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Knowledge-driven Meta-learning for CSI Feedback
Han Xiao, Wenqiang Tian, Wendong Liu, Jiajia Guo, Zhi Zhang, Shi Jin, Zhihua Shi, Li Guo, and Jia Shen

Abstract—Accurate and effective channel state information
(CSI) feedback is a key technology for massive multiple-input
and multiple-output systems. Recently, deep learning (DL) has
been introduced for CSI feedback enhancement through massive
collected training data and lengthy training time, which is quite
costly and impractical for realistic deployment. In this article,
a knowledge-driven meta-learning approach is proposed, where
the DL model initialized by the meta model obtained from meta
training phase is able to achieve rapid convergence when facing a
new scenario during target retraining phase. Specifically, instead
of training with massive data collected from various scenarios,
the meta task environment is constructed based on the intrinsic
knowledge of spatial-frequency characteristics of CSI for meta
training. Moreover, the target task dataset is also augmented by
exploiting the knowledge of statistical characteristics of wireless
channel, so that the DL model can achieve higher performance
with small actually collected dataset and short training time. In
addition, we provide analyses of rationale for the improvement
yielded by the knowledge in both phases. Simulation results
demonstrate the superiority of the proposed approach from the
perspective of feedback performance and convergence speed.

Index Terms—CSI feedback, massive MIMO, deep learning,
meta-learning, knowledge-driven

I. INTRODUCTION

MASSIVE multiple-input multiple-output (MIMO) tech-

nology is one of the key physical layer technologies

in the fifth generation (5G) system [1–4] and also part of

pre-research of the sixth generation (6G) system [5, 6]. To

fully exploit the potential of massive MIMO system, accurate

channel state information (CSI) feedback has been intensively

studied for decades. Along with the standardization work

in the 3rd Generation Partnership Project (3GPP), various

solutions based on the Type I and enhanced Type II (eType

II) codebook have been proposed to improve the CSI feedback

performance [7–10]. However, to resolve the issues of larger

CSI feedback overhead and insufficient recovery accuracy,

methods for further enhancing the CSI feedback are still being

actively studied.

Due to the successful deep learning (DL) in the field

of computer vision (CV) and natural language processing

(NLP), the combination of wireless communication and DL

has attracted great attention in recent years. A series of creative

topics have been proposed one after another such as DL-

based enhancement of air interface [11] especially in physical

layer [12, 13], intelligent cognitive radio [14] and semantic

communication [15]. One of the implementations of DL-based
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physical layer is DL-based CSI feedback [16] which achieves

higher CSI recovery accuracy with reduced feedback overhead.

A framework of autoencoder for CSI feedback, namely CsiNet

[17] is first proposed, where an encoder at the user equipment

(UE) compresses the channel matrix and a decoder at the

base station (BS) recovers the corresponding channel matrix.

Subsequently, as shown in Table I, a series of follow-up works

are conducted under various conditions, which can be divided

into different strategies. First, a series of works focus on

novel DL neural network (NN) design to improve feedback

performance including modified Transformer [18] backbone

[19, 20], introducing attention mechanism [21–23] and non-

local module [24]. Second, many relevant works exploit side

information to improve feedback accuracy. In [25], decou-

pled spatio-temporal feature is extracted by deep recurrent

NN (RNN) [26]. By exploiting the partial reciprocity of the

downlink and uplink channels, [27] introduces the uplink CSI

into the downlink channel reconstruction to further improve

the feedback performance. In [28, 29], principal component of

CSI, i.e., eigenvectors is considered to further improve feed-

back efficiency. Third, some works consider the joint design

of DL-based CSI feedback with other modules in wireless

communication systems, including channel estimation [30],

precoding [31] and source-channel coding [32]. Furthermore,

there are works foucus on solving the problem of practical

implementation. [28, 29] achieve direct fair performance com-

parison with the existing codebook based solutions and can

be well adapted to existing wireless communication systems.

Scheme for multi-user MIMO scenario is also proposed in

[33]. Additionally, 3GPP release 18 work includes a new study

item (SI), the “Artificial Intelligence / Machine Learning for

NR Interface”, and the DL-based CSI feedback is considered

as one of the most promising use cases [34], where the studies

include the evaluation methodology, potential specification

impacts and other possible aspects.

Although DL-based CSI feedback has great potential, there

are still some challenges in standardization and practical

deployment. For instance, the generalization issue should be

considered since DL method tends to express the scenario-

specific property. Furthermore, plenty of data of target scenario

are always necessary for training a well-performed model,

which is quite impractical for deployment due to extremely

high cost. Therefore, an attractive methodology referred to

as meta-learning [35, 36] is proposed to resolve the above

challenges, which is capable of inferring the inductive bias

[37] from multiple related tasks reduces the requirement of

training data and time for a new target task. Specifically,

model-agnostic meta-learning (MAML) [38] and Reptile [39]

are representative schemes, wherein the model can learn a

good initialization during meta training phase and then rapidly

achieve the convergence with a few of data for a new target

http://arxiv.org/abs/2310.15548v2
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TABLE I
RELATED WORKS OF DL-BASED CSI FEEDBACK

Strategies Related Works

Novel NN
design

Modified Transformer [19, 20]
Attention mechanism [21–23]

Non-local module [24]

Side
information
exploitation

Spatio-temporal feature [25]
Reciprocity of downlink and uplink channels [27]

Principal component information [28, 29]

Joint design
of multiple

modules

Joint feedback and estimation [30, 31]
Joint feedback and precoding [31]

Joint feedback and source-channel coding [32]

Practical
application

Adapt to existing communication system [28, 29]
Multi-user scenario [33]

Generalization, data cost and training complexity [40, 41]

task scenario in target retraining phase. To exploit the advan-

tage of meta-learning, a series of meta-learning-based wireless

communication schemes are proposed [40–44]. Conventional

meta-learning method [40, 41] utilize meta-learning for CSI

feedback, where the model is initialized in meta training phase

with massive CSI samples of multiple various scenarios and

then achieves a quick convergence with small dataset for a

new target scenario.

However, in the above-mentioned conventional meta-

learning-based CSI feedback solutions, massive collected data

are still necessary for meta training. Meanwhile, the meta-

trained model is retrained on the original small amount of data

of the target scenario, thus it might suffer from performance

loss in comparison with models training on sufficient data.

Moreover, the intrinsic knowledge in the filed of wireless com-

munication has not been fully explored in the above-mentioned

works, which is quite laggard in comparison with the work

of utilizing the local relation between lines and textures in

image data with convolutional neural network (CNN) [45] in

CV, and the work of evacuating the serialization characteristics

of language data with RNN [26] in NLP. Obviously, for

meta-learning-based CSI feedback, no knowledge of intrinsic

characteristics of the wireless channel are utilized. Therefore,

how to explore the characteristics of wireless channel to reduce

the cost of collecting amounts of data in meta training phase

and then enhance the performance of model in target retraining

phase remains a very interesting and challenging issue.

In this article, a novel knowledge-driven meta-learning

scheme for CSI feedback is proposed. Specifically, instead

of training with the large amounts of CSI data collected

from different wireless scenarios in meta training phase,

one constructs the dataset for meta training phase, namely

meta task environment by exploring the intrinsic knowledge

of spatial-frequency characteristic of CSI eigenvector. After

the DL model obtains the initialization during meta training

phase, it is capable of achieving rapid convergence and high

performance by retraining on the target task dataset, which

is augmented from only a small seeded dataset of the target

scenario with the assistance of the knowledge of channel

statistical feature. Analyzes are also provided to illustrate the

rationale of improvement yielded from knowledge. Finally,

the simulation results illustrate the superiority of the proposed

approach from the perspective of feedback performance and

convergence speed. Note that part of the work was presented at

the IEEE International Conference on Communications 2023

[46]. More novel content beyound the original work including

intuitive motivation, algorithm improvement, detailed analy-

ses, abundant experiments and potential standardization impact

are added in this artical. The main contributions of this artical

are summarized as follows.

