
IoTMonitor: A Hidden Markov Model-based
Security System to Identify Crucial Attack Nodes in

Trigger-action IoT Platforms
Md Morshed Alam, Md Sajidul Islam Sajid, Weichao Wang, Jinpeng Wei

Department of Software and Information Systems, University of North Carolina at Charlotte, Charlotte, USA
{malam3, msajid, wwang22, jwei8}@uncc.edu

Abstract—With the emergence and fast development of trigger-
action platforms in IoT settings, security vulnerabilities caused
by the interactions among IoT devices become more prevalent.
The event occurrence at one device triggers an action in another
device, which may eventually contribute to the creation of a
chain of events in a network. Adversaries exploit the chain
effect to compromise IoT devices and trigger actions of interest
remotely just by injecting malicious events into the chain. To
address security vulnerabilities caused by trigger-action scenar-
ios, existing research efforts focus on validation of the security
properties of devices, or verification of the occurrence of certain
events based on their physical fingerprints on a device. We
propose IoTMonitor, a security analysis system that discerns
the underlying chain of event occurrences with the highest
probability by observing a chain of physical evidence collected by
sensors. We use the Baum-Welch algorithm to estimate transition
and emission probabilities and the Viterbi algorithm to discern
the event sequence. We can then identify the crucial nodes in
the trigger-action sequence whose compromise allows attackers
to reach their final goals. The experiment results of our designed
system upon the PEEVES datasets show that we can rebuild
the event occurrence sequence with high accuracy from the
observations and identify the crucial nodes on the attack paths.

Index Terms—Internet of Things, Hidden Markov Model,
Trigger-action Platform, Smart Home

I. INTRODUCTION

Due to the advances of trigger-action platforms (e.g. IFTTT
[1]) in IoT domain, IoT networks become more vulnerable
towards malicious event injection attacks. Since IoT devices
create a chain of interactions maintaining functional depen-
dencies between entities and actions [2] [3], it is possible
for adversaries to remotely inject malicious events somewhere
in the interaction chain using a ghost device and activate a
critical action through the exploitation of autonomous trigger-
action scenario. For instance, an adversary can inject a fake
thermometer reading of 110°F into the chain to initiate a
critical window opening action.

There are a number of research efforts in the existing
literature that attempt to solve the vulnerabilities caused by the
trigger-actions in an IoT network. Most of them are designed
to validate security properties by identifying the unsafe or
insecure state transitions in the network [2] [4] [5]. There
is another line of research attempts where policy violations
are addressed by checking sensitive user actions that may
violate security policies [5]. The research that is closest to
our proposition is PEEVES [6], where physical fingerprints of

the devices are extracted using machine learning techniques
to verify whether or not a certain event actually occurs.

In this paper, we propose IoTMonitor, a security system that
adopts a Hidden Markov Model based approach to determine
the optimal attack path an attacker may follow to implement a
trigger-action based attack, thus providing suggestions for sub-
sequent patching and security measures. Our system examines
the physical changes happening in an IoT environment due
to the event occurrences, discovers the probabilistic relation
between physical evidence and underlying events using the
Baum-Welch algorithm [7] [8], and discerns the optimal attack
path using the Viterbi algorithm [9]. When the optimal attack
path is determined, IoTMonitor identifies the crucial nodes in
the path that the attacker must compromise to carry out the
attack. Such information can be used for prioritizing security
measures for IoT platforms.

The contributions of the paper can be summarized as
follows:

• We propose IoTMonitor, a Hidden Markov model based
system that identifies the optimal attack path in a trigger-
action IoT environment based on the probabilistic relation
between actual IoT events and corresponding physical
evidence;

• We implement the Baum-Welch algorithm to estimate
transition and emission probabilities, and Viterbi algo-
rithm to discern the attack path;

• We propose an algorithm to detect the crucial nodes in an
extracted optimal attack path, thus providing guidelines
for subsequent security measures;

• We thoroughly evaluate the performance of IoTMonitor
in detecting the optimal attack path and achieve high
accuracy scores.

The rest of the paper is organized into four sections. In
Section II, we define the attack landscape, discuss an attack
scenario, and present the threat model. In Section III, we
present IoTMonitor and discuss each component of it in detail.
Later in Section IV, we present the evaluation results of our
approach. Finally, in Section V, we conclude the paper by
summarizing the methodology and outputs of our experiments,
and presenting future extensions.

