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Modeling and Analysis of GEO Satellite Networks
Dong-Hyun Jung, Hongjae Nam, Junil Choi, and David J. Love

Abstract—The extensive coverage offered by satellites makes
them effective in enhancing service continuity for users on
dynamic airborne and maritime platforms, such as airplanes
and ships. In particular, geosynchronous Earth orbit (GEO)
satellites ensure stable connectivity for terrestrial users due
to their stationary characteristics when observed from Earth.
This paper introduces a novel approach to model and analyze
GEO satellite networks using stochastic geometry. We model
the distribution of GEO satellites in the geostationary orbit
according to a binomial point process (BPP) and examine satellite
visibility depending on the terminal’s latitude. Then, we identify
potential distribution cases for GEO satellites and derive case
probabilities based on the properties of the BPP. We also
obtain the distance distributions between the terminal and GEO
satellites and derive the coverage probability of the network. We
further approximate the derived expressions using the Poisson
limit theorem. Monte Carlo simulations are performed to validate
the analytical findings, demonstrating a strong alignment between
the analyses and simulations. The simplified analytical results can
be used to estimate the coverage performance of GEO satellite
networks by effectively modeling the positions of GEO satellites.

Index terms — Satellite communications, coverage analysis,
stochastic geometry, GEO satellite networks.

I. INTRODUCTION

SATELLITE communications have recently been utilized to
offer worldwide internet services by taking advantage of

their extensive coverage. In this regard, the 3rd Generation
Partnership Project (3GPP) has been working toward the
integration of terrestrial networks (TNs) and non-terrestrial
networks (NTNs) since Release 15 [1], [2]. The utilization
of non-terrestrial entities, such as geosynchronous Earth orbit
(GEO) satellites, low Earth orbit (LEO) satellites, and high-
altitude platforms, presents an opportunity to extend com-
munication services beyond terrestrial boundaries. With this
advancement, aerial users like drones, airplanes, and vehicles
involved in urban air mobility could benefit from enhanced
connectivity. To facilitate the integration between the TNs
and NTNs, 3GPP has been addressing adding features to the
standard to support NTNs with existing TNs [2].

The different altitudes and stationary nature between GEO
and LEO satellites result in distinct characteristics in terms of
communication services and orbital configurations. In general,
LEO satellites could offer greater throughput due to the lower
path loss compared to that of GEO satellites, whereas the
high-speed movement of LEO satellites leads to frequent inter-
satellite handovers. On the contrary, GEO satellites, being
viewed as stationary, could maintain stable connections with
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ground users at the cost of relatively lower throughput. In the
design of LEO constellations, Walker Delta constellations with
various inclinations are utilized to achieve uniform coverage
near the equator, while Walker Star constellations are em-
ployed to provide services to the polar regions [3]. In contrast
to the LEO satellites, GEO satellites are positioned exclusively
in the geostationary orbit on the equatorial plane to maintain
a stationary view from Earth.

A. Related Works

The system-level performance of LEO satellite networks
has been recently evaluated using stochastic geometry where
the positions of LEO satellites are effectively modeled by
spatial point processes. Binomial point processes (BPPs) have
been widely used to model the distributions of LEO satellites
because the total number of LEO satellites is deterministic
[4]-[7]. The initial work [4] provided BPP-based coverage and
rate analyses and showed that the BPP satisfactorily models
deterministic Walker constellations. The distance distribution
between the nearest points on different concentric spheres was
obtained in [5]. With this distribution, the coverage probability
of LEO satellite communication networks was derived in
[6], specifically examining the role of gateways as relays
between the satellites and users. The ergodic capacity and
coverage probability of cluster-based LEO satellite networks
were evaluated in [7] considering two different types of
satellite clusters. However, the BPP-based analytical results
include highly complex terms, which are not fairly tractable
to evaluate network performance.

Instead of the BPPs, Poisson point processes (PPPs) could
be used to approximately model the LEO satellite constel-
lations using the Poisson limit theorem when a large num-
ber of satellites exists [8]-[12]. Both the BPP- and PPP-
based performance analyses were carried out in [8] under the
shadowed-Rician fading in terms of the outage probability
and system throughput. The downlink coverage probability
of LEO satellite networks was derived in [9] considering a
recent satellite-to-ground path loss model and an elevation
angle-dependent line-of-sight (LOS) probability. The altitude
of satellite constellations was optimized in [10] to maximize
the downlink coverage probability. In [11], a non-homogenous
PPP was used to model the non-uniform distribution of LEO
satellites across different latitudes. More tractable results for
the coverage probability were provided in [12] where the
density of LEO satellites was also optimized.

The link-level performance of GEO satellite systems has
been also analyzed from various perspectives [13]-[18]. The
earlier studies [13], [14] introduced a flexible resource allo-
cation design for GEO satellite systems to maximize spec-
trum utilization. The primary focus was on minimizing the
number of frequency carriers and transmit power required to
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meet the demands of multi-beam scenarios. The coverage of
GEO satellite systems was enhanced in [15] using weighted
cooperative spectrum sensing among multiple GEO satellites
via inter-satellite links. In [16], reflecting intelligent surfaces
were integrated into a downlink GEO scenario where the
joint power allocation and phase shift design problem was
efficiently solved. The interference analyses between a GEO
satellite and a LEO satellite were conducted in [17] to assess
the effectiveness of an exclusive angle strategy in mitigating
in-line interference. In [18], the interference analysis between
a single GEO satellite and multiple LEO satellites was intro-
duced based on the probability density functions (PDFs) of
the LEO satellites’ positions. Although the above works [4]-
[18] have successfully investigated diverse aspects of satellite
communication systems, they have primarily focused on the
satellites in non-geostationary orbits or a single GEO satellite.

B. Motivation and Contributions

GEO satellites appear stationary when observed from Earth
because they move in the same direction as the Earth’s rota-
tion, and their orbits are positioned on the equatorial plane, i.e.,
the inclination of zero degrees.1 Due to this inherent property
of the geostationary orbit, modeling the positions of multiple
GEO satellites is different from the techniques for modeling
multiple LEO satellites but has not been addressed before to
the best of our knowledge. To fill this gap, we investigate
the fundamental framework of GEO satellite networks by
leveraging the orbital characteristics of the GEO satellites. The
key contributions of this paper are summarized as follows.

• Modeling and analysis of GEO satellite networks:
The orbital characteristics of the GEO satellites lead to
dissimilar dimensional geometry. The terminals are on the
surface of Earth (3D distribution), while the GEO satel-
lites are located on the equatorial plane (2D distribution).
This makes the critical differences from the works [4]-
[12] that considered LEO constellations. Hence, terminals
at different latitudes experience unequal satellite visi-
bility, resulting in performance gaps. Considering these
characteristics, we provide a novel approach to model
and analyze GEO satellite networks based on stochastic
geometry. Specifically, we distribute GEO satellites in
the geostationary orbit according to a BPP and then
analyze satellite visibility depending on the terminal’s
latitude. We identify the possible distribution cases for
the GEO satellites and derive the probabilities of these
cases based on the properties of the BPP. We also obtain
the distance distributions between the terminal and GEO
satellites and then derive the coverage probability using
these distributions.