• A knowledge-driven meta training approach for CSI

feedback is proposed. In meta training phase, the model

is learnt from a meta task environment which is creatively

constructed based on the intrinsic knowledge of spatial-

frequency feature without any actually collected data

from various scenarios.

• In target retraining phase, a novel knowledge-driven data

augmentation method is proposed with the assistance

of statistical feature of wireless channels on a limited

amount of seeded data of the target scenario.

• Corresponding analyses are also provided to illustrate the

rationale for the improvement yielded by the knowledge

in both phases, including i) reasonability of construct-

ing a CSI sample using spatial-frequency structure, ii)

sufficiency of information in meta task environment and

iii) consistency between seeded data and augmented data

features.

• Various kinds of simulation results are provided to

demonstrate the superiority of proposed knowledge-

driven meta-learning approach over the conventional

counterparts from the perspective of CSI feedback per-

formance and convergence speed of the target task re-

training. These abundant simulations are performed with

3GPP link level channels, which may hopefully provide

some referable insights for 3GPP discussions in the

future.

The remainder of this article is organized as follows. In

section II, we introduce the system model and formulate the

problem of meta learning to be solved for CSI feedback. In

section III, the motivation of this artical is first provided,

then the proposed knowledge-driven meta-learning approach

is introduced. In section IV, we provided the analyses to

demonstrate the rationale for the improvement yielded by

knowledge. Numerical experiment results are provided in

section V. Potential standardization work and prospects of

the proposed approach are discussed in sections VI. Final

conclusions are given in VII.

Throughout this artical, upper-case and lower-case letters

denote scalars. Boldface upper-case and boldface lower-case

letters denote matrices and vectors, respectively. Calligraphic

upper-case letters denote sets. A(:,B) and A(B, :) denote

the sub-matrices of A that consist of the columns and rows

corresponding to vector-indices in set B, respectively. E{·}
denotes the expectation and Tr{·} denotes the trace of the

input matrix. Hermitian matrix of A is denoted by A
H.

rand(A, a) denotes the random sampling of a samples from

the input set A without replacement. The set of real and

complex numbers are denoted by R and C, respectively. | · |
denotes the cardinality of the input set or the absolute value

of the input scalar.
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II. SYSTEM DESCRIPTION

A. System Model

A typical MIMO system with Nt = NhNv transmitting

antennas at BS and Nr receiving antennas at UE is considered,

where Nh and Nv are the numbers of horizontal and vertical

antenna ports, respectively. Note that proposed methods are

suitable for antennas with either dual or single polarization.

The single polarization is considered to illustrate the basic

principle in algorithm introduction for simplicity and dual

polarization is applied in the simulation for practical. The

downlink channel in time domain can be denoted as Ĥ ∈
CNr×Nt×Nd , where Nd is the number of paths with various

delays. By conducting Discrete Fourier transform (DFT) over

the delay-dimension of Ĥ, the downlink channel in frequency

domain H̃ ∈ CNr×Nt×Nsc can be written as

H̃ =
[
H̃1, H̃2, · · · , H̃Nsc

]
, (1)

where Nsc is the number of subcarriers, and H̃k ∈
CNr×Nt , 1 ≤ k ≤ Nsc denotes downlink channel on the

kth subcarrier. Furthermore, considering the limitation on the

CSI feedback overhead, the whole band of Nsc subcarriers

are uniformly divided into Nsb subbands, wherein the CSI

eigenvector feedback is performed on each subband which

consists of Ngran subcarriers with Nsc = NgranNsb. For

brevity, single-layer configuration for downlink transmission

is assumed and the basic principle of this artical can be

generalized to the case of multi-layer. The corresponding

eigenvector for the lth subband wl ∈ CNt×1 with normal-

ization ||wl||2 = 1, can be calculated by the eigenvector

decomposition on the subband as


 1

Ngran

lNgran∑

k=(l−1)Ngran+1

H̃
H
k H̃k


wl = λlwl, (2)

where 1 ≤ l ≤ Nsb and λl represents the corresponding

maximum eigenvalue for the l-th subband. Therefore, the CSI

matrix can be written as

W =
[
w1,w2, · · · ,wNsb

]
∈ C

Nt×Nsb , (3)

wherein total NsbNt complex coefficients need to be com-

pressed at the UE and then recovered at the BS side.

Generally, the optimization objective for CSI feedback can

be given as

min
F

−ρ(W,W′) = min
F

−
1

Nsb

Nsb∑

l=1

(
‖wH

w
′‖2

‖w‖2‖w′‖2

)2

, (4)

where ρ(·, ·) ∈ [0, 1] denotes the squared generalized cosine

similarity (SGCS) which has been a widely used evaluation

metric for CSI feedback. A larger ρ indicating higher CSI

recovery accuracy. Here, ‖ · ‖2 denotes the ℓ2 norm, wl and

w
′
l represent the original and recovered CSI eigenvector on

the l-th subband, respectively. F represents the alternative CSI

feedback schemes such as codebook based Type I, eType II

[8–10] and DL-based autoencoder [28].

B. DL-based CSI Feedback

In this subsection, the DL-based CSI feedback using au-

toencoder is introduced, where the encoder and decoder with

neural network (NN) are deployed at UE and BS, respectively.

The encoder and decoder function with trainable parameters

ΘE and ΘD can be denoted as fe(·; ΘE) and fd(·; ΘD),
respectively, thus the DL-based autoencoder fa(·; Θ) with

trainable parameters Θ = {ΘE,ΘD} for CSI feedback can

be represented as

W
′ = fd(fe(W; ΘE); ΘD) = fa(W; Θ), (5)

where the encoder first compresses original CSI W and

quantizes it to a bitstream b of length B. Then the decoder

recover W
′ from b. During training phase, the encoder and

decoder are jointly optimized to solve (4) with sufficient

numbers of CSI eigenvector samples. In this work, we consider

an offline-training-online-testing framework of CSI feedback,

where the encoder and decoder are jointly trained offline and

further deployed on the UE and BE, respectively.

C. Meta-learning-based CSI Feedback

In this subsection, the meta-learning-based CSI feedback

is introduced. Generally, the goal of meta-learning based CSI

feedback is to find a good initialization of Θ = {ΘE,ΘD},

so that the autoencoder can quickly achieve the convergence

with a small dataset and a few training steps for a new

task. Specifically, the procedure of meta-learning based CSI

feedback can be divided into two phases, i.e., the meta training

phase and target retraining phase.

During meta training phase, the model is trained over a

big dataset namely meta task environment consisting of T
CSI tasks of diverse scenarios, which can be defined as

meta task environment Tmeta = {T1, ..., TT }, wherein each

task Tj = {Wj
1, ...,W

j
|Tj|

}, 1 ≤ j ≤ T consists of |Tj |

CSI samples denoted as W
j
i , 1 ≤ i ≤ |Tj |. Tasks can be

distinguished based on different CSI characteristics of different

scenarios. For example, the CSI samples from different UEs in

an urban macrocell have similar wireless characteristics, while

the ones in another cell hold relatively different characteristics.

Thus the datasets collected from the two cells formulate two

different tasks. Based on the meta task environment Tmeta,

meta-learning algorithms such as MAML [38] and Reptile [39]

can be performed to learn the initial parameters Θ̂ that can be

described as

min
Θ̂

ETj⊂Tmeta

[
−ρ(Tj , fa(Tj ; U

g
Tj
(Θ̂)))

]
, (6)

where Ug
Tj
(Θ̂) is the operator that updates Θ̂ for g training

steps using the data sampled from Tj . The initialization Θ̂
learnt in above procedure is expected to has the ability of

quick adaptation with small amount of data on an unobserved

target task Ttarget from a new scenario.