© © 2022 IEEE. This paper appears in 2022 IEEE Wireless Communications and Networking Conference (WCNC 2022). Personal use of this material is
permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

ar
X

iv
:2

20
2.

04
62

0v
1 

 [
cs

.C
R

] 
 9

 F
eb

 2
02

2



II. ATTACK LANDSCAPE

A. A Sample Attack Scenario

Assume that Alice has a limited number of trigger-action
enabled IoT devices including Smart Lock, Motion Detector,
Accelerometer, Smart Light, Coffee Machine, and Smart Win-
dow. Alice controls each device through a mobile application
from her cell phone. The devices communicate with each
other through a hub. Since the platform supports trigger-action
functionality, a device has the capability to trigger an action
of another device.

Alice sets up the trigger events as follows. When she un-
locks the smart lock of the front door and walks in, the motion
sensor in the living room detects the motion and activates
“home-mode”. The home-mode activation event automatically
turns on the smart light. When the light is turned on, the
events associated with coffee grinding and window opening
are triggered. When coffee is ready, Alice takes the coffee and
enters into her bedroom by opening and subsequently closing
the door. The vibration generated by the opening and closing
operations of the door is measured by an accelerometer. Thus,
a chain of events are triggered by the initial action.

Now, Bob, an attacker, wants to compromise the smart
window remotely when Alice is not at home and the front
door is locked. His objective is to inject malicious events into
the network to create a chain of interactions that eventually
trigger the events associated with the window.

B. Threat Model

We assume that the attacker knows the locations of the IoT
devices in the target system but he does not have physical
access to the home. He can eavesdrop on wireless commu-
nication taking place between devices and the hub. His goal
is to perform a trigger-action attack by injecting fake events
into the IoT network through ghost applications. The ghost
applications impersonate target devices just by mimicking their
characteristics and functionalities. Therefore, he does not need
to deploy any real IoT devices to conduct the attack.

III. THE IOTMONITOR SYSTEM

Since the attacker exploits trigger-action functionality of IoT
network to generate a chain of interactions by injecting fake
events, we can thwart a trigger-action attack effectively if we
can identify the optimal attack path the attacker may follow
and perform security hardening on the crucial nodes in the
attack path. In this research work, we propose IoTMonitor,
a system that discerns the optimal attack paths by analyzing
physical evidence generated during the attack cycle, which
are probabilistically correlated to the actual underlying events.
IoTMonitor formulates the attack as a Hidden Markov Model
(HMM) problem and solves it to determine the most likely
sequence of events occur during an attack cycle and further
identifies the crucial nodes in that sequence. Hence, in this
paper, a node represents an event occurring at a particular
device.

Fig. 1. IoTMonitor System

A. Our Assumption

We assume that a configured trigger-action sequence con-
tains N events: d1, d2, ..., dN . The attacker injects fake events
{di} in the chain to achieve his final goal. Note that the
attacker does not necessarily have to inject d1 since he can
wait for the occurrence of some real events to trigger the
automatic chain occurrence of the rest of the events required
to implement the attack. When an event is triggered, it causes
some physical changes in the environment, which can be
perceived as corresponding physical evidence {phi} captured
by an array of sensors and harnessed to verify the occurrence
of that specific event. Note that some event may trigger non
observable evidence, but others may trigger more than one
evidence.

Given this assumption, IoTMonitor models the trigger ac-
tion scenario as a HMM problem, where physical evidence are
visible to the analysis agent, but the actual events remain hid-
den. The tasks of the agent are to determine the probabilistic
relation between events and evidence, and employ it to figure
out the optimal attack path and diagnose the crucial nodes in
that path.

B. IoTMonitor

The proposed IoTMonitor comprises three main compo-
nents: 1) state machine generator, 2) sequence extractor, and
3) crucial node detector. Fig 1 shows the architecture of
IoTMonitor. We discuss the components below in detail.

1) State Machine Generator: When events are triggered
in the environment and the deployed sensors capture corre-
sponding evidence per event occurrence, this component will
construct a state machine to represent how state changes in the
environment due to the exploitation of trigger-action function-
alities across a series of time instances t = 1, 2, ..., T . Hence,
states delineate useful information regarding the occurrence of
different events di and corresponding evidence {phi}.