• Poisson limit theorem-based approximation: We ap-
proximate the satellite distribution as a PPP using the
Poisson limit theorem. With this approach, the derived
satellite-visible probability, distance distributions, and

1While GEO satellites could have inclinations greater than or equal to zero
degrees, our paper focuses specifically on geostationary orbit satellites for
communication purposes, which are characterized by inclinations close to
zero degrees.
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Fig. 1. An example of the GEO satellite distribution. The 𝑥𝑦−plane represents
the equatorial plane. The blue spheres and the gray outer circle indicate the
GEO satellites and the geostationary orbit, respectively.

coverage probability are further simplified. Using the
two-line element2 dataset of the currently active GEO
satellites, we compare the average number of visible satel-
lites between the actual distribution and the BPP model.
Additionally, we explore the performance gap between
the BPP- and PPP-based satellite distributions, thereby
identifying the conditions under which the Poisson limit
theorem applies to the distribution of GEO satellites.

The rest of this paper is organized as follows. In Section II,
the network model for a GEO satellite communication network
is described. In Section III, the orbit visibility and distance
distributions are analyzed. In Section IV, the analytical expres-
sions of the coverage probability are derived. In Section V,
simulation results are provided to validate our analysis, and
conclusions are drawn in Section VI.

Notation: P[·] indicates the probability measure, and E[·]
denotes the expectation operator. The complement of a set X
is Xc.

(𝑛
𝑘

)
denotes the binomial coefficient. Bin(𝑛, 𝑝) denotes

the binomial distribution with the number of trials 𝑛 and the
success probability 𝑝. The cumulative distribution function
(CDF) and the PDF of a random variable 𝑋 are 𝐹𝑋 (𝑥) and
𝑓𝑥 (𝑥), respectively. Γ(·) is the Gamma function, and the
Pochhammer symbol is defined as (𝑥)𝑛 = Γ(𝑥 + 𝑛)/Γ(𝑥). The
Euclidean norm of a vector x is | |x| |. The Lebesgue measure
of a region X is |X|, which represents the volume of X. The
unit step function is 𝑢(·), and the Dirac delta function is 𝛿(·).

II. NETWORK MODEL

We consider a downlink GEO satellite network where 𝑁

GEO satellites at altitude 𝑎 serve ground terminals. It is no-
table that for the geostationary orbit, unlike LEOs, the altitude
𝑎 is consistently specified as 35,786 kilometers. We assume
that the positions of the GEO satellites x𝑛, 𝑛 ∈ {0, 1,· · ·, 𝑁−1},

2A two-line element set is a data format encoding the list of orbital
elements of a satellite at a given epoch time, which is publicly provided
by the North American Aerospace Defense Command. Based on the two-line
element set, the position and velocity of the satellite could be predicted by
using a simplified general perturbation model, e.g., SGP4 [19].
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Fig. 2. Latitude-dependent orbit visibility and horizontal view. The longitude of the terminal is set to 90 degrees. The gray sphere and the dark blue circle on
the 𝑥𝑦−plane are Earth and the geostationary orbit, respectively, where the points O and T represent the Earth center and the terminal position, respectively.
The visible arc of the orbit is indicated as the red curve where the points E and M are an endpoint of the arc and the midpoint between two endpoints,
respectively. The light blue rectangle represents the horizontal plane at the terminal.

are randomly determined according to a homogeneous BPP
Φ = {x0, x1, · · · , x𝑁−1} in the circular geostationary orbit A
as shown in Fig. 1. This orbit can be expressed with spherical
coordinates as A =

{
𝜌 = 𝑟E + 𝑎, 𝜓 = 𝜋

2 , 0 ≤ 𝜑 ≤ 2𝜋
}
, where

𝜌, 𝜓, and 𝜑 are the radial distance, polar angle, and azimuthal
angle, respectively, and 𝑟E is the Earth’s radius. We focus on a
typical terminal located at arbitrary latitude 𝜙 and longitude 𝜃
where its position is given by

t =

𝑡𝑥
𝑡𝑦
𝑡𝑧

 =


𝑟E cos 𝜙 cos 𝜃
𝑟E cos 𝜙 sin 𝜃
𝑟E sin 𝜙

 . (1)

Because the satellites above the horizontal plane can be
observed from Earth, a part of the geostationary orbit is only
visible to the terminal, which we call the visible arc and denote
it by Avis. We assume that the terminal is served by the
nearest satellite in Avis, and the other satellites in Avis become
interfering nodes. Let Φ(X) denote the number of satellites
distributed in region X according to the BPP Φ. Then Φ(Avis)
is the number of visible satellites positioned in the visible
arc. For notational simplicity, we let the index 𝑛 = 0 denote
the serving satellite and the indices 𝑛 = 1, · · · ,Φ(Avis) − 1
represent the interfering satellites, while the remaining indices
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are for the invisible satellites, which are irrelevant to the
typical terminal.

The satellites adopt directional beamforming to compensate
for large path losses at the receivers. For analytical tractability,
we assume that the boresight of the serving satellite’s beam
is directed toward the target terminals, while the beams of
other satellites are fairly misaligned [4], [12]. This assumption
is well motivated in GEO scenarios because GEO satellites
appear stationary from Earth, meaning that their beams remain
fixed within a specific ground area. With this property, the
beams of GEO satellites are carefully designed to avoid
overlapping the beams of the existing GEO satellites, thereby
mitigating inter-satellite interference. Hence, the effective an-
tenna gain 𝐺𝑛, 𝑛 ∈ {0, 1, · · · , 𝑁 − 1}, is given by

𝐺𝑛 =

{
𝐺 t,0𝐺r, if 𝑛 = 0,
𝐺 t,𝑛𝐺r, otherwise

(2)

where 𝐺 t,𝑛 is the transmit antenna gains of the satellites, and
𝐺r is the receive antenna gain of the terminal.

The path loss between the terminal and the satellite at x𝑛
is given by ℓ(x𝑛) =

(
𝑐

4𝜋 𝑓c

)2
𝑅−𝛼
𝑛 where 𝑅𝑛 = | |x𝑛 − t| | is the

distance, 𝑐 is the speed of light, 𝑓c is the carrier frequency, and
𝛼 is the path-loss exponent. We assume the satellite channels
experience Nakagami-𝑚 fading, which effectively captures the
LOS property of satellite channels [12], [20]. The Nakagami-
𝑚 fading model can reflect various channel circumstances
by varying the Nakagami parameter 𝑚. For example, the
Nakagami-𝑚 distribution becomes the Rayleigh distribution
when 𝑚 = 1, and the Rician-𝐾 distribution when 𝑚 =

(𝐾+1)2

2𝐾+1 .
The CDF of the channel gain of the Nakagami-𝑚 fading model
is given by 𝐹ℎ𝑛 (𝑥) = 1 − 𝑒−𝑚𝑥 ∑𝑚−1

𝑘=0
(𝑚𝑥 )𝑘
𝑘! .

Since the satellites are distributed according to the BPP,
there can be three distribution cases for the visible satellites
as follows.

• Case 1: Φ(Avis) = 0, i.e., no visible satellite exists. There
are no serving and interfering satellites.

• Case 2: Φ(Avis) = 1, i.e., one visible satellite exists.
The only visible satellite functions as the serving satellite
without any interfering satellite.

• Case 3: Φ(Avis) > 1, i.e., more than one visible satel-
lite exist. Both the serving and at least one interfering
satellites exist.

Considering these cases, the received signal-to-interference-
plus-noise ratio (SINR) at the typical terminal is given by

SINR =


0, if Φ(Avis) = 0,
𝑃t𝐺0ℎ0ℓ (x0 )

𝑁0𝑊
, if Φ(Avis) = 1,

𝑃t𝐺0ℎ0ℓ (x0 )
𝐼+𝑁0𝑊

, if Φ(Avis) > 1
(3)

where 𝑃t is the transmit power assuming all satellites transmit
with the same power, and 𝐼 =

∑Φ(Avis )−1
𝑛=1 𝑃t𝐺𝑛ℎ𝑛ℓ(x𝑛) is the

aggregated inter-satellite interference.

