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1Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA
2IBM T.J. Watson Research Center, Yorktown Heights, NY

Abstract

When modeling geo-spatial data, it is critical to capture
spatial correlations for achieving high accuracy. Spatial
Auto-Regression (SAR) is a common tool used to model such
data, where the spatial contiguity matrix (W) encodes the
spatial correlations. However, the efficacy of SAR is limited
by two factors. First, it depends on the choice of contiguity
matrix, which is typically not learnt from data, but instead,
is assumed to be known apriori. Second, it assumes that the
observations can be explained by linear models.

In this paper, we propose a Convolutional Neural Net-
work (CNN) framework to model geo-spatial data (specifi-
cally housing prices), to learn the spatial correlations auto-
matically. We show that neighborhood information embed-
ded in satellite imagery can be leveraged to achieve the de-
sired spatial smoothing. An additional upside of our frame-
work is the relaxation of linear assumption on the data. Spe-
cific challenges we tackle while implementing our frame-
work include, (i) how much of the neighborhood is relevant
while estimating housing prices? (ii) what is the right ap-
proach to capture multiple resolutions of satellite imagery?
and (iii) what other data-sources can help improve the es-
timation of spatial correlations? We demonstrate a marked
improvement of 57% on top of the SAR baseline through the
use of features from deep neural networks for the cities of
London, Birmingham and Liverpool.

1. Introduction

Housing prices are important economic indicators of

wealth and financial well-being in an urban scenario. In

addition to house-specific metrics such as number of rooms

and floors, square footage, and age, the location of houses

also have been shown to affect valuations [15, 17]. Neigh-

bourhood effects include factors such as taxation policies,

availability of transportation and general amenities. In ad-

dition to housing prices, other socially and economically

relevant metrics such as crime-rates and pollution levels

[34, 28] also demonstrate spatial clustering. Hence, mod-

els designed to represent such geo-spatial data need to cap-

ture the underlying spatial correlations. Traditionally, spa-

tially dependent phenomena as those mentioned above are

described using Spatial Auto-Regressive (SAR) models.

The SAR model combines neighbourhood relationships

between samples, and observed variables in a linear formu-

lation to estimate spatially varying variables. The neigh-

bourhood relationships are encoded in the form of a spa-

tial contiguity matrix, and are often hand-designed with the

help of domain expertise. The choice of the spatial conti-

guity matrix can lead to a trial and error process and leaves

open the question of how to arrive at an optimal selection.

In this paper, we present a mechanism to learn the

neighborhood relationship patterns from the data. To do

so, we find that incorporating features for house loca-

tions learnt from satellite images is very effective. In re-

cent times, multiple commercial real-estate listings web-

sites [33, 32, 25, 30] store and display housing prices super-

imposed on satellite imagery from mapping services [20, 8].

The existence of such data makes large quantities of satel-

lite images available with associated house prices. Satellite

images provide a ‘bird’s eye view’ of a location and the

neighbourhood it is situated in. In addition to the top-down

appearance of a house, they also provide contextual infor-

mation about the immediate and larger area of surroundings.

We train Deep Convolutional Neural Networks (DCNNs)

to discriminate between images learnt at different spatial

scales corresponding to more and less affluent locations in

a given city. The features learnt in the process are combined

with house specific attributes through an estimator to arrive

at a price estimate. The main contributions of this paper are:

• We present a method where neighbourhood information

for geo-spatial samples is learnt implicitly through satel-

lite image features
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• We examine the impact of using neighbourhood infor-

mation at multiple geo-spatial scales on housing prices

estimation

The remainder of this paper is organized as follows. We

present the related work in Section 2. Our approach is de-

scribed in Section 3 with a brief review of the SAR model,

deep feature extraction, multi-modal fusion and price esti-

mation. In the subsequent Section 4, we characterize ex-

periments conducted for price estimation and describe the

data-sets, metrics and results. We discuss the results and

conclude the paper in Section 5.