The state machine accommodates two types of states: 1) true
states, which correspond to the actual event occurrences, and
2) observation states, which represent the physical evidence.
Hence, the true states remain hidden, but the analysis agent
leverages the observation states to infer the hidden true state
sequence.

We define our state space as follows:
• true state, xi : state responding to the occurrence of di
• observation state, yj : a subset of the physical evidence
{ph1, ph2, ..., phM}, which are emitted when the envi-
ronment makes transition to a new state



Fig. 2. A Sample State Machine

Hence, we assume that there are N true states
X = {x1, x2, ..., xN}, and T observation states Y =
{y1, y2, ..., yT } in the state machine, where Xt and Yt, re-
spectively, denote the true state and observation state at time
t. Here, each yj contains a subset of the physical evidence
{ph1, ph2, ..., phM}, where the total number of evidence is
M . Note that each observation state Yt in our experiment is
determined with the help of a sliding window function, which
is discussed in detail in Section IV.

When the environment is in xi at time instance t and makes
a transition to any xj ∈ X at time instance t + 1, it changes
its true state with a transition probability qij ∈ Q, which can
be defined as:

qij = Pr(Xt+1 = xj |Xt = xi), 1 ≤ i, j ≤ N (1)

Suppose, because of this state transition, the environment
emits a new observation yk ∈ Y with an emission probability
µj(yk) ∈ E, which can be defined as:

µj(yk) = Pr(Yt+1 = yk|Xt+1 = xj), 1 ≤ j ≤ N
1 ≤ k ≤ T

(2)

In the equation (1), Q = {qij} is termed as state transition
probability distribution, while E = {µj(yk)} in the equation
(2) is termed as emission probability distribution.

To model the attack as HMM, we need to generate an initial
state distribution σ = {σi}, such as:

σi = Pr(X1 = xi), 1 ≤ i ≤ N (3)

Hence, σi is the initial state distribution at time instance
t = 1.

Combining all the five aforementioned tuples, IoTMoni-
tor models the trigger-action attack as an HMM problem〈
N,M,Q,E, σ

〉
and solves it to determine the optimal attack

path given a sequence of observation states. IoTMonitor also
creates a parameter θ = (σ,Q,E), which is called the current
model of HMM.

Figure 2 shows a sample state machine where blue circles
represent the true states and yellow circles represent the
observation states.

Note: For the rest of the paper, we call observation state as
only observation sometimes and use the terms true state and
state interchangeably to mean the same thing.

2) Sequence Extractor: Once the trigger action sequence
is modeled as an HMM problem, IoTMonitor attempts to
estimate the probability values and retrieve the optimal hidden
state sequence from the observations. First, it starts with
estimating the converged state distributions, transmission prob-
abilities, and emission probabilities. Then, it seeks to figure out

the underlying state sequence that maximizes the probability
of getting a certain observation sequence. To accomplish
both tasks, the sequence extractor employs the following
two subcomponents: a) probability estimator, and b) sequence
retriever. The details of both subcomponents are described
below.

a) Probability Estimator: Given a complete observation
sequence 〈Y1, Y2, ..., YT 〉, the goal of this component is to
determine the following:

θ∗ = argmax
θ

Pr(Y1, Y2, ..., YT |θ) (4)

We use the Baum-Welch algorithm [7] [8] to iteratively
update the current model θ and solve equation (4). It uses a
forward-backward procedure to find the maximum likelihood
estimate of θ given a certain set of observations. We assume
that each observation Yt is emitted by the environment at one
discrete time instance t = 1, 2, ..., T .

Forward-backward Procedure: Let αt(i) and βt(i)
are the probabilities of getting the observation sequences
〈Y1, Y2, ..., Yt〉 and 〈Yt+1, Yt+2, ..., YT 〉, respectively, while
the system is being in the true state xi at time t. So,

αt(i) = Pr(Y1, Y2, ..., Yt, Xt = xi|θ)
βt(i) = Pr(Yt+1, Yt+2, ..., YT |Xt = xi, θ)

(5)

We can compute αt(i) and βt(i) using the following steps:
1. Initialization

α1(i) = σiµi(y1), 1 ≤ i ≤ N
βT (i) = 1, 1 ≤ i ≤ N

(6)

2. Induction
αt+1(j) = µj(yt+1)

N∑
i=1

αt(i)qij , 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N

βt(i) =

N∑
j=1

qijµj(yt+1)βt+1(j), t = T − 1, ..., 2, 1, 1 ≤ i ≤ N

(7)
These two steps combined is called the forward-backward

procedure, and αt(i) and βt(i) are termed as forward variable
and backward variable, respectively.