Secondly, the target retraining phase can be formulated as

min
Φ=Ug

Ttarget
(Θ̂)

−ρ(Ttarget, fa(Ttarget; Φ)), (7)
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Proposed meta training

Conventional meta training

Raw model with random initialization

Meta model using knowledge-driven method

Meta model using biased meta task enviroment

Theoretical optimal model of target scenario

Empirical optimal model of target scenario

Proposed target retraining

Conventional target retraining

Approximation error

Conventional reachable domain 

with proposed meta model

Proposed 

reachable 

domain with 

proposed meta 

model.

Conventional reachable domain 

with conventional meta model.

Fig. 1. Illustrate of motivation by intuitively comparing the different meta training and target retraining methods. For simplicity, models are assumed with two
parameters thus can be depicted in two-dimensional plane. Same principle can be generalized to models with multiple parameters in hyperplane. Reachable
domain is depicted as ellipse and may actually be other irregular shapes. Conventional and proposed meta model denote the meta model obtained from
conventional and proposed meta training, respectively. Conventional and proposed reachable domain denote the reachable domain using conventional and
proposed target retraining, respectively.

where Φ denotes the possible parameter sets trained on Ttarget
after g retraining steps based on the initialization Θ̂, which

indicates that the convergence on a target task of new scenario

can be rapidly reached with only a few retraining steps.

However, the existing meta-leaning based CSI feedback still

has to face two major challenges.

• During meta training phase, it requires sufficient CSI

samples to construct the meta task environment Tmeta to

solve (6), which is extremely costly since it is impractical

to collect all existing types of wireless scenarios with

adequate diversity.

• During target retraining phase, despite the rapid conver-

gence for solving (7) using small dataset Ttarget with ini-

tialization Θ̂, it is always difficult to achieve comparable

performance with using big dataset in target scenario.

To solve those two challenges, the knowledge-driven meta-

learning approach consisting of knowledge-driven meta train-

ing phase and knowledge-driven target retraining phase is

proposed.

III. KNOWLEDGE-DRIVEN META-LEARNING

In this section, motivation of proposed approach is first

presented. Then the detailed design of knowledge-driven meta

training and target retraining phases are introduced with

heuristic knowledge and corresponding algorithms.

A. Motivation

In meta-learning-based CSI feedback mentioned in subsec-

tion II-C, the meta training phase is generally to train a raw

randomly-initialized model to a meta model, initialized by

which the one is expected to have the ability to rapidly fit

different new target scenarios. This procedure can be depicted

by the dashed line from the triangle to the pentagram or square

in Fig. 1, where the pentagram and square denote the meta

models using proposed and conventional methods in meta

training phase, respectively, and are expected to be averagely

close to the theoretical optimal target models of different

scenarios represented by circles. In conventional meta-learning

methods, a large amount of actually collected data with high

diversity for constructing meta task environment is required in

meta training phase, to guarantee that the meta model equips

with sufficient knowledge of CSI and thus converges to a

balanced position in Fig. 1. However, collecting all existing

types of scenarios with adequate diversity is impractical, even

simulation data such as using clustered delay line (CDL)

channel models defined in 3GPP [47] cannot cover all possible

wireless scenarios in reality. In this case the meta task environ-

ment in conventional method can be relatively biased, which

leads to a biased meta model denoted by square in Fig. 1. A

reachable domain centered on the meta model can be defined

as the possible positions that can be converged to in the target

retraining phase with a limited number of training steps and

small target task dataset. The biased meta model is difficult

to generlize to a distant theoretical optimal target model with

small approximation error1 due to a biased reachable domain.

A performance loss occurs as a result. Therefore, to learn a

relatively unbiased meta model during meta training phase,

the knowledge-driven meta-learning is proposed. In Fig. 1,

difference between two conventional reachable domains with

proposed and conventional meta model imply the benefit of

proposed knowledge-driven meta-learning.

Since the conventional meta-learning methods utilize small

target task dataset in target retraining phase, the reachable

domain is limited and cannot cover the theoretical optimal

solution. Therefore, the target model tends to converge to

1Note that the approximation error (dotted line) between the theoretical
optimal model (circle) and empirical optimal model (pentagon) is inevitable
due to the imperfect empirical hyperparameter adjustment when model
training and the error between empirical distribution of data and theoretical
distribution.
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Knowledge:

Spatial-Frequency Characteristic

Meta Model

Raw Model

Construct
Meta
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Meta Task Environment

Target Model 1

Knowledge:

Statistical Feature of Channel

Augmentation
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Scenario 1

Seeded Data 1

Target Task 

Dataset 2

Target

Scenario 2

Seeded Data 2

...
Collect
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Target Model 2 ... ...

...

Knowledge-driven Meta Training Phase

Knowledge-driven Target Retraining Phase

Fig. 2. Proposed knowledge-driven meta-learning approach for CSI feedback

the edge of the reachable domain when theoretical optimal

solution is distant and falls outside the reachable domain,

leading to a large approximation error so that a performance

loss. Data augmentation seeded by the small target task dataset

emerge as the requirement to expand the reachable domain.

However, the existing data augmentation methods such as

flipping and cyclic shift [19] borrowed from CV and NLP

are not suitable for wireless channal data due to the fact

that they fail to consider the communication knowledge of

intrinsic feature of wireless channel. Therefore the advanced

knowledge-driven target retraining phase is proposed. In Fig.

1, difference between conventional and proposed reachable

domains with proposed meta model imply the benefit of

proposed knowledge-driven target retraining.

As shown in Fig. 2, the proposed knowledge-driven meta-

learning framework consists of i) knowledge-driven meta train-

ing phase and ii) knowledge-driven target retraining phase.

Completely different from existing methods, the meta model

learns from proposed relatively unbiased meta task envi-

ronment which is constructed by utilizing spatial-frequency

characterisic knowledge of CSI, then rapid convergence and

high performance can be achieved in expanded reachable

domain levering the statistical feature knowledge of channel.

B. Knowledge-Driven Meta Training Phase

1) Spatial-Frequency Characteristic: Generally, consider-

ing the intrinsic structure of the CSI matrix, W ∈ CNt×Nsb

can be decomposed as

W = SEF
H (8)

where S ∈ CNt×Nt is constructed with Nt orthogonal basis

vectors in spatial domain and F ∈ CNsb×Nsb is constructed

with Nsb orthogonal basis vectors in frequency domain.

Specifically, both S and F are unitary matrices, which indicate

the full-rank spatial-frequency characteristic. The projection

coefficient matrix E ∈ CNt×Nsb represents that each CSI

eigenvector W can be completely expressed by the linear

combination of the orthogonal basis vectors in S and F.

Obviously, the distribution of the elements in E with relatively

larger amplitude determines the dominant spatial-frequency

feature of W given the same S and F, where the dominant

spatial-frequency features can be considered as the intrinsic

knowledge and hence can be learnt by the DL model during

the meta-training phase.

2) Knowledge-Driven Meta Training: Inspired by the in-

trinsic knowledge of spatial-frequency feature, a knowledge-

driven algorithm is proposed to solve (6). During the

meta training phase, the meta task environment Tmeta =
{T1, ..., TT } consisting of T tasks is firstly established, where

the construction approach of CSI matrix in each task explores

the CSI decomposition formula in section III-B1. Each task

usually consists of different CSI samples from specific number

of UEs that can be sampled on various number of slots.

Specifically, denote Nue,j and Nslot,j as the number of UEs

and slots for the j-th task Tj , 1 ≤ j ≤ T , respectively, which

can be set as

Nue,j = rand({1, ..., N̂ue}, 1), (9)

Nslot,j = rand({1, ..., N̂slot}, 1), (10)

where rand(A, a) denotes the random sampling of a samples

from the input set A without replacement, Nslot,jNue,j = |Tj |,
N̂ue and N̂slot denote the maximum number of UEs and

maximum number of slots of CSI that can be generated in

one task, respectively.

