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Abstract

This work addresses camera selection, the task of pre-
dicting which camera should be “on air” from multiple can-
didate cameras for soccer broadcast. The task is challeng-
ing because of the scarcity of learning data with all candi-
date views. Meanwhile, broadcast videos are freely avail-
able on the Internet (e.g. Youtube). However, these videos
only record the selected camera views, omitting the other
candidate views. To overcome this problem, we first intro-
duce a random survival forest (RSF) method to impute the
incomplete data effectively. Then, we propose a spatial-
appearance heatmap to describe foreground objects (e.g.
players and balls) in an image. To evaluate the performance
of our system, we collect the largest-ever dataset for soc-
cer broadcasting camera selection. It has one main game
which has all candidate views and twelve auxiliary games
which only have the broadcast view. Our method signif-
icantly outperforms state-of-the-art methods on this chal-
lenging dataset. Further analysis suggests that the improve-
ment in performance is indeed from the extra information
from auxiliary games.

1. Introduction
The sports market in North America was worth 69.3 bil-

lion in 2017 and is expected to reach 78.5 billion by 2021.
Our work focuses on soccer game which has about 40%
shares of the global sports market. As the biggest reason
for market growth, media rights (game broadcasts and other
sports media content) are projected to increase from 19.1
billion in 2017 to 22.7 billion in 2021 [1]. Computational
broadcasting is a promising way to offer consumers with
various live game experiences and to decrease the cost of
media production. Automatic camera selection is one of the
key techniques in computational broadcasting.

Machine learning has produced impressive results on
view point selection. These include automatic [7, 33, 32,
22, 8] and semi-automatic [16] methods from various in-
puts such as first-person cameras, static and pan-tilt-zoom
(PTZ) cameras. The underlying assumption of these meth-

Figure 1: Learning camera selection from Internet videos.
The goal of our work is to select one camera from multi-
ple candidate cameras for sports broadcast. The ideal way
is trained from a dataset that has all candidate views such
as the main game shown in the figure. However, it is hard
to acquire this kind of data (including candidate videos and
broadcasting videos) because they are generally not avail-
able to researchers (owned by broadcasting companies).
Our method uses publicly available Internet videos as aux-
iliary data to train a model with state-of-the-art prediction
accuracy. Best viewed in color.

ods is that large training data are easily available.
Motivation For sports camera selection, amounts of

large training data are not directly available. As a result,
most previous methods are trained on a single game (main
game) because researchers can not acquire the data that are
owned by broadcasting companies [6, 8]. On the other hand,
broadcast videos are widely available on the Internet (e.g.
Youtube). These games (auxiliary games) provide a large
number of positive examples. Using these Internet videos
can scale up the training data with negligible cost.

In practice, arbitrarily choosing auxiliary games does not
necessarily improve the performance, when main games are
from minor leagues while auxiliary games are from pre-
mier leagues. So, the main game and the auxiliary games
should be similar in terms of camera locations and the
action of players. Although a universal camera selection
model should be the final goal, a model for a specific team
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is also valuable. For example, teams in minor leagues can
reduce the cost of live broadcasting for host games. Tar-
geting these applications, we constrain the main games and
auxiliary games to be from the same stadium at the current
stage.

The main challenge of using auxiliary games is the miss-
ing views in the video composition. Omitting non-broadcast
views is the default setting for TV channels and live streams
on the Internet. As a result, the amount of complete and
incomplete data is highly unbalanced. To overcome this
challenge, we introduce the random survival forest method
(RSF) [24] from statistical learning to impute the missing
data. To the best of our knowledge, we are the first to use In-
ternet videos and RSF to solve camera selection problems.

The second challenge is from the potentially negative im-
pact of background information in auxiliary games. Aux-
iliary games are very different in lighting, fan celebration
and stadium decoration. In practice, camera operators are
trained to capture interesting players and keep the ball visi-
ble [30]. Inspired by this observation, we propose a spatial-
appearance heatmap to represent foreground objects loca-
tions and their appearances jointly.

