
 

 

Moment Generating Functions of Generalized Wireless 
Fading Channels and Applications in Wireless 

Communication Theory 
Ehab Salahat(1), Ali Hakam(2), Nazar Ali(3), and Ahmed Kulaib (3) 

 

(1) Student Member, IEEE. 
(2) United Arab Emirates University, Al-Ain, UAE. 

(3) Khalifa University of Science and Technology, Abu Dhabi, UAE 
 
 

 

Abstract—In this paper, new exact and approximate moment 
generating functions (MGF) expression for generalized fading 
models are derived. Specifically, we consider the η-λ-μ, α-μ, α-η-μ, 
α-ࣅ-μ, α-ࣄ-μ, and α-ࣅ-η-μ generalized fading distributions to 
derive approximate MGF expressions. The new expressions are 
very accurate and, in contrast to earlier results in the literature, 
avoid any complicated special functions, e.g. the Meijer-ऑ and Fox 
ऒ-functions. As such, the new MGF expressions allow easier and 
more efficient analytical manipulations, which also apply for their 
special cases such as the Rayleigh, Rice, and Nakagami-m fading. 
As an illustrative application, the average bit error rates for each 
of the fading models are evaluated using the new derived MGF 
expressions. The accuracy of the analytical results by using the 
numerically computed results as a basis of comparison as well as 
published results from the literature.  
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I. INTRODUCTION  
IRELESS SYSTEMS are inevitably subjected to 
different signal propagation impairments, such as the 
additive Gaussian noise, multipath fading, and 
shadowing, that predominantly degrade the wireless 

system performance that is mainly characterized by the bit error 
rates and ergodic channel capacity [1] [2].  

Examples of relatively recent reported generalized wireless 
fading distributions that gained a considerable attention from 
the research community include the ߤ–ߢ–ߙ and ߤ–ߟ–ߙ models 
[3] [4]. Those generalized models comprise many other fading 
models as special cases such as the κ – μ and η – μ [3] [5], were 
proven to provide better fitting for measurement data as 
compared to classical fading models [6] [7]. In order to evaluate 
the performance limits of wireless transmission with the 
different possible system configurations, moment generating 
function (MGF) based approaches were suggested to evaluate 
the error rates [8] [9], ergodic capacity [10], and amount of 
dispersion [8] to name a few. However, the aforementioned 
MGF approaches are either dependent on the exact knowledge 
of the MGF closed-form expression and this is sometimes a 
very challenging analytical problem, especially for generalized 
fading models as they are modeled using special functions. 
Moreover, the MGFs reported in the literature for generalized 
fading models (e.g. ߤ–ߢ–ߙ ,[12] [11] ߤ–ߙ and [3] ߤ–ߟ–ߙ) are 
given in terms of the Fox ℋ- or the Meijer-࣡ functions, which 
are computationally inefficient, or alternatively given in terms 

of their infinite series, and are not friendly for further 
manipulations. One approach to handle such a problem is to use 
approximations to the probability density function (PDF) prior 
to deriving wireless performance expressions. For example, the 
PDF of the generalized ߤ–ߟ–ߣ–ߙ was elegantly reduced 
(estimated) in [13] by recognizing the relation between this 
model and the ߟ −  fading model, and is represented as a ߤ
generalized gamma summands from which the MGF was 
derived. However, both of the exact and the approximate 
expressions are given in terms of the ࣡– and ℋ–functions. The 
other approach, which is adopted in this paper, is to estimate the 
integrand of the PDF’s Laplace transform. 

In this paper, the aim is to develop unified MGF expressions for 
the η-λ-μ, α-μ, α-η-μ, α-λ-μ, α-κ-μ, and α-λ-η-μ generalized 
models. The expressions are given using simple and efficient 
mathematical functions, mainly by exploiting the developed 
exponential approximation of the ݁ݔ[−ݔ] function from [3]. 
The resulting MGF expressions can be then easily used to 
derive the ݇௧ derivative of the MGF, given as ℳௗ

() (ݏ) =
(−1)ℰൣߛௗ ݁ି௦ఊ൧ where ߛ is the instantaneous signal-to-
noise ratio and ℰ[∙] denotes the expectation operation. Such 
expressions allow simple, direct and unconstrained evaluation 
of essential performance metrics such as the average bit error 
rates (for coherent as well as non-coherent digital modulation 
schemes) and the ergodic capacity. 