2. Related Work
We overview the related works by broadly dividing them

into the following categories.

Housing Price Estimation: is a classical problem in the

field of spatial econometrics [4, 23, 18]. These methods

utilize attributes such as house square-footage, number of

rooms, number of floors, age of the house, garage space

etc. Extracting such detailed information for large data-

sets would be a tedious task. Moreover, the spatial depen-

dence of samples on each other is modelled using the SAR

model. The choice of spatial contiguity matrix (W) used

by the SAR model is hand designed (as opposed to learn-

ing from the data) either using Delaunay Triangulation, k-

Nearest Neighbours computation or Quasi-local correlation

functions [18, 5]. While the work in[7] learns both sam-

ple level and spatially smooth manifold features from hous-

ing price data, it incorporates only non-visual features and

needs fine-grained data such as type of heating and type of

air conditioning amongst others which might be difficult to

obtain on a large-scale for urban areas.

Applications of Street View Imagery: There has been

increased attention in the computer vision community on

the problem of urban scene analysis. Features learnt us-

ing Deep Convolutional Neural Networks [16, 27] have

been shown to be effective at representing complex con-

textual information by learning from large-scale data-sets.

[13, 22, 2, 3] investigated the correlation between visual

features extracted from the street view imagery of cities

and the high-level human perceptions on safety, wealth, di-

rections to ubiquitous city landmarks and housing prices.

These works have focused on utilizing street view images,

which provide rich visual information in the immediate

vicinity of houses, but do not describe a larger neighbour-

hood which is the case for satellite images.

Applications of Satellite Imagery: Satellite images have

been analysed in the context of road detection [21, 10], pre-

dicting poverty [11], geolocalization [31], object detection

[6] and tracking [19]. In this work, we utilize images from

this modality for the problem of housing price prediction.

We further study the impact of using satellite images from

different zoom levels on the accuracy of our models.

3. Estimating Housing Prices
3.1. Background: SAR model

SAR models are the traditional methods used to describe

geo-spatial data. Dependent variables (to be estimated) are

modelled as a weighted sum of dependent variable values of

geo-spatial neighbours and the sample’s observed variables.

Mathematically, the SAR model is represented as:

y = ρWy +Xβ + ε

ε ∼ N(0, σ2In)
(1)

y denotes the dependent variable of size n × 1, X of size

n×k represents the observed variables, W is the n×n row

normalized spatial contiguity matrix, ρ is the coefficient of

spatial dependence for y, β of size k × 1 signifies the influ-

ence of observed variables and ε is the error term modelled

as a zero mean Gaussian distribution.

The parameters of the model, ρ and β are learnt through

Maximum Likelihood estimation [18]. The choice of W de-

fines how neighbouring samples influence each other. W is

constructed as a sparse matrix where Wi,j = 1 for samples

i and j which are neighbours. One criterion for samples

to be neighbours is when they are within a distance of rW
of each other [5]. Another method of neighbourhood def-

inition has been designed through Delaunay Triangulation

[18]. Two samples which share an edge of a constructed

triangulation are considered to be neighbours. It is apparent

that the choice of W is highly dependent on domain exper-

tise.

Under the condition of ||ρW || < 1, equation 1 is re-

written as a power series expansion:

y =

∞∑

i=0

ρiW i(Xβ + ε) (2)

The equation can be interpreted as a decomposition of y
in terms of increasing powers of W . Since W denotes

spatial contiguity, terms with higher powers of W repre-

sent contribution of sample’s larger neighbourhoods in the

value of y. In this work, we aim to emulate the effect of

larger spatial neighbourhoods on dependent variables such

as house prices through satellite images covering progres-

sively larger geo-spatial areas, which provide a implicit and

rich modality of information, instead of a hand-designed

choice of W .