Our main contributions are: (1) Using Internet data and
random survival forests to address the data scarcity prob-
lem in camera selection for soccer games. (2) Propos-
ing a spatial-appearance heatmap to effectively represent
foreground objects. With these novel techniques, our
method significantly outperforms state-of-the-art methods
on a challenging soccer dataset. While we present results
on soccer games, the technique developed in this work can
apply to many other team sports such as basketball and
hockey.

2. Related Work
Data Scarcity and Imputation The availability of a

large quantity of labeled training data is critical for suc-
cessful learning methods. This assumption is unrealistic for
many tasks. As a result, many recent works have explored
alternative training schemes, such as unsupervised learning
[44], and tasks where ground truth is very easy to acquire
[2]. We follow this line of work with additional attention to
data imputation approaches.

Data imputation fills in missing data from existing data
[14]. The missing data falls into three categories: missing
at random (MAR), missing completely at random (MCAR)
and missing not at random (MNAR). The missing data in
our problem is MNAR because the missing data is related
to the value itself (all missing data is unselected by human
operators). Our solution is adapted from the state-of-the-art
random survival forests method [24, 34].

Camera Viewpoint Prediction In single camera sys-
tems, previous techniques have been proposed to predict
camera angles for PTZ cameras [7] and to generate natural-

looking normal field-of-view (NFOV) video from 360o

panoramic views [33, 32, 22]. In multi-camera systems,
camera viewpoint prediction methods select a subset of all
available cameras [39, 12, 35, 3, 17, 18, 43, 40, 26]. In
broadcast systems, semi-automatic [16] and fully automatic
systems have been developed in practice. For example,
Chen et al. [6] proposed the automated director assistance
(ADA) method to recommend the best view from a large
number of cameras using hand-crafted features for field
hockey games. Chen et al. [8] modeled camera selection as
a regression problem constrained by temporal smoothness.
They proposed a cumulative distribution function (CDF)
regularization to prevent too short or too long camera du-
rations. However, their method requires a real-valued label
(visual importance) for each candidate frame. Our problem
belongs to multiple dynamic camera systems.

Video Analysis and Feature Representation Team
sports analysis has focused on player/ball tracking, activity
recognition, localization, player movement forecasting and
team formation identification [23, 15, 42, 29, 36, 27, 19].
For example, activity recognition models for events with
well defined group structures have been presented in [23].
Attention models have been used to detect key actors [31]
and localize actions (e.g. who is the shooter) in basketball
videos. Gaze information of players have been used to se-
lect proper camera views [3] from first-person videos.

Hand-crafted features [7, 15], deep features [37] and se-
mantic features [5] have been used to describe the evolution
of multi-person sports for various tasks. Most deep features
are extracted from the whole image using supervised learn-
ing [8]. On the other hand, object-level (e.g. image patches
of players) features are difficult to learn because of the lack
of object-level annotations. Our object appearance features
are learned from a siamese network [9] without object-level
annotations.

3. USL Broadcast Dataset
We collect a dataset from United Soccer League (USL)

2014 season. The dataset has one main game and twelve
auxiliary games. The main game has six videos. Two videos
are from static cameras which look at the left and right part
of the playing field, respectively. Three other videos are
from pan-tilt-zoom (PTZ) candidate cameras (1280× 720).
Among them, one camera was located at mid-field, giving
an overview of the game. The other two cameras are lo-
cated behind the left and right goals respectively, providing
detailed views. Figure 2 visualizes the camera locations and
shows image examples. The sixth video is the broadcast
video composited by a professional director from the three
PTZ videos. We manually remove commercials and “re-
plays” and synchronize this video with other videos. The
length of the main game is about 94 minutes. Our system
only uses information from the three PTZ cameras to select



Dataset Year Game type Length (min.) # Game # Camera Camera type Ground truth

APIDIS [12] 2011 basketball 15 1 5 static non-prof.
ADS [6] 2013 field hockey 70 1 3 PTZ prof.
OMB [16] 2013 basketball ∼ 16 1 2 PTZ non-prof.
VSR [41] 2014 soccer 9 1 20 static non-prof.
CDF [8] 2018 soccer 47 1 3 PTZ hybrid
USL (Ours) 2018 soccer 94 + 108 1+12 3 PTZ prof.

