SAMVAAD: Speech Applications Made Viable for
Access-Anywhere Devices

NitendraRajput Amit A. Nanavati Mohit Kumar Panka Kankar Rajan Dahiya
IBM India Research Laboratory, I.I.T., Hauz Khas, New Delhi-110016. Ph:+91-11-2686-1100
{rni tendr, nam t, nohi t kum kpankaj }@n. i bm com
Symposium 3: Ubiquitous Computing, Services and Applications

Abstract— The proliferation of pervasive devices has stimu-
lated the development of applications that support ubiquitous
access via multiple modalities. Since the processing capabilities
of pervasive devices differ vastly, device-specific application
adaptation becomes essential. We address the problem of speech
application adaptation by dialog call-flow reorganisation for
pervasive devices with different memory constraints. Given an
atomic dialog call-flow A and device memory size m, we present
optimal deterministic algorithms, RESEQUENCE and BALANCE-
TREE, which minimise the number of questions in the reorganised
output call-flow A,,. Algorithms MASQ and MATREE produce C',,
minimally distant from input call-flow C, while accomodating
the memory constraint m. These two minimisation criteria are
capable of capturing various usability requirements important
in dialog call-flow design. The following observation forms the
cornerstone of all the algorithms in this paper: Two grammars
g1 and g2 comprising of |gi| and |g2| elements respectively can
be merged into a single grammar g = g1 x g2 having |g1| - |g2|
elements for the sequential case, and g = g1+ g2 having |g1|+|g2|
elements for the tree case.

Device-specific considerations lead us to introduce the concept
of an (m, ¢)-characterisation of a call-flow, defined as the set of
pairs {(ms,q;)[i € N}, where ¢; is the minimum number of
questions required for memory size m;. Each call-flow has a
unique, device-independent signature in its (m, ¢)-characterisation
— a measure of its adaptability.

We present SAMVAAD, a system that implements these
algorithms on call-flows authored in VXML containing SRGS
grammars. The system was tested on an IBM voice browser
using a sample airline reservation system call-flow reorganised
for memories ranging from 64 MB to 210 KB. We ran an
experiment with 14 users to obtain feedback on the usability of
the adapted call-flows.

Keywords: Speech Processing, Pervasive Computing, Dialog
Call-Flow Optimisation.

I. INTRODUCTION

Samir is driving to a theatre to watch a movie. He accesses
the theatre’s IVR system from his mobile to make a reserva-
tion. He gets disconnected from the IVR system twice during
the conversation. It would be nice if Samir could connect once
to download the application, use it locally and transmit the
final response, thus avoiding network instabilities as well as
connection charges.

Users are increasingly accessing remote applications on the
internet and running a plethora of local applications from their
mobile devices. From the users’ point of view, they would
like more and more applications to be accessible via various
interfaces (voice, multimodal) from their pervasive devices.

Pervasive devices are different from desktop computers in two
fundamental ways. One, they occur in various sizes with vastly
differing capabilities, and by virtue of mobility, are not always
connected to the network. This combination gives rise to some
very interesting challenges and possibilities.

From the application provider’s point of view, an application
composed on M pages to be accessed via N devices requires
M x N authoring steps, and results in M x N presentation
pages to be maintained. To address the application developer’s
nightmare, many application programming tools have been
proposed [1], [2]. Such tools allow the programmer to de-
velop a generic application which is automatically adapted for
various devices. So far, these techniques address problems in
the visual domain only.

We are interested in device-specific adaptation of speech
applications. Traditionally, speech applications run on a remote
server, and several client-server interactions take place in the
course of a dialog. A client-server model incurs transmis-
sion costs, and is prone to transmission errors, which could
result in degraded speech recognition accuracy. The use of
compression for reducing transmission costs introduces other
complications [7]. In order to circumvent such problems,
speech recognition at the client offers a viable alternative.

Litman and Pan [4] claim that the performance of a conver-
sational system can be improved by adapting dialog behavior
to individual users. Jameson [3] discusses the cognitive aspects
of conversational applications taking into consideration the
user’s available time and her ability to concentrate on the
interaction. Dialog call-flow adaptation of a conversational
system for improving the speech recognition accuracy has
been addressed in [5]. Levin et al. [6] use learning techniques
for designing a conversational system and modelling it as a
Markov decision process. However, none of these efforts take
device characteristics into consideration.