3.2. System Architecture

System architecture of the proposed method for estimat-

ing housing prices is presented in Figure 1. We detail the

various components of the system below.
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Figure 1: Satellite images of regions around test house samples are extracted from finer to coarser scales. Deep CNN features are extracted

to get neighbourhood information and are fused with house-level explanatory variables through concatenation. The joint description of a

house and it’s neighbourhood is used to estimate it’s price through regressors. Best viewed in color.

Data Sources: Our framework leverages multiple modal-

ities of data. (i) House Attributes: First, we construct

a database of house samples with latitude, longitude and

house attributes from publicly available sources [33, 32].

House attributes are composed of number of bedrooms,

bathrooms, reception rooms and floors. (ii) Satellite Im-
agery: Second, using the latitude and longitude coordinates,

we query satellite images centered around the coordinate

value [8, 20]. The images are sampled at different geo-

spatial resolutions, keeping the image sizes at a constant

value. The finer resolution scales result in images spanning

the extent of individual houses, whereas coarser resolution

images can span several city blocks or city districts.

Feature Extraction From Satellite Imagery: Our next

goal is to be able to extract features from the satellite im-

agery to capture the neighborhood effects. To this end, we

leverage Deep Convolutional Neural Networks (DCNNs).

However, through our experiments, we found that training

DCNNs directly for predicting housing prices is challeng-

ing. First, the models often converge slowly and overfit

for the training data. This is likely due to the noise in

the house prices and the aerial imagery not being able to

distinguish between houses with slight differences in their

asking prices. Therefore, to learn features that can gener-

alize well to other data-sets, we use transfer learning and

train the feature extraction pipeline for a similar but sim-

pler problem. Through our experiments, we found that the

binary classification problem of distinguishing between ex-

pensive and cheap houses, learns features that can gener-

alize with excellent accuracy to other data-sets and other

related tasks. The two classes we use for this task, are

the top δ% and the bottom δ% of the training data-set in

terms of price. Intuitively, expensive houses within a given

city tend to exist in neighborhoods with larger backyard and

green-space and water bodies such as ponds and swimming

pools, whereas cheaper houses tend to be located in com-

pact neighborhoods where the houses are adjacent to each

other with concrete and roads occupying more space. These

differences are apparent to the human eye in satellite images

and we designed the choice of class definitions with this fac-

tor in mind. This choice of design for the classes is intended

to enable networks to learn features which are sensitive to

price variations. Some examples of satellite images used for

training are provided in Figure 2.

Second, learning and combining features from different

zoom levels of satellite imagery is non-trivial. One straight-

forward approach is to use a single network that can process

all the zoom levels. However, our experiments showed that

this mixes up the features, rendering poor accuracy. There-

fore, as shown in Figure 1, we tackle this challenge by train-

ing a separate DCNN to learn features from each of the

six zoom levels. Further details on how the DCNNs were

trained are provided in Section 4.2.

House Price Estimation: The features extracted from the

deep networks are concatenated with the house attributes

into a feature vector xfeat. The resultant vector is then used

to regress on housing prices through an estimator. In our ex-

periments, we train multiple models, namely, (i) Linear, (ii)

Random Forest and (iii) Multi-layer Perceptron regressors

to understand and compare their effectiveness in estimating

the housing prices.

3.3. Point of Interest Data

In order to validate the hypothesis that satellite images

provide information regarding neighbourhoods for the task

of price estimation, we also consider point of interest data.

A point of interest is a location on a map which has eco-

nomic, social or cultural value. Examples include fire-

stations, restaurants, shopping centers, places of worship

and bus stops. Each point of interest x is hence described
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Figure 2: Examples of satellite images from the London city

sale data-set. For each zoom value, the top row is constituted

by examples from the top 10% of the data-set in terms of house

price and the bottom row contains examples from the bottom 10%.

Best viewed in color.

by latitude and longitude coordinates and a place type fx.