The rest of the paper is structured as follows. In section II, the 
considered generalized models are revisited along with the 
considered exponential approximation. In section III, the new 
unified MGF expressions are derived for the six generalized 
wireless fading distributions. Following to that, section IV 
illustrates some applications by demonstrating the suitability of 
the new derived MGF expressions to the study of wireless 
communication systems, where the average bit/symbol error 
rates are obtained using the derived MGF expressions and are 
compared with numerically computed ones as well as the results 
from the literature. Finally, the paper’s contributions are 
summarized in section V.  
 

II. PRELIMINARIES 
A. The Generalized Fading Models 
This section is dedicated to present a brief overview of the six 
considered generalized fading distribution models, namely the 
 models. In ߤ–ߟ–ߣ–ߙ and ,ߤ–ߣ–ߙ ,ߤ–ߟ–ߙ ,ߤ–ߢ–ߙ ,ߤ–ߣ–ߟ  ,ߤ–ߙ
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these models, the fading parameters ߤ ,ߟ ,ߣ ,ߙ and ߢ account 
respectively for the nonlinearity, the correlation between the in-
phase and quadrature components, the unequal power of these 
two components, the number of the multipath clusters, and the 
ratio of the power of the dominant components and the total 
power of the scattered waves, respectively [4] [6] [7]. In what 
follows, the symbols ߛ and ߛ denote the instantaneous signal-
to-noise-ratio and its average value, respectively.  

i. The ߤ–ߣ–ߟ Fading Model 
The PDF of the instantaneous SNR in the η–λ–μ generalized 
fading model, which was introduced in [14], is given by: 
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where ܫ௩(∙) is the modified Bessel function of the first type [15] 
[16], and the parameters ߛ ,ߤ ,ߟ ,ߣ and ߛ are as defined earlier. 
The PDF (1.a) can be rewritten in a compact form as: 
 

             ఊ݂(ߛ) =   (b.1)                 ,(ߛࣸ)௩ܫିଵ݁ିఉఊߛ߰
 
with ߰, ݒ ,ߚ, and ݉ are as given in table I, and the internal 
parameter ݀ ሚ = ෨ܾඥ(ߟ − 1)ଶ + ܿ ଶ, and ܾ෨ andߣߟ4 ̃ are given in table 
II. This model includes the λ–μ, the η–μ, the Hoyt, the Rice, the 
Nakagami-m, the Rayleigh, the Exponential, the Gamma, and 
the One-sided Gaussian models as special cases. 

ii. The ߤ–ߙ Fading Model 
The PDF of the ߤ–ߙ generalized fading is given by [11]: 
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                                       = ିଵ݁ିఉఊߛ߰ ഀ ,                            (2) 
 
with the parameters ߰, ݉ and ߙ are as given in table I, and ߛ, 
 are as defined earlier. This fading model is also ߤ and ߙ ,ߛ
known as the generalized gamma (or Stacy) distribution. This 
generalized model encompasses many other fading models as 
particular cases [3] such as the Nakagami-m and the Weibull 
models. It is worth mentioning that the ߤ–ߙ model itself is a 
special case of the generalized models discussed next.  
 

iii. The ߤ–ߢ–ߙ ,ߤ–ߣ–ߙ ,ߤ–ߟ–ߙ and ߤ–ߟ–ߣ–ߙ Fading Models 
These generalized fading models were first introduced in [7] [6] 
[4]. The models enclose the α – μ, the λ – μ, the η – μ, the ߢ – μ, 
the Weibull, the Hoyt, the Rice, the Nakagami-m, the Rayleigh, 
the Lognormal, the Gamma, the Exponential, and the One-sided 
Gaussian as special cases, by setting the fading parameters to 
their appropriate values (see [3] [5] for more details). The four 
generalized models can be written in one general form, which 
is given by [1]: 
 