III. MATHEMATICAL PRELIMINARIES

A. Satellite Visibility Analyses

It is worth noting that the length of the visible arc Avis (𝜙)
in the geostationary orbit highly depends on the terminal’s
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Fig. 3. Latitude-dependent length of the visible arc, |Avis (𝜙) |.

latitude as shown in Fig. 2. For example, when the terminal
is placed on the equator, i.e., 𝜙 = 0, the visible arc, depicted
as the red curve, is the longest. As the latitude increases, the
visible arc shrinks and finally vanishes at the latitude of

𝜙inv = cos−1
(
𝑟E

𝑟E + 𝑎

)
≈ 81.3 degrees.

Based on this observation, the length of the visible arc is
obtained in the following lemma.

Lemma 1. The length of the visible arc, i.e., |Avis (𝜙) |, is
given by

|Avis (𝜙) | = 2 (𝑟E + 𝑎) sin−1 ©­«
√︄

1 − sec2 𝜙

(1 + 𝑎/𝑟E)2
ª®¬ (4)

for |𝜙 | < 𝜙inv, and |Avis (𝜙) | = 0 otherwise.

Proof: As shown in Fig. 2, if 𝜙 = 0, the geostationary
orbit from the terminal’s horizontal view becomes the circle
with the radius of 𝑟E+𝑎. However, if 𝜙 increases, the orbit can
be seen as the ellipse whose semi-major and minor axes are
𝑟E + 𝑎 and (𝑟E + 𝑎) cos 𝜙, respectively. Hence, we can obtain
the equation of the ellipse as

𝑥2

(𝑟E + 𝑎)2 + 𝑦̄2

(𝑟E + 𝑎)2 cos2 𝜙
= 1 (5)

where 𝑥 and 𝑦̄ are the projected axes observed from the
horizontal view. By substituting 𝑦̄ = 𝑟E into (5), we can obtain
the length between E and M on the 𝑥𝑦−plane as

EM =

√︃
(𝑟E + 𝑎)2 − 𝑟2

E sec2 𝜙. (6)

Since EO = 𝑟E + 𝑎, we have

∠EOM = sin−1

(
EM
EO

)
= sin−1 ©­«

√︄
1 − sec2 𝜙

(1 + 𝑎/𝑟E)2
ª®¬ . (7)

Using this angle, we finally obtain the length of the visible arc
as |Avis (𝜙) | = 2(𝑟E+𝑎)∠EOM for 𝜙 > 0. For 𝜙 < 0, the length
can be readily obtained because the geometry is symmetric
about the 𝑥𝑦−plane, which completes the proof. ■
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Remark 1. The length of the visible arc Avis (𝜙) is inversely
proportional to the absolute value of the latitude 𝜙, i.e.,
Avis (𝜙) ∝ 1

|𝜙 | , for |𝜙| ≤ 𝜙inv ≈ 81.3 degrees. This is because
as |𝜙| increases from 0 to 𝜙inv, sec 𝜙 increases from 1 to
1+ 𝑎

𝑟E
, resulting in a decrease in Avis (𝜙). Hence, the maximum

length of the visible arc is achieved when the terminal is
located at the equator, i.e., 𝜙 = 0, and has a value of
2(𝑟E + 𝑎) cos−1

(
𝑟E
𝑟E+𝑎

)
≈ 119, 657 km.

Remark 2. Based on the properties of the BPP, the number
of satellites in the visible arc follows the binomial distribution
with the success probability [8]

𝑝vis =
|Avis (𝜙) |

|A| =
1
𝜋

sin−1 ©­«
√︄

1 − sec2 𝜙

(1 + 𝑎/𝑟E)2
ª®¬ (8)

for |𝜙| < 𝜙inv, and 𝑝vis = 0 otherwise. Thus, the average
number of visible satellites is given by E[Φ(Avis)] = 𝑁𝑝vis.

Fig. 3 shows the length of the visible arc depending on
the latitude 𝜙. As expected in Remark 1, the length has its
maximum 119, 657 km at 𝜙 = 0 degrees, decreases with |𝜙 |,
and vanishes at |𝜙| ≈ 81.3 degrees. This tendency implies
that terminals near the equator are more likely to see many
satellites, resulting in better satellite visibility, while those in
the polar region, especially |𝜙| > 81.3 degrees, are rarely in
the coverage of GEO satellites.

Lemma 2. The probabilities for the visible satellite distribu-
tion of Cases 1, 2, and 3 are given by

P[Φ(Avis) = 0] = (1 − 𝑝vis)𝑁 ,
P[Φ(Avis) = 1] = 𝑁𝑝vis (1 − 𝑝vis)𝑁−1,

P[Φ(Avis) > 1] = 1 − (1 − 𝑝vis)𝑁 − 𝑁𝑝vis (1 − 𝑝vis)𝑁−1, (9)

respectively.

For more details, see Appendix A. We remark that the prob-
ability of Case 1 is called the satellite-invisible probability,
which is the probability that all satellites are invisible, while
the sum of the probabilities of Cases 2 and 3 is the satellite-
visible probability, which is the probability that at least one
satellite is visible.

Remark 3. For the northern hemisphere, i.e., 𝜙 > 0, the
satellite-invisible probability increases with the latitude 𝜙 and

becomes one at 𝜙 = 𝜙inv. This can be proved by taking the
derivative of (9) with respect to 𝜙 as

𝑑

𝑑𝜙
(1 − 𝑝vis)𝑁 =

𝑁 (1 − 𝑝vis)𝑁−1 tan 𝜙

𝜋

√︃
(1+𝑎/𝑟E )2

sec2 𝜙
− 1

> 0. (10)

When 𝜙 > 𝜙inv, 𝑝vis = 0, which results in the satellite-invisible
probability equal to one.

Remark 4. When 𝑁 → ∞ for |𝜙| < 𝜙inv, the terminal can
see at least one serving satellite and one interfering satellite
because P[Φ(Avis) = 0] → 0, P[Φ(Avis) = 1] → 0, and
P[Φ(Avis) > 1] → 1, which is intuitively true.

Fig. 4 shows the case probabilities for various numbers
of satellites 𝑁 = {2, 10, 100}. This figure verifies Remark 3
that the satellite-invisible probability corresponding to Case 1
increases with 𝜙 ∈ [0, 𝜙inv] and then reaches one at 𝜙 = 𝜙inv.
As expected in Remark 4, the satellite-visible probability
corresponding to Cases 2 and 3 increases with 𝑁 . Even with
a hundred GEO satellites, P[Φ(Avis) > 1] is almost one for
any latitude less than 𝜙inv. Thus, Case 3 becomes the most
probable case for terminals located at |𝜙| < 𝜙inv when a fairly
large number of GEO satellites are in orbit. In contrast, only
Case 1 happens for the terminals whose latitude is above 𝜙inv.

B. Distance Distributions

Next, we characterize the distributions of the following three
distances from the typical terminal located at the latitude of 𝜙.