Table 1: Dataset comparison. In our dataset, the 108 minutes data (column four) is sparsely sampled from total 1, 080
minutes data.

Figure 2: Camera settings of the main game and image
examples. Blue: static cameras; red: PTZ cameras.

the broadcast camera. Static cameras are only used in one
of the baselines.

Twelve auxiliary games are collected from Youtube.
These games are hosted in the same stadium as the main
game. They are typically 1.5 hours long. Unlike the main
game, each auxiliary game only has a composited broad-
cast video (640× 360). Figure 1(bottom left) shows image
examples from the auxiliary games.

In the main game, we manually annotate the ball loca-
tions on the static cameras and two detailed view PTZ cam-
eras, at 1fps. In the auxiliary games, we manually check
the classified camera IDs around detected camera transi-
tion points (details in Section 5). In all games, we detected
bounding boxes of players and balls using a method similar
to [11]. Table 1 compares our dataset with previous camera
view selection datasets. To the best of our knowledge, ours
is the first dataset with dense annotations for such long dy-
namic multi-camera image sequences. We put more dataset
details in the supplementary material.

4. Method
4.1. Problem Setup

We have two sources of data. One is from complete
games which have videos and selections. Another is from
auxiliary games which only have one broadcast video and
selections. We model the problem as a classification task
given hybrid data D = {Dcom, Dincom} in which Dcom is
the complete data and Dincom is the incomplete data. Let

Dcom = {Xcom, Y } where Xcom is the feature representa-
tion of all candidate views and Y ∈ {1, 2, 3} is the corre-
sponding label. X can be an arbitrary feature representation
for an image. Let Dincom = {{Xobs, Xmis}, Y } where
Xobs is the observed data andXmis is the missing data (e.g.
unrecorded views). Our goal is to learn a classifier from
the whole data to predict the best viewpoint from multiple
candidate viewpoints (e.g. an unseen Xcom):

yt = f(xt). (1)

We do instantaneous single frame prediction and xt is a fea-
ture representation from all camera views. During training,
xt is either a raw feature extracted from the main game, or a
raw plus imputed feature from an auxiliary game. We only
test on the main game.

Our primary novelty is to use auxiliary data from the In-
ternet which augments the training data with lots of positive
examples. On the other hand, this choice creates consider-
able challenges because of the missing data.

Assumptions and Interpretation Our method has three
assumptions. First, Xinputed = {Xobs, X̂mis} (X̂ means
the inferred values) and Xinputed has a similar distribution
as Xcom. This assumption is reasonable since both types of
games are collected from the same stadium with the same
host team. Also, we expect the broadcast crew to have con-
sistent behaviors across games to some extent. Second, im-
ages from different viewpoints are correlated at a particu-
lar time instance. Camera operators (from different view-
points) cooperate to tell the story of the game. For example,
often the focus of attention of the cameras is the same (i.e.
joint attention). In this case, the observed data Xobs has
a strong indication of the missing data Xmis. Third, our
method models the viewpoint prediction problem as single
frame prediction problem without using temporal informa-
tion. Single-frame prediction is the focus of our work. We
will briefly show the adaptation of our method to a temporal
model in the experiment.

4.2. Random Survival Forest

With these assumptions, we first impute missing data in
training. We randomly draw imputed data from the joint



Figure 3: Main components of our method. (a) Feature extraction. Two CNNs are used to extract whole-image and fore-
ground features. (b) Training process. We first extract features from both main game and auxiliary game frames. The feature
of auxiliary games is imputed for the missing data. Both data are then used to train the final model. (c) Data imputation
(Section 4.2). Best viewed in color.

Figure 4: A two-level random survival tree. Each row rep-
resents a three-dimensional feature. The first dimension of
the fifth feature is imputed. τ is the decision boundary. La-
bels are omitted for clarity. Best viewed in color.

posterior distribution of the missing data given the observed
data [38].

Xmis ∼ p(Xmis|Xobs, Y ) (2)
with

p(Xmis|Xobs, Y ) =

∫
p(Xmis|Xobs, θ)p(θ|Xobs, Y )dθ,

(3)
where θ is the model which is decision trees in our method
and Y is the label. Please note this process is in training
phase so that Y is available. However, it is often difficult
to draw from this predictive distribution due to the require-
ment of integrating over all θ. Here we introduce random
survival forests to simultaneously estimate θ and draw im-
puted values.

A random survival forest (RSF) is an ensemble of ran-
dom survival trees, which was originally designed to iden-
tify a complex relationship between long-term survival and

attributes of persons (e.g. body mass, kidney function and
smoking). Each decision tree recursively splits training data
into sub-trees until the stopping criteria is satisfied. The
statistics (e.g. mean values of labels for regression) of train-
ing examples in the leaf nodes are used as the prediction
[10]. A survival tree imputes missing data as below.

1. In internal nodes, only observed data is used to opti-
mize tree parameters such as the decision boundary by
minimizing the cross entropy loss. This step estimates
the model θ from the distribution p(θ|Xobs, Y ) in (3).

2. To assign an example with missing data to the left
or right sub-trees, the missing value is “imputed” by
drawing a random value from a uniform distribution
U(x|a, b) where (a, b) are the lower/upper bounds of
Xobs of the target dimension. This step draws samples
from p(Xmis|Xobs, θ) in (3).

3. After the node splitting, imputed data are reset to miss-
ing and the process is repeated until terminal nodes are
reached.

4. Missing data in terminal nodes are then imputed using
non-missing terminal node data from all the trees. For
categorical variables, a majority vote is used; a mean
value is used for continuous variables.

Figure 4 shows the data imputation in a two-level ran-
dom survival tree. Specific details of RSF can be found
in [24, 34]. With the RSF method, we impute the miss-
ing data with substituted values to obtain the new data
{Ximputed, Y }. To the best of our knowledge, we are the
first to introduce RSF from statistical learning to solve vi-
sion problems. Besides, we will experimentally show that
it outperforms other alternatives in our problem.



Figure 5: Spatial-appearance heatmap. Left: one player
on a 4 × 4 grid; right: an example of detected objects and
corresponding heatmap.

4.3. Foreground Feature

Besides the whole-image feature from a CNN, we also
represent foreground objects in an image using a spatial-
appearance (SA) heatmap which encodes object appear-
ances in a quantized image space. First, we quantized the
image space into a 16 × 9 grid. Then, we represent the lo-
cation of each player using five points (four corners and one
center point) of its bounding box. Each point contributes
“heat” to its located and neighboring cells. In the conven-
tional heatmap, the “heat” is pre-defined values such as the
number of players [7]. In our heatmap, the “heat” is the
object appearance feature that is learned from the data.

Figure 5 (left) illustrates how the SA heatmap is com-
puted on a 4×4 grid. The bottom right corner of the bound-
ing box contributes the weighted “heats” to C1, C2, C3 and
C4. The weights are the barycentric coordinates of the cor-
ner with respect to four cell centers. We use the heatmap as
input to train a binary classification CNN and its second-last
fully connected layer is used as the foreground feature.