                       ఊ݂(ߛ) = ିଵ݁ିఉఊߛ߰ ഀ  ఈ൯,                   (3)ंߛ௩൫ࣸܫ

TABLE I: GENERALIZED FADING MODELS PARAMETERS. 
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TABLE II: INTERNAL PARAMETERS OF THE GENERALIZED MODELS. 
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where ߰, ݉, ߙ ,ߚ, ݒ and ࣸ are given in table I, with the internal 
parameters ܿ̃, ෨ܾ, ℎ and ܪ being defined in table II, where ܫ௩( ∙ ) 
is the modified Bessel function of the first type [15], and ं =
0.5 for the ߤ–ߢ–ߙ fading and otherwise is equal to 1.  
 

B. The Exponential Approximation 
In this section, we re-exploit our previously proposed and 
developed exponential approximation, given in [17] as:  
 
                                ݁ି௭భ/ ഀ ≈ ∑ ࣵ݁ିࣶ௭ସ

ୀଵ  ,          (4) 
 
where ࣵ and ࣶ are fitting parameters as discussed and given 
in [3], table III. Note that extending (4) to ݁ି௦௭భ/ഀ function, 
where ݏ is constant, is straightforward. 
 

III. MOMENT GENERATING FUNCTIONS 
The moment generating function (MGF) of the fading PDF can 
be evaluated as [11]:  
 

       ℳఊ(ݏ) = ℰ[݁ି௦ఊ] = ∫ ఊ݂(ߛ)݁ି௦ఊ݀ߛஶ
  ,         (5) 

 
where ℰ[ ∙ ] is the expectation (averaging) process. In what 
follows, we will derive the MGF of each of the generalized 
fading models described in section II.A. 
 
i. The MGF of η–λ–μ Fading Model 
Substituting (1) into (5) yields: 
 

   ℳఊ(ݏ) = ߰∫ ஶߛ݀(ߛࣸ)௩ܫିଵ݁ି[ఉା௦]ఊߛ
  ,           (6) 

 
which can straightforwardly be evaluated in the closed-form: 
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Alternatively, and following a similar approach to that given in 
[18], one can see that ∫ ஶߛఉఊ݀ି݁{(ߛࣸ)௩ܫ௩ߛ}

  is the Laplace 
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using standard mathematical software (e.g. Mathematica). With 
some manipulations, (6) can be expressed without the need for 
any special function in the direct closed-form: 
 

                                ℳఊ(ݏ) =  ସఎ൫ଵିఒ
మ൯෨మ

൫[̃ା௦ఊ]మିௗ෨మ൯
൨
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.                       (8) 
 
Up to our knowledge, the expressions (7) and (8) are new. 
 
ii. The MGF of ߙ–μ Fading Model 
Following from (5), and substituting (2) with some change of 
variable, the MGF of the ߙ–μ fading model is given by: 
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ఈ
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and by utilizing the estimation (4), one can derive a simple 
MGF closed-form approximation of the ߙ–μ model, given by: 
 

 ℳఊ(ݏ) ≈ ∑ ࣵఉഋ[/ఈ]
[ࣶ௦ାఉ]෦(ఓ)

ସ
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Besides the novelty of the expression in (10), evaluating it is 
very computationally efficient, being a simple sum of scaled 
Gamma functions. The simplicity of (10) can also be observed 
by comparing it with the alternative solutions, e.g. eqn. (6) in 
[11], where the MGF is given by the Meijer-G function with 
convergence conditions as discussed in therein. 

iii. The MGF of ߤ–ߟ–ߣ–ߙ ,ߤ–ߣ–ߙ ,ߤ–ߟ–ߙ and ߤ–ߢ–ߙ Models 
The approximated moment generating functions of the three 
generalized fading models, namely the ߟ–ߣ–ߙ ,ߤ–ߣ–ߙ ,ߤ–ߟ–ߙ–
 models, is in the same format since they have same compact ߤ
form given in (3), with ं=1. However, with the ߤ–ߢ–ߙ model, 
the value of ं = 0.5. By using (3) in (5) and using (4), the 
unified MGF is found in a simple closed-form as given in (11) 
for each of the two cases of ं, at the top of this page. The new 
MGF expressions in (11) are novel. 