• 𝑅 ∈ [𝑟min (𝜙), 𝑟max (𝜙)]: the distance to the nearest satel-
lite

• 𝑅0 ∈ [𝑟min (𝜙), 𝑟vis,max]: the distance to the serving
satellite

• 𝑅𝑛 ∈ [𝑟0, 𝑟vis,max]: the distances to the interfering satel-
lites given 𝑅0 = 𝑟0, 𝑛 ∈ {1, · · · ,Φ(Avis) − 1}

The distances to the nearest and farthest points in the
geostationary orbit are denoted by 𝑟min (𝜙) and 𝑟max (𝜙) and can
be obtained by applying the Pythagorean theorem to △SNTT′

and △SFTT′ shown in Fig. 5, i.e.,

SNT
2
= SNT′2 + TT′2 =

(
𝑟E + 𝑎 −

√︃
𝑡2𝑥 + 𝑡2𝑦

)2
+ 𝑡2𝑧 (11)

and

SFT
2
= SFT′2 + TT′2 =

(
𝑟E + 𝑎 +

√︃
𝑡2𝑥 + 𝑡2𝑦

)2
+ 𝑡2𝑧 . (12)
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are the nearest and farthest points in the orbit, and T′ is the projection of the
terminal’s position T onto the 𝑥𝑦−plane.

After some manipulation using the facts that 𝑡2𝑥+𝑡2𝑦 = 𝑟2
E cos2 𝜙

and 𝑡2𝑧 = 𝑟
2
E sin2 𝜙, we can obtain 𝑟min (𝜙) and 𝑟max (𝜙) as

𝑟min (𝜙) = SNT =

√︃
(𝑟E + 𝑎 − 𝑟E cos 𝜙)2 + 𝑟2

E sin2 𝜙 (13)

and

𝑟max (𝜙) = SFT =

√︃
(𝑟E + 𝑎 + 𝑟E cos 𝜙)2 + 𝑟2

E sin2 𝜙. (14)

Moreover, the maximum distance to the visible satellite,
denoted by 𝑟vis,max, can be obtained as 𝑟vis,max = TE =(
TM2 + EM2)1/2

according to the geometry in Fig. 5. From

EM given in (6) with the fact that TM = 𝑟E tan 𝜙, we have

𝑟vis,max =

√︃
𝑟2

E tan2 𝜙 + (𝑟E + 𝑎)2 − 𝑟2
E sec2 𝜙 =

√︁
𝑎2 + 2𝑎𝑟E.

(15)

Remark 5. The largest possible distance from the terminal to
any visible satellite is always 𝑟vis,max =

√︁
𝑎2 + 2𝑎𝑟E ≈ 41, 679

km regardless of 𝜙. This result is intuitive because the end-
points of the visible arc can be seen as the intersection between
the horizontal plane and the sphere with the radius of 𝑟E + 𝑎.

Before deriving the distance distributions, we let A(𝑟), 𝑟 ∈
[𝑟min (𝜙), 𝑟max (𝜙)], denote an arc of the geostationary orbit
whose maximum distance to the terminal is 𝑟 , which is shown
in Fig. 5 with 𝑟 = 𝑟0. Using the law of cosines, the length of
the arc A(𝑟) is given by

|A(𝑟) | = 2(𝑟E + 𝑎)∠EOT′

= 2(𝑟E + 𝑎) cos−1

(
OE

2 + OT′2 − ET′2

2OE · OT′

)
= 2𝜋(𝑟E + 𝑎) · 1

𝜋
cos−1

(
(𝑟E + 𝑎)2 + 𝑟2

E − 𝑟2

2(𝑟E + 𝑎)𝑟E cos 𝜙

)
︸                                  ︷︷                                  ︸

≜Ψ(𝑟 ,𝜙)

(16)

where OE = 𝑟E + 𝑎, OT′ = 𝑟E cos 𝜙, and ET′ =

√︃
𝑟2 − 𝑡2𝑧 =√︃

𝑟2 − 𝑟2
E sin 𝜙. Please note that we define a new function

Ψ(𝑟, 𝜙) for the simplicity of notation, which will be used to
efficiently express the distance distributions in the following
lemmas.

Lemma 3. The CDF and PDF of 𝑅 are respectively given by

𝐹𝑅 (𝑟) =


0, if 𝑟 < 𝑟min (𝜙),
1 − (1 − Ψ(𝑟, 𝜙))𝑁 , if 𝑟min (𝜙) ≤ 𝑟 < 𝑟max (𝜙),
1, otherwise

(17)

and

𝑓𝑅 (𝑟) =


2𝑁𝑟 (1−Ψ(𝑟 ,𝜙) )𝑁−1

𝜋

√︃
𝑣1−(𝑣2−𝑟2)2

, if 𝑟min (𝜙) ≤ 𝑟 < 𝑟max (𝜙),

0, otherwise
(18)

where 𝑣1 = 4(𝑟E + 𝑎)2𝑟2
E cos2 𝜙 and 𝑣2 = (𝑟E + 𝑎)2 + 𝑟2

E.

For more details, see Appendix B.

Lemma 4. The CDF and PDF of 𝑅0 are respectively given
by

𝐹𝑅0 (𝑟) =


0, if 𝑟 < 𝑟min (𝜙),
𝐹𝑅 (𝑟 )

𝐹𝑅 (𝑟vis,max ) , if 𝑟min (𝜙) ≤ 𝑟 < 𝑟vis,max,

1, otherwise

(19)

and

𝑓𝑅0 (𝑟) =
{

𝑓𝑅 (𝑟 )
𝐹𝑅 (𝑟vis,max ) , if 𝑟min (𝜙) ≤ 𝑟 < 𝑟vis,max,

0, otherwise.
(20)

For more details, see Appendix C.

Remark 6. When 𝑁 → ∞, the CDF and PDF of the distance
𝑅0 asymptotically become 𝐹𝑅0 (𝑟) → 𝑢(𝑟 − 𝑟min (𝜙)) and
𝑓𝑅0 (𝑟) → 𝛿(𝑟 − 𝑟min (𝜙)), respectively. This means that the
distance to the serving satellite is deterministic and has a value
of 𝑟min (𝜙), i.e., the possible minimum distance to satellites
given the latitude 𝜙.

Lemma 5. Given 𝑅0 = 𝑟0, the CDF and PDF of 𝑅𝑛, 𝑛 ∈
{1, 2, · · · ,Φ(Avis) − 1}, are, respectively, given by

𝐹𝑅𝑛 |𝑟0 (𝑟) =


0, if 𝑟 < 𝑟0,

Ψ(𝑟 ,𝜙)−Ψ(𝑟0 ,𝜙)
Ψ(𝑟vis,max ,𝜙)−Ψ(𝑟0 ,𝜙) , if 𝑟0 ≤ 𝑟 < 𝑟vis,max,

1, otherwise

(21)

and

𝑓𝑅𝑛 |𝑟0 (𝑟) =


2𝑟/

(
𝜋

√︃
𝑣1−(𝑣2−𝑟2)2

)
Ψ(𝑟vis,max ,𝜙)−Ψ(𝑟0 ,𝜙) , if 𝑟0 ≤ 𝑟 < 𝑟vis,max,

0, otherwise.
(22)

For more details, see Appendix D.

Fig. 6 verifies the analytical expressions given in Lemmas
3, 4, and 5 for 𝜙 = 30 degrees. It is shown that our analyses
are in good agreement with the simulation results. The case
probabilities and the distance distributions obtained in this
section are the key instruments, which will be used for deriving
the stochastic geometry-based performance in the next section.
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Fig. 6. The analytical and numerically derived CDFs of 𝑅, 𝑅0, and 𝑅𝑛 for 𝜙 = 30 degrees.

IV. COVERAGE ANALYSIS

In this section, we first derive the coverage probability
of the GEO satellite network with the BPP-based satellite
distribution. Then, we further simplify the expression using
the Poisson limit theorem, which states that the binomial
distribution can be approximated as the Poisson distribution
as 𝑁 → ∞ [21].

A. Binomial Distribution-Based Analysis

Before analyzing the coverage probability, we derive the
Laplace transform of the aggregated interference power using
the following two lemmas.