Appearance Feature Learning Given the detected
bounding boxes of the objects [11], we use a siamese net-
work [9] to learn object appearance features. We train the
siamese network using the player tracking information be-
tween frames and extract features from image patches of
players in testing. To train the network, we obtain positive
(similar) examples from tracked players [28] in consecutive
frames (e.g. from frame 1 to frame 2). The underlying as-
sumption is that the tracked players in consecutive frames
have similar appearance, pose and team membership. Any
player not part of a track is likely to be dissimilar. The
siamese network minimizes the contrastive loss [20]:

Lc(xi,xj , yi,j) =
yi,jD(xi,xj)

2 + (1− yi,j) max (δ −D(xi,xj), 0)2,
(4)

where xi and xj are sub-images, yi,j are similar/dissimilar
labels, D(.) is the L2 norm distance and δ is a margin (1
in this work). The loss function minimizes the distance be-
tween paired examples when yi,j = 1, and maximizes the
distance according to the margin δ when yi,j = 0.

5. Implementation

Label Estimation of Internet Videos We pre-process In-
ternet videos for training labels. Given a raw video, we first
detect shot boundaries using [13]. We call the consecutive
frames at the shot boundary boundary frames for simplic-
ity. Given boundary frames, we train a CNN to classify
their camera IDs to four categories (i.e. left, middle, right
and other-view). The other-view images are commercials,
replay logos or frames that are captured from other view-
points. To train the camera-ID CNN, we first randomly
sample 500 training frames from each PTZ video of the
main game. For the other-view, we sample the same num-
ber of images from a non-sports video. Then, we apply the
trained model to classify boundary frames. The classifica-
tion result is manually checked and refined. The refined
boundary frames are used to re-train the CNN. This process
is repeated for each video. After five games, the prediction
accuracy is about 85%. We found this performance is suffi-
cient to lighten the workload of human annotation. Initial-
ized by the CNN then manually corrected, we collect 1, 634
pairs of boundary frames from twelve videos.

Feature Extraction Each frame is represented by two
types of features: the whole-image feature and the fore-
ground feature. The whole-image feature (16 dimensions)
is from a binary classification CNN to classify if an image is
selected or not by human operators. The foreground feature
(16 dimensions) is described in Section 4.3. We balance the
number of positive and negative examples in training. For
the main game, we choose the positive candidate view and
one of the negative camera views at sampled times. For the
auxiliary games, we randomly sample negative examples
from the main game.

Data Imputation and Final Model Training In data im-
putation, we randomly sampled 4, 000 frames around cam-
era shot boundaries (within 2 seconds). The imputed data
are verified by a model trained from the complete exam-
ples (about 2, 100 data passed verification). We use the ran-
dom forest method to fuse features from all candidate cam-
eras since it is relatively easy to train. In the final model,
about 6, 000 examples are uniformly downsampled (1fps)
from the main game. The dimension of the feature is 96
(16 × 3 × 2 for two types of features from three candidate
cameras). The parameters of the random forest are: tree
number 20, maximum depth 20 and minimum leaf node
number 5. More details of the implementation are provided
in the supplementary material.

6. Evaluation

We evaluate our method on the the USL dataset. To ef-
fectively use the data, we test on the main game using 3-fold
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Figure 6: Prediction accuracy with and without auxiliary
games (grouped by events).

leave-one-sequence-out cross-validation. We use the cam-
era selection from human operators as the ground truth and
report the classification accuracy. We also report the predic-
tion accuracy on the dataset from [8] (the first 4 datasets in
Table 1 are not publicly available).

For comparison, we also implement six baselines. Base-
line 1: constantly select one camera with the highest prior in
the training data. This baseline always selects the overview
(middle) camera. Baseline 2: select the camera that is clos-
est to the human-annotated grounded truth location of the
ball. Baseline 3: predict the camera using the team oc-
cupancy map introduced in [4]. The team occupancy map
describes the player distribution on the playing ground us-
ing tracked players from the static cameras. Automated
director assistant (ADA) [6]: it learns a random forest
classifier using player distribution and game flow at a time
instance. Our implementation augments temporal informa-
tion by concatenating the features in a 2-second sliding win-
dow, making the predictions more reliable. C3D [37]: it is a
deep CNN modified from the original C3D network. First,
images from three cameras pass through the original C3D
network, separately. Then their fc6 activations are concate-
nated and fed into a fully connected network (1024×32×3)
with Softmax loss. RDT+CDF [8]: it uses the recurrent
decision tree (RDT) method and a cumulative distribution
function (CDF) regularization to predict camera selections
in a sequence. Because [8] requires real-valued labels in
training, we only compare with it on the dataset from [8].