The set of all place types is denoted by P . In order to de-

scribe a house location h in terms of point of interest infor-

mation, we generate a feature vector ph,r which represents

the number of instances of place type within a distance r.

Mathematically,

ph,r = [ph,r,t] ∀ t ∈ P

ph,r,t = {|x| | dh,x < r , fx = t} (3)

where dh,x is the haversine distance between locations h
and x and |A| represents the cardinality of a set A. In our

experiments, we utilize ph,r as a feature vector describing

the neighbourhood of the sample h. The parameter r serves

as a hyper-parameter, for which the optimum value is de-

duced using cross-validation.

4. Experiments
4.1. Data-sets

House price data-set: We extract housing price listings

from a web-based source. Each listing entry consists of

house-level details such as house sale price or rental value

in Pounds sterling (£), latitude, longitude, number of bath-

rooms, number of bedrooms, number of floors, number of

reception rooms, listing status, street address, and a textual

description. We extract the first eight attributes for each

entry. The listing status for an entry can have two values,

‘rent’ or ‘sale’. Since the price ranges for the sale and rent

subsets do not overlap, we conduct our experiments sepa-

rately on each subset. For each of the data-sets, 10% of

the samples are randomly picked without substitution and

are designated as the test set and the rest are marked as the

City Sale Rent Place of Interest
London 43037 55700 227800

Birmingham 3212 - 50306

Liverpool 5004 - 32878

Table 1: Number of sale and rent listings, and place of interest

entries in city data-sets

training set.

We use data from the cities of London, Birmingham and

Liverpool. The details regarding the number of samples in

data-sets are presented in Table 1. We filter out samples

with the top and bottom 2 % of the data-sets in terms of

house sale price or rental value to prune out spurious or out-

lier entries. Due to relatively small number of samples in

the ‘rent’ subset for Birmingham and Liverpool, we do not

analyse rental price estimations for these cities. Distribution

of prices in the London city data-set are presented in Figure

3, with price statistics for all data-sets shown in Table 2.

Satellite Images: Using the house coordinates, we extract

RGB satellite images through the Google Maps [8] web ser-

vice. Google Maps allows queries in the format of (latitude,

longitude, zoom value, image size). Latitude and Longi-

tude specify the center location of the satellite image, zoom

values are integer values which specify the geo-spatial res-

olution of retrived images. In this experiment, we specify

queries with zoom values of 15, 16, 17, 18, 19 and 20, and

the image size is fixed at 600×600. The images cover ar-

eas of 3.175, 0.794, 0.199, 0.048, 0.012 and 0.003 sq. kms.

respectively. Considering the much larger average radius

of the Earth, which is approximately 6371.0 km, we ignore

effects of Earth’s curvature while calculating extents.

Point of Interest Data: In addition to satellite images,

we have extracted place of interest data from the Google

Places [9] web service. The Places service provides an in-

terface to query places and businesses of interest described

by tags within a specified radius from a latitude-longitude

pair. Tags act as classes of places that are desired, with the

service offering 86 pre-set tags.1 Examples of tags include

cafe, beauty salon, clothing store and post office. For each

tag, our queries cover the entire area of the cities in our data-

set. The total number of places of interest retrieved for each

city is listed in Table 1. We construct a ball tree for each tag

to facilitate efficient nearest-neighbour radial searches [14].

4.2. Deep Convolutional Neural Network training

In order to engineer features from the satellite images

data-set, we train DCNNs to classify samples into the top

and bottom δ% in terms of sale price in case of the ‘sale’

1The complete list of tags supported by the Google Places ser-

vice is available at https://developers.google.com/places/
supported_types.
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(a) Sale sub-set (b) Rent sub-set

Figure 3: Distribution of house price and rental values for the city of London in our collected data-set.