Moreover, according to the intrinsic knowledge of spatial-

frequency feature, to generate the CSI samples in the j-th task

Tj , P groups of spatial orthogonal basis vector and one group

of frequency orthogonal basis vector can be firstly provided

as

Sp = [sp,1, ..., sp,Nt ] ∈ C
Nt×Nt , 1 ≤ p ≤ P , (11)

F = [f1, ..., fNsb
] ∈ C

Nsb×Nsb , (12)

respectively, where each column of Sp and F is an orthogonal

basis vector. Specifically, each basis in Sp indicates a beam

direction in spatial domain, and multiple groups of orthogonal

basis vectors are designed in order to improve the diversity

of spatial features. Moreover, we propose a class of feasible

orthogonal basis construction methods with same effective-

ness, including singular value decomposition (SVD) based,

Schmidt orthogonalization (SMT) based and discrete fourier

transform (DFT) based methods, where the DFT based method

is introduced in subsection III-B3, and SVD and SMT based

ones are depicted in Appendix B and C, respectively.

Next, the method of generating CSI samples for the j-th

task Tj is introduced. The group index pj for task Tj are first

randomized by

{pj} = rand({1, ..., P}, 1), (13)
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Algorithm 1: Knowledge-driven Meta Training Phase

Initialization:N̂ue, N̂slot, T , α, β, g, ǫ, Θ̂;

Formulate the feature basis using (11) to (12);

for j = 1, . . . , T do
Construct structure of task Tj using (9), (10) and

(13-15);

for m = 1, . . . , Nue,j do

Construct structure of UE m using (16-19);

for n = 1, . . . , Nslot,j do

Construct CSI of slot n using (20-23);

end

end

Update model parameters using (24).
end

and the indices of dominant spatial and frequency feature

vectors are also randomized by

Ŝj = rand({1, ..., Nt}, Ltask), (14)

F̂j = rand({1, ..., Nsb},Mtask), (15)

respectively, where the parameters Ltask ≤ Nt and Mtask ≤
Nsb are defined to constrain the degree of feature diversity of

the task in spatial and frequency domain, respectively.

For the m-th UE 1 ≤ m ≤ Nue in task Tj , the indices

of the dominant spatial and frequency feature vectors are also

randomized by

S̃m = rand(Ŝj , Lm), (16)

F̃m = rand(F̂j ,Mm), (17)

respectively, where the degree of feature diversity in spatial

and frequency domain Lm and Mm are both UE-specific and

defined as

{Lm} = rand({1, ..., Ltask}, 1), (18)

{Mm} = rand({1, ...,Mtask}, 1), (19)

respectively.

Similarly for the n-th slot 1 ≤ n ≤ Nslot of the m-th

UE in task Tj , the spatial and frequency dominant vectors are

respectively selected from corresponding dominant vectors of

the UE, thus the feature is maintained for the m-th UE but

distinguished between different slots, i.e.,

Sm,n = rand(S̃m, ⌈αLm⌉), (20)

Fm,n = rand(F̃m, ⌈βMm⌉), (21)

where parameters α ∈ (0, 1] and β ∈ (0, 1] are set to scale the

diversity of feature of each slot. Consequently, a CSI sample

for the n-th slot of the m-th UE in task Tj can be generated

as

W
j
m,n = Spj

(:,Sm,n)ÊF
H(:,Fm,n), (22)

where the elements in Ê ∈ C|Sm,n|×|Fm,n| are indepen-

dently sampled from complex normal distribution CN (0, 1).

Subband-level normalization should be performed for 1 ≤ l ≤
Nsb using

W
j
m,n(:, l) =

W
j
m,n(:, l)

||Wj
m,n(:, l)||2

. (23)

Through the procedure of (9) to (23) for generating each CSI

sample of each UE, the meta task environment Tmeta can be

finally constructed.

Utilizing the meta task environment Tmeta, the meta training

procedure can be conducted to solve (6). The parameters of

the DL model of CSI feedback is randomly initialized by Θ̂.

For the j-th task Tj in the meta task environment Tmeta, Θ̂
can be updated with

Θ̂ = Θ̂ + ǫ(Ug
Tj
(Θ̂)− Θ̂), (24)

where Ug
Tj
(Θ̂) is the operator that updates Θ̂ for g training

steps on task Tj , and ǫ denotes the step size of meta training.

After that, the obtained Θ̂ can be utilized as initialization for

further fast retraining on a new target task of scenario. The

proposed algorithm for knowledge-driven meta training phase

is summarized in Algorithm 1.

3) Method of Formulating Spatial and Frequency Basis

Vector Group: The DFT steering vectors with oversampling

factors Oh and Ov corresponding to horizontal and vertical

antenna ports can be expressed as.

a
h
x = [1, ..., e

j2π
(Nh−1)x

NhOh ]T, 0 ≤ x ≤ NhOh − 1, (25)

a
v
y = [1, ..., ej2π

(Nv−1)y
NvOv ]T, 0 ≤ y ≤ NvOv − 1, (26)

Then, the spatial basis vector can be obtained using kronecker

product as

ax,y = a
h
x ⊗ a

v
y , (27)

It should be noted that the oversampling factors Oh and Ov

are introduced to construct P = OhOv groups of orthogonal

basis vectors with larger diversity. Specifically, all ax,y can be

divided into P groups, where each group of spatial orthogonal

basis vector Sp consists of NhNv orthogonal basis vectors

with x ∈ {oh, oh+Oh, . . . , oh+NhOh−Oh} and y ∈ {ov, ov+
Ov, . . . , ov+NvOv−Ov}, where specific values 0 ≤ oh < Oh

and 0 ≤ ov < Ov are fixed to define a group, respectively.

Similarly, the frequency domain basis vector group F can

be also constructed using DFT steering vectors by

F = [a1, ..., aNsb
], (28)

al = [1, ..., e
j2π

(Nsb−1)(l−1)

Nsb ]T, 1 ≤ l ≤ Nsb
. (29)

In addition to the above DFT based method, we also propose

two feasible orthogonal basis construction methods with same

effectiveness, i.e., the SVD and SMT based metohds, which

are depicted in Appendix B and C, respectively.
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Algorithm 2: Knowledge-driven Target Retraining

Phase

Initialization: Ĥ = {H1, . . . ,Hf}, Naug, g′;
for f = 1, . . . , F do

for q = 1, . . . , Ñue do

for d = 1, . . . , Ndelay do

Calculate statistical power using (30);

Construct channel using (31-36);

end

Construct CSI using (1-3);

end

Update model parameters using (37).
end

C. Knowledge-Driven Target Retraining Phase

1) Statistical Feature of Channel: In this part, the statistical

features of the channel in both spatial domain and time

delay domain are explored. Consider there are F scenarios

to be deployed. Specifically, for a specific UE in one target

scenario2, denote the actually collected Ñslot channel samples

in time domain as H = {Ĥ1, ..., ĤÑslot
}, where each channel

sample Ĥt ∈ CNr×Nt×Nd , 1 ≤ t ≤ Ñslot.

