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ABSTRACT

This paper presents a new approach to defining additive
steganographic distortion in the spatial domain. The change
in the output of directional high-pass filters after changing
one pixel is weighted and then aggregated using the recip-
rocal Hölder norm to define the individual pixel costs. In
contrast to other adaptive embedding schemes, the aggre-
gation rule is designed to force the embedding changes to
highly textured or noisy regions and to avoid clean edges.
Consequently, the new embedding scheme appears markedly
more resistant to steganalysis using rich models. The actual
embedding algorithm is realized using syndrome-trellis codes
to minimize the expected distortion for a given payload.

1. INTRODUCTION

Designing steganographic algorithms for empirical cover
sources, such as digital images, is very challenging due to the
fundamental lack of accurate models. The most successful
approach today avoids estimating the cover source distribu-
tion because this task is infeasible for complex and highly
non stationary sources. Instead, the steganography problem
is formulated as source coding with fidelity constraint [2] –
the sender embeds her message while minimizing an appro-
priately defined distortion. Practical algorithms that embed
near the theoretical payload–distortion bound are available
for a very general class of distortion functions [4, 2]. Within
this framework, the only task left to the sender is essentially
the design of the distortion function.

In an attempt to relate distortion with statistical detectabil-
ity, the authors of [3] parametrized the distortion function and
then searched for such values of the parameters that gave the
smallest detectability evaluated as a margin between classes
within a selected feature space (cover model). However, un-
less the cover model is a complete statistical descriptor ofthe
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empirical source [10], such optimized schemes may, paradox-
ically, end up being more detectable if the Warden designs the
detector “outside of the model” [11], which brings us back to
the main and rather difficult problem – modeling the source.

All of today’s most secure steganographic schemes for
digital images use heuristically defined distortion functions
that constrain the embedding changes to those parts of the
image that are difficult to model (e.g., complex textures or
“noisy” areas). In the JPEG domain, by far the most suc-
cessful approach is built around distortion functions thatmea-
sure distortion w.r.t. the raw, uncompressed image [9, 15,
16]. A natural way to define the distortion function in the
spatial domain is to assign pixel costs by measuring the im-
pact of changing each pixel in a feature (model) space us-
ing a weighted norm. Making the weights dependent on the
pixel’s local neighborhood introduces desirable content adap-
tivity. An example of this approach is the embedding algo-
rithm HUGO [14], which employs the SPAM feature model.
To the best knowledge of the authors, and based on the recent
steganalysis study [6], HUGO is currently the most secure al-
gorithm for embedding in the spatial domain even though its
secure payload has been substantially lowered by modern at-
tacks initiated during the BOSS competition [5] that employ
high-dimensional rich models.

In this paper, we approach the task of building distortion
functions in the spatial domain using a different strategy.In-
stead of using a weighted norm in some steganalytic model
to compute the pixel costs, we employ a bank of directional
high-pass filters to obtain the so-called directional residuals,
which are related to the predictability of the pixel in a cer-
tain direction. By measuring the impact of embedding on
every directional residual and by suitably aggregating these
impacts, we force the embedding cost to be high where the
content is predictable in at least one direction (smooth areas
and along edges) and low where the content is unpredictable
in every direction (e.g., in textured or noisy areas). The result-
ing algorithm thus becomes highly adaptive and better resists
steganalysis using rich models.

After introducing basic notation in Section 2, we list three
steganographic methods with which new schemes will be
compared using an empirical measure of security. In Sec-
tion 3, we describe the distortion function, including the
filter banks for computing the directional residuals and the



aggregation rule. The purpose of the exploratory analysis of
Section 4 is to assess the effect of various design elements
on security and select the setting that provides the highest
empirical security. In Section 5, we subject the new scheme
to steganalysis in the wavelet domain where the embedding
costs are computed. The paper is concluded in Section 6.

2. PRELIMINARIES

Capital and lower-case boldface symbols stand for matrices
and vectors, respectively. The symbolsX = (Xij),Y =
(Yij) ∈ {0, . . . , 255}

n1×n2 will always be used an 8-bit gray-
scale cover (and the corresponding stego) image withn1×n2

pixels. For matrixX, XT is its transpose,Xx is X rotated
by 180 degrees, and|X| is the matrix of absolute values.

2.1. Empirical security

All experiments are conducted on BOSSbase ver. 1.0 [5]
with 10 000 images. The steganographic security is evalu-
ated empirically using binary classifiers trained on a given
cover source and its stego version embedded with a fixed pay-
load. With the exception of Section 5, we use the Spatial
Rich Model (SRM) [6] consisting of106 symmetrized sub-
models with a total dimension of34, 671. All classifiers were
implemented using the ensemble [12] with Fisher linear dis-
criminants as base learners. Security is quantified using the
ensemble’s “out-of-bag” (OOB) errorEOOB, which is an un-
biased estimate of the testing error “averaged” over multiple
bootstrap samples of the image source during training [12].

2.2. Steganography methods

We compare the proposed methods with HUGO, the Edge
Adaptive (EA) algorithm [13], and Least Significant Bit
Matching (LSBM). We used the embedding simulator [5] for
HUGO operating at the theoretical payload–distortion bound
with default settingsγ = 1, σ = 1, and the switch --T with
T = 255 to remove the weakness reported in [11]. LSBM
was simulated at the ternary entropy bound. The code for the
EA algorithm with its custom coding scheme was obtained
from the authors.

3. DISTORTION FUNCTION DESIGN

We restrict our design to additive distortion in the form:

D(X,Y) =

n1
∑

i=1

n2
∑

j=1

ρij(X, Yij)|Xij − Yij |, (1)

whereρij are the costs of changing pixelXij to Yij . The
additivity means that we do not consider the effects of indi-
vidual embedding changes influencing each other. We opted
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, K(2) = (K(1))T

WDFB-H h = Haar wavelet decomp. low-pass
g = Haar wavelet decomp. high-pass

WDFB-D h = Daubechies 8 wavelet decomp. low-pass
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g = Daubechies 8 wavelet decomp. high-pass
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K(1) = h · gT
, K(2) = g · hT

, K(3) = g · gT

Table 1. Filter banks used in this paper.

for this mainly to simplify the design. Since the embedding
algorithm will be forced to concentrate the embedding modifi-
cations into highly textured/noisy areas, using the Gibbs con-
struction [2] with non-additive distortion functions may have
an additional beneficial impact on security. The authors con-
template investigating this direction as part of future research.

Having defined the pixel costsρij , embedding a (pseudo)
random sequence of bits with minimal expected distortion (1)
is equivalent to source coding with a fidelity criterion. A prac-
tical algorithm, based on Syndrome-Trellis Codes (STCs),
that embeds near the payload–distortion bound was pro-
posed in [4]. It works in the dual domain to better cover
the range of small payloads typically needed for steganog-
raphy. The STC Toolbox, which we also use in this paper
to implement all our schemes, can be downloaded from
http://dde.binghamton.edu/download/syndrome/.

3.1. Directional Filters

As already reported by its authors, the distortion functionof
HUGO concentrates the embedding changes primarily in tex-
tures and edges. However, the content along an edge can
usually be well modeled using locally polynomial models,
which aids the detection [7, 6, 8]. Thus, whenever possible
the embedding algorithm should embed into textured/noisy
areas that are not easily modellable in any direction. To this
end, we evaluate the smoothness in multiple directions using
a filter bankBn = {K(1), . . . ,K(n)} consisting ofn multiple
directional high-pass filters represented by their kernelsnor-
malized so that allL2-norms

∥

∥K(k)
∥

∥

2
are the same. Thek-th

residualR(k), k = 1, . . . , n, is computed asR(k) = K(k)?X,
where ’?’ is a convolution mirror-padded so thatR(k) has
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againn1 × n2 elements. (The mirror-padding prevents intro-
ducing embedding artifacts at image boundary.) If the resid-
ual valuesR(k)

ij are large for someij and for allk, it means
that the local content at pixelxij is not smooth in any direc-
tion and thus difficult to model.

Since we want to detect edges in all directions, it is natu-
ral to use established edge detectors for the filter banks (see
Table 1). The non-directional ’KB’ filter [1] is often used
in steganalysis, while the Sobel operator is a common edge
detector. Wavelet-based Directional Filter Banks ’WDFB-H’
and ’WDFB-D’ use the Haar and Daubechies 8-tap wavelets.
The computation of the residual coincides with the first-level
wavelet decomposition with no decimation. The wavelet
banks consist of three filters,K(1),K(2),K(3), using which
the LH, HL, and HH directional residuals are obtained. Given
the wavelet’s 1-D low-pass decomposition filterh and a high-
pass decomposition filterg, the 2-D directional filters are
computed as shown in Table 1.

3.2. Aggregating embedding suitability

The embedding should prefer changing large values of direc-
tional residuals, where the textures and edges are, and pre-
serve the small values, where the content is predictable. One
way to achieve this is to weigh the difference betweenR(k)

and the same residual after changing only one pixel atij (de-
notedR(k)

[ij]) by the wavelet coefficient itself:

ξ
(k)
ij =

∣

∣

∣
R(k)

∣

∣

∣
?
∣

∣

∣
R(k) −R

(k)
[ij]

∣

∣

∣

x (a)
=
∣

∣

∣
R(k)

∣

∣

∣
?
∣

∣

∣
K(k)

∣

∣

∣

x

. (2)

The quantityξ(k)ij , which we call embedding “suitability,” is
formally a correlation between the absolute value of the cover
residual with the absolute value of the residual change. Since
R(k) − R

(k)
[ij] is the spatially shifted directional filterK(k),

ξ
(k)
ij can be computed for all pixels at once (equality(a)).

Next, we compute the embedding costsρij by aggregat-

ing all suitabilitiesξ(k)ij , k = 1, . . . , n. Since we wish to re-
strict the embedding changes to those pixels with complex
content in every direction, the aggregation ruleρ : R

n −→

R
+
0 , ρij = ρ(ξ

(1)
ij , . . . , ξ

(n)
ij ) is required to have the following

properties:

A1. The larger the values of|ξ(k)ij |, the smaller theρij
should be.

A2. If there existsk ∈ {1, . . . , n} such thatξ(k)ij = 0, then
ρij = +∞.

A simple function that meets both requirements is the re-
ciprocal Hölder norm withp < 0:

ρ
(p)
ij =

(

n
∑

k=1

|ξ
(k)
ij |

p

)

−
1

p

. (3)
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Fig. 1. EOOB as a function of the Hölder-norm parameterp
when embedding at 0.4 bpp with the WDFB.
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Fig. 2. Evaluating the security of several different filter banks
using the OOB estimate of the testing error,EOOB.

We restrict the embedding changes to±1, |Xij−Yij | = 1.
Note that due to the absolute value in (2), both changes result
in the same embedding cost, which allows us to use the more
powerful multi-layered version of STCs [4] also available in
the STC Toolbox (see Section 4.4 for a discussion of how
different coding schemes affect the security).

4. EXPERIMENTS

In this section, we first assess how various design parame-
ters, such asp, the filter bank, and coding, affect security.
Then, the most secure setting is identified and compared with
HUGO, EA, and LSBM.

4.1. Aggregation rule

To obtain an insight as to which value ofp should be used
in the aggregation rule (3), in Fig. 1 we plotEOOB(p) for
the WDFB when embedding the payload of 0.4 bpp (bits per
pixel). While forp < 0 the security appears almost constant,
for p > 0 the requirement A2 is longer valid – the costs at



smooth edges decrease, which lowers the security. A simi-
lar dependence of security onp was observed for other filter
banks. Thus, for concreteness and simplicity, we fix the value
of the parameterp to p = −1.

4.2. Assessing filter banks

Fig. 2 shows the OOB error estimate for filter banks listed
in Table 1. Among them, the WDFB-D achieves the best
steganographic security. We call this embedding algorithm
WOW (Wavelet Obtained Weights). All the other filters
achieve comparable security with HUGO, even the WDFB-H
with support of size only2× 2.

Encouraged with the success of the Daubechies 8-tap
wavelet-based filter bank, we experimented with several other
wavelet bases, including the Biorthogonal 44 wavelets, only
to achieve very similar results in terms of theEOOB.

4.3. Comparison to prior art

Fig. 3 shows the comparison between WOW and three other
algorithms using the SRM model (left) and a model con-
structed using dependencies in the wavelet domain (see Sec-
tion 5 for more details). The improvement over HUGO is
especially apparent for large payloads – at0.5 bpp, theEOOB

of WOW is almost twice as high as that of HUGO.

4.4. The effect of coding

As already mentioned in Section 3.2, since the costs (3) do not
depend on the direction of the embedding change, WOW can
use the ternary multi-layered version of STCs. Fig. 4 shows
that the gain of using the ternary STCs over their binary ver-
sion is quite significant. At the same time, the coding loss
of STCs w.r.t. optimal embedding operating at the payload–
distortion bound is rather small.

The last comment above might suggest that HUGO might
be improved using ternary embedding instead of binary. How-
ever, since HUGO embeds only in the direction of smaller
distortion and allows interaction among modifications, it is
not clear how to implement ternary embedding and what the
security impact would be.

4.5. WOW adaptivity

In Fig. 5, we contrast the placement of embedding changes
for HUGO and for WOW. The selected cover image has nu-
merous horizontal and vertical edges and also some textured
areas. While HUGO embeds with high probability into the
pillar edges as well as the horizontal lines above the pillars,
WOW embeds solely into the textured areas as dictated by the
aggregation rule (3).
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Fig. 4. OOB error estimate of the testing error,EOOB, for
WOW implemented using binary and ternary STCs versus
simulated optimal embedding. Note the large gain of ternary
STCs versus their binary version. Also note that the coding
loss is quite small.
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Fig. 5. Embedding probability for payload0.4 bpp using
HUGO (bottom left) and WOW (bottom right) for a128×128
grayscale cover image (top).
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Fig. 3. Comparing statistical detectability of WOW and three state-of-the-art embedding algorithms using the SRM (left) and
wavelet-domain dependencies (right).

5. STEGANALYSIS IN WAVELET DOMAIN

The most successful steganalysis attacks have always been
built in the embedding domain. Although WOW embeds in
the spatial domain, which is well covered by the SRM, the
costs are computed in a transform domain. The goal of this
section is to investigate whether WOW can be attacked in the
wavelet domain by forming features that capture dependen-
cies among wavelet coefficients.

Inspired by how steganalysis features are built in the
JPEG domain, we explored the following four logical pos-
sibilities graphically shown in Fig. 6: 4-D co-occurrence
matrices built from four consecutive wavelet coefficients ex-
ploiting dependencies a) intra band (IaB), b) inter level, c) a
mix of intra level and inter level, and d) intra level, inter band.
The IaB features are similar in spirit to the SRM provided the
wavelet coefficients are interpreted as noise residuals. Since
the IaB features were much more successful in detecting
WOW when compared to the other three possibilities b)–d),
we only provide detailed discussion for case a).

The coefficients were computed using the standard undec-
imated discrete wavelet decomposition with the Daubechies8
wavelet (to steganalyze in the domain where WOW computes
its costs).

Let S(l,s) = {c
(l,s)
ij }, l ∈ {1, 2, 3}, s ∈ {LH,HL,HH},

be the undecimatedsth subband in thelth level of the
wavelet transform. Assuming thatn1 = 2k1 , n2 = 2k2

for somek1, k2 ∈ Z, the range of subscripts forc(l,s)ij is
i = {1, . . . , 2k1−l+1} andj = {1, . . . , 2k2−l+1}.

The steganalytic features are four-dimensional co-occurrence
matrices formed by groups of four horizontally and vertically
adjacent coefficients after truncation and quantization toa

finite dynamic range,c(l,s)ij ← round
(

truncT (c
(l,s)
ij /q)

)

,

where q is a quantization step andtruncT (x) = x for
x ∈ [−T, T ], truncT (x) = T · sign(x) otherwise. The

horizontal co-occurrence matrix is denoted asC
(h,l,s)
d

, d =

(d1, . . . , d4)∈ {−T, . . . , T }
4, C

(h,l,s)
d

=
{

(i, j)
∣

∣

∣
c
(l,s)
ij =

d1,c
(l,s)
i,j+1 = d2, c

(l,s)
i,j+2 = d3, c

(l,s)
i,j+3 = d4

}

, with the vertical

matrixC(v,l,s)
d

defined analogically.
We built three co-occurrence matrices for each level

l ∈ {1, 2, 3}. In Fig. 6a), denoted by a triangle is the co-

occurrenceC(1,l)
d

, C
(h,l,LH)
d

+ C
(v,l,HL)
d

. The squares

correspond toC(2,l)
d

, C
(v,l,LH)
d

+ C
(h,l,HL)
d

, while the

circles markC(3,l)
d

, C
(h,l,HH)
d

+C
(v,l,HH)
d

.
In this paper, we usedT = 2, which gave each co-

occurrence matrixC(i,l)
d

the dimensionality of(2T + 1)4 =
625. Sincei ∈ {1, 2, 3} andl ∈ {1, 2, 3}, the total number
of co-occurrence matrices is9, giving the final feature vector
a dimensionality of625 × 9 = 5, 625. A brief study on the
effect of the quantization stepq ∈ [0.2, 5] onEOOB showed
that the best performance was usually obtained forq ≈ 1.
Thus, in all our experiments, we setq = 1.

Fig. 3 (right) shows the results of steganalysis using the
IaB features. WOW still achieves better security than any
other tested method. The overall detection performance of
the IaB features is, however, inferior to the SRM (left).

6. CONCLUSION

This paper confirms what has been suspected before – restrict-
ing the embedding changes to textures while avoiding “clean”



a) b)

c) d)

Fig. 6. Four types of groups of wavelet coefficients from
which 4-D co-occurrence matrices were built to steganalyze
WOW.

edges greatly improves steganographic security. This high
level of adaptivity was achieved through a novel design of the
steganographic distortion function. First, a directionalfilter
bank is used to detect edges in local neighborhoods of each
pixel. Then the changes in the residuals caused by embedding
are weighted and aggregated using a special rule designed to
output a low embedding cost only when the local content is
not smooth in any direction.

According to our experiments, 2-D wavelet decomposi-
tion filters provide the highest level of steganographic security
measured empirically for a given image source (database) and
classifiers operating in high-dimensional feature spaces (rich
image models). The proposed algorithm, WOW, outperforms
the current state-of-the-art HUGO by a significant margin es-
pecially for large payloads.

Further potential improvement is possible by employing
better directional filter banks and by using non-additive dis-
tortion to model interaction of embedding changes.
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