)
newµ(m)|N (m)

n |
new /|N (m)

n |!, (39)

and
p(|F (m)

n |) = e−µ
(m)
falseµ

(m)|F(m)
n |

false /|F (m)
n |!, (40)

respectively. The prior pdf of the state of new features conditioned on the existence indicator of

new features, the state of the agent, and the number of measurements is given by

f(v̆
(m)
n |r̆(m)

n ,un, αn,ω
(m)
n , c

(m)
n ) =

∏
k∈N (m)

n

fnew(v̆
(m)
n,k |un, αn,ω

(m)
n )

∏
k′∈N̄ (m)

n

fD(v̆
(m)
n,k′). (41)

Finally, by multiplying (36)-(41) and Ψ(a
(m)
n ,b

(m)
n ), we can obtain (22).
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