Firstly, the statistical feature in delay domain can be

described by the power-delay spectrum. Denote Ĥ
′
t,d ∈

CNr×Nt , 1 ≤ d ≤ Nd as the d-th delay of the t-th channel

sample Ĥt, the power of the d-th delay can be calculated as

p̂d =
1

NtNrÑslot

Ñslot∑

t=1

||Ĥ′
t,d||

2
F

, (30)

Secondly, the statistical feature in spatial domain can be

demonstrated by the normalized averaged covariance matrices

of the transmitting and receiving antenna ports, which can be

calculated as

R
tx
d =

Nt

∑Ñslot

t=1 Ĥ
′H
t,dĤ

′
t,d

Tr(
∑Ñslot

t=1 Ĥ′H
t,dĤ

′
t,d)

, (31)

R
rx
d =

Nr

∑Ñslot

t=1 Ĥ
′
t,dĤ

′H
t,d

Tr(
∑Ñslot

t=1 Ĥ′
t,dĤ

′H
t,d)

, (32)

respectively, where the trace operation Tr(·) is performed for

normalization. Then the kronecker product is implemented on

the transmitting and receiving normalized averaged covariance

matrices to obtain the joint spatial feature as

Rd = R
rx
d ⊗R

tx
d ∈ C

NtNr×NtNr , (33)

In traditional communication, the covariance matrix is indis-

pensable in the widely-used linear minimum mean square error

(LMMSE) channel estimation method for well representing

the characteristics of the full channel. Here, by levering both

p̂d and Rd, intrinsic feature of a wireless channel in delay

domain and spatial domain can be well explored. It should

be noted that the dataset of the target scenario could be very

2Corner mark of indices of target scenarios is omitted for simplicity.

small, and thus it is not sufficient for training autoencoder with

superior CSI feedback and to ensure recovery performance,

even though it is able to converge quickly based on the

initialization Θ̂ obtained by meta training phase. Therefore,

it is necessary to consider a data augmentation seeded by H
exploiting the knowledge of statistical features in spatial and

delay domain.

2) Knowledge-Driven Target Retraining: Inspired by the

knowledge of statistical features in spatial and delay domain,

knowledge-driven target retraining is proposed to solve (7).

Firstly, SVD is performed on Rd, i.e.,

Ud,Dd,Vd = svd(Rd), (34)

where Vd = U
H
d because of Rd = R

H
d .

Secondly, the augmented channel sample for the d-th delay

can be generated by conducting

ĥ
aug
d =

√
p̂dUdD

1
2

d n
, (35)

where the random vector n ∈ CNtNr×1 ∼ CN (0, 1). It is

proved in Appendix E that ĥ
aug
d satisfy the limitation of (40).

Next, ĥ
aug
d can be reshaped as the channel matrix Ĥ

aug
d ∈

C
Nr×Nt . By concatenating all Nd augmented channel matri-

ces, the augmented channel sample can be obtained as

H
aug = [Ĥaug

1 , ..., Ĥaug
Nd

], (36)

where H
aug ∈ CNr×Nt×Nd . Then the augmented CSI eigen-

vector sample W
aug can be finally obtained by implementing

(1) to (3) on H
aug.

For each UE, the total Naug channel samples can be

provided with Naug randomly generated vectors n. Moreover,

for Ñue UEs, we can generate totally ÑueNaug augmented CSI

eigenvector samples that can be used to construct the target

task dataset T aug
target.

Based on the target task dataset T aug
target and the initialization

Θ̂ obtained in knowledge-driven meta training phase, (7) can

be solved with higher SGCS using a few training steps, i.e.,

Φ = Ug
Ttarget

(Θ̂). (37)

The proposed algorithm for knowledge-driven target retraining

phase can be summarized in Algorithm 2.

IV. ANALYSIS

In this section, analyses are provided to illustrate the ratio-

nale for the improvement yielded by the knowledge in both

phases, including reasonability of constructing CSI sample

using spatial-frequency structure, sufficiency of information in

meta task environment and consistency between seeded data

and augmented data features.

A. Reasonability of Using Spatial-Frequency Characteristic

The proposed knowledge-driven meta training phase utilizes

parts of uniform orthogonal basis vectors in the frequency

and spatial domain to construct a CSI matrix. Actually, the

partial basis vectors utilized can be regarded as the spatial-

frequency eigenvectors of a CSI matrix and one can construct
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any possible CSI matrices by combining different frequency

and spatial basis, which can be explained in the following

Theorem.

Theorem 1: Given the small positive threshold value σ > 0,

the support set in spatial domain S and the support set in

frequency domain F , which subjects to |E({v}, {l})| ≤ σ, ∀
v /∈ S or l /∈ F , the dominant approximation of a possible W

expressed by Ŵ = SE
′
F

H satisfies

1− ρ(W,Ŵ) ≤
2

Nsb

S̄F̄σ2. (38)

where S̄ = Nt − |S|, F̄ = Nsb − |F|, E′(S,F) = E(S,F),
and E

′({v̄}, {l̄}) = 0, ∀ v̄ /∈ S or l̄ /∈ F .

The detailed proof is given in Appendix A. Theorem 1

demonstrates the support sets in spatial and frequency domain

with most of energies in E can represent the dominant spatial-

frequency features of W with a very small loss on SGCS. In

other words, any possible CSI matrix W can be approximately

constructed as Ŵ with only a subset of spatial and frequency

basis vectors in support set S and F . Since the CSI samples of

a UE or a task have similar spatial-frequency characteristics,

the same dominant basis vectors can be considered as the

shared knowledge for construct the CSI for one UE or one

task.

Based on the above analysis, we further discuss the in-

fluence of several related parameters. P in (13) denote the

number of groups of spatial orthogonal basis vector. Obvi-

ously, the density of total spatial basis vectors increases as

P increases. Therefore P > 1 groups is set aiming to meet

the requirement of more diverse spatial features in the CSI

matrix. Moreover, Ltask in (14) and Mtask in (15) affect the

number of basis vectors used for each task, thus constrain the

degree of feature diversity of the task in spatial and frequency

domain, respectively. As Ltask and Mtask increase, the feature

diversity of each task also increases, but the feature variance

acrossing tasks decreases due to the greater possibility of

overlapping basis vectors used by different tasks. Therefore, in

order to ensure sufficient intra-task feature diversity and inter-

task difference, it is reasonable to assign moderate values to

Ltask and Mtask.

B. Sufficiency of Information in Meta Task Environment

In this subsection, the reasonability of the proposed con-

struction method for entire meta task environment is further

discussed by levering information theory, which can be a good

tool and widely used to analyze the meta-learning procedure

and meta tasks [48, 49].

Remark 1: Given a task subset Tsub = {T1, ..., TS} ⊂
Tmeta, arbitrary new task TS+1 ∈ Tmeta, wherein the UEs

utilize different spatial and frequency basis vectors from

the UEs of the tasks in Tsub, is represented as TS+1 =
g(Tsub,SS+1,FS+1), where g(·) denotes the mapping of

fixing the projection coefficient matrix of a task in Tsub and

replacing the basis vectors with new ones indexed by SS+1

and FS+1. The following equation holds,

I(Θ̂; TS+1|Tsub) = H(Θ̂)−H(Θ̂|SS+1,FS+1), (39)

where I(·) and H(·) denote the mutual information and

information entropy, respectively. The detailed proof of Eq.

(39) is given in Appendix D. Remark 1 demonstrates that a

task using different spatial-frequency basis vectors is capable

of reducing the uncertainty of the Θ̂. In other words, it

contributes additional knowledge of spatial-frequency features

to obtaining a better initialization Θ̂. By constructing P groups

of unitary matrices S and F with full-rank structure, the

meta task environments can provide sufficient and diverse

intrinsic knowledge of spatial-frequency features for better

meta training.

C. Consistency between Seeded Data and Augmented Data

Features.

As explained in subsection III-C, the intrinsic knowledge

of statistical features of the channel for a specific UE can be

completely described by p̂d and Rd, 1 ≤ d ≤ Nd. By using

proposed method in target retraining phase, the augmented

channel for the d-th delay ĥ
aug
d satisfy

E[ĥaug
d (ĥaug

d )H] = p̂dRd, (40)

where E(·) denotes the expectation operation. Prove of Eq.

(35) satisfying Eq. (40) is given in Appendix E. Obviously,

the Eq. (40) holds so that the augmented and seeded data have

the same statistical covariance matrix, thus statistical features

of the both are aligned.

V. SIMULATION RESULTS

In this section, we provide the simulation results to illus-

trate the superiority of the proposed knowledge-driven meta-

learning scheme. Different knowledge-driven schemes in meta

training phase (DFT-*, SVD-* and SMT-*) and target retraing

phase (*-Aug) are evaluated, where ‘None’ denotes no meta

training phase or no knowledge-driven schemes in target

retraining phase, respectively. It should be noted that the meta

training phase for each basis vector scheme (DFT-*, SVD-*

and SMT-*) is performed only once, where the meta models

can be reused for different target retraining phase. The basic

simulation parameters are listed in Table II.