Now, suppose δt(i) is the probability of the system being
in the true state xi at time instance t given the complete
observation sequence 〈Y1, Y2, ..., YT 〉 and the current model
θ. We can define this probability in terms of the forward and
backward variables αt(i) and βt(i), i.e.,

δt(i) = Pr(Xt = xi|Y1, Y2, ..., YT , θ)

=
Pr(Xt = xi, Y1, Y2, ..., YT |θ)

Pr(Y1, Y2, ..., YT |θ)

=
αt(i)βt(i)∑N
j=1 αt(j)βt(j)

(8)

Again, given the complete observation sequence
〈Y1, Y2, ..., YT 〉 and the current model θ, suppose, ξt(i, j) is
the probability of the system being in the true states xi and
xj at time instances t and t+ 1, respectively. So,

ξt(i, j) = Pr(Xt = xi, Xt+1 = xj |Y1, Y2, ..., YT , θ)

=
Pr(Xt = xi, Xt+1 = xj , Y1, Y2, ..., YT |θ)

Pr(Y1, Y2, ..., YT |θ)

=
αt(i)qijβt+1(j)µj(yt+1)∑N

i=1

∑N
j=1 αt(i)qijβt+1(j)µj(yt+1)

(9)



Now, we can update the initial state distribution σ̄i, tran-
sition probability q̄ij , and emission probability µ̄j(yk) using
these two parameters δt(i) and ξt(i, j). The state distribution
can be updated as:

σ̄i = δ1(i) (10)

where, δ1(i) is the expected number of times the system is
in the true state xi at time instance t = 1.

To update the transition probabilities, we have to compute
the ratio of the expected number of state transitions from xi to
only xj (the numerator of the equation (11)) and the expected
number of transitions from xi to all other true states (the
denominator of the equation (11)).

q̄ij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 δt(i)

(11)

And to update the emission probabilities, we have to take
the ratio of two other quantities: the expected number of
times being in state xj and observing the observation yk (the
numerator of the equation (12)), and the expected number of
times being in state xj (the denominator of the equation (12)).

µ̄j(k) =

∑T
t=1 1(Yt=yk)δt(j)∑T

t=1 δt(j)
(12)

where,
1(Yt=yk) =

{
1, if Yt = yk
0, Otherwise (13)

The updated parameters σ̄ = {σ̄i}, Q̄ = {q̄ij}, and
Ē = {µ̄j(yk)} now constitute the new model θ̄ = (σ̄, Q̄, Ē).
We need to iterate the equations (10) (11), and (12) until we
find θ̄ ≈ θ. This convergence is guaranteed in [8] by Baum et
al., where it is ensured that either 1) the initial model θ defines
a critical point in the likelihood function where θ̄ = θ, or 2) θ̄
explains the observation sequence 〈Y1, Y2, ..., YT 〉 more suit-
ably than θ, i.e. Pr(Y1, Y2, ..., YT |θ̄) > Pr(Y1, Y2, ..., YT |θ)
[10].

b) Sequence Retriever: Once the probability estimator
determines the converged HMM model θ∗, now, it is job for
the Sequence Retriever to extract the optimal sequence of
hidden events using Viterbi algorithm [9]. Given a particular
observation sequence 〈Y1, Y2, ..., Yt〉 at time instance t and
Yt = yk, the goal here is to determine the following:

ωt(i) = max
x1,...,xi−1

{
Pr(X1 = x1, ..., Xt = xi, Y1, ..., Yt = yk|θ)

}
= max
x1,x2,...,xi−2

{
max
xi−1

{
ωt−1(i− 1)q(i−1)(i)

}
µt(yk)

}
,

2 ≤ t ≤ T, 1 ≤ i ≤ N
(14)

Hence, ωt(i) represents the maximum probability of the oc-
currence of a particular state sequence 〈x1, x2, ..., xi〉 at time
instance t that corresponds to the aforementioned observation
sequence 〈Y1, Y2, ..., Yt〉.