Lemma 6. Given that the serving satellite is at a distance
of 𝑟0 from the terminal, the number of possible interfering
satellites is Φ(A ∩ A(𝑟0)c) = 𝑁 − 1 (except for the serving
satellite), and the region where interfering satellites can be
located is Avis ∩A(𝑟0)c. The number of interfering satellites
in this region is a binomial random variable with the success
probability 𝑝int, i.e., Φ(Avis ∩ A(𝑟0)c) ∼ Bin(𝑁 − 1, 𝑝int),
where

𝑝int =
|Avis ∩ A(𝑟0)c |
|A ∩ A(𝑟0)c | =

Ψ(𝑟vis,max, 𝜙) − Ψ(𝑟0, 𝜙)
1 − Ψ(𝑟0, 𝜙)

. (23)

This result comes directly from the definition of the BPP.
For more details, see [21].

Lemma 7. Given 𝑅0 = 𝑟0, the Laplace transform of the ag-
gregated interference power 𝐼 =

∑Φ(Avis∩A(𝑟0 )c )
𝑛=1 𝑃t𝐺𝑛ℎ𝑛ℓ(x𝑛)

is given by

L𝐼 |𝑟0 (𝑠) =
𝑁−1∑︁
𝑛I=0

(
𝑁 − 1
𝑛I

)
𝑝
𝑛I
int𝑝

𝑁−1−𝑛I
int

×
𝑛I∏
𝑛=1

∫ 𝑟vis,max

𝑟0

(
𝑚𝜔𝑛𝑟

𝛼
𝑛

𝑠 + 𝑚𝜔𝑛𝑟𝛼𝑛

)𝑚
𝑓𝑅𝑛 |𝑟0 (𝑟𝑛)𝑑𝑟𝑛 (24)

where 𝜔𝑛 = 16𝜋2 𝑓 2
c /(𝑃t𝐺𝑛𝑐

2).

For more details, see Appendix E.

The coverage probability is the probability that the SINR at
the typical terminal defined in (3) is greater than or equal to a
threshold 𝜏, i.e., P[SINR ≥ 𝜏]. Using the result in Lemma 7,
the coverage probability is given in the following theorem.

Theorem 1. The coverage probability for GEO satellite net-
works is approximated as

𝑃cov (𝜏;𝑚) ≈ (1 − (1 − 𝑝vis)𝑁 )
𝑚∑︁
𝑖=1

(
𝑚

𝑖

)
(−1)𝑖+1

×
∫ 𝑟vis,max

𝑟min (𝜙)
𝑒−𝜈𝑖𝜔0𝑁0𝑊𝜏𝑟

𝛼L𝐼 |𝑟0=𝑟 (𝜈𝑖𝜔0𝜏𝑟
𝛼) 𝑓𝑅0 (𝑟)𝑑𝑟

(25)

where 𝜈 = 𝑚(𝑚!)−1/𝑚.

For more details, see Appendix F.

This approximated coverage probability in Theorem 1 be-
comes exact when 𝑚 = 1, which is given in the following
corollary.

Corollary 1. Under the Rayleigh fading, i.e., 𝑚 = 1, the
coverage probability for GEO satellite networks in Theorem 1
becomes exact and is given by

𝑃cov (𝜏; 1) = (1 − (1 − 𝑝vis)𝑁 )

×
∫ 𝑟vis,max

𝑟min (𝜙)
𝑒−𝜔0𝑁0𝑊𝜏𝑟

𝛼L𝐼 |𝑟0=𝑟 (𝜔0𝜏𝑟
𝛼) 𝑓𝑅0 (𝑟)𝑑𝑟. (26)

This result is obtained by directly setting 𝑚 = 1 in (25).
The expression for the coverage probability in (25) includes
the integrals that appear to be unsolvable analytically, but can
be evaluated numerically. To further simplify the expression,
we conduct the Poisson limit theorem-based approximation in
the following section.

B. Poisson Limit Theorem-Based Approximation

When sufficiently many GEO satellites are in orbit, e.g.,
𝑁 → ∞, the BPP can be interpreted as a PPP Φ̄ with the
density of

𝜆 =
𝑁

|A| =
𝑁

2𝜋(𝑟E + 𝑎) (27)

according to the Poisson limit theorem [21]. The void proba-
bility of the PPP Φ̄ for arc A(𝑟) is the probability that there
is no satellite in A(𝑟), which is given by 𝑒−𝜆 |A (𝑟 ) | . Using this
property, we obtain the satellite visible probability as

P[Φ(Avis) > 0] = 1 − P[Φ(Avis) = 0]
≈ 1 − 𝑒−𝜆 |A (𝑟vis,max ) | = 1 − 𝑒−𝑁Ψ(𝑟vis,max ,𝜙) (28)

and approximate the CDF and PDF of 𝑅 and 𝑅0 in the next
two lemmas.
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Lemma 8. The approximated CDF and PDF of 𝑅, denoted
by 𝐹̃𝑅 (𝑟) and 𝑓𝑅 (𝑟), are respectively given by

𝐹̃𝑅 (𝑟) =


0, if 𝑟 < 𝑟min (𝜙),
1 − 𝑒−𝑁Ψ(𝑟 ,𝜙) , if 𝑟min (𝜙) ≤ 𝑟 < 𝑟max (𝜙),
1, otherwise

(29)

and

𝑓𝑅 (𝑟) =


2𝑟𝑁𝑒−𝑁Ψ(𝑟,𝜙)

𝜋

√︃
𝑣1−(𝑣2−𝑟2)2

, if 𝑟min (𝜙) ≤ 𝑟 < 𝑟max (𝜙),

0, otherwise.
(30)

Proof: With the PPP approximation of GEO satellite
positions, we approximate the CDF of 𝑅 as

𝐹̃𝑅 (𝑟) = P[𝑅 ≤ 𝑟] = 1 − P[𝑅 > 𝑟] = 1 − 𝑒−𝜆 |A (𝑟 ) | . (31)

By substituting (16) and 𝜆 = 𝑁
2𝜋 (𝑟E+𝑎) here, the approximated

CDF is obtained. The PDF is directly given by taking the
derivative of the CDF, which completes the proof. ■

Lemma 9. The approximated CDF and PDF of 𝑅0, denoted
by 𝐹̃𝑅0 (𝑟) and 𝑓𝑅0 (𝑟), are obtained by substituting the CDF
and PDF of 𝑅 in Lemma 8 into (19) and (20) as

𝐹̃𝑅0 (𝑟) =


0, if 𝑟 < 𝑟min (𝜙),

1−𝑒−𝑁Ψ(𝑟,𝜙)

1−𝑒−𝑁Ψ(𝑟vis,max ,𝜙)
, if 𝑟min (𝜙) ≤ 𝑟 < 𝑟vis,max,

1, otherwise

(32)

and

𝑓𝑅0 (𝑟)

=


2𝑁/𝜋

1−𝑒−𝑁Ψ(𝑟vis,max ,𝜙)
· 𝑟𝑒−𝑁Ψ(𝑟,𝜙)√︃

𝑣1−(𝑣2−𝑟2)2
, if 𝑟min (𝜙) ≤ 𝑟 < 𝑟vis,max,

0, otherwise.
(33)

The proof of this lemma is complete by following the same
steps as in the proof of Lemma 4. These distance distributions
are much simpler than the BPP-based results obtained in the
previous section. Thus, the simplified CDFs and PDFs will
play a crucial role in reducing the computational complexity
of evaluating the coverage probability. Also, the simplified
Laplace transform is provided next.