6.1. Main Results

Table 2 shows the main results of our method. First, aux-
iliary data provides significant performance improvement
(about 9.4%). The improvement is from two stages: fea-
ture extraction and data imputation. Figure 6 shows de-
tails of the improvement by separating these two stages and
grouping the frames into different events. Overall, the main
improvement is from the feature extraction stage (about
6.6%). Data imputation provides an extra 2.8% improve-
ment, which is significant in “throw in” and “general play”.
Second, the foreground feature improves performance, es-
pecially when the auxiliary games are used. The main
reason might be that the foreground feature excludes the

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
(a) RDT + CDF

Left

Middle

Right
Ground truth
Prediction

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
(b) Ours + CDF

Left

Middle

Right

Figure 7: Camera selection on a 5-minute testing sequence.
(a) Result of [8]. (b) Ours. The green line is from human
operators and the red line is from algorithms. Best viewed
in color.

negative impact of backgrounds (e.g. different fan groups,
weather and light conditions) of auxiliary games.

Table 3 shows the comparison with the baselines. Our
method outperforms all the methods by large margins.
Baselines 1-3 do not work well on this dataset mainly be-
cause they omit the image content from the PTZ cameras.
This result suggests that heuristic techniques using ball and
player locations are not enough for dynamic PTZ camera
selection. ADA [6] seems to have substantial challenges
on this dataset. It is partially because of hand-crafted fea-
tures (such as player flow) are quite noisy from fast-moving
PTZ cameras. C3D [37] works reasonably well as it learns
both appearance and motion features end-to-end. Its per-
formance is slightly better than our whole-image-feature
model. However, our full model is significantly more ac-
curate (11.6 %) than C3D. It is worth noting that training
C3D with auxiliary data is very difficult because the input
of C3D is consecutive frames.

Combined with a Temporal Model To test the capability
of our method with temporal models, we conducted experi-
ments on the dataset from [8]. This dataset has 42 minutes
(60 fps) data for training and a 5-min sequence for test-
ing. In the experiment, we feed the selection probability
to the cumulative distribution function (CDF) method from
[8]. The CDF method prevents too short (brief glimpse) and
too long (monotonous selection) camera selections. The ex-
periment shows our method is more accurate than [8] (70%
vs. 66%). Figure 7 shows a visualization of the camera se-
lection. Video results are in the supplementary material for
visual inspection.

6.2. Further Analysis

Data Imputation Accuracy Because the missing data in
the auxiliary videos has no ground truth, we analyze the ac-
curacy of our data imputation method using the main game
data. We use the last 1, 100 frames as testing data by mask-
ing the features from the un-selected cameras as missing



Main Main + aux.
Feature L M R All L M R All

whole-image 53.4 74.4 57.5 63.2 62.8 77.8 61.4 68.5
foreground 45.9 84.1 39.5 59.7 53.1 86.2 41.3 63.2
both 58.3 78.0 58.7 66.5 70.0 85.2 68.9 75.9

Table 2: Selection accuracy using different features and training data. “Main” and “Main+aux.” mean the training data is
from the main game only and is with auxiliary videos, respectively. L, M and R represent the camera on the left, middle, and
right side, respectively. The highest accuracy is highlighted by bold.