City Sale Rent
Mean

price

(£)

Median

price

(£)

Mean

price

(£)

Median

price

(£)

London 743217.10 599997.04 492.02 415.00

Birmingham 181958.31 154999.94 - -

Liverpool 151829.73 133252.35 - -

Table 2: Statistics of sale and rent prices in city data-sets.

subset and rental price in case of the ‘rent’ subset as ex-

plained in Section 3. The value of δ is set to 10 in our

experiments to strike a balance between requirements of

keeping reasonable number of samples available for train-

ing the DCNNs, and of keeping the image classes visually

distinguishable. The choice of classes is also designed such

that the features are sensitive to visual cues which distin-

guish between expensive and cheap houses and properties.

Due to the limited size of our housing price data-sets, we

fine-tune the Inception v3 [29] DCNN, which is a state-of-

the-art image classifier trained on the larger Imagenet data-

set [26]. Since both data-sets consist of natural images, the

generic convolutional features learnt in the early layers are

re-used and the final layers which are more task-specific are

re-learnt for the new task [12].

The final blocks of convolutional filters and fully con-

nected layers (mixed 8×8×2048b, logits) are re-trained,

with rest of layers kept fixed to the values learnt from Ima-

genet. The fully connected layer logits is modified to gener-

ate features of dimension 256 which act as input to the final

logistic classifier. In order to inhibit over-fitting on train-

ing data, we utilize L2 weight regularization, auxillary loss

layers, dropout and data-augmentation. The networks are

trained for 50 epochs. We have utilized network fine-tune

implementation for Inception v3 from the Tensorflow [1]

toolbox.

Considering the number of samples in our city data-sets

from Table 1, we train DCNNs for the London data-set

alone and conduct experiments on the efficacy of applying

them on Liverpool and Birmingham in Section 4.5. We train

six neural networks, one for each zoom value and keep a

fixed learning rate of 0.001. The train subset is split in

a 90:10 ratio into the classification train and test subsets.

Table 3 shows that the classification accuracy of these net-

works, is above 90% for houses on sale and between 83%

and 89% for houses put up for rent. Note that in this case,

the chance performance is 50%. The classification accu-
racy indicates that the networks are able to learn features
that can distinguish between expensive and cheaper houses
based on satellite images at each zoom level.

For feature-extraction, we remove the logistic classifier

layer from the neural network and the 256 dimensional fea-

tures are used for price estimation. DCNN models were

trained using Tensorflow [1] on a server configured with a

Xeon E5-2630 CPU and a single NVIDIA Titan X GPU.

4.3. Estimators

We use three different types of estimators on features to

regress on housing prices. The estimators used are (i) Lin-

ear, (ii) Random Forest (RF) and (iii) Multi-layer Percep-

tron (MLP) regressors. For RF regressors, we use 40 deci-

sion tree estimators. In the case of MLP regressors, we use 2

hidden layers with the number of nodes set as (500,100) for

the London data-set and (50,10) for Liverpool and Birming-

ham data-sets. These choices of hyper parameters were ar-

rived at by minimizing root mean square error on a random

90:10 train and validation split on the train subset. In order

to account for stochasticity in training of RF and MLP re-

gressors, we train 10 instances of the estimators and present

mean and standard deviation for the result metrics in Sec-

tion 4.5. All estimators were trained and tested using the

Scikit-learn [24] python library.

4.4. Metrics

We use two standard regression metrics to report the ef-

ficacy of our proposed method in estimating house sale or
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Figure 4: Mean Random Forest feature importance values as learnt for the London city sale dataset. The bars in blue represent Deep

Features (DF) of the zoom value 20 and the bars in red represent Housing Attributes (HA). Best viewed in color.