A. Our Contribution

We investigate the problem of dialog call-flow reorganisa-
tion for pervasive devices with memory constraints. The crux
of the reorganisation lies in altering the memory requirement
of the underlying grammar. We achieve this by continually
merging atomic (an atomic grammar is one which cannot be
split into subgrammars) grammars till the resulting grammar
size can be supported by the device. We present optimal de-
terministic algorithms, RESEQUENCE and BALANCETREE,

which provide solutions for the two types of call-flows,
sequential and tree-type respectively. Typically, call-flows are
designed based on various usability criteria. When such “ideal’
reference call-flows are available, minimising the number of
changes to this ideal call-flow is a reasonable goal. MASQ
and MATREE minimally alter a given dialog call-flow to
accommodate it within a given memory constraint.

We introduce the concept of a device-independent character-
isation of dialog call-flows. This signature can be constructed
by finding the set of (memory, minimum number of questions)
corresponding to each call-flow and provides a benchmark for
the adaptability of a call-flow.

We have built a system SAMVAAD that takes as input a
VXML dialog containing SRGS grammars and a memory size
m. SAMVAAD has VXML and SRGS parsers that parse the
input dialog to build a call-flow which is input to the above
algorithms. The output of the algorithms is converted back to
a VXML dialog.

Section 1l discusses the background of the problem. Sec-
tion 111 details reorganisation algorithms RESEQUENCE, BAL-
ANCETREE, MASQ and MATREE, and introduces (m,q)-
characterisation of a call-flow. Section IV presents SAMVAAD
which realises the reorganisation algorithms and describes
some experiments with it. Section V concludes the paper.

Il. BACKGROUND AND PROBLEM SETTING

In this section we briefly discuss speech recognition sys-
tems, their grammars and memory requirements and the need
for client-side processing.

Client-side processing: In server-side processing intensive
systems, a typical approach to alleviate server bottlenecks and
achieve scalability is to offload processing to the client side to
the extent possible. The evolution of Javascript in the context
of the Web is an example. Further, for pervasive devices, server
connectivity comes at a cost and is not always robust. Together,
these factors make a compelling case for disconnected, client-
side processing of dialog call-flows.

ASR: An Automatic Speech Recognition (ASR) system
consists of two main components, an acoustic model and a
language model. The acoustic model estimates how a given
word or ‘phone’ is pronounced. The complexity (hence mem-
ory requirement) of an acoustic model is dependent on the
training data and is fixed once the model is built. The language
model provides a probabilistic estimate of the likelihood of
a sequence of words. In conversational systems, a language
model is represented by a speech recognition grammar. The
memory requirement of a grammar depends on the number of
choices that it encapsulates. Therefore, the memory require-
ment of a call-flow can be altered by changing its underlying
grammars.

Memory optimisation of ASR systems: While the available
memory size on devices is increasing, so is their ability to sup-
port more and more complex conversational systems. Conver-
sational systems range from single-word-based-recognition to
phrase-recognition to complex-grammar recognition to large-
vocabulary-recognition coupled with NLU, in the order of

increasing memory requirement. The state of the art sophis-
ticated speech recognition tasks (“how-may-I-help-you” type
of tasks, which provide much better user experience) require
more memory than is typically available on laptops (=512
Mb). Therefore it becomes necessary to adjust the complexity
of the conversational system for different devices.

We introduce, formulate and analyse device-specific adap-
tation of dialog call-flows. Based on the algorithms presented,
we have built a system to assist a speech application devel-
oper. The system outputs the adapted call-flow for different
devices, but the task of designing corresponding prompts and
help messages need to be done by the developer. While the
complete automation of dialog call-flow adaptation is a distant
holy grail, this is a first step towards it.

I1l. REORGANISATION ALGORITHMS

We assume that the input call-flow comprises of atomic
dialogs® only. Such a call-flow is called an atomic call-flow.
An atomic call-flow has the least memory requirement and also
the most number of dialogs. M denotes the memory constraint.

We present two sets of algorithms. The first set consists
of two algorithms RESEQUENCE and BALANCETREE that
minimise the number of dialogs (questions/prompts) given
an atomic dialog call-flow with respect to a given memory
constraint and operate on sequential and tree-type call-flows
respectively. The second set of algorithms MASQ and MATREE
minimally alter the given reference call-flow (sequential and
tree-type respectively) to accommodate the given memory
constraint. A reference call-flow C” may be the result of
a myriad of considerations and serves as a guideline for
reorganisation. C" represents a guideline and therefore is a soft
constraint. It need not be atomic. For this set of algorithms,
we naturally require a notion of distance to quantify minimal
alteration. Apart from the memory constraint, all algorithms
accommodate reorganisation constraints.

A. Reorganisation Constraints

Reducing the number of questions improves usability and
optimises memory usage. However, grammar merges across
certain subdialogs may either not be possible or not preferable
due to reasons such as data dependency and usability. We call
these reorganisational constraints.

