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Abstract—In this paper, we propose two beamforming designs
for a multiple-input single-output non-orthogonal multiple access
system considering the energy efficiency (EE) fairness between
users. In particular, two quantitative fairness-based designs are
developed to maintain fairness between the users in terms of
achieved EE: max-min energy efficiency (MMEE) and propor-
tional fairness (PF) designs. While the MMEE-based design aims
to maximize the minimum EE of the users in the system, the PF-
based design aims to seek a good balance between the global
energy efficiency of the system and the EE fairness between
the users. Detailed simulation results indicate that our proposed
designs offer many-fold EE improvements over the existing
energy-efficient beamforming designs.

Index Terms—Energy efficiency, max-min problem, non-
orthogonal multiple access, proportional fairness.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) has been recently
envisioned as a promising multiple access technique to be
used in future wireless networks for addressing the issue of
low spectral efficiency in conventional orthogonal multiple
access (OMA) and to provide massive connectivity [1]. In
this novel multiple access scheme, multiple users share the
same orthogonal resources (i.e., time, frequency and spread-
ing codes) by exploiting power-domain multiplexing [2]. In
particular, superposition coding (SC) is employed at the trans-
mitter to multiplex the signals of multiple users in the power
domain [2], and then, the successive interference cancellation
(SIC) technique is used at the receiving ends to eliminate inter-
user interference and to decode the signals [3], [4].

To facilitate a practical implementation of NOMA in dense
networks, and to further improve the spectral efficiency [5],
NOMA is incorporated with multiple antenna techniques to
exploit their additional degrees of freedom offered by the
different spatial multiplexing schemes [6] [7]. As such, NOMA
has the potential capabilities to support the extensive deploy-
ment of the Internet-of-Things (IoT) in fifth generation (5G)
and beyond wireless networks [3]. However, the limitation
of the available power resources becomes one of the major
challenges in the development of future technologies. This
should be taken into account in the design of new transmission
techniques [8]. The energy efficiency (EE), defined as the

ratio between the achieved sum rate in the system and the
total power consumption to achieve those rates at users [9],
is a useful metric for comparing and characterizing different
schemes, such as beamforming designs. Furthermore, the EE
can also help to strike a good balance between the achieved
rate in the system and the total power consumption [10].
Note that the terms EE and global energy efficiency (GEE)
carry the same meaning in this paper. In particular, GEE
considers the overall EE of the system without taking the
performance of the individual users into account. Hence, the
users with weaker channel conditions (i.e., cell-edge users)
might achieve a very low EE compared to those users with
stronger channel conditions (near users). To overcome such
a fairness issue among the users, the transmitter should be
able to incorporate the performance of the individual users
in the design rather than optimizing the GEE of the system.
Furthermore, while there is no unique definition for fairness,
this could be generally defined in terms of allocating the
resources between the users to provide a reasonable quality-
of-service at all of them [11].

Motivated by the prominence of the fairness in terms
of the achieved EE for each user, we consider energy-
efficient fairness-based beamforming designs for a multiple-
input single-output (MISO) NOMA system. The beamforming
design with GEE is considered for a MISO NOMA system
in [9]. In particular, we present two fairness based designs
in this paper, namely, max-min energy efficiency (MMEE)
and proportional fairness (PF) based designs. First, MMEE
is considered as the bottleneck fairness design [12] [13]. As
such, MMEE is achieved if any performance increment in the
EE of the ith user (EEi) causes a deterioration of the EE of
the jth user (i.e., EEj) which already has lower performance
[14]. Despite the fact that the MMEE design aims to achieve
the same EE for all users by maximizing the minimum EE of
a user, the fairness in this design comes at the cost of GEE
degradation. Therefore, we consider another approach, namely
the PF-based design, which has the capability to finding a
good balance between GEE and achieved EE for each user
[12]. Assume that a design achieves an EE of EEi at the ith
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user in a system with K users by allocating an amount of Γi
resources. Then, the resource allocation {Γ∗i }Ki=1 is considered
to be a proportionally fair if the following condition holds for
any other feasible resource allocation {Γi}Ki=1 [11]:

K∑
i=1

EEi − EE∗i
EE∗i

≤ 0, (1)

where EE∗i corresponds to Γ∗i . It is worth mentioning that
the condition in (1) can be satisfied through determining the
feasible set {Γ∗i }Ki=1 that maximizes

∑K
i=1 log(EEi) [15]. In

this paper, we formulate fairness-based beamforming designs
(i.e., MMEE and PF) for a MISO NOMA system with to-
tal power constraint at the base station (BS) and minimum
rate requirement at each user. However, these optimization
problems are non-convex in nature in terms of beamforming
vectors. Hence, we employ the sequential convex approxi-
mation (SCA) technique to tackle the non-convexity issues
associated with these optimization problems. In addition, we
demonstrate the effectiveness of the proposed designs by
evaluating and comparing their performances with that of the
existing beamforming designs in the literature.

The rest of the paper is organized as follows. In Section II,
the system model and problem formulations are introduced.
Section III presents the SCA technique as an effective ap-
proach to solve the original non-convex optimization prob-
lems. To validate the performance of the proposed designs,
numerical results are provided in Section IV. Finally, conclu-
sions of this work are presented in Section V.

Notations: We use lower case boldface letters for vectors
and upper case boldface letters for matrices. (·)H denotes
complex conjugate transpose. <(·) and =(·) stand for real
and imaginary parts of a complex number, respectively. The
symbols CN and RN denote N -dimensional complex and real
space, respectively. || · ||2 and | · | represent the Euclidean
norm of a vector and absolute value of a complex number,
respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATIONS
A. System Model

We consider a downlink transmission of a MISO NOMA
system, in which a BS equipped with N multiple antennas
communicates simultaneously with K single-antenna users. It
is assumed that BS has the perfect channel state information
of each user. The BS encodes the message of the ith user
(si) by scaling the message using linear precoding vector
(beamforming vector) wi ∈ CN×1. Thus, the transmitted
signal x ∈ CN×1 from the BS can be written as

x =

K∑
i=1

wisi. (2)

The received signal at the ith user (Ui) can be expressed as

yi =

K∑
j=1

hHi wjsj + ni,∀i ∈ K
4
= {1, 2, 3, · · · ,K}, (3)

where hi ∈ CN×1 represents the channel vector between
Ui and BS. The channel coefficients are modeled as hi =√
d−κi vi, where κ and di are the path loss exponent and the

distance between Ui and BS in meter, respectively. Further-
more, vi and ni represent the small scale fading and the zero-
mean circularly symmetric complex additive white Gaussian
noise with variance σ2

i , respectively. In downlink transmission
of a NOMA system, the stronger users employ SIC by firstly
decoding and eliminating the interference from the signals of
the users with weaker channel conditions, and then detect their
own signals [2]. Here, we assume that U1 is the strongest user
with the most favourable channel condition, whereas UK is
the weakest user. In particular, the users are ordered based on
their channel strengths such that

||h1||2 ≥ ||h2||2 ≥ · · · ≥ ||hK ||2. (4)

Based on this user ordering, the received signal at Ui after
successfully eliminating the interference from the weaker users
through SIC can be written as

∼
yi = hHi wisi +

i−1∑
j=1

hHi wjsj + ni,∀i ∈ K. (5)

In particular, the message intended for the ith user is decoded
at the stronger user Uk (i.e., k ≤ i) with the following signal-
to-interference plus noise ratio (SINR):

SINR(i)
k =

|hHk wi|2∑i−1
j=1 |hHk wj |2 + σ2

k

, ∀i ∈ K, k ≤ i. (6)

Note that the signal intended for Ui could not be correctly
decoded unless the SINR of the corresponding signal is larger
than a certain threshold (ηmini ). This explicitly means that the
SINR of decoding the ith user signal at the stronger users
should be greater than this threshold (i.e., ηmini ). Therefore,
the SINR of the ith user can be defined as in [16]