Lemma 10. When the satellites are distributed according to
the PPP Φ̄ with the density of 𝜆 = 𝑁

2𝜋 (𝑟E+𝑎) , and the effective
antenna gains for the interfering satellites are equal, i.e., 𝐺𝑛 =
𝐺̄ ∀𝑛 ≠ 0 for an arbitrary constant 𝐺̄, the Laplace transform
of the aggregated interference power is derived as

L̃𝐼 |𝑟0 (𝑠) = 𝑒−
2𝑁
𝜋 (Ω1 (𝑟vis,max )−Ω1 (𝑟0 )−Ω2 (𝑠,𝑟0 )) (34)

where Ω1 (𝑟) = − 1
2 tan−1

(
𝑣2−𝑟2√

𝑣1−(𝑣2−𝑟2 )2

)
and Ω2 (𝑠, 𝑟0) =∫ 𝑟vis,max

𝑟0

1
( 𝑠𝑟−𝛼

𝑚𝜔
+1)𝑚

𝑟𝑑𝑟√︃
𝑣1−(𝑣2−𝑟2)2

with 𝜔 =
16𝜋2 𝑓 2

c
𝑃t𝐺̄𝑐2 .

Proof: See Appendix G. ■

Remark 7. Unlike the Laplace transform of the aggregated
interference power for the binomially distributed satellites,
given in Lemma 7, the approximated Laplace transform in

TABLE I
SIMULATION PARAMETERS

Parameter Value
Radius of Earth 𝑟e 6,378 km
Speed of light 𝑐 3 × 108 m/s
Noise spectral density 𝑁0 −174 dBm/Hz
Altitude 𝑎 35,786 km
Carrier frequency 𝑓c 2 GHz
Path-loss exponent 𝛼 3
Transmit antenna gain of the serving satellite 𝐺t,0 51 dBi
Receive antenna gain of the terminal 𝐺r 0 dBi
EIRP density 59 dBW/MHz
Bandwidth 𝑊 30 MHz

Lemma 10 does not rely on any distance distribution thanks
to the stochastic property of the PPP Φ̄.

Using the simplified distance distributions and Laplace
transform, the coverage probability is obtained in the following
theorem.

Theorem 2. When GEO satellites are distributed according
to a PPP Φ̄ with a density of 𝜆 = 𝑁

2𝜋 (𝑟E+𝑎) , the coverage
probability is given by

𝑃̃cov (𝜏;𝑚) ≈ 2𝑁/𝜋
1 − 𝑒−𝑁Ψ(𝑟vis,max ,𝜙)

𝑚∑︁
𝑖=1

(
𝑚

𝑖

)
(−1)𝑖+1Ξ𝑖 (𝜏;𝑚)

(35)

where

Ξ𝑖 (𝜏;𝑚) =
∫ 𝑟vis,max

𝑟min (𝜙)

𝑟𝑒−Θ𝑖 (𝑟 ,𝜏;𝑚)√︃
𝑣1 −

(
𝑣2 − 𝑟2)2

𝑑𝑟 (36)

with Θ𝑖 (𝑟, 𝜏;𝑚) = 𝑁Ψ(𝑟, 𝜙) + 𝜈𝑖𝜔0𝑁0𝑊𝜏𝑟
𝛼 +

2𝑁
𝜋
(Ω1 (𝑟vis,max) −Ω1 (𝑟0) −Ω2 (𝜈𝑖𝜔0𝜏𝑟

𝛼, 𝑟0)).

Proof: The proof is complete by following the proof of
Theorem 1 with the approximated results (28), (33), and (34).

■

Although the expression in Theorem 2 has the integral term
in Ξ𝑖 (𝜏;𝑚), it is much easier to calculate than that in Theorem
1 due to the simplified Laplace transform.

V. SIMULATION RESULTS

In this section, we numerically verify the derived results
based on the simulation parameters listed in Table I unless
otherwise stated. The handheld terminals are considered for the
S-band as in the 3GPP standardization [2]. With the assumed
effective isotropically radiated power (EIRP) density, which is
calculated as 𝑃t𝐺 t,0/𝑊 , we obtain the transmit power of the
satellites as 𝑃t = 52.77 dBm. The typical terminal is located
in Seoul, South Korea, i.e., {𝜙, 𝜃} = {37, 137} deg.

Fig. 7 compares our analysis with the simulation results
considering the actual GEO satellites. The positions of the
actual GEO satellites, depicted in Fig. 7 (a), are calculated
from the two-line element dataset given in https://celestrak.org/
on October 21, 2023. In this dataset, we consider the satellites
with an inclination less than 1 degree among all the actual
GEO satellites in geosynchronous orbits. As a result, the
number of considered satellites is 𝑁 = 391. In Fig. 7 (b),
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we compare the average number of visible satellites for the
actual and BPP-based satellite distributions. For the actual
distribution, the average number is calculated by averaging
the number of visible satellites over all longitudes at each
latitude. For the BPP-based distribution, the average number
comes from E[Φ(Avis)] = 𝑁𝑝vis given in Remark 2. It is
shown that our approach to model GEO satellites is fairly
reasonable because the average number of actually visible
satellites at a terminal is almost the same as our analysis.
This alignment is mainly achieved by displacing adjacent GEO
satellites at a certain distance to be almost evenly distributed
in the geostationary orbit in order to minimize interference
with other satellites.

3In Fig. 7 (a), a small number of GEO satellites are positioned in the
areas with the longitude from 180 to 220 degrees (140◦W-180◦W). These
areas encompass the Alaska and Pacific region where the demand for
communication services is scarce. In the future, additional GEO satellites
may be deployed in these areas to accommodate potential service needs.

Fig. 8 shows the numerical results of coverage probabilities.
The BPP-based analytical results are given from Theorem 1,
while the PPP-based analysis comes from Theorem 2. In
Fig. 8 (a), the coverage probability in Theorem 1 provides a
fairly close performance to the simulation results for various
path loss exponents 𝛼 = {3, 3.7}, verifying the effectiveness of
the BPP-based modeling of the GEO distribution. Fig. 8 (b)
shows the coverage probability versus the number of GEO
satellites 𝑁 . As 𝑁 increases, the coverage probability first
increases until 𝑁 reaches a certain value, and then decreases.
When the number of GEO satellites is small, deploying addi-
tional satellites enhances system performance by increasing
the satellite visibility and the received signal-to-noise ratio
from the serving satellite. However, for a large number of
satellites, the presence of more satellites can lead to increased
interference, resulting in a degradation of coverage perfor-
mance. The approximated coverage probability in Theorem 2
is fairly similar to the one in Theorem 1, especially for high 𝑁 ,
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(b) 𝐺0/𝐺𝑛 = 30 dB

Fig. 9. The coverage probability versus the terminal’s latitude for various antenna gain ratios {𝐺0/𝐺𝑛 } = {20, 30} dB with 𝑚 = 1 and 𝜏 = 0 dB.

which verifies the Poisson limit theorem-based approximation.
Fig. 9 shows the coverage probability versus the latitude

of the terminal. As we expected, the coverage probability
highly relies on the terminal’s latitude. This is because the
geostationary orbit is on the equatorial plane, resulting in
unequal satellite visibility from different latitudes. This phe-
nomenon successfully explains the fact that GEO satellites
cannot provide any coverage to polar regions due to their
inherent orbital characteristics. Furthermore, unlike the case
with a relatively small number of satellites, e.g., 𝑁 = 10, when
there are a large number of satellites, e.g., 𝑁 = 100 or 200,
the regions with high latitudes, e.g., |𝜙| > 60 degrees, have
the higher coverage performance compared to those near the
equator. This is mainly because when many GEO satellites
interfere with each other, the region that sees a shorter visible
arc of the geostationary orbit has better performance due to
less interference. Despite this fact, when the sidelobe of the
satellites’ beam patterns, the main factor causing interference,
is designed to be sufficiently low, e.g., 𝐺0/𝐺𝑛 = 30 dB, the
coverage performance around all latitudes is enhanced, and si-
multaneously the performance gap between different latitudes
decreases. In addition, the terminals at the equator, i.e., 𝜙 = 0
degrees, achieve slightly higher coverage performance than
those near the equator because of smaller path losses and better
satellite visibility.