The equation (14) can be solved recursively to determine the
highest probability of the occurrence of a complete state se-
quence 〈x1, x2, ..., xN 〉 for the time instance 2 ≤ t ≤ T given
that ω1(i) = σiµi(y1). The recursion stops after computing
ωT (i) such as:

ω∗
T = max

1≤i≤N
ωT (i) (15)

But to obtain the optimal hidden sequence, we must trace
the arguments that maximize the equation (14) during each
recursion. To achieve that, we introduce a variable χ to hold
all the traces such as:

χt(i) = argmax
1≤i≤N

{
ωt−1(i− 1)q(i−1)(i)

}
, 2 ≤ t ≤ T, 1 ≤ i ≤ N

(16)
Note that χ1(i) = 0 for t = 1 because we start tracing the
states for the very first time at time instance t = 2 once we
have at least one previous state.

Once we have χT (i), all we need is backtracking through
the traces to discern the optimal hidden sequence such as:

ψ∗
t = χt+1(ψ∗

t+1), t = T − 1, ....., 2, 1 (17)

Hence, ψ∗
T (i) = χT (i), and Υ = {ψ∗

1 , ψ
∗
2 , ..., ψ

∗
T } is the

extracted optimal sequence. Note that each ψ∗
t ∈ Υ represents

a true state in X .

3) Crucial Node Detector: After the sequence retriever
extracts the hidden optimal sequence Υ = {ψ∗

1 , ψ
∗
2 , ..., ψ

∗
T },

the component crucial node detector applies Algorithm 1 to
detect the crucial events in the attack chain the attacker must
compromise to successfully implement the attack. Hence, the
most frequently triggered events are defined as crucial events.

If there are p number of different extracted sequences
Υ1,Υ2, ...,Υp for p different attempts, the Algorithm 1 first
determines the longest common subsequence Si between each
Υi and the original sequence X = {x1, x2, ..., xN}. Later,
it computes the SCORE value for each pair of states in the
subsequence such as:

SCORE
[
Si[j], Si[j + 1]

]
= number of times a pair{

Si[j], Si[j + 1]
}

is present in the subsequence
(18)

Algorithm 1: Crucial node detection algorithm
Input: X,Υ1,Υ2, ....,Υp
Output: Pairs of true states responding to the most frequently

triggered events

1: i← 1
2: while i ≤ p do
3: Si ← LCS between X and Υi // LCS = Longest Common

Subsequence
4: for j ← 1 to (|Si| − 1) do
5: E[i, j]← {Si[j], Si[j + 1]}
6: if E[i, j] not in SCORE.Keys() then
7: SCORE[E[i, j]]← 1
8: else
9: SCORE[E[i, j]]← SCORE[E[i, j]] + 1

10: return argmax
E[i,j]

(SCORE[E[i, j]])

Finally, the algorithm updates the SCORE values based on
the presence of pairs in all subsequences and retrieves the pairs
with the maximum SCORE value. It may output a number of
pairs of states, such as {xci , xcj}, where there is a crucial state
transition in the state machine from xci to xcj . Our goal is to
identify the events (we call them nodes) associated with such
transitions that are exploited by the attackers to compromise
the chain.

A Simple Example
Suppose, there is a sequence of states (responding to

some triggered events): {door-opened, light-on, camera-on,



fan-on, window-opened}. And after making three separate
attempts, the sequence retriever returns the following three
sequences:

Sequence-1: {door-opened, light-on, light-on, camera-on,
fan-on}, Sequence-2: {fan-on, light-on, camera-on, fan-
on, window-opened}, Sequence-3: {door-opened, light-on,
camera-on, window-opened, fan-on}.

Now, if we apply Algorithm 1 on this scenario, we find
that the pair {light-on, camera-on} obtains the highest score.
Consequently, we can conclude that the transition from the
state light-on to camera-on is the most vital one in the
state machine, and the nodes associated with those states
are the most crucial ones in the chain. IoTMonitor identifies
these crucial nodes so that we can perform security hardening
to minimize the attacker’s chance of compromising an IoT
network. The security hardening part is out of the scope of
this paper, and we plan to incorporate such capability in the
extended version of IoTMonitor in recent future.

IV. RESULTS AND EVALUATION

To evaluate the performance of IoTMonitor, we utilize the
PEEVES dataset [6] that records IoT event occurrences from
12 different IoT devices and sensors measurements from 48
deployed sensors to verify those events. We use 24-hours data
for our experiment, and our experiment executes on a 16 GB
RAM and 4 CPU core system.

A. Dataset Processing

Our experiment mainly deals with three types of data: 1)
event data (used as true states) 2) sensor measurements (used
as observations), and 3) timestamps. We concentrate only on
those event occurrences which can be verified by the sensor
measurements. Since sensor measurements here capture the
physical changes that have happened in the environment due
to the event occurrences, they can be used to crosscheck
whether a certain event has occurred. We conceptualize the
function sliding window to determine whether an event is
verifiable. Hence, the function provides us with a time window
(in milliseconds) wi that starts at the timestamp of a particular
event occurrence. After an event occurrence is recorded at time
instance ti, if we find the necessary sensor measurements to
verify that occurrence within the time instance ti + wi, we
consider that event verifiable and keep it in the sequence of
events occurred. Otherwise, we discard it from the sequence.
In our experiment, we consider 20 such sliding windows with
the size between 105 milliseconds and 200 milliseconds with
an increase of 5 milliseconds.

B. Experiment Setting

At the beginning of our experiment, we choose Gaussian
distribution to randomly assign the transition probabilities and
initial state probabilities for each true state. On the other
hand, we use Dirichlet distribution to assign the emission
probabilities. We use the same seed value for each execution.

C. Probability Estimation Time

Probability estimation time represents the time required
to estimate the converged transition probability distribution
Q and the emission probability distribution E. Figure 3(a)
presents the estimation time for four different sequences of
events of different lengths (5, 10, 15, and 20) against a range of
sliding windows. In the figure we show the average estimation
time after 10 executions.

As we can see from Figure 3(a), the longest estimation
time is < 4 seconds for the sequence length of 20, while in
most cases, it is < 0.5 seconds. As the window size increases,
the estimation time starts to decrease and stabilize. There are
a few exceptional cases where the estimation time increases
sharply for a increase in window size. For example, when the
window size increases from 105 to 110 for the sequence of
length 20, we see a sudden spike. We examine the source
data and find that this spike is caused by the appearance
of two new events that were not present earlier. Since the
number of unique events increases and repetition of same
events decreases in the sequence, the initial state distribution
and transition probabilities are needed to be adjusted which
costs adversely to the total estimation time. However, this type
of exception is transient, and the graph stabilizes eventually.
We do not present the estimation time for the sequences of
lengths > 20 in the Figure 3(a) since we observe very little
change in pattern for those sequences.

Fig. 3. a) Probability estimation time with respect to sliding window size
and length of the event sequence; b) Decoding time with respect to sliding
window size and length of the event sequence

D. Decoding Time

Decoding time represents the time required to extract the
hidden sequence when we have the converged θ∗. Similar to
probability estimation time, we take average decoding time
after 10 executions. The Figure 3(b) presents the decoding
time for four different sequences of events with lengths 5, 10,
15, and 20 against a range of sliding windows.

If we look at the graph at Figure 3(b), we see that the
decoding time decreases when the window size increases. The
longest decoding time we get is < 2.5 milliseconds which is
very fast for the retrieval of hidden event sequences. Although
we see few little temporary spikes for the length 15 after
sliding window 150, we still achieve < 2.0 milliseconds as
the decoding time.

E. Computational Overhead

Since our experiment dedicates most of the computation
time to estimate the probabilities, we measure computational



Fig. 4. Number of iterations to estimate the converged transition probabilities
and emission probabilities with respect to the ratio between number of
observation states and number of true states

overhead as the total number of iterations of the forward-
backward procedure required to reach the convergence of
transition probabilities and emission probabilities. In Figure
4, we present the required total number of iterations (in y-
axis) with respect to the ratio between the total number of
unique observation states and the total number of unique true
states (in x-axis). We can see that, the computational overhead
increases roughly linearly with the ratio.

Fig. 5. Accuracy score vs Sliding window size vs Length of the event
sequence

F. Accuracy Score

To determine how accurately the extracted hidden sequence
of events represent the real events, we compute f-score for
29 different sequence of events starting with the length 2 and
ending at length 30. We do not consider the sequence with
length 1 because it does not offer any uncertainty in terms of
transition and emission probability. We present a heatmap to
visually show the correlation among accuracy score, sliding
window size and length of the event sequence. In Figure 5,
the accuracy scores are presented as colors.