In order to simulate the propagation environment of the real

channel, CDL model designed for 3D channel is considered

in the simulation. In addition to the two parameters of delay

and power, the CDL model adds the azimuth angle of de-

parture, azimuth angle of arrival, zenith angle of departure,

and zenith angle of arrival to better characterize the spatial

characteristics of the channel model. Moreover, CDL-A/C are

designed for NLOS scenarios, and delay spread of 30 and

300ns corresponds to the defination of short and long delay

spread [47]. These are in line with real complex propagation

scenarios. Therefore, CDL-A with delay spread 300 ns (CDL-

A300), and CDL-C with delay spread 30 and 300 ns (CDL-

C30 and CDL-C300) channel models are considered in the

simulation. Here we consider three baselines, i.e., the i)

traditional eType II codebook (eTypeII), ii) DL-based CSI

feedback in subsection II-B without meta training phase and

knowledge enhancement in target retraing phase (None-None),

and iii) state-of-art meta-learning method for CSI feedback
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TABLE II
BASIC SIMULATION PARAMETERS

Parameter Value

System bandwidth 10MHz

Carrier frequency 3.5GHz

Subcarrier spacing 15KHz

Subcarriers number Nsc 624

Subband granularity Ngran 48

Subband number Nsb 13

Horizontal Tx antenna ports per polarization Nh 8

Vertical Tx antenna ports per polarization Nv 2

Polarization Dual

Tx antenna ports Nt 32

Rx antennas Nr 4

Channel model CDL-A & CDL-C

UE speed 3km/h

Delay spread 30 & 300ns

Modulation Coding Scheme [9] 19

Meta task environment size T 8000

Meta training step size ǫ 0.25

Step number per task g 32

UE number per task N̂ue 16

Slot number per task N̂slot 16

Number of groups of spatial basis P 4

Spatial diversity degree Ltask 6

Frequency diversity degree Mtask 6

Spatial diversity scale α 0.75

Frequency diversity scale β 0.75

[40] (MixI-None and MixII-None), where MixI-* and MixII-*

denote the MAML algorithm on meta task enviroment wherein

8000 tasks are constructed by randomly selecting 16 UEs with

16 slots per task from average mixed dataset of {CDL-A300,

CDL-C30} and {CDL-C300 , CDL-C30}, respectively, which

brings high cost of data collection but is a fair comparison

with proposed method. Moreover, the Transformer backbone

for CSI feedback namely EVCsiNet-T [19] with embedding

dimension of 384, 8 heads and 6 basic blocks is implemented

in evaluation. The number of feedback bits B = 64 and the

number of quantization bits Bq = 2 unless otherwise specified.

A. Comprehensive Performance Comparison over CDL-A/C.

Fig. 3 and 4 show the convergence process of the target re-

training phase with the number of training steps on CDL-C300

and CDL-A300 channels, respectively. Note that the vertical

axis represents the best achieved SGCS on the test set within

the steps. The parameter settings for knowledge-driven meta

training phase are shown in Table II. Seeded CDL channels

of Ñue = 300 UEs with Ñslot = 10 slots and the augmented

number of a UE Naug = 100 are utilized for knowledge-driven

target retraining phase, therefore the data for target retraining

phase is ÑueNaug = 3× 104. In terms of convergence speed,

it can be noticed that the proposed knowledge-driven meta

training methods (DFT-None, SVD-None and SMT-None)

require fewer training steps to achieve convergence than the

DL-based method without meta training (None-None). Even

on augmented data, the proposed method (DFT-Aug, SVD-

Aug and SMT-Aug) can also fit more quickly than None-Aug.

From the perspective of feedback performance, the knowledge-

driven meta training brings higher SGCS since each of DFT-

None, SVD-None and SMT-None outperforms None-None and

MixI-None. Moreover, it can be noticed that the methods of
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Fig. 3. Convergence process of target retraining phase with the number of
training steps on CDL-C300 channel
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Fig. 4. Convergence process of target retraining phase with the number of
training steps on CDL-A300 channel

*-Aug outperform the methods of *-None which reveals that

the knowledge-driven target retraining can further effectively

improve the SGCS performance. Since the proposed DFT-Aug,

SVD-Aug and SMT-Aug can quickly adapt to new scenarios

with a small amount of data and outperform the baselines,

the superiority of the proposed scheme can be well observed.

Furthermore, it should be noted that the methods of DFT-None,

SVD-None and SMT-None are equivalent to each other and the

methods of DFT-Aug, SVD-Aug and SMT-Aug are equivalent

to each other too. Thus, those three proposed methods for

constructing orthogonal basis vectors are equally effective. In

the following simulation results, only the results of DFT based

method are shown for sake of brevity.

B. Performance for Knowledge-Driven Meta Training Phase

Fig. 5 investigates the impact of the meta task environment

on the convergence and SGCS performance of target retraining

phase, where the SGCS performance were evaluated with

CDL-C300 channel model of Ñue = 300 UEs and Ñslot = 10
slots. The augmented number of a UE Naug = 100 therefore
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Fig. 5. Comparison of proposed methods with complete and incomplete basis
vectors on CDL-C300 channel

the data for target retraining phase is ÑueNaug = 3 × 104.

Note that the method of lackingDFT-* only utilizes incomplete

basis vectors with less information for meta training, i.e., (14)

and (15) are modified by Ŝj = rand({1, ..., S̃}, Ltask) and

F̂j = rand({1, ..., F̃},Mtask), respectively, where S̃ = 6 <

NhNv and F̃ = 6 < Nsb. It can be noticed that lackingDFT-

Aug using incomplete basis vectors requires more training

steps to exceed eTypeII than DFT-Aug using complete basis

vectors. Moreover, excluding the influence of augmentation

of knowledge-driven target retraining, the incomplete basis

vectors cause a 7% loss of SGCS performance in the method

of lackingDFT-None in comparison with the method of DFT-

None. The proposed DFT-None also outperforms the MixI-

None in terms of the SGCS performance and the convergence

speed achieving eTypeII, while the MixI-None leads to the

cost of data collection. These can well reveal the rationale of

Theorem 1 of the proposed knowledge-driven meta training

phase.

Table III and Table IV provide the numbers of target retrain-

ing steps required to achieve the same performance of eTypeII

on CDL-C300 for various numbers of seeded UEs and slots,

respectively, where ‘/’ means that the method can not achieve

the same performance of eTypeII. Note that augmented num-

ber of a UE Naug = 100 therefore the data for target retraining

phase varies from 5× 103 to 3× 104. We can notice that the

proposed knowledge-driven method DFT-Aug takes only 37

to 44 training steps to outperform eTypeII, while the methods

TABLE III
THE NUMBER OF STEPS REQUIRED TO ACHIEVE ETYPEII

Ñue

Steps Schemes
None-None MixI-None None-Aug DFT-None DFT-Aug

50 / / 1093 / 44

100 / / 875 / 42

150 / / 853 / 39

200 / 190 711 113 39

250 / 126 898 68 37

300 / 108 929 51 38

Note 1: the number of seeded slots per UE is fixed by Ñslot = 10.

of None-None and None-Aug without using knowledge-driven

meta training require at least 711 steps. Thus, the overhead of

training time is reduced by 93.8% compared with no meta

training phase. Since the proposed DFT-Aug also outperforms

the existing meta learning method MixI-None for at least 54

steps, there is still 58.7% training time overhead reduction. In

summary, in comparison with the methods of DL-based None-

None and MixI-None methods, the proposed knowledge-

driven method can still maintain superior performance over

traditional eTypeII with small overhead of training time. This

can further reveal the effectiveness of proposed knowledge-

driven meta training method for increasing training speed.