VI. CONCLUSIONS

In this paper, we investigated a novel approach to model the
distribution of geosynchronous Earth orbit (GEO) satellites ac-
cording to a binomial point process. We analyzed the distance
distributions and the probabilities of distribution cases for the
serving satellite. We also derived the coverage probability,
and the approximated expression was obtained by using the
Poisson limit theorem. Simulation results well matched the
derived expressions, and the approximate performance was
fairly close to the actual system performance. The impacts
of the signal-to-interference-plus-noise ratio threshold, the
number of GEO satellites, and the latitude of the terminal were

discussed in terms of coverage probabilities. The analytical
results are expected to give a fundamental framework for un-
derstanding GEO satellite networks and offer guidance when
designing practical techniques for the heterogenous satellite
communication systems.

APPENDIX A
PROOF OF LEMMA 2

Using the finite-dimensional distribution of the BPP Φ, the
probability that 𝑞 satellites are positioned in the visible arc
Avis is given by [22]

P[Φ(Avis) = 𝑞, Φ(Ac
vis) = 𝑁 − 𝑞] =

(
𝑁

𝑞

)
𝑝
𝑞

vis (1 − 𝑝vis)𝑁−𝑞

(37)

where Ac
vis is the invisible arc, i.e., the arc under the horizontal

plane, whose length is |Ac
vis | = |A| − |Avis |. By substituting

𝑞 = 0 and 1 in (37), we can obtain P[Φ(Avis) = 0] and
P[Φ(Avis) = 1], respectively. The probability of Case 3
can be given by P[Φ(Avis) > 1] = 1 − P[Φ(Avis) = 0] −
P[Φ(Avis) = 1], which completes the proof.

APPENDIX B
PROOF OF LEMMA 3

Let 𝐷 denote the distance from the terminal to an arbitrary
satellite. Then, the probability that 𝐷 is less than or equal to
𝑟 is equivalent to the probability that the satellite is located
within A(𝑟), i.e., the success probability for A(𝑟), which is
given by

P[𝐷 ≤ 𝑟] = |A(𝑟) |
|A| = Ψ(𝑟, 𝜙). (38)

Since the satellites in Φ are independent and identically
distributed (i.i.d.), the CDF of 𝑅 is given by

𝐹𝑅 (𝑟) = 1 − P[𝑅 > 𝑟] (𝑎)
= 1 − (1 − P[𝐷 ≤ 𝑟])𝑁 (39)

where (𝑎) follows from the independence of the distances to
the satellites. The CDF is obtained by substituting (38) into
(39), and the PDF is derived by differentiating the CDF, which
completes the proof.
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APPENDIX C
PROOF OF LEMMA 4

Note that the maximum distance between the terminal and
the visible satellite is defined as 𝑟vis,max. With this definition,
the CDF of 𝑅0 is given by

𝐹𝑅0 (𝑟) = P [𝑅 ≤ 𝑟 |Φ(Avis) > 0] =
P[𝑅 ≤ 𝑟, 𝑅 ≤ 𝑟vis,max]
P[𝑅 ≤ 𝑟vis,max]

.

(40)

Using the CDF of 𝑅 given in Lemma 3, (40) is expressed
as (19). The PDF is directly obtained by differentiating (19),
which completes the proof.

APPENDIX D
PROOF OF LEMMA 5

We now explore a specific case where given 𝑅0 = 𝑟0, the
distance to a satellite is larger than 𝑟0 and less than or equal
to 𝑟 . In this case, the satellite is positioned in A(𝑟) ∩ A(𝑟0)c

because the distance to the nearest satellite is already fixed
to 𝑅0 = 𝑟0. The probability of this case is interpreted as the
success probability for the arc A(𝑟) ∩ A(𝑟0)c, which can be
computed as the ratio of |A(𝑟) ∩ A(𝑟0)c | to |A ∩ A(𝑟0)c |,
i.e.,

P[𝑟0 < 𝐷 ≤ 𝑟 |𝑅0 = 𝑟0] =
|A(𝑟) ∩ A(𝑟0)c |
|A ∩ A(𝑟0)c |

=
|A(𝑟) | − |A(𝑟0) |
|A| − |A(𝑟0) |

=
Ψ(𝑟, 𝜙) − Ψ(𝑟0, 𝜙)

1 − Ψ(𝑟0, 𝜙)
. (41)

For a given 𝑅0 = 𝑟0, the CDF of 𝑅𝑛 is given by

𝐹𝑅𝑛 |𝑟0 (𝑟) = P[𝑅𝑛 ≤ 𝑟 |𝑅0 = 𝑟0]
= P[𝐷 ≤ 𝑟 |𝑅0 = 𝑟0, 𝑟0 < 𝐷 ≤ 𝑟vis,max]

=
P[𝐷 ≤ 𝑟, 𝑟0 < 𝐷 ≤ 𝑟vis,max |𝑅0 = 𝑟0]
P[𝑟0 < 𝐷 ≤ 𝑟vis,max |𝑅0 = 𝑟0]

=


0, if 𝑟 < 𝑟0,
P[𝑟0<𝐷≤𝑟 |𝑅0=𝑟0 ]

P[𝑟0<𝐷≤𝑟vis,max |𝑅0=𝑟0 ] , if 𝑟0 ≤ 𝑟 < 𝑟vis,max,

1, otherwise.
(42)

From (41) and (42), we can obtain the CDF of 𝑅𝑛 given
𝑅0 = 𝑟0 as in (21). The PDF is directly obtained by using
the derivative of Ψ(𝑟, 𝜙), given by 𝑑Ψ(𝑟 ,𝜙)

𝑑𝑟
=

2𝑟/𝜋√︃
𝑣1−(𝑣2−𝑟2)2

.

This completes the proof.

APPENDIX E
PROOF OF LEMMA 7

The Laplace transform is derived as

L𝐼 |𝑟0 (𝑠) = EΦ,{ℎ𝑛 }

[
exp

(
−𝑠

Φ(Avis∩A(𝑟0 )c )∑︁
𝑛=1

𝑃t𝐺 t,𝑛𝐺rℎ𝑛ℓ(x𝑛)
)]

= EΦ,{ℎ𝑛 }

[
Φ(Avis∩A(𝑟0 )c )∏

𝑛=1
exp

(
−𝑠𝑃t𝐺 t,𝑛𝐺rℎ𝑛ℓ(x𝑛)

) ]
(𝑎)
= EΦ,{𝑅𝑛 }

[
Φ(Avis∩A(𝑟0 )c )∏

𝑛=1
Lℎ𝑛

(
𝑠

𝜔𝑛𝑅
𝛼
𝑛

)]