IV. AVERAGE ERROR RATES ANALYSIS 
The usefulness of the derived MGF novel expressions (7) – (8) 
and (10) – (11) was shown by evaluating the average symbol 
error rates (ASER) using the well-known MGF-approach. For 
various M-ary modulation schemes, such as M-ary pulse 
amplitude modulation (M-PAM), M-ary phase shift keying (M-
PSK), M-ary differential phase shift keying (M-DPSK), as well 
as the M-ary square quadrature amplitude modulation (M-
QAM) as [19]: 
 
              ௌܲாோ = ∑ ℰℓ ∫ ℳఊ ቀ
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where N, ℰℓ, ߠℓ, ߶, ܸ and Λ are given in table III [19].  

TABLE III: PARAMETERS SELECTION FOR ௌܲாோ EVALUATION (12). 
 

Scheme N ℰℓ  Λ ܸ ߶ ߠℓ  
M-PSK 1 1/0 0.5-  ߨ sinଶ(ܯ/ߨ)  ܯ)ߨ−   ܯ/(1
M-DPSK 1 2/ߨ  cos(ܯ/ߨ) 1 +Λ sinଶ(ܯ/ߨ)  ܯ)ߨ−    ܯ/(1
M-PAM 1 2(1 − −ଶܯ)/3 0 0.5-   ߨ/(ܯ/1  2/ߨ   (1

M-QAM 2 
4൫1−   ߨ/൯ܯ√/1

−ܯ)/1.5 0 0.5- 1) 
 2/ߨ

−4൫1− ൯ܯ√/1
ଶ

 4/ߨ  ߨ/

 
For the purpose of comparing and verifying the accuracy of our 
derived analytical MGF expressions, we use some of the well-
known and existing results from the literature as our reference. 
Specifically, the case of the binary PSK (i.e. M-PSK with M=2) 
is assumed here. 

Figs. 1 and 2 in [18] are regenerated using (11) and (12). The 
error rates for different ߤ-ߣ-ߟ fading scenarios are also 
illustrated in Fig. 3 using (7) and (8). By comparing (10) for the 
 μ fading model with the numerically obtained results for–ߙ
different scenarios, as shown in Fig. 4. One can clearly see for 
the different testing conditions, the derived expressions 
provided accurate plots that closely match the numerically 
computed ones. These test scenarios confirms the validity of 
our MGF expressions and their applicability to different fading 
scenarios.  

It can be said again here that the values of the fitting parameters 
in the approximation (4) can change based on the value of ߙ 
only. The approximation can be obtained for different values of 
 where some illustrative values are given in [1][3] for the ,ߙ
reader’s reference. Experimentally, four exponential terms are 
sufficient to provide excellent accuracy as shown in this study. 
 

V. CONCLUSION 
In this paper, new exact and approximate MGF expressions for 
the η-λ-μ, α-μ, α-η-μ, α-ࣅ-μ, α-ࣄ-μ, and α-ࣅ-η-μ generalized 
wireless fading distributions are derived with the aid of an 
approximation of the function [࢘࢞−]࢞ࢋ. The new expressions 
are very accurate and, in contrast to earlier results in the 
literature, avoid any complicated special functions such as the 
Meijer-ऑ or the Fox ऒ-function. As such, the new derived 
MGF expressions allow computationally efficient evaluation 
and easier analytical manipulation. The error rates for each of 
the fading models are evaluated to illustrate the applicability 
and the validity of the new MGF expressions. The accuracy of 
the derived analytical results was verified numerically and are 
supported by the existing results from the literature. The authors 
intend to test and apply these models to indoor environments 
using real time measurements [20].    
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