SINRi = minimum(SINR(i)
1 , · · · ,SINR(i)

i ),∀i ∈ K. (7)

Hence, the achieved rate at Ui can be expressed as

Ri = Bw log2(1 + SINRi)∀i ∈ K, (8)

where Bw denotes the available bandwidth for the transmis-
sion. For notational simplicity, we select Bw to be 1. To ensure
that the power assigned to each user in the system is inversely
proportional to its channel strengths [17], and to allow SIC
to be successfully implemented at the strong users [16], the
following conditions should be considered in the design:

|hHi wK |2 ≥ · · · ≥ |hHi w1|2,∀i ∈ K. (9)

In this MISO NOMA system, the achieved EE at the ith user
(i.e., EEi) is defined as the ratio between the achieved rate
at Ui and the consumed power at the BS to achieve this rate
[10], which can be expressed as

EEi =
Ri

1
ε0
Pi + Pl,i

,∀i ∈ K, (10)



where Pi and Pl,i denote the transmit power allocated to Ui
and the corresponding power losses associated with that user at
the BS, respectively. Note that Pi = ||wi||22, and ε0 represents
the efficiency of the amplifiers at the BS. Furthermore, the
GEE of the system can be defined as

GEE =

∑K
j=1Rj

1
ε0
P + Pl

, (11)

where Pl represents the total power losses at the BS and P
denotes the total transmit power required for data transmission
from the BS. The available total transmit power at the BS is
limited to Pava, which can be represented by the following
constraint:

P =

K∑
i=1

Pi ≤ Pava. (12)

In the conventional GEE maximization (GEE-Max)-based de-
sign, the beamforming vectors are determined by maximizing
the GEE under the SIC constraints in (9), and with a minimum
rate requirement at each user (Rmini ). This minimum rate
requirement at the ith user can be imposed by the following
constraint:

Ri ≥ Rmini ,∀i ∈ K. (13)

The GEE-Max problem can be formulated as

OPGEE : max
{wi}Ki=1

GEE (14a)

s.t. (9), (12), (13). (14b)

This GEE-Max problem OPGEE is solved in our previous
work using the SCA technique and the Dinkelbach’s algorithm
[9]. In this paper, we consider the fairness-based beamform-
ing designs, which are discussed in detail in the following
subsection.

B. Problem Formulations

In this subsection, two fairness-based beamforming designs
are proposed, namely MMEE and PF designs.

1) Max-min energy efficiency (MMEE): Unlike the GEE-
Max-based design in OPGEE , the MMEE design aims for
maximizing the minimum EE of users in the system while
satisfying the associated constraints [18]. In particular, the
MMEE achieves its ideal solution while all the users expe-
rience the same EE. However, this is not a universal condition
owing to the minimum rate and SIC constraints. The MMEE-
based design for the MISO NOMA system is formulated as
follows:

OP1 : max
{wi}Ki=1

min {EE1,EE2, · · · ,EEK} (15a)

s.t. (9), (12), (13). (15b)

This max-min problem is not convex due to the non-convex
objective function in (15a), the SIC constraint in (9), and the
minimum rate requirement in (13). Therefore, the solution to
the problem OP1 cannot easily be determined through existing
convex optimization techniques [19].

2) Proportional Fairness (PF): Next, we consider a PF-
based design to seek a good balance between the beamforming
designs without any fairness and with ideal fairness conditions,
namely GEE-Max design and MMEE design, respectively.
The PF design can be defined into the following optimization
framework [11]:

OP2 : max
{wi}Ki=1

K∑
i=1

log(EEi) (16a)

s.t. (9), (12), (13). (16b)

The solutions for the non-convex problems OP1 and OP2 are
presented in the following section.