C. Performance for Knowledge-Driven Target Retraining

Phase

Fig. 6 provide the comparison of various methods during

target retraining phase, where CDL-C300 channel is assumed

and the numbers of feedback bits are B = 64 and B = 174.

Seeded channels of Ñue = 300 UEs with Ñslot = 10 slots and

the augmented number of a UE Naug = 100 are utilized for

knowledge-driven target retraining phase, therefore the data

for target retraining phase is ÑueNaug = 3 × 104. It can be

observed that the proposed method of DFT-Aug-* outperforms

corresponding baselines for the same number of feedback bits.

In addition to the excellent convergence speed and SGCS

performance provided by the proposed method, we can also

notice that the proposed method of 64 bits (DFT-Aug-64bits)

can already achieve the same performance of eTypeII of 174

bits (eTypeII-174bits), while the overhead of feedback can be

reduced by 63.2%.

To further illustrate the advantage of proposed knowledge-

driven target retraining phase, Table V illustrates the SGCS

performance of the proposed method and the existing data

augmentation methods [19] for DL-based CSI feedback in-

cluding noise injection, flipping, cyclic shift, random shift

and rotation, where the channel of CDL-C300 of Ñue = 300
UEs with Ñslot = 10 slots is utilized as seeded data. Note

that except the method of flipping which can only augment

to 6 × 103 samples due to method limitation, other methods

augments to 3× 104 samples with Naug = 100. It is observed

that the proposed knowledge-driven method can obtain 0.1953

SGCS performance gain in comparison to the method of none

augmantation. Specifically, the performance gap between pro-

posed method and other competitors is at least 0.1526, which

can demonstrate that exploiting communication knowledge can

effectively bring a performance gain.

TABLE IV
THE NUMBER OF STEPS REQUIRED TO ACHIEVE ETYPEII

Ñslot

Steps Schemes
None-None MixI-None None-Aug DFT-None DFT-Aug

10 / 108 1574 51 37

20 / 103 1107 42 39

30 832 107 965 43 37

40 1177 95 917 43 38

50 1304 92 929 42 38

60 1606 96 1432 43 37

Note: the number of seeded UEs is fixed by Ñue = 300.
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Fig. 7. Comparison of SGCS for varying number of seeded UEs Ñue on

CDL-C channel, fixing number of slots per UE Ñslot = 10

In Fig. 7 and Fig. 8 we compare the SGCS performance

training 2000 steps on different number of seeded UEs

Ñue and slots Ñslot of CDL-C channel, respectively, where

Naug = 100 therefore the data for target retraining phase

varies from 5 × 103 to 3 × 104. It is observed that the

proposed knowledge-driven method of DFT-Aug outperforms

the baselines. Specifically, the performance gaps between the

methods i) DFT-None and None-None and ii) DFT-Aug and

None-Aug can demonstrate the gain provided by proposed

knowledge-driven meta training phase. The gaps between i)

TABLE V
COMPARISON OF DIFFERENT AUGMENT SCHEMES

Scheme SGCS

None 0.5977

Noise Injection 0.6189

Flipping 0.6171

Cyclic Shift 0.6404

Random Shift 0.6225

Rotation 0.6178

Proposed 0.7930
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Fig. 8. Comparison of SGCS for varying number of slots per UE Ñslot on

CDL-C channel, fixing number of UEs Ñue = 300
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Fig. 9. Link-level BLER performance comparison trained on CDL-C300 for
different solutions

None-Aug and None-None and ii) DFT-Aug and DFT-None

initimate the gain by using proposed knowledge-driven target

retraining phase. Moervoer, we can notice in Fig. 8 that

the performance of None-Aug improves as the number of

slots Ñslot increased, while the performance of DFT-Aug

stays almost unchanged, which implies that the proposed

knowledge-driven target retraining phase requires fewer slots

to achieve the performance ceiling when it is enhanced by

proposed knowledge-driven meta training phase.

D. Link Level Simulation

To further prove the superiority of our proposed knowledge-

driven methods, the link-level block error rate (BLER) and

goodput performance is presented in Fig. 9 and 10, re-

spectively, where seeded data of Ñue = 300 UEs with

Ñslot = 10 slots is utilized and the omnidirectional and

directional antennas is deployed at UE and BS, respectively.

Naug = 100 is set therefore the data for target retraining

phase is ÑueNaug = 3 × 104. LMMSE equalizer and SVD

precoder is applied in simulation. The goodput measures the

number of bits per subframe successfully received, and is
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Fig. 10. Link-level goodput performance comparison trained on CDL-C300
for different solutions.

defined by Goodput = NREΩγ(1 − BLER), where NRE

is the number of REs forming a subframe, Ω denotes ratio of

data carrying REs within a physical resource block (PRB) and

γ denotes the coderate according to MCS. Similarly, it can be

observed that the proposed method of DFT-None outperforms

the method of None-None, which also proves the performance

gain of knowledge-driven meta training phase. It can be notice

that the DFT-None and MixI-None is comparable but the

MixI-None brings higher data acquisition costs. Moreover,

the performance gain of knowledge-driven target retraining

phase can also be demonstrated through the performance gap

between the methods of None-Aug and None-None. Since

the method of DFT-Aug which jointly exploits knowledge-

driven meta training and target retraining outperforms other

competitors especially including eTypeII and MixI-None in

terms of BLER and goodput, the performance advantages and

application potential of proposed knowledge-driven approach

are well demonstrated.

E. Complexity Evaluation

The complexity evaluation of the proposed method

is provided. For knowledge-driven meta training phase,

the computational complexity for constructing CSI sam-

ples mainly lies in (22) whose complexity is of the

order of O(TNue,jNslot,jNt⌈βMm⌉(⌈αLm⌉ + Nsb)). For

knowledge-driven target retraining phase, most complexity

cost for constructing CSI samples comes from SVD in

(34) and eigenvector deomposition in (2), which have the

complexity in the order of O(FÑueNrNdelayN
3
t N

3
r ) and

O(FÑueNaugNsbN
2
t (Ngran+Nt)), respectively. However, the

spatial and computational complexity of total algorithm mainly

lies in the model parameter updating in (24) and (37), which

TABLE VI
FLOPS AND NUMBER OF TRAINABLE PARAMETERS FOR VARING B.

B FLOPs (×10
7) Trainable Parameters (×10

7)

64 4.277 2.145

174 4.295 2.154

is far beyond the above-mentioned complexity of constructing

CSI samples. Therefore, the complexity evaluation of the

model is further provided in Table VI from the perspective

of floating point operations (FLOPs) and trainable parameters,

which are the common metrics used to evaluate the computa-

tional and space complexity of a DL model.

VI. STANDARDIZATION POTENTIAL AND PROSPECTS

In the 3GPP work plan, starting from the 5G-advanced

stage, the performance gain, scenario generalization, dataset

construction, life cycle management (LCM) and potential

standardization impact of DL-based solutions are to be stud-

ied. These studies will formulate the basic support for the

construction of intelligent wireless communication system in

6G.

Along with those works, it can be clearly observed that

there exist two bottlenecks in the development of DL-based

solutions in standardization. One is the limitation of data,

where it would be very challenging to construct a complete

dataset for different use cases, scenarios and configurations.

Another one is the limitation for scenarios. That is, how

to handle the scenario adaptation DL solutions should be

considered in the standardization work.

In current researches works, especially the wireless AI

study of 3GPP Release 18, it is expected to achieve some

engineering solutions through training data collection and

transmission, on-demand switching of models and reliable

LCM. However, it is meanwhile desired to try more methods

to deal with the chanllenges of data and scenario bottlenecks

through the breakthrough of DL technology itself, and further

consider more standardization impacts, so as to pave the way

for the research of AI-powered 6G.

The approach proposed in this artical explore the classical

communication knowledge to solve the above challenges.