Accuracy (%) ∆
Constant selection 40.9 35.0
Closest to ball (GT.) 37.6 38.3
Team occupancy map [4] 49.8 26.1
ADA [6] 54.1 21.8
C3D [37] 64.3 11.6
Both feature w/ aux. (Ours) 75.9 –
Both feature w/o aux. 66.5 9.4
whole-image feature w/ aux. 68.5 7.4
foreground feature w/ aux. 63.2 12.7

Table 3: Comparison against various baselines and analysis
of the effects of various components.
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Figure 8: Imputation test on the main game data. (a),(b),(c)
Color-coded visualization of imputed feature sequence. The
x-axis is the feature dimension. The y-axis is the frame in-
dex. Colors visualize the feature values. Blue color blocks
indicate the missing data. (d) The imputation accuracy as a
function of the error thresholds. Best viewed in color.

data. A random survival forest model is trained from the
rest of the data. The error is measured by absolute errors
normalized by the range of feature in each dimension. This
error metric is a good indication of the performance of im-
puted data in the final model. The final model (i.e. a random
forest) uses the sign of the difference between the feature
value and the decision boundary in internal nodes to guide
the prediction. Figure 8(a)(b)(c) visualizes the incomplete

data, complete data and imputed data, respectively. The im-
puted data is visually similar to the ground truth. Figure
8 (d) shows the imputation accuracy as a function of the er-
ror thresholds. When the error threshold is 0.2, about 80%
of the data are correctly predicted. Although the accuracy
is tested on the main game, it suggests a reasonably good
prediction on the auxiliary games.

To evaluate the performance of RSF on the real data,
we also imputed the missing values using nearest neigh-
bor (NN), OptSpace [25] and a neural autoencoder. Table 4
shows that RSF outperforms all of them with a safe margin.

Foreground Feature Aggregation To compare the per-
formance of the SA heatmap with other alternatives, we
conducted experiments on the main game data. All the
methods use the same appearance feature from the siamese
network as input. Table 5 shows that SA heatmap outper-
forms other alternatives mainly because it encodes both lo-
cation and appearance information.

Qualitative Results Figure 9 shows predicted image se-
quences with the ground truth and contributing sequences.
The contributing sequence is from the most dominant con-
tributing examples in the leaf nodes for each prediction.
Figure 9(b) (last column) shows an example of incorrect
predictions. The ground truth camera is kept as the mid-
dle camera. Our prediction switches to the right camera.
By inspecting the video, we found the human operator’s se-
lection has better temporal consistency while ours tends to
provide more information in single frames.

Discussion In real applications, more than three candidate
cameras are used. However, we found most of the shots
are from the three cameras that cover the left goal area, the
middle field and the right goal area. We also qualitatively
verified that the camera setting in the proposed dataset is
representative for soccer games from [41] and [21]. It indi-
cates that our method can be applied to many real situations,
especially in small-budget broadcasting.

Although we collected the largest-ever training data from
the Internet, the testing data is from one game. We mit-
igate this limitation by using dense testing (3-fold cross-



Acc. (%) ∆

RSF 75.9 –
NN 72.2 3.7
OptSpace [25] 68.6 7.3
Autoencoder 73.9 2.0

Table 4: Comparison of RSF with alternatives.

loc. appe. Acc. (%) ∆

SA heatmap X X 59.7 –
Avg pool. X 41.8 17.9
Max pool. X 42.4 17.3
Heatmap in [8] X 48.4 11.3

Table 5: Comparison of SA heatmap with alternatives.

Figure 9: Qualitative results. The ground truth row shows the ground truth image sequences (about 3 seconds). The
predicted sequence row shows the predictions from our method (omitted if all predictions are correct such as in (a)). The
contributing sequence row shows the most dominant training example in the leaf node. In each sequence, player trajectories
are visualized on the playing field template. The ball locations and their trajectories (dashed lines) are overlaid on the original
images. The red cross mark indicates incorrect predictions. Best viewed in color.

validation). We leave large-scale camera selection as future
work.

7. Summary

In this work, we proposed a framework for sports camera
selection using Internet videos to address the data scarcity
problem. With effective feature representation and data im-
putation, our method achieved the state-of-the-art perfor-
mance on a challenging soccer dataset. Moreover, some

of our techniques such as foreground feature extraction are
generic and can be applied to other applications. The pro-
posed method mainly focuses on camera selection in single
frames at the current stage. In the future, we would like to
explore temporal information for camera selection.
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