III. PROPOSED METHODOLOGY

In this section, we exploit different techniques to convert
the original non-convex functions in OP1 and OP2 to convex
ones. In particular, the SCA technique is used to approximate
those functions into linear convex functions [9], [20], [21]. In
the SCA technique, a set of convex lower bounds are defined
with a number of slack variables to approximate the non-
convex objective function or constraint [21] into a convex
objective function. As such, the SCA will be implemented
to handle the non-convexity of (15) and (16).

Non-convex constraints in OP1 and OP2: As both OP1

and OP2 share the same constraints, we first show how to
formulate the non-convex constraints in (15) and (16). Without
loss of generality, the minimum rate constraint in (13) can be
equivalently expressed in terms of SINR as

|hHk wi|2∑i−1
j=1 |hHk wj |2 + σ2

k

≥ ηmini , i ∈ K, k ≤ i, (17)

where ηmini = 2R
min
i − 1. Furthermore, this constraint can be

easily reformulated into a second order cone (SOC) as [22]:

1√
ηmini

<(hHk wi) ≥

||[hHk w1 hHk w2 · · · hHk wi−1 σk]T ||2, i ∈ K, k ≤ i. (18)

Next, the non-convexity of the SIC constraint in (9) is handled
by using minorization-maximization algorithm (MMA) [16]
[23]. In particular, the non-convex function is approximated
by linear terms at a given set of values using convex-concave
procedure. Furthermore, we use the first-order Taylor series
expansion to approximate the constraint in (9), where each
term in the inequality is replaced by a lower bounded linear
function fk,j such that |hHk wj |2 ≥ fk,j , where

fk,j = ||[<(hHk w
(n)
j ) =(hHk w

(n)
j )]||22

+ 2[<(hHk w
(n)
j ) =(hHk w

(n)
j )]T [(<(hHk wj)

−<(hHk w
(n)
j )) (=(hHk wj)−=(hHk w

(n)
j ))]T , (19)

where w
(n)
i represents the approximation of wi at the nth

iteration. Note that the function in (19) is linear in terms of



wi. Based on this approximation, the non-convex constraint in
(9) can be approximated as the following convex constraint:

fi,K ≥ · · · ≥ fi,1,∀i ∈ K. (20)

To this end, we have approximated the non-convex constraints
in the original optimization problems OP1 and OP2 by convex
constraints.

MMEE Design: In the following, we transform the original
non-convex objective function of the MMEE design in OP1

by introducing a new slack variable α as

min {EE1,EE2, · · · ,EEK} ≥ α.

Without loss of generality, the optimization problem in OP1

can be equivalently written as
∼
OP1: max

{wi}Ki=1

α (21a)

s.t. (20), (12), (18), (21b)
EEi ≥ α, i ∈ K. (21c)

To handle the non-convexity of the constraint in (21c), we re-
formulate this with a new slack variable βi into two sets of
constraints as follows:

Ri ≥ αβ2
i ,∀i ∈ K, k ≤ i, (22a)

1

ε0
||wi||22 + Pl,i ≤ β2

i ,∀i ∈ K. (22b)

Following a similar formulation as in (18), the constraint in
(22b) can be cast as the following standard convex SOC:

βi ≥ ||[
wi√
ε0

√
Pl,i]

T ||2, ∀i ∈ K. (23)

Furthermore, we introduce a new set of slack variables δi and
τi to approximate the non-convex constraint in (22a) as

log(1 + SINR(i)
k ) ≥ δi,∀i ∈ K, k ≤ i, (24a)

(1 + SINR(i)
k ) ≥ τi,∀i ∈ K, k ≤ i, (24b)

which can be equivalently represented as the following set of
constraints:

(22a)⇔


|hHk wi|2∑i−1

j=1 |hHk wj |2 + σ2
k

≥ τi − 1, k ≤ i, (25a)

τi ≥ 2δi , ∀i ∈ K (25b)
δi ≥ αβ2

i , i ∈ K. (25c)

The non-convexity of the constraint in (25a) is handled by
incorporating a new slack variable ρ2i,k and splitting it into
the following two sets of constraints:

|hHk wi|2 ≥ (τi − 1)ρ2i,k,∀i ∈ K, k ≤ i, (26a)