(𝑏)
= EΦ

[
Φ(Avis∩A(𝑟0 )c )∏

𝑛=1

∫ 𝑟vis,max

𝑟0

Lℎ𝑛
(

𝑠

𝜔𝑛𝑟
𝛼
𝑛

)
𝑓𝑅𝑛 |𝑟0 (𝑟𝑛)𝑑𝑟𝑛

]
(𝑐)
= EΦ

[
Φ(Avis∩A(𝑟0 )c )∏

𝑛=1

∫ 𝑟vis,max

𝑟0

(
𝑚𝜔𝑛𝑟

𝛼
𝑛

𝑠 + 𝑚𝜔𝑛𝑟𝛼𝑛

)𝑚
𝑓𝑅𝑛 |𝑟0 (𝑟𝑛)𝑑𝑟𝑛

]
(𝑑)
=

𝑁−1∑︁
𝑛I=0
P [Φ (Avis ∩ A(𝑟0)c) = 𝑛I]

×
𝑛I∏
𝑛=1

∫ 𝑟vis,max

𝑟0

(
𝑚𝜔𝑛𝑟

𝛼
𝑛

𝑠 + 𝑚𝜔𝑛𝑟𝛼𝑛

)𝑚
𝑓𝑅𝑛 |𝑟0 (𝑟𝑛)𝑑𝑟𝑛 (43)

where (𝑎) follows from the i.i.d. distribution of the chan-
nel gains ℎ𝑛, (𝑏) follows from the i.i.d. distribution of
the distances 𝑅𝑛, (𝑐) follows because Lℎ𝑛 (𝑠) =

(
𝑚
𝑠+𝑚

)𝑚,
and (𝑑) follows from the law of total expectation, i.e.,
E[𝑋] =

∑
𝑖 P[𝐴𝑖]E[𝑋 |𝐴𝑖]. According to Lemma 6, the

probability P [Φ (Avis ∩ A(𝑟0)c) = 𝑛I] in (43) is derived as(𝑁−1
𝑛I

)
𝑝
𝑛I
int𝑝

𝑁−1−𝑛I
int , which completes the proof.

APPENDIX F
PROOF OF THEOREM 1

Considering the satellite visible probability identified in
Section III-A, the coverage probability is given by

𝑃cov = P[Φ(Avis) = 0] P[SINR ≥ 𝜏 |Φ(Avis) = 0]
+ P[Φ(Avis) > 0] P[SINR ≥ 𝜏 |Φ(Avis) > 0]

(𝑎)
= P[Φ(Avis) > 0] P[SINR ≥ 𝜏 |Φ(Avis) > 0] (44)

where (𝑎) follows because when there is no visible satellite,
i.e., Φ(Avis) = 0, the corresponding coverage probability
P[SINR ≥ 𝜏 |Φ(Avis) = 0] is zero. When Φ(Avis) > 0, the
coverage probability is derived as

P[SINR ≥ 𝜏 |Φ(Avis) > 0]

= E𝑅0

[
P

[
𝑃t𝐺 t,0𝐺rℎ0ℓ(x0)

𝑁0𝑊 + 𝐼 ≥ 𝜏
���� 𝑅0 = 𝑟

] ]
=

∫ 𝑟vis,max

𝑟min (𝜙)
P [ℎ0 ≥ 𝜔0 (𝐼 + 𝑁0𝑊)𝜏𝑟𝛼 | 𝑅0 = 𝑟] 𝑓𝑅0 (𝑟)𝑑𝑟

=

∫ 𝑟vis,max

𝑟min (𝜙)
E𝐼 [P [ℎ0 ≥ 𝜔0 (𝐼 + 𝑁0𝑊)𝜏𝑟𝛼 | 𝑅0 = 𝑟, 𝐼]] 𝑓𝑅0 (𝑟)𝑑𝑟

(𝑎)
≈

∫ 𝑟vis,max

𝑟min (𝜙)
E𝐼

[
𝑚∑︁
𝑖=1

(
𝑚

𝑖

)
(−1)𝑖+1𝑒−𝜈𝑖𝜔0 (𝐼+𝑁0𝑊 )𝜏𝑟𝛼

]
𝑓𝑅0 (𝑟)𝑑𝑟

=

𝑚∑︁
𝑖=1

(
𝑚

𝑖

)
(−1)𝑖+1

∫ 𝑟vis,max

𝑟min (𝜙)
𝑒−𝜈𝑖𝜔0𝑁0𝑊𝜏𝑟

𝛼

E𝐼 [𝑒−𝜈𝑖𝜔0𝐼 𝜏𝑟
𝛼 ] 𝑓𝑅0 (𝑟)𝑑𝑟

(45)

where (𝑎) follows from the approximated CDF of the channel
gain 𝐹ℎ𝑛 (𝑥) = 1 − ∑𝑚

𝑖=1
(𝑚
𝑖

)
(−1)𝑖+1𝑒−𝜈𝑖𝑥 [23]. From the

definition of the Laplace transform, i.e., L𝑋 (𝑠) = E𝑋 [𝑒−𝑠𝑋],
we obtain (25), which completes the proof.
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APPENDIX G
PROOF OF LEMMA 10

The Laplace transform is derived as

L̃𝐼 |𝑟0 (𝑠) = E
[
𝑒−𝑠𝐼 |𝑅0 = 𝑟0

]
(𝑎)
= EΦ


Φ̄(Avis∩A(𝑟0 )c )∏

𝑛=1
Eℎ𝑛

[
𝑒−𝑠𝑃t𝐺𝑛ℎ𝑛ℓ (x𝑛 )

]
(𝑏)
= exp

(
−𝜆

∫
x𝑛∈Φ̄(Avis∩A(𝑟0 )c )

(
1−Eℎ𝑛

[
𝑒−𝑠𝑃t𝐺𝑛ℎ𝑛ℓ (x𝑛 )

] )
𝑑x𝑛

)
(𝑐)
= exp

(
−𝜆

∫
x𝑛∈Φ̄(Avis∩A(𝑟0 )c )

(
1 − 1(

𝑠𝑟−𝛼

𝑚𝜔
+ 1

)𝑚 )
𝑑x𝑛

)
(𝑑)
= exp

©­­«−
2𝑁
𝜋

∫ 𝑟vis,max

𝑟0

(
1 − 1(

𝑠𝑟−𝛼

𝑚𝜔
+ 1

)𝑚 )
𝑟𝑑𝑟√︃

𝑣1 −
(
𝑣2 − 𝑟2)2

ª®®¬
= exp

©­­« −
2𝑁
𝜋

∫ 𝑟vis,max

𝑟0

𝑟𝑑𝑟√︃
𝑣1 −

(
𝑣2 − 𝑟2)2︸                             ︷︷                             ︸

Ω1 (𝑟vis,max )−Ω1 (𝑟0 )

+ 2𝑁
𝜋

∫ 𝑟vis,max

𝑟0

1(
𝑠𝑟−𝛼

𝑚𝜔
+ 1

)𝑚 𝑟𝑑𝑟√︃
𝑣1 −

(
𝑣2 − 𝑟2)2︸                                              ︷︷                                              ︸

Ω2 (𝑠,𝑟0 )

ª®®¬ (46)

where (𝑎) follows from the independence of channel gains
ℎ𝑛, (𝑏) follows from the Campbell’s theorem for the PPP Φ̄,
(𝑐) follows from the Laplace transform E[𝑒−𝑠ℎ𝑛 ] = Lℎ𝑛 (𝑠) =(
𝑚
𝑠+𝑚

)𝑚, and (𝑑) comes from

𝑑 |A(𝑟) |
𝑑𝑟

=
4𝑟 (𝑟E + 𝑎)√︃
𝑣1 −

(
𝑣2 − 𝑟2)2

. (47)

Using the derivative of Ω1 (𝑟), 𝑑
𝑑𝑟
Ω1 (𝑟) = 𝑟√︃

𝑣1−(𝑣2−𝑟2)2
, and

the definition of Ω2 (𝑠, 𝑟0) given in Lemma 10, the proof is
complete.
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