Reorganisational constraints represent hard constraints of
two types. One, that insist that a certain group of dialogs be
merged, and two, that forbid a certain group of dialogs from
being merged. The first set must-merge is a set of sets of
dialogs which must be merged. The second set must-separate
is a set of sets of dialogs which should not be merged.
For example, in an airline reservation system (figure 6), the
grammar for the departure city cannot be merged with the
grammar for the arrival city because the arrival city depends
upon the departure city. From a usability standpoint, one may
not want to merge the date of departure with the flight number.
Another possible reason for preventing merges might be to

ldialogs which cannot be split into subdialogs -
grammars

analogous to atomic

colour ?

A

O

g1 = black | gray | white (3 choices)

g2 = shirt | pant | shoes | tie (4 choices)

object ?

Two prompts, requirement: max(3,4)

colour &
object ?

g = black shirt | gray shirt | white shirt
| black pant | gray pant | white pant
| black shoes | gray shoes | white shoes
| black tie | gray tie | whitetie (3x4 =12 choices)

One prompt, requirement: 3x4 = 12

Fig. 1. Effect of merging/splitting a sequential grammar.

improve recognition accuracy. Reorganisational constraints
thus provide a mechanism to incorporate various practical
considerations and constraints to improve the overall usability
and performance of a dialog call-flow.

B. Minimising the Number of Dialogs

In this section, we present RESEQUENCE and BALANCE-
TREE to minimise the number of dialogs in a sequential and
tree-type call-flow respectively while respecting the memory
and reorganisational constraints.

1) RESEQUENCE:

Observation 1: Two grammars g; and g» comprising of |g |
and |go| elements respectively can be merged into a single
grammar g = g1 X g2 having |g1| - |g2| elements. Figure 1
shows an example, where as a result of a merge operation the
memory requirement goes upto 12 from 4.

A call-flow can be represented by a sequence L =
{1,...,n} of atomic dialogs representing the order in which
the dialogs are presented. The goal is to merge as many
questions as possible while respecting the memory constraint.
The memory requirement m(g;) for each g; is known. We
construct a graph G as follows. The vertex set V(G) contains
precisely the elements of L. For each vertex i in G, we
add edge (i,j) if IL;_;m(gx) < M (i < j < n), ie, the
memory requirement of the merged grammars g; through g;
can be accommodated within memory constraint M. As a
result of this, G becomes a directed acyclic graph, possibly
disconnected. Now, we need to find the shortest path (or
set of paths) from 1 to n, by finding the shortest path for
each connected component of G. Each edge in the shortest
path (set of paths) denote the subsequence of questions being
merged. The sets of dialogs in must-merge are merged as a
preprocessing step, and dialogs merged as a result of this step
are considered atomic. L,, denotes the output call-flow with
the minimum number of dialogs. L,, may contain merged
(non-atomic) dialogs. Figure 2 shows an example of a graph
with 7 nodes.

0 T ©

Fig. 2. An example directed acyclic graph of a call-fow.

The edges of this graph represent the possible merges in
the call-flow. The dotted edges identify the nodes that are

not allowed to merge due to reorganisation constraints. The
shortest path for the graph is indicated by thick edges in
Figure 2.

RESEQUENCE
1) input: atomic sequential call-flow L ,.
2) output: sequential call-flow L ,,, with the minimum number of
questions.
3) Construct a graph G(V, E) as follows:
a) Merge all must-merge dialogs in L, to obtain Lg".
b) Represent all dialogs by vertices labelled {1,...,n}
c) for each vertex i(1 <1i <n)
i) for each vertex j(i < j <n)
i) if (I_m(g.) < M) && {i,j} ¢
must — separate, add (¢,) to G.
4) Find the shortest (set of) path(s) as follows:
a) start = 1. L,, = 0.
b) while (start < n)
i) Ly, = L U{start}.
ii) select maz; such that (start,j) € E.
iii) start = j+1.
5) output L,.

Claim 1: RESEQUENCE is correct and runs in O(n?) time.
The graph construction phase takes O(n?) time to check every
pair of vertices for adding edges. The shortest path phase takes
O(n) time, since at each vertex the largest adjacent vertex can
be chosen greedily to yield the shortest path.

2) BALANCETREE:

Observation 2: Two grammars g; and g2 comprising of | g1 |
and |go| elements respectively can be merged into a single
grammar g = g; + g2 having |g1| + |g=2| elements. Figure 3
shows an example. As a result of the merge operation, the
memory requirement goes up from 2 to 4 (g1 to g1’).