When considering standardization and actual deployment is-

sues based on the proposed method, restrictions being dis-

cussed can be relaxed on some aspects, such as the acquisition

and transmission of large datasets, the latency required for

online training and updates, and the storage and air inter-

face overhead caused by model switching. Meanwhile, novel

viewpoints of using communication knowledge to design DL-

based method were observed. These changes will bring more

diversity and space for the study of 6G intelligent system in

future.

VII. CONCLUSION

In this article, we propose a knowledge-driven meta-learning

approach for DL-based CSI feedback. Specifically, instead of

being trained with big dataset collected from different wireless

scenarios, the meta model is trained with meta task environ-

ment constructed by intrinsic knowledge of spatial-frequency

feature of CSI. Based on the meta model, one is capable of

achieving rapid convergence by training on the target task

dataset, which is augmented from only a few actually collected

seeded data with the assistance of the knowledge of statistical

feature of wireless channels. In addition, analyses are provided

to explain the rationale for the improvement yielded by the

knowledge. At last the simulation results are provided to
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demonstrate the superiority of the proposed approach from

the perspective of CSI feedback performance and convergence

speed.

APPENDIX

A. Proof of Theorem 1

It holds that

1− ρ(W,Ŵ)

= 1−
1

Nsb

Nsb∑

l=1

(
‖W(; , {l})HŴ(:, {l})‖2

‖W(; , {l})‖2‖Ŵ(:, {l})‖2

)2

(a)

≤ 1−

(
1

Nsb

Nsb∑

l=1

‖W(; , {l})HŴ(:, {l})‖2

‖W(; , {l})‖2‖Ŵ(:, {l})‖2

)2

=

(
1−

1

Nsb

Nsb∑

l=1

‖W(; , {l})HŴ(:, {l})‖2

‖W(; , {l})‖2‖Ŵ(:, {l})‖2

)

·

(
1 +

1

Nsb

Nsb∑

l=1

‖W(; , {l})HŴ(:, {l})‖2

‖W(; , {l})‖2‖Ŵ(:, {l})‖2

)

(b)

≤
1

Nsb
S̄F̄ σ2

(
1 +

1

Nsb

Nsb∑

l=1

‖W(; , {l})HŴ(:, {l})‖2

‖W(; , {l})‖2‖Ŵ(:, {l})‖2

)

(c)

≤
2

Nsb
S̄F̄ σ2

where (a) holds according to the inequality of arithmetic and

geometric means, (c) holds due to the fact that

1

Nsb

Nsb∑

l=1

‖W(; , {l})HŴ(:, {l})‖2

‖W(; , {l})‖2‖Ŵ(:, {l})‖2
≤ 1

and we give the proof of (b) as following.

1−
1

Nsb

Nsb∑

l=1

‖W(; , {l})HŴ(:, {l})‖2

‖W(; , {l})‖2‖Ŵ(:, {l})‖2

(b1)

≤ 1−
1

Nsb

Nsb∑

l=1

‖W(:, {l})HŴ(:, {l})‖2

≤1−
1

Nsb

∣∣∣∣∣
Nsb∑

l=1

W(:, {l})HŴ(:, {l})

∣∣∣∣∣

= 1−
1

Nsb

∣∣∣Tr(WH
Ŵ)

∣∣∣

= 1−
1

Nsb

∣∣∣Tr
(
FE

H
Ŝ
H
ŜE

′
F

H
)∣∣∣

(b2)
= 1−

1

Nsb

∣∣∣Tr
(
F

H
FE

H
Ŝ
H
ŜE

′
)∣∣∣

(b3)
= 1−

1

Nsb

∣∣Tr
(
E

H
E

′
)∣∣

= 1−
1

Nsb

∣∣∣∣∣
Nt∑

v=1

Nsb∑

l=1

e∗v,lev,l

∣∣∣∣∣

= 1−
1

Nsb

∣∣∣∣∣
∑

v∈S

∑

l∈F

e∗v,lev,l

∣∣∣∣∣

(b4)
=

1

Nsb

∣∣∣∣∣
∑

v/∈S

∑

l/∈F

e∗v,lev,l

∣∣∣∣∣

≤
1

Nsb
(Nt − |S|)(Nsb − |F|)σ2

=
1

Nsb
S̄F̄ σ2.

where ev,l = E({v}, {l}), (b1) holds due to the fact that

‖W(; , {l})‖2 = 1 and ‖Ŵ(; , {l})‖2 ≤ 1, (b2) holds ac-

cording to the property of trace, (b3) holds because of unitary

matrices of Ŝ and F, and (b4) holds because E
′(S,F) =

E(S,F) and E
′({v}, {l}) = 0 if v /∈ S ‖ l /∈ F . Note that

‖E‖2F = Nsb because ‖W‖2F =
∑Nsb

l=1 W(:, {l}) = Nsb and

unitary matrices of Ŝ and F. These lead to the satisfaction of

(b) and completes the proof.

B. SVD based basis formulation

For each group of spatial orthogonal basis vector Sp, 1 ≤
p ≤ P , and the frequency orthogonal basis vector group

F, three full-rank random matrices X
h
p ∈ CNh×Nh , X

v
p ∈

CNv×Nv and X
f ∈ CNsb×Nsb are generated independently.

Without loss of generality, we consider sampling the matrices

from complex Gaussian distribution of CN (0, 1). Then, SVD

can be performed on those three matrices,

U
h
p,D

h
p,V

h
p = svd(Xh

p), (41)

U
v
p,D

v
p,V

v
p = svd(Xv

p), (42)

U
f ,Df ,Vf = svd(Xf), (43)

where F = U
f can be utilized as frequency orthogonal basis

vector, Uh
p and U

v
p can be considered as the spatial orthogonal

basis vectors corresponding to horizontal and vertical antenna

ports, respectively. Therefore, the p-th spatial orthogonal basis

vector group can be obtained by performing kronecker prod-

uct, i.e.,

Sp = U
h
p ⊗U

v
p. (44)

C. SMT based basis formulation

The Schmidt orthogonalization can be performed on those

random matrices X
h
p , Xp and X

f ,

U
h
p = smt(Xh

p), (45)

U
v
p = smt(Xv

p), (46)

U
f = smt(Xf), (47)

where smt(·) denotes the procedure of Schmidt orthogonal-

ization, F = U
f can be utilized as frequency orthogonal basis

vector. The spatial orthogonal basis vector group can also be

obtained by performing kronecker product using (44).
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D. Proof of Remark 1

Here we verify that the task using different spatial and

frequency basis vectors contributes more knowledge to Θ̂.

I(Θ̂; TS+1|Tsub)

= H(Θ̂|Tsub)−H(Θ̂|TS+1, Tsub)

= E

[
− log

(
p(Θ̂|Tsub)

p(Θ̂|TS+1, Tsub)

)]

= E

[
− log

(
p(Θ̂, Tsub)p (TS+1, Tsub)

p(Tsub)p(Θ̂, TS+1, Tsub)

)]

= E


− log


 p (TS+1|Tsub)

p
(
TS+1|Θ̂, Tsub

)






= E


− log


 p (SS+1,FS+1, Tsub|Tsub)

p
(
SS+1,FS+1, Tsub|Θ̂, Tsub

)






= −E


− log



p
(
SS+1,FS+1|Θ̂

)

p (SS+1,FS+1)






= −E


− log



p
(
SS+1,FS+1|Θ̂

)
p
(
Θ̂
)

p (SS+1,FS+1)






+ E

[
− log(p(Θ̂))

]

= H(Θ̂)−H(Θ̂|SS+1,FS+1).

Then it completes the proof.

E. Proof of (35) satisfying (40)

It holds that

E[ĥaug
d (ĥaug

d )H] = p̂dE[Ud

√
Ddnn

H
√
DH

d U
H
d ]

= p̂dUd

√
DdE[nn

H]
√
DH

d U
H
d

= p̂dUd

√
DdI

√
DH

d U
H
d = p̂dRd.
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