Zoom value 15 16 17 18 19 20
Classification accuracy : Rent subset 88.96% 87.34% 86.04% 85.52% 84.32% 83.59%

Classification accuracy : Sale subset 90.36% 90.30% 90.49% 90.10% 90.30% 90.69%

Table 3: Performance for classifying between the top and bottom 10 % of samples in terms of house prices for different zoom values in

the London data-set.

rental values: (i) Root Mean Square Error (RMSE) and (ii)

Coefficient of Determination, also known as R2. R2 mea-

sures how well the variation in data is explained by the re-

gression model. If we consider y to be a vector of true price

values and Y to be the estimated values,

R2 = 1− E[(Y − y)2]

E[(y − ȳ)2]
(4)

with ȳ representing the mean value of y. R2 can take on

values in the range (−∞, 1.0], with 1.0 indicating that the

model is able to perform a perfect fit on test data.

4.5. Results

Comparison with SAR and other base-lines: We com-

pare performance of the proposed method with the SAR

technique in Table 6. The observed variables matrix for

SAR, X from equation 1, consists of the house attributes

and point of interest features with r set to 2.0 km. We uti-

lize an implementation of SAR from [18]. The choice of

W is derived through Delaunay Triangulation (DT) and K-

Nearest Neighbour (KNN). For the proposed method, con-

catenation of house attributes and deep features from satel-

lite images from all zoom values is used to arrive at the

results though Linear, Random Forest and MLP estimators.

Even though the proposed method with Linear Regression

and SAR are both linear models, we arrive at superior re-

sults through the usage of neighbourhood information in

the form of satellite image features. Random Forest and

MLP regressors further improve upon the estimation per-

formance. A visualization of the comparison between pre-

dictions from the SAR model and the proposed method is

presented in Figure 5.

In Table 4, we compare our approach with [3], a recent

method which estimates housing prices through house at-

tributes (HA) and features extracted from street-level im-

ages through DCNNs. We use the data-set released by au-

thors of the above work. Real estate data for houses in

Method RMSE ($)
Bessinger & Jacobs [3] : HA 29365.00
Proposed Method : HA 32108.91 ± 14.80

Bessinger & Jacobs [3] : IF 53727.00

Proposed Method : IF 35188.72 ± 7.98
Bessinger & Jacobs [3] : HA + IF 28281

Proposed Method : HA + IF 24439.64 ± 11.63

Table 4: Comparison of results for Housing price regression on

the Fayette County house price data-set from [3]. Superior perfor-

mance is indicated by lower RMSE values. HA and IF stand for

House Attributes and Image Features respectively. IF for [3] are

extracted from street view imagery whereas the proposed method

utilizes satellite imagery.

Fayette County, Kentucky, USA are provided with details

regarding house location and attributes such as Tax rates,

Acres and Total Rooms along with a train-test split. As the

networks used for feature extraction in [3] are fine-tuned

versions of the VGG-16 network [27], we also utilize the

same architecture with training procedure as described in

Section 4.2. We demonstrate superior performance through

a 13.5% reduction in RMSE through using HA + IF fea-

tures. In the case of using Image Features, which in our

case are the features extracted through DCNNs on the satel-

lite images extracted at different zoom values, we achieve

a larger reduction of 34.5% in RMSE. The results show

that features through multi-scale satellite imagery are able

to better explain housing price variations. Random Forest

regressors with 720 estimator trees were used to arrive at

this result.

Effect of Feature Combinations: We also experiment

with using different feature combinations at the feature fu-

sion stage of our approach. We leverage three classes of

features: (i) deep features (DF) extracted from satellite im-

ages, (ii) house attributes (HA), and (iii) place of interest

(POI) features. The results in terms of RMSE and R2 are

listed in Table 7. HA features are unable to capture price
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Figure 5: Top: Logarithm of SAR model predicted sale housing

prices for the London city data-set is shown as a scatter plot. Bot-

tom: Logarithm of proposed method predicted sale housing prices

for the same data-set with House Attribute and Deep Features us-

ing Random Forest regression.

variations, as they characterise the house itself, but not its

neighborhood. Estimators using DF or POI features, which

capture the neighborhood information, are able to improve

the prediction. When we combine HA with DF or POI fea-

tures for estimation, a large improvement over the previ-

ous configurations is seen. This observation indicates that
house level attributes and neighborhood level features such
as DF and POI are complementary in capturing price vari-
ations. An additional observation is that combining DF and