BALANCETREE

1) input: tree-type call-flow T
2) output: tree-type call-flow T ,,, with the minimum number of

questions.
3) initialise T,, = T'; boolean changed = false.
4) do
a) Find the longest path in T, and identify its lowest 2-
subtree ¢s.

b) if (shorten(7’,t2)) changed = true.
5) while (changed) ;
6) output T,,.
7) shorten(Tr,, t2)

a) while (t2 # “root’)

b) do

veg OR

thin crust? non-veg?

pan thin veg non
crust crust veg

g1 = pizza| burger (2choices)
g2 = pan crust | thin crust (2choices)
93 = veg | non-veg (2choices)

i pan crust pizzaOR
i thin crust pizzaOR
veg burger OR
non veg burger

pancrust thincruss veg nonveg
pizza pizza burger burger

gl' = pan crust pizza | thin crust pizza | veg burger |
non veg burger (2+2=4choi ces)

Fig. 3. Effect of merging/splitting a tree-type grammar.

i) if (fold(t2)) return true.
ii) else t2 = parenit(ta).
¢) done
d) return false.
8) fold(t2)
a) if ((A(t2) > degree(children(t2))) return true.
b) return false.

Definition 1: The degree of a vertex is the number of its
children.

Definition 2: A 2-subtree of a vertex v is a tree of depth 2
with v as the root.

Definition 3: A 2-subtree of a vertex v is balanced if all the
leaves of the 2-subtree are at distance 2 from wv, i.e., no child
of v is childless. A 2-subtree of a vertex v is 1-balanced if at
least one child of v is childless. A 2-subtree is either balanced
or 1-balanced.

Definition 4: Let the maximum degree of any vertex in a
call-flow tree be denoted by A. The vacancy of a vertex v is
defined as (A - degree(v)).

Definition 5: The fold operation is defined on root v of a
2-subtree and allows v to directly inherit all its grandchildren
if the A > X, degree(child,(v)). As a result of this operation,
all the grandchildren of v become its own children, and the
original children are removed. This operation reduces the
height of the tree by 1.

Claim 2: The greedy application of the folding operation
cannot lead to suboptimal solutions.

Proof: A greedy application of the folding operation on root
v of a 2-subtree can lead to two possibilities. As a result of
a fold(v) operation, a subsequent fold(parent(v)) is possible,
or it is not. In first case, since both fold operations must be
done optimality is preserved. In second case, it turns out that
only one of fold(v) or fold(parent(v)) could have been applied,
either of which would lead to a height reduction of 1. [|

Claim 2 suggests that a bottom-up approach on the longest
paths in the tree one 2-subtree at a time might provide a
solution. This is the essence of BALANCETREE. At each step,
the longest path is found, its height reduced by 1, if a fold
operation is possible at any vertex from the grandparent of the
leaf in the longest path to the root. Note that shorten traverses
up the tree till it is able to reduce the height by 1. After this
reduction, the longest path is calculated again and the same

procedure is applied. If at any time, the longest path cannot
be reduced, the algorithm terminates. Since the longest path
is found globally at each step, and since the height of the
tree is reduced only 1 at a time, we obtain a maximal height
reduction.

Claim 3: BALANCETREE is correct and runs in O(n?) time
where n is the number of vertices in the tree. Since the fold
operation is the dominating cost, consider the degenerate case
of a tree of depth n with one vertex at each level (a path).
Suppose the root has vacancy n, then each vertex folds into
its parent bottom-up one at a time. This accounts for O(n?)
fold operations. Each vertex is examined a maximum of 2
times for each level it visits, as a child for its degree and as
a parent for its vacancy amounting to a cost of 2n2.

3) Hybrid Call-flows: In general, hybrid call-flows may
contain sequential parts as well as tree-type parts. The algo-
rithms RESEQUENCE and BALANCETREE can operate on
the separate parts independently of each other. Without loss
of generality, we can execute RESEQUENCE followed by
BALANCETREE. As a result of RESEQUENCE, a shortened
sequence may contain a vertex v with increased memory
requirement and hence a reduction in vacancy(parent(v)). This
reduction in vacancy may prevent v from folding into its
parent. If RESEQUENCE would not have affected v, then
BALANCETREE would have folded v into its parent. Either
case leads to a height reduction of 1. This argument is similar
to the one used in claim 2 above.

C. Minimally Altered Call-flows

Minimising the number of questions need not be the single
motivating factor for reorganisation. Call-flow design entails
accounting for numerous factors such as speech recogni-
tion accuracy and natural language processing. Such a well-
designed call-flow can be used as a reference and altered
minimally to meet memory constraints.

For quantifying minimality, it is necessary to define a notion
of distance. We introduce a simple notion of distance based
on two operations: merge and split. A single application of
either of these operations on a call-flow C' (whether sequential
or tree-type) increