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Abstract—Addressing the communication bottleneck inherent
in federated learning (FL), over-the-air FL (AirFL) has emerged
as a promising solution, which is, however, hampered by deep
fading conditions. In this paper, we propose AirFL-Mem, a
novel scheme designed to mitigate the impact of deep fading
by implementing a long-term memory mechanism. Convergence
bounds are provided that account for long-term memory, as
well as for existing AirFL variants with short-term memory,
for general non-convex objectives. The theory demonstrates that
AirFL-Mem exhibits the same convergence rate of federated aver-
aging (FedAvg) with ideal communication, while the performance
of existing schemes is generally limited by error floors. The
theoretical results are also leveraged to propose a novel convex
optimization strategy for the truncation threshold used for power
control in the presence of Rayleigh fading channels. Experimental
results validate the analysis, confirming the advantages of a long-
term memory mechanism for the mitigation of deep fading.

Index Terms—Over-the-air computing, federated learning, er-
ror feedback, optimization.

I. INTRODUCTION

Over-the-air FL (AirFL) has emerged from information-

theoretic studies [1] as a promising approach to enable model

aggregation in wireless implementations of federated learning

(FL) [2]. A well-known problem with AirFL is that devices

experience different fading conditions, causing the aggregated

model estimated by the central server to deviate from the

desired model average, unless strict power constraints mech-

anisms are applied.

In the presence of channel state information at the trans-

mitter (CSIT), the typical solution to this problem is to ensure

signal alignment through truncated channel inversion [2]–[7].

Truncation entails that only a subset of model parameters

reach the server, causing the erasure of potentially important

information. Reference [7] proposed to mitigate the resulting

channel-driven sparsification of model information via error

feedback. Specifically, the approach therein applies a short-

term memory mechanism that operates across two successive

iterations. However, no theoretical guarantees are currently

The work of O. Simeone was supported by the European Union’s Horizon
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available for this mitigation strategy. This paper aims at

addressing this knowledge gap, revealing through theoretical

bounds that error feedback based on longer-term memory

mechanisms is generally necessary to combat the effect of

deep fading on truncated channel inversion.

To provide additional context for this work, other solutions

to the problem of deep fading in AirFL in the presence

of CSIT include phase-only compensation [8], [9], trans-

mission weight optimization [10], and device selection [11].

Without CSIT, references [12]–[15] studied the convergence

of AirFL over broadband channels, and improved the per-

formance by exploiting the channel hardening property of

massive multiple-input and multiple-output (MIMO) channels.

Error-feedback-based transmission has been widely adopted

for communication-efficient FL with the aim of compensating

losses for model-update information. Such methods compen-

sate for accumulated errors due to artificially induced sparsity

or quantization in the next-round transmission [7], [16]–[19].

For digital transmission-based FL, the authors of [19] applied

a memory vector in digital FL schemes to compensate for both

compression and reconstruction errors.

Overall, in this paper, inspired by sparsified stochastic gra-

dient descent (SGD) with memory [16], we introduce AirFL-

Mem, an AirFL protocol that implements a long-term memory

mechanism for error feedback in truncated channel inversion.

Furthermore, we analyze the role of memory in error feedback

via convergence bounds. Our contributions are as follows:

• We provide convergence bounds for AirFL-Mem, as

well as for the existing variant with short-term memory

[7], demonstrating that AirFL-Mem achieves the same

convergence rate as FedAvg in perfect communication

conditions [20], while a shorter memory may cause an

error floor.

• Based on the derived bounds, we introduce a novel

convex optimization-based truncation-threshold selection

scheme for the implementation of AirFL-Mem.

The rest of the paper is organized as follows. Sec. II

introduces system level and preliminaries. Sec. III describes

AirFL-Mem, while Sec. IV describes the derived theoretical
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bounds. Sec. V presents the proposed optimization scheme for

the power control thresholds, and Sec. VI covers numerical

results, with Sec. VII completing the paper.

II. SYSTEM MODEL AND PRELIMINARIES

In this section, we consider an AirFL system in which

a set [K] , {1, . . . ,K} of devices transmit their machine

learning models to an edge server over a Gaussian multiple

access channel (MAC) fading channel. In this section, we

first introduce the vanilla FL protocol premised on ideal and

noiseless communications, and then describe the considered

communication model accounting for fading and noise.

A. Learning Protocol (Vanilla FL)

In the FL setup, each device k ∈ [K], possesses a distinct

local dataset denoted as Dk. All devices share a machine

learning model, e.g., a neural network or a transformer param-

eterized by a vector θ ∈ R
d×1. The objective of the FL system

is to collaboratively solve the empirical loss minimization

problem

(P0) : Minimize
θ

f(θ) ,
1

K

K∑

k=1

fk(θ),

where f(θ) represents the global empirical loss function; and

fk(θ) = 1/|Dk|
∑

ξ∈Dk
L(θ; ξ) represents the local empirical

loss function for device k ∈ [K]. The cardinality operation

| · | denotes the size of a given set, and the notation L(θ; ξ)
indicates the loss function evaluated at parameter θ with

respect to (w.r.t) the data sample ξ.

In the following, we briefly review the standard FedAvg

protocol [20]. Let t ∈ {0, . . . , T−1} denote the index of global

communication rounds or, equivalently, of global iterations. At

the t-th global iteration, individual devices obtain a localized

parameter θ
(t)
k that approximates the solution θ(t) to problem

(P0) by minimizing the local loss fk(θ). Specifically, during

each global iteration t, each device executes Q local SGD steps

over its private dataset Dk, leading to the iterative update of

the local model parameter θ
(t)
k given by

θ
(t,q+1)
k ← θ

(t,q)
k − η(t)∇̂fk(θ(t,q)

k ), (1)

where q ∈ {0, . . . , Q − 1} is the local iteration index; η(t)

denotes the learning rate; and ∇̂fk(θ(t,q)
k ) is the estimate of the

true gradient ∇fk(θ(t,q)
k ) computed from a mini-batch D(t)

k ⊆
Dk of data samples, i.e.,

∇̂fk(θ(t,q)
k ) =

1

|D(t)
k |

∑

ξ∈D
(t)
k

∇L(θ(t,q)
k ; ξ). (2)

The initialization of local model parameters commences with

the shared model parameter held by the edge server as θ
(t,0)
k =

θ
(t)
k ← θ

(t)
.

At each global iteration t, the edge server receives the model

differences

∆
(t)
k = θ

(t,0)
k − θ

(t,Q)
k , (3)

k ∈ [K]. Subsequently, it aggregates these differences to

update the global model parameters as

θ(t+1) ← θ(t) − 1

K

K∑

k=1

∆
(t)
k . (4)

This updated model parameter is then broadcast to all K
devices, serving as the initialization of their local iterates

(c.f. (1)). The above steps are iterated until some convergence

criterion is met.

B. Communication Model

At the t-th global communication round, each device k ∈
[K] uses orthogonal frequency division multiplexing (OFDM)

to transmit each entry of the scaled model difference ∆
(t)
k

in (3) over one of a total of s subcarriers for ⌈d
s
⌉ OFDM

symbols. Specifically, the d × 1 vector of transmitted signal

is given by x
(t)
k = ∆

(t)
k /η(t) [2], [7]. With x

(t)
k,j denoting the

j-th entry of vector x
(t)
k ∈ R

d×1, the edge server receives the

signal simultaneously transmitted by all K devices as

y
(t)
j =

K∑

k=1

√
κkh

(t)
k,jp

(t)
k,jq

(t)
k,jx

(t)
k,j + n

(t)
j , (5)

where κk denotes the large-scale fading induced channel gain

between device k and the edge server; h
(t)
k,j is the small-

scale fading coefficient affecting the j-th entry at the t-th

communication round; p
(t)
k,j represents a power control factor

and q
(t)
k,j ∈ {0, 1} binary masking variable, both of which

with be explained next; n
(t)
j is the independent and identically

distributed (i.i.d.) additive Gaussian noise with zero mean

and variance σ2. Each device k has per-channel use power

constraint Pk.

Under the assumption of perfect CSIT, truncated channel

inversion transmission ensures that model parameters transmit-

ted by all active devices are effectively aligned at the receiver

[2]. Accordingly, each device k transmits entry x
(t)
k,j only if the

corresponding channel gain |h(t)
k,j |2 is larger than a threshold

ǫk > 0. This is ensured by choosing the masking variable as

q
(t)
k,j =

{

1, |h(t)
k,j |2 ≥ ǫk

0 otherwise
(6)

for some device-specific thresholds ǫk. Furthermore, the power

scaling factor p
(t)
k,j , k ∈ [K], is set as

p
(t)
k,j =

√

ρ(t)

√
κkh

(t)
k,j

, (7)

where the common scaling factor ρ(t) is selected to guar-

antee a per-block power constraint at communication round

t. Denoting p
(t)
k = [p

(t)
k,1, p

(t)
k,2, · · · , p

(t)
k,d]

T and q
(t)
k =

[q
(t)
k,1, q

(t)
k,2, · · · , q

(t)
k,d]

T as the power scaling and the masking

vectors, respectively, the power constraint can be expressed as

1

d
E‖p(t)

k ⊙ q
(t)
k ⊙ x

(t)
k ‖2 ≤ Pk (8)



Algorithm 1: AirFL-Mem

1 Input: learning rate η(t), power constraints {Pk}k∈[K],

number of global rounds T , number of local rounds Q

2 Initialize θ
(0)
k = θ(0) and m

(0)
k = 0 for all k ∈ [K]

and t = 0
3 while t < T do

4 On devices k ∈ [K]:

5 θ
(t,0)
k ← θ(t);

6 for q = 0 to Q− 1 do

7 θ
(t,q+1)
k ← θ

(t,q)
k − η(t)∇̂f(θ(t,q)

k )
8 end

9 Calculate model difference

∆
(t)
k = θ

(t,0)
k − θ

(t,Q)
k

10 Update long-term memory variable

m
(t+1)
k = m

(t)
k +∆

(t)
k − q

(t)
k ⊙ (m

(t)
k +∆

(t)
k )

11 Transmit x
(t)
k = (m

(t)
k +∆

(t)
k )/η(t)

12 end

13 On Server:

14 Receive

y
(t)
j =

∑K
k=1

√
κkh

(t)
k,jp

(t)
k,jq

(t)
k,jx

(t)
k,j + n

(t)
j , for

m ∈ [d]

15 Global Update: θ
(t+1) = θ

(t) − η(t)√
ρ(t)K

y(t)

16 Broadcast θ(t+1) to all K devices

17 end

18 t← t+ 1
19 end

for all k ∈ [K], where ⊙ is the element-wise product.

Finally, upon receiving the vector y
(t)
k =

[y
(t)
k,1, y

(t)
k,2, · · · , y

(t)
k,d]

T , the edge server estimates the

aggregated model differences and performs global update as

θ(t+1) = θ(t) − η(t)
√

ρ(t)K
y(t). (9)

III. AIRFL WITH LONG-TERM MEMORY (AIRFL-MEM)

In this section, we propose a new AirFL scheme, referred

to as AirFL-Mem, that utilizes long-term memory to mitigate

the learning performance loss due to masking caused by deep

fading.

A. Motivation

When channel conditions are poor for device k, the channel

gain may satisfy the inequality |h(t)
k,j |2 < ǫk. By (5) and (6),

this causes the masking of the corresponding model difference

∆
(t)
k,j encoded by signal x

(t)
k,j . The discrepancy between the

actual model difference vector ∆
(t)
k and its truncated version

q
(t)
k ⊙ ∆

(t)
k is given by (1 − q

(t)
k ) ⊙ ∆

(t)
k , where 1 is the

d×1 all-one vector. In prior art, the authors in [2] treated this

error as a form of “dropout”, and they did not perform any

compensation. In contrast, a short-term memory mechanism

was introduced in [7]. In it, at the current round t, device k
transmits the compensated signal

x
(t)
k = (∆

(t)
k + m̃

(t)
k )/η(t), (10)

where m̃
(t)
k = (1−q(t−1)

k )⊙∆(t−1)
k , with m̃

(0)
k = 0, accounts

for the masking-induced discrepancy at the previous round. We

will show in Sec. IV that these two schemes lead to an error

floor in terms of convergence to stationary point, and that a

long-term memory mechanism can mitigate this problem.

B. AirFL-Mem

Inspired by error feedback schemes that are widely adopted

to mitigate sparsity-induced errors [16]–[18], we propose a

long-term memory mechanism to partially compensate for the

distortion caused by masking due to the power control policy

(6). To this end, each device k ∈ [K] accumulates a long-term

error m
(t)
k variable

m
(t+1)
k = m

(t)
k + e

(t)
k , (11)

where m
(0)
k = 0 and the discrepancy e

(t)
k ∈ R

d×1 at round t
is given by

e
(t)
k = ∆

(t)
k − q

(t)
k ⊙ (∆

(t)
k +m

(t)
k ). (12)

In (12), the current model difference ∆
(t)
k is corrected by the

accumulated error m
(t)
k prior to the application of masking.

Accordingly, each device k ∈ [K] transmits the compensated

model difference

x
(t)
k = (∆

(t)
k +m

(t)
k )/η(t). (13)

As compared to [7], which compensated only the error due

to the previous round of communication, the long-term error

variable m
(t)
k in (11) accounts for the error accumulated from

the beginning up to the current round of training. The proposed

AirFL-Mem is summarized in Algorithm 1.

IV. CONVERGENCE ANALYSIS OF AIRFL-MEM

In this section, we study the convergence performance

of the proposed AirFL-Mem in general non-convex settings.

The main goal is to obtain insights into the role of the

long-term memory compensation mechanism (11)-(12) in the

convergence of AirFL protocols.

A. Assumptions

We make the following assumptions.

Assumption 1 (L-smoothness): For all k ∈ [K], the local

empirical loss function fk is differentiable and Lk-smooth,

i.e., for all w,u ∈ R
d, we have the inequality

‖∇fk(w)−∇fk(u)‖ ≤ Lk‖w − u‖. (14)

Assumption 2 (Bounded variance and second moment): For

all θ ∈ R
d×1, the stochastic gradient ∇̂fk(θ) is unbiased, and

has bounded variance and second moment, i.e.,

E

[∥
∥
∥∇̂fk(θ)−∇fk(θ)

∥
∥
∥

2
]

≤ σ2
l and E

[∥
∥
∥∇̂fk(θ)

∥
∥
∥

2
]

≤ B2
k,

(15)



where the expectation E[·] is taken over the choice of the mini-

batch used to evaluate the stochastic gradient ∇̂fk(θ).
Assumption 3 (Bounded Heterogeneity): For all k ∈ [K]

and θ ∈ R
d×1, the gradients of the local empirical functions

fk(θ) and of the global loss function f(θ) = 1
K

∑K
k=1 fk(θ)

satisfy the inequality

‖∇fk(θ)−∇f(θ)‖2 ≤ σ2
g . (16)

These assumptions are standard and have been considered in

prior art (see, e.g., [17]). We also assume the following.

Assumption 4 (i.i.d. channels): The channel coefficient h
(t)
k,j

are i.i.d. over the rounds t = 1, 2, . . . , T and symbols j =
1, 2, . . . , d for all devices k = 1, 2, . . . ,K . We denote as

λk , Pr(|h(t)
k,j |2 > ǫk) (17)

the transmission probability for device k when following the

power control policy (6).

B. Convergence Bound

We study convergence in terms of the average gradient norm

1/T
∑T−1

t=0 E‖∇f(θ(t))‖2 as in, e.g., [17], and we prove the

following theorem.

Theorem 4.1: Under Assumptions 1-4, if the learning rate

η(t) = η satisfies the inequality

45η3L3Q3 + 30η2Q2L2 + (3/2)ηQL ≤ 1/8, (18)

the expectation of the square gradient norm satisfies the in-

equality (19) at the top of the next page, where the expectation

E[·] is over the small-scale channel fading coefficient h
(t)
k,j ,

the channel noise, and the stochastic gradients. In (19), we

have defined the constants B , maxk Bk, L , maxk Lk,

Cλk
= 4(1− λ2

k)/λ
2
k, and C̃λk

= 4(1− λ2
k)/λ

2
k + 1.

Proof: A sketch of the proof can be found in Appendix

A. It relies on a perturbed iterate analysis that is widely used

in the analysis for error-feedback-based SGD schemes (e.g.,

[16], [17]).

The bound in (19) takes into account the loss in learning

performance in terms of convergence due to the randomness

of the local SGD steps, of the deep fading channels, and of the

channel noise. By plugging in the learning rate η = 1/
√
T ,

which satisfies condition (18), the bound (19) indicates that

AirFL-Mem converges to a stationary point at an average

rate O(1/
√
T ). As a special case, by removing the effect

of the fading channel, i.e., by setting h
(t)
k,j = 1, and of the

communication noise, i.e., by setting σ2 = 0, the result in (19)

recovers the standard convergence rate O(1/
√
T ) of FedAvg

[21, Theorem 1].

Theorem 4.1 can be used to bring insights into the role

of the proposed long-term memory mechanism. To see this,

consider AirFL with short-term memory, which uses the

memory variable m̃
(t)
k = (1−q(t−1)

k )⊙∆(t−1)
k to compensate

for the distortion caused by truncation via (10) [7]. With this

scheme, a counterpart of bound (19) is derived in Appendix B

(see (32)). With a learning rate η = 1/
√
T , this bound exhibits

the same O(1/
√
T ) reduction of the average squared norm of

the gradient, but it also demonstrates an error floor of order

O((B2/K)
∑K

k=1(1−λ2
k)). The error floor is caused by deep

fading, which causes the term (1−λ2
k), with (17), to be larger

than zero. In contrast, as mentioned, AirFL-Mem can converge

to a stationary point with an arbitrarily small error. This shows

that AirFL-Mem can successfully mitigate the impact of deep

fading on the convergence of FL.

V. AN OPTIMAL TRUNCATION-THRESHOLD DESIGN

In this section, we leverage the bound in (19) to introduce

an optimization strategy for the thresholds {ǫk}Kk=1 used in

the power control policy (6). This optimization entails a non-

trivial trade-off, since increasing the threshold ǫk implies the

transmission of fewer entries in the vector x
(t)
k , while also

increasing the power for each transmitted entry. Consequently,

decreasing the threshold ǫk increases the probability of trans-

mission, λk, while decreasing the power available for each

transmitted entry.

Plugging Cλk
= 4(1−λ2

k)/λ
2
k and C̃λk

= 4(1−λ2
k)/λ

2
k+1

into (19), we formulate the problem of optimizing truncation-

thresholds as the minimization of the bound (19), i.e.,

(P1) : Minimize
{ǫk}k=1,...,K

1

K

K∑

k=1

48
1− (λk(ǫk))

2

(λk(ǫk))
2 η2B2Q2L2

+
8ηLσ2

K2
max
k∈[K]

λk(ǫk)B
2Q
(

4(1−(λk(ǫk))
2)

(λk(ǫk))
2 + 1

)

Pkκkǫk

Subject to ǫ
(i)
h > 0, i = 1, . . . ,K.

(20)

Note that addressing problem (20) requires prior knowledge

of the distribution of the channels.

We now study the practical case when the fading coefficients

h
(t)
k,j , k ∈ [K], j ∈ [d], follow a circular symmetric complex

Gaussian distribution with zero mean and unit variance, such

that the transmission probability is λk = exp(−ǫk). With this

choice, problem (P1) is reformulated as

(P1′) : Minimize
{λk}i=1,...,K

1

K

K∑

k=1

48
1− λ2

k

λ2
k

η2B2Q2L2

+
8ηLσ2

K2
max
k∈[K]

λkB
2Q
(

4(1−λ2
k)

λ2
k

+ 1
)

Pkκk ln(1/λk)

Subject to 0 < λk < 1, i = 1, . . . ,K.

(21)

Proposition 5.1: Problem (P2) is convex.

Proof: See Appendix E.

Since problem (P1′) is convex, it can be optimally solved by

interior point method [22] via off-the-shelf software toolboxes

such as CVX [23].

VI. EXPERIMENTS

In this section, we evaluate the performance of AirFL-Mem

in different setups with K = 20 devices, with the aim of

comparing its performance with benchmarks, as well as of

showing the effectiveness of the proposed optimization of the

truncation thresholds.



1

T

T−1∑

t=0

E‖∇f(θ(t))‖2 ≤ 8

ηQT

[

f(θ(0))− f∗
]

︸ ︷︷ ︸

initilization error

+
12

K

K∑

k=1

η2B2Q2L2Cλk

︸ ︷︷ ︸

contraction

+
8ηLσ2

K2
max
k∈[K]

λkB
2QC̃λk

Pkκkǫk
︸ ︷︷ ︸

effective channel noise

+ (40η2QL2 + 60η3Q2L3)(σ2
l + 6Qσ2

g) + 12ηQLσ2
l

︸ ︷︷ ︸

SGD & data heterogeneity

. (19)

error floor
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Fig. 1. Training loss and test accuracy versus the number of communication
rounds, T .

We consider the MNIST dataset learning task of classifying

handwritten numbers, which is divided into 60, 000 training

data samples and 10, 000 test data samples of 28×28 images.

The samples are drawn randomly (without replacement) from

the training set to form the local data set. All devices train a

common DNN model that consists of one input layer with

input shape (28, 100), and one fully-connect layer of 100
neurons, with ReLU activation function, and a softmax output

layer, yielding a total number d = 79, 510 training parameters.

SGD is adopted as an optimizer.

The simulation parameters are set as follows unless oth-

erwise specified: the mini-batch size is |D(t)
k | = 64; the

number of local iterations Q = 1; the power constraint

Pk = 2 × 10−6 W; the AWGN variance σ2 = −83 dBm;

error floor

Fig. 2. Training loss versus transmit SNR with T = 100 iterations.

the path loss κk = c2/ (4πfcrk)
2
, where c is the speed of

light, fc = 2.4GHz the central frequency, and rk the distance

between device k and edge server; the cell radius 100m,

in which the devices are uniformly located rk ∼ U(0, 100)
and all devices are involved in training; and Rayleigh fading

channel is considered. To perform the truncation threshold

optimization, we determine the parameters B = 0.1 and

L = 0.1 via numerical grid search.

We consider the following benchmarks: FedAvg with per-

fect communications [20]; the truncated channel inversion-

based vanilla AirFL scheme [2], referred to as Ota; and

AirFL with a short-term memory mechanism [7], which is

referred to as Ota-SMem. The thresholds of Ota and Ota-

SMem benchmarks are set the same as AirFL-Mem after

optimization.

We first compare the training loss and test accuracy of the

AirFL-Mem and benchmarks versus the communication round

T , in Fig. 1. It is observed that the proposed AirFL-Mem

approaches the ideal communication case, while Ota and Ota-

SMem demonstrate significant error floors.

Finally, we compare the training loss versus the maximum

transmit signal-to-noise ratio (SNR) in Fig. 2. For reference we

also include the performance for a fixed threshold (ǫ = 0.01).

The figure confirms that the proposed AirFL-Mem (with opti-

mal thresholds) achieves performance close to FedAvg, as long

as the SNR is large enough. In contrast, Ota and Ota-SMem

suffer from error floors even in the range of significantly high

transmit SNR.



VII. CONCLUSIONS

In this paper, we have proposed AirFL-Mem, an AirFL

scheme that implements a long-term memory mechanism to

mitigate the impact of deep fading. For non-convex objectives,

we have provided convergence bounds that suggest that AirFL-

Mem enjoys the same convergence rate as FedAvg with

ideal communications, while existing schemes exhibit error

floors. The analysis was also leveraged to introduce a novel

convex optimization scheme for the optimization of power

control thresholds. Experimental results have demonstrated the

effectiveness of the proposed approach.

APPENDIX

A. Sketch of the proof of Theorem 4.1

The proof of Theorem 4.1 hinges on the fact that the

channel-induced sparsification q
(t)
k ⊙ (m

(t)
k + ∆

(t)
k ) satisfies

the contraction property as rand-k [16], which is demonstrated

by the following Lemma A.1.

Lemma A.1 (Truncated channel inversion as rand-k con-

traction): Under Assumption 4, for all θ ∈ R
d×1, we have,

Eh

∥
∥
∥θ − q

(t)
k ⊙ θ

∥
∥
∥

2

= (1− λk)‖θ‖2, (22)

where Eh[·] is over the small-scale channel fading h
(t)
k,j’s.

Proof: See Appendix C.

With the aid of Lemma A.1, we have the following memory

bound [17].

Lemma A.2 (Bounded memory [17]): Under Assumption 2

and 4, for ηt = η, the expectation of the square norm of the

long-term memory variable m
(t)
k for all k ∈ [K] and t ∈ [T ],

we have

E‖m(t)
k ‖2 ≤

4(1− λ2
k)

λ2
k

η2B2Q2. (23)

Then we apply the perturbed iterate analysis as in [16] to

provide the convergence bound of AirFL-Mem. Define the

maintained virtual sequence {θ̃(t)}t=0,...,T−1 as follows:

θ̃
(t+1)

= θ̃
(t) −∆

(t) − η(t)
√

ρ(t)K
n(t), (24)

where ∆
(t) = 1

K

∑K
k=1 ∆

(t)
k , and θ̃

(0)
= θ(0). Then we have

the following relations: with m
(t+1)
k = ∆

(t)
k +m

(t)
k − q

(t)
k ⊙

(∆
(t)
k +m

(t)
k ) and m

(0)
k = 0, we have

E

∥
∥
∥θ

(t) − θ̃
(t)
∥
∥
∥

2

= E

∥
∥
∥
∥
∥

1

K

K∑

k=1

m
(t)
k

∥
∥
∥
∥
∥

2

≤ 1

K

K∑

k=1

Cλk
η2B2Q2,

(25)

where Cλk
= 4(1− λ2

k)/λ
2
k and the inequality is followed by

Jensen’s inequality and Lemma A.2.

The proof of convergence of AirFL-Mem begins with the

L-smoothness of gradient (Assumption 1). We first have

f
(

θ̃
(t+1)

)

≤ f
(

θ̃
(t)
)

−
〈

∇f(θ̃(t)
),∆(t) +

η(t)
√

ρ(t)K
n(t)

〉

+
L

2

∥
∥
∥
∥
∥
∆

(t) +
η(t)

√

ρ(t)K
n(t)

∥
∥
∥
∥
∥

2

. (26)

With some algebraic manipulations, for η(t) = η, we arrive at

(27) at the top of the next page. To bound 1/ρ(t), we introduce

the following lemma.

Lemma A.3: Under Assumption 2 and 4, we have

1

ρ(t)
≤ max

k∈[K]

{
2λkB

2Q2(Cλk
+ 1)

dPkκkǫk

}

. (28)

Proof: See Appendix D.

By applying the bound of E‖θ(t)− θ̃
(t)‖2 in (25), Assump-

tion 2-3, Lemma A.2, Lemma 2 in [21], and Lemma A.3,

for 45η3L3Q3 + 30η2Q2L2 + (3/2)ηQL ≤ 1/8, we arrive

at the inequality (29) at the top of the next page. Performing

a telescopic sum from t = 0 to T − 1, taking an average

over all randomness, putting the E‖∇f(θ(t))‖2 to the left,

and rearranging at (29), we obtain the inequality (19), which

completes the proof of Theorem 4.1.

B. Convergence of AirFL with short-term memory and that

without memory

We first consider the convergence of AirFL with short-term

memory. Note that the global update is given by (9). By the

L-smoothness of gradients, we have

f
(

θ
(t+1)

)

≤ f
(

θ
(t)
)

−
〈

∇f(θ(t)),
1

K

K∑

k=1

g
(t)
k +

η(t)
√

ρ(t)K
n(t)

〉

+
L

2

∥
∥
∥
∥
∥

1

K

K∑

k=1

g
(t)
k +

η(t)
√

ρ(t)K
n(t)

∥
∥
∥
∥
∥

2

. (30)

where g
(t)
k = q

(t)
k ⊙ (∆

(t)
k + m

′(t)
k ). With some algebraic

manipulations, we arrive at

E

[

f
(

θ(t+1)
)]

≤ f
(

θ(t)
)

− ηQ

2

∥
∥
∥∇f(θ(t))

∥
∥
∥

2

+
1

ηQ
E

∥
∥
∥
∥
∥

1

K

K∑

k=1

(

g
(t)
k −∆

(t)
k

)
∥
∥
∥
∥
∥

2

+
L

2K

K∑

k=1

E‖g(t)
k ‖2

+
ηL2

K

K∑

k=1

Q−1
∑

q=0

E

∥
∥
∥θ

(t,q)
k − θ(t)

∥
∥
∥

2

+
η2σ2Ld

2K2

1

ρ(t)
, (31)

which has the similar structure as (27). We bound the term

E

∥
∥
∥g

(t)
k −∆

(t)
k

∥
∥
∥

2

≤ 2(1 − λ2
k)η

2Q2B2 using Assumption 2

and 4; bound the term E‖θ(t,q)
k − θ(t)‖2 using Lemma 2 in

[21]; and bound the term E‖g(t)
k ‖2 ≤ 2λk(2 − λk)η

2Q2B2

using Assumption 2 and 4. Moreover, the bound of 1/ρ(t)



E

[

f
(

θ̃
(t+1)

)]

≤ f
(

θ̃
(t)
)

− ηQ

4

∥
∥
∥∇f(θ(t))

∥
∥
∥

2

+
3ηQL2

2
E

∥
∥
∥θ

(t) − θ̃
(t)
∥
∥
∥

2

+
ηL2

K

K∑

k=1

Q−1
∑

q=0

E

∥
∥
∥θ

(t,q)
k − θ(t)

∥
∥
∥

2

+
η2σ2Ld

2K2

1

ρ(t)

+
3

K

K∑

k=1

E

∥
∥
∥
∥
∥

Q−1
∑

q=0

∇̃fk(θ(t,q)
k )−∇fk

(

θ
(t,q)
k

)
∥
∥
∥
∥
∥

2

+
3

K

K∑

k=1

E

∥
∥
∥∇fk

(

θ
(t,q)
k

)

−∇fk(θk)
∥
∥
∥

2

+ 3Q2
∥
∥
∥∇f

(

θ(t)
)∥
∥
∥

2

(27)

E

[

f
(

θ̃
(t+1)

)]

≤ f
(

θ̃
(t)
)

− ηQ

8

∥
∥
∥∇f(θ(t))

∥
∥
∥

2

+
3η3Q3L2B2

2

1

K

K∑

k=1

Cλk
+

(

5η3Q2L2 +
15

2
η4Q3L3

)

(σ2
l + 6Qσ2

g)

+
3η2LQ2

2
σ2
l +

η2L

K2
max
k∈[K]

{
λkB

2Q2(Cλk
+ 1)

Pkκkǫk

}

(29)

can be easily obtained by the bound of E‖g(t)
k ‖2 followed

by the steps in Appendix D. Following the same strategy of

Appendix A, for proper choice of η, we easily obtain the final

convergence result as

1

T

T−1∑

t=0

E‖∇f(θ(t))‖2 ≤ 4

ηQT

[

f(θ(0))− f∗
]

︸ ︷︷ ︸

initilization error

+
8B2

K

K∑

k=1

Cλk

︸ ︷︷ ︸

contraction

+
4ηLσ2

K2
max
k∈[K]

λkB
2QC̃λk

Pkκkǫk
︸ ︷︷ ︸

effective channel noise

+ 20η2L2Q(σ2
l + 6Qσ2

g) +
4ηQB2L

K

K∑

k=1

λkC̃λk
, (32)

where Cλk
= (1 − λ2

k) and C̃λk
= (2 − λk). This completes

the convergence proof of AirFL with short-term memory.

For the convergence of AirFL without memory, we only

need to change g
(t)
k to g

(t)
k = q

(t)
k ⊙m

′(t)
k and follow the

same steps, and then we can easily obtain the convergence

result of AirFL without memory. Finally, we will obtain the

same form as (32) with Cλk
= (1 − λk) and C̃λk

= 1/2.

C. Proof of Lemma A.1

For all θ ∈ R
d×1, we have

Eh

∥
∥
∥θ − q

(t)
k ⊙ θ

∥
∥
∥

2

= Eh ‖θ‖2 − 2Eh

〈

θ, q
(t)
k ⊙ θ

〉

+ Eh

∥
∥
∥q

(t)
k ⊙ θ

∥
∥
∥

2

(a)
= Eh ‖θ‖2 − Eh

∥
∥
∥q

(t)
k ⊙ θ

∥
∥
∥

2

,

(33)

where (a) is due to
〈

θ, q
(t)
k ⊙ θ

〉

= ‖q(t)
k ⊙ θ‖2. Then we

calculate the term Eh‖q(t)
k ⊙ θ‖2 as follows.

Eh

∥
∥
∥q

(t)
k ⊙ θ

∥
∥
∥

2

= Eh

[
d∑

m=1

|θm|2q(t)k,j

]

=

d∑

m=1

(

|θm|2Eh

[

q
(t)
k,j

])

= λk‖θ‖2,
(34)

which yields the desired result.

D. Proof of Lemma A.3

Record that the power constraint for all k ∈ [K] is given

by

1

d
E

∥
∥
∥p

(t)
k ⊙ q

(t)
k ⊙ x

(t)
k

∥
∥
∥

2

≤ Pk, (35)

where x
(t)
k = (∆

(t)
k +m

(t)
k )/η(t) for AirFL-Mem. By (6), we

can obtain

E

∥
∥
∥p

(t)
k ⊙ q

(t)
k ⊙ x

(t)
k

∥
∥
∥

2

=
ρ(t)

κkη2
E





d∑

j=1

(

q
(t)
k,j

|h(t)
k,j |2

(

∆
(t)
k,j +m

(t)
k,j

)2
)



≤ ρ(t)

κkǫkη2
E





d∑

j=1

(

q
(t)
k,j

(

∆
(t)
k,j +m

(t)
k,j

)2
)




=
ρ(t)

κkǫkη2

d∑

j=1

(

E[q
(t)
k,j ]E

[(

∆
(t)
k,j +m

(t)
k,j

)2
])

=
ρ(t)λk

κkǫkη2
E‖∆(t)

k +m
(t)
k ‖2

≤ ρ(t)λk

κkǫkη2
(2E‖∆(t)

k ‖2 + 2E‖m(t)
k ‖2)

≤ ρ(t)λk

κkǫk
2B2Q2(Cλk

+ 1)

︸ ︷︷ ︸

A(ρ(t))

.

(36)



where the last inequality is followed by Assumption 2 and

Lemma A.2. We choose ρ̃ such that A(ρ̃) ≤ dPk for all k ∈
[K] is satisfied, i.e.,

ρ̃ , min
k∈[K]

dPkκkǫk
2λkB2Q2(Cλk

+ 1)
. (37)

By the long-term power constraint and the definition of ρ̃, we

have ρ(t) ≥ ρ̃, i.e.,

1

ρ(t)
≤ 1

ρ̃
= max

k∈[K]

2λkB
2Q2(Cλk

+ 1)

dPkκkǫk
, (38)

which yields the desired result.

E. Proof of Proposition 5.1

Define functions g(x) = a
(
1− x2

)
/x2 and fk(x) =

bk
(
4
(
1− x2

)
/x+ x

)
/ log

(
1
x

)
, where a and bk are some

constants, and domf = domg = (0, 1). The function f(x)
is convex since

f ′′
k (x) =

bk

(
8(log2( 1

x )+1)
x3 +

(
− 12

x3 − 3
x

)
log
(
1
x

)
− 6

x

)

log3
(
1
x

)

(39)

is positive in 0 < x < 1. And g(x) is convex since g′′(x) =
6a/x4 > 0 for all 0 < x < 1. Then we use the fact that

the finite sum of convex functions is convex and maxk fk
is convex when fk is convex, which yields the objective in

Problem (P2) is convex in (0, 1).
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