POI features does not lead to any significant advance in

price estimation over the case where either of them are uti-

lized, demonstrating that DF and POI features are highly
correlated in the context of price estimation. The results

also highlight the difference between ‘sale’ and ‘rent’ sub-

markets. For rental properties, HA by itself is able to ex-

plain the variation of prices, in contrast to the houses put up

Deep Feature
Zoom Values

London
Rent Sale

RMSE (£)
HA + DF (20) 81.20 ± 0.71 156821.14 ± 1534.30

HA + DF (19, 20) 80.65 ± 0.47 157200.04 ± 1617.62

HA + DF (18, 19, 20) 79.14 ± 0.63 155761.95 ± 1512.96

HA + DF (17, 18, 19, 20) 79.34 ± 0.54 156010.72 ± 1209.60

HA + DF (16, 17, 18, 19, 20) 79.59 ± 0.24 144524.24 ± 1050.83

HA + DF (15, 16, 7, 18, 19, 20) 79.78 ± 0.63 127303.06 ± 1634.04
R2

HA + DF (20) 0.8905 ± 0.0019 0.8647 ± 0.0026

HA + DF (19, 20) 0.8925 ± 0.0012 0.8640 ± 0.0028

HA + DF (18, 19, 20) 0.8960 ± 0.0016 0.8665 ± 0.0026

HA + DF (17, 18, 19, 20) 0.8955 ± 0.0014 0.8661 ± 0.0021

HA + DF (16, 17, 18, 19, 20) 0.8948 ± 0.0006 0.8851 ± 0.0016

HA + DF (15, 16, 7, 18, 19, 20) 0.8946 ± 0.0008 0.9108 ± 0.0022

Table 5: RMSE and R2 for different neighbourhood zoom val-

ues with Random Forest regression. Lower values for RMSE

and higher values for R2 indicated superior performance with the

method with best results highlighted in bold. HA and DF stand for

House Attributes and Deep Features respectively.

for sale. This indicates that transactions carried out for rel-
atively short-term usage of houses place more value on the
amenities of the house itself rather than its neighborhood.
We have also visualized the relative frequency of feature

selection with Random Forest estimators in Figure 4. HA

features are the most selected from amongst the features,

but as can be seen in Table 7, adding DF features leads to

improvement in estimator performance.

Effect of neighbourhood size: We next conduct exper-

iments on the effects of including information from pro-

gressively larger neighbourhoods of house samples through

satellite images. The zoom values for Google Map queries

are integer values ranging from 15 to 20. We present RMSE

and R2 results using the Random Forest estimator for the

London data-set in Table 5. The results show that the pro-
posed method is able to better predict price by including
larger neighbourhood contexts. This is a significant ob-

servation, because most often, the spatial contiguity matrix

specified in the SAR model only captures local neighbor-

hood information, which is not sufficient to capture all the

spatial relationships.

Deep feature extraction across cities: As described in

Section 4.2, the DCNNs were trained using data from Lon-

don data-set due to limited number of samples in Birming-

ham and Liverpool data-sets. From Table 6, we can observe

that the features extracted through networks trained on a

specific data-set are effective in estimating housing prices

in a different city. This implies that satellite image feature
extraction is generic across cities in the same broad geo-
graphical region, the British Isles. Further studies could ex-

amine how effective such feature extraction schemes would

be for cities in more contrasting regions.
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Method London Birmingham Liverpool
Rent price Sale price Sale price Sale price

RMSE (£)

SAR (DT) 159.18 282989.82 52739.86 58075.00

SAR (K-NN, K = 10) 159.85 284324.75 58494.00 53249.85

Linear 143.75 259411.88 38316.55 39395.46

Random Forest 80.04 ± 0.51 127328.66 ± 1204.43 27868.22 ± 968.52 31412.19 ± 565.78

MLP 74.52 ± 3.10 116639.78 ± 2941.28 20837.38 ± 140.60 29690.90 ± 408.67
R2

SAR (DT) 0.5794 0.5596 0.5884 0.5231

SAR (K-NN, K=10) 0.5759 0.5554 0.5804 0.5957

Linear 0.6569 0.6298 0.7824 0.8165

Random Forest 0.8936 ± 0.0014 0.9108 ± 0.0017 0.8848 ± 0.0081 0.8833 ± 0.0042

MLP 0.9077 ± 0.0078 0.9251 ± 0.0038 0.9356 ± 0.0009 0.8958 ± 0.0029

Table 6: RMSE and R2 for SAR and proposed housing price prediction models. Lower values for RMSE and Higher values for R2

indicated superior performance with the method with best results highlighted in bold.

Method London
Rent price

RMSE (£)

Sale price

RMSE (£)

Rent price

R2
Sale price

R2

Random Forest Regression
HA 130.10 ± 0.49 366954.09 ± 130.14 0.7190 ± 0.0020 0.2594 ± 0.0005

POI 200.79 ± 0.06 202220.03 ± 1551.227 0.3307 ± 0.0004 0.7751 ± 0.0034

DF 136.59 ± 0.63 213617.63 ± 1472.42 0.6903 ± 0.0029 0.7490 ± 0.0035

HA + POI 72.24 ± 0.69 108962.85 ± 769.53 0.9133 ± 0.0017 0.9347 ± 0.0009
HA + DF 80.04 ± 0.51 127328.66 ± 1204.43 0.8936 ± 0.0014 0.9108 ± 0.0017

DF + POI 135.72 ± 0.51 211056.00 ± 849.26 0.6942 ± 0.0023 0.7550 ± 0.0020

Multi-layer Perceptron Regression
HA 204.48 ± 0.49 373608.36 ± 67.50 0.3059 ± 0.0033 0.2323 ± 0.0003

POI 183.93 ± 3.69 335122.36 ± 4552.90 0.4382 ± 0.0223 0.3822 ± 0.0168

DF 129.38 ± 2.74 190841.13 ± 1343.46 0.7220 ± 0.0119 0.7997 ± 0.0028

HA + POI 116.91 ± 3.68 213356.72 ± 5795.78 0.7729 ± 0.0142 0.7495 ± 0.0137

HA + DF 74.52 ± 3.10 116639.78 ± 2941.28 0.9077 ± 0.0078 0.9251 ± 0.0038
DF + POI 128.07 ± 1.63 190945.77 ± 1443.09 0.7277 ± 0.0069 0.7995 ± 0.0030

Table 7: RMSE and R2 for different feature combinations with Random Forest and Multi-layer perceptron regression. Lower values for

RMSE and higher values for R2 indicated superior performance with the method with best results highlighted in bold. HA, POI and DF

stand for House Attributes, Point of Interest and Deep Features respectively.

5. Discussion and Conclusion

From the experiments, we can see that joint representa-

tions of houses in terms of their individual attributes (HA)

and the neighbourhood around them improves the accuracy

of housing price prediction. This result is reinforced by con-

clusions from earlier works such as [7]. PoI and DF features

have been consistently shown to be positively correlated in

their effects on house prices across estimators and city data-

sets. Hence, multi-scale DCNN-derived features from pub-

licly available satellite imagery could be used in place of

PoI data, which are usually of proprietary nature and require

explicit annotations regarding local businesses.

As we can see from the results, utilizing deep fea-

tures from satellite images at different geo-spatial resolu-

tions leads to comparable or superior performance com-

pared to using either latitude-longitude information explic-

itly in SAR models or utilizing Point of interest features.

Also, employing information from images of larger areas

surrounding house samples leads to improved accuracy in

housing price estimation.
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