ρ2i,k ≥
i−1∑
j=1

|hHk wj |2 + σ2
k,∀i ∈ K, k ≤ i. (26b)

Following the same approach in (18), the constraint in (26b)
can be transformed into a standard convex SOC constraint as

ρi,k ≥ ||[hHk w1 hHk w2 · · · hHk wi−1 σk]T ||2,

∀i ∈ K, k ≤ i. (27)

Furthermore, the constraint in (26a) can be represented as the
following convex constraint:

<(hHk wi) ≥√
(τ

(n)
i − 1)ρ

(n)
i,k + 0.5

1√
(τ

(n)
i − 1)

ρ
(n)
i,k (τi − τ (n)i )+

√
(τ

(n)
i − 1)(ρi,k − ρ(n)i,k ),∀i ∈ K, k ≤ i. (28)

Finally, we employ the first-order Taylor series expansion to
approximate the right hand-side of (25c) as follows:

δi ≥ α(n)(β2
i )(n) + (β2

i )(n)(α− α(n))

+ 2β
(n)
i α(n)(βi − β(n)

i ), i ∈ K. (29)

After introducing these multiple slack variables, the original
non-convex MMEE optimization problem OP1 is approxi-
mated as the following optimization problem:

≈
OP1: max

χ
α (30a)

s.t. (21b), (30b)
(23), (25b), (27), (28), (29), (30c)

where χ includes all the optimization variables involved in the
MMEE problem: χ

4
= {wk, ρi,k, τi, βi, δi, α}Ki=1.

PF Design: Next, we consider the PF maximization prob-
lem OP2. The non-convex constraints in OP2 have been
already reformulated as convex constraints in previous sub-
section. However, the non-convexity of the objective function
in OP2 can be tackled by introducing new slack variables µi
and ςi as

log EEi ≥ ςi,∀i ∈ K, (31a)
EEi ≥ µi,∀i ∈ K. (31b)

With these new slack variables, OP2 can be equivalently
expressed as

∼
OP2: max

{wi}Ki=1

K∑
i=1

ςi (32a)

s.t. µi ≥ 2ςi , i ∈ K, (32b)
EEi ≥ µi, i ∈ K, (32c)
(21b). (32d)

Without loss of generality, we can convert the non-convex
constraint in (32c) to a convex one by using the same approach
as in (21c). This could be implemented by replacing α in (21c)
by µi, and then applying the corresponding approximations.
Hence, the problem

∼
OP2 can be written in a convex form as

≈
OP2: max

ϕ

K∑
i=1

ςi (33a)

s.t. (21b), (33b)
µi ≥ 2ςi , i ∈ K, (33c)



(30c), (33d)

where ϕ consists of all the optimization variables: ϕ
4
=

{ςi,wi, ρi,k, τi, βi, δi, µi}Ki=1. Note that α is replaced by µi
at all constraints in (33d).

It is worth noting that the solutions of
≈
OP1 and

≈
OP2 depend

on the appropriate selection of the initial parameters: χ(0)

and ϕ(0). These initial parameters are chosen by determin-
ing the beamforming vectors ({w(0)

i }Ki=1) that minimize the
total transmit power (i.e., P =

∑K
i=1 ||wi||22) subject to the

minimum SINR constraint in (13) and the SIC constraint in
(9) [24]. Then, all initial parameters (i.e., χ(0) and ϕ(0)) are
evaluated by replacing the inequality with equality at each
constraint.

On the other hand, it is obvious that the solutions of
≈
OP1 and

≈
OP2 can be iteratively obtained. This iterative

approach can be terminated by comparing the difference of the
objective values at two successive iterations against a prede-
fined threshold ε. We summarize the developed algorithms to
determine the solutions of the original MMEE and PF designs
in Algorithm 1 and Algorithm 2, respectively.

Algorithm 1: MMEE design using SCA

Step 1: Initialization of χ(0)

Step 2: Repeat

1) Solve the optimization problem
≈
OP1 in (30).