As we can see, when the length of event sequence is < 15,
the increase in window size after 160 assures a very high
accuracy score. We even get the accuracy score of 1.0 in
some occasions. There is only one exception for the sequence
of length 5. We see a decrease in accuracy score after the
window size 105, and that’s because we see a completely new
sequence for the window sizes 110 to 200. Similar pattern also
arises, although to a less extent, for the sequence of length 7.
But it is quite evident that the increase in window size for the
smaller lengths ensures higher accuracy score (equals or close
to 1.0). When the length increases to a considerable extent,
we start to see the impact of sliding windows on the accuracy
score diminishing slowly. Since our system emphasizes on the
functional dependencies (in terms of transition probability)

of the events to extract the hidden sequence, the longer the
sequence becomes, the looser are the dependencies.

V. CONCLUSION

In this research work, we propose IoTMonitor that focuses
on the extraction of the underlying event sequence using HMM
approach given a set of physical evidence emitted during a
trigger-action based attack in an IoT environment. We use
the Baum Welch algorithm to estimate transition and emission
probabilities, and Viterbi algorithm to extract the underlying
event sequence. Our experiments show that both probability
estimation and sequence extraction operations converge rea-
sonably fast. In terms of accuracy score, IoTMonitor achieves
100% in multiple cases and ≥ 90% in a number of cases.
We draw a heatmap to visually show the correlation among
accuracy score, sliding windows, and length of the event
sequences. We also present an algorithm to identify the crucial
events in the extracted sequence which the attackers wish to
compromise to implement a trigger-action attack.

Immediate extensions to our approach include the following
efforts. First, we currently focus on the crucial nodes that
appear in multiple attack paths. If we extend our research
to an attack graph, we can identify crucial node pairs on
different attack paths. Second, the physical evidence collected
by sensors could contain noises or even inaccurate data. We
will improve our algorithm to provide more robust attack
detection capability for IoT platforms.

REFERENCES

[1] “Ifttt: Every thing works better together,” https://ifttt.com/, accessed:
2020-08-21.

[2] Z. B. Celik, G. Tan, and P. Mcdaniel, “IOTGUARD : Dynamic Enforce-
ment of Security and Safety Policy in Commodity IoT,” no. February,
2019.

[3] M. M. Alam and W. Wang, “A comprehensive survey on data prove-
nance: State-of-the-art approaches and their deployments for iot security
enforcement,” Journal of Computer Security, vol. 29, pp. 423–446, 06
2021.

[4] D. T. Nguyen, C. Song, Z. Qian, and S. V. Krishnamurthy, “IotSan:
Fortifying the Safety of IoT Systems Dang,” Proceedings of the 14th
International Conference on emerging Networking EXperiments and
Technologies, pp. 387–400, 2018.

[5] L. Babun, A. K. Sikder, A. Acar, and A. S. Uluagac, “Iotdots:
A digital forensics framework for smart environments,” CoRR, vol.
abs/1809.00745, 2018. [Online]. Available: http://arxiv.org/abs/1809.
00745

[6] S. Birnbach, S. Eberz, and I. Martinovic, “Peeves: Physical event
verification in smart homes,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2019.

[7] L. B. Baum and J. A. Eagon, “An inequality with applications to
statistical estimation for probabilistic functions of markov processes and
to a model for ecology,” Bulletin of the American Mathematical Society,
vol. 73, no. 3, pp. 360–363, 1967.

[8] L. E. Baum and G. R. Sell, “Growth transformations for functions on
manifolds,” Pacific Journal of Mathematics, vol. 27, no. 2, pp. 211–227,
1968.

[9] A. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,” IEEE Transactions on Information
Theory, vol. 13, no. 2, pp. 260–269, 1967.

[10] L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition,” Proceedings of the IEEE, vol. 77,
no. 2, pp. 257–286, 1989.

https://ifttt.com/
http://arxiv.org/abs/1809.00745
http://arxiv.org/abs/1809.00745

	I Introduction
	II Attack Landscape
	II-A A Sample Attack Scenario
	II-B Threat Model

	III The IoTMonitor System
	III-A Our Assumption
	III-B IoTMonitor
	III-B1 State Machine Generator
	III-B2 Sequence Extractor
	III-B3 Crucial Node Detector


	IV Results and Evaluation
	IV-A Dataset Processing
	IV-B Experiment Setting
	IV-C Probability Estimation Time
	IV-D Decoding Time
	IV-E Computational Overhead
	IV-F Accuracy Score

	V Conclusion
	References