2) Update χ(n) .
Step 3: Until required accuracy is achieved.

Algorithm 2: PF design using SCA

Step 1: Initialization of ϕ(0)

Step 2: Repeat

1) Solve the optimization problem
≈
OP2 in (33).

2) Update ϕ(n) .
Step 3: Until required accuracy is achieved.

IV. NUMERICAL RESULTS

To demonstrate the effectiveness of the two proposed de-
signs, namely the MMEE- and PF-based designs, we perform
a number of detailed simulations. In presenting the results,
we use the conventional GEE-Max-based design as baseline.
In our simulation studies, we consider a downlink transmission
where a BS equipped with three transmit antennas (N = 3)
sends signals to three users (K = 3). It is assumed that the
users are located at the distance of 1, 5.5, and 25 meters from
the BS, respectively. The relevant parameters of the simulation
setup are shown in Table I. In addition to these parameter
settings, we define the normalized transmit power (TX-SNR)
in dB as TX-SNR (dB)= 10log10

Pava

σ2
i

. It is worth mentioning

Table I: Parameters used in simulations.

Param. Description Value(s)
κ Path loss exponent 2.0
σ2
i Noise variance for user i 2.0
ηmini SINR threshold 10−3

Pl,i Power loss at the BS 45 dBm
ε0 Amplifier efficiency at BS 0.65
Bw Available bandwidth 1 MHz
ε Thresholds for the algorithms 0.001
vi Small scale fading Rayleigh fading

that all simulations in this section are carried out using the
CVX toolbox.
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Figure 1: The performance of the weakest user with different
beamforming designs.

Firstly, in Fig. 1 we present the achieved EE of the weakest
user in the system with different beamforming designs, namely
GEE-Max, PF, and MMEE designs. As can be seen in Fig. 1,
the performance of the weakest user is significantly improved
in terms of EE when considering the MMEE and PF-based
designs compared to the conventional GEE-Max-based design.
For example, at TX-SNR=20 dB, the weakest user experiences
an EE of around 2800 bits/Joule with the MMEE design,
which is almost five times that of the EE that can be achieved
with the GEE-Max-based design. Similarly, the PF-based
design outperforms the GEE-Max-based design in terms of the
performance for the weakest user. However, MMEE achieves
the best EE for the weakest user compared to the other two
designs. This is because MMEE maximizes the minimum
achievable EE between all the users and attains the same EE
for all users. Next, we compare the achieved EE of the system
(i.e., GEE) for different designs in Fig. 2. As expected, the
GEE-Max design outperforms the other fairness-based designs
in terms of the EE of the system, whereas the MMEE-based
design shows the worst GEE performance between the three
schemes presented in Fig. 2. However, the PF-based design
attains a good balance between the EE at the system level and
the achieved individual EE for each user. In other words, the
PF-based design shows a better GEE compared to that of the
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Figure 2: EE of the system (i.e., GEE) with different
EE-based designs.

MMEE-based design. The same design significantly improves
EE of the weakest user compared to that of the GEE-Max-
based design. Finally, Fig. 3 illustrates the effect of weakest
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Figure 3: The weakest user’s performance with different
designs at different weak users’ distances from the BS.

user distance (i.e., d3) on its EE performance via different
beamforming designs. As seen, the EE of the weakest user
decreases as the distance from the BS increases.

V. CONCLUSIONS

In this paper, we proposed two beamforming designs for
a MISO NOMA system considering the EE fairness between
users. The proposed designs are based upon the MMEE and
PF. In particular, we formulated the designs as optimization
problems, and applied the SCA technique to address the
non-convexity nature of the original problems. Furthermore,
simulation results showed that the MMEE-based design offers
the best performance in terms of the weakest user EE when
compared to the other designs. However, this improvement was
attained at the cost of the GEE degradation of the system.
Furthermore, the PF-based design shows a good balance
between the GEE performance and the achieved EE of the
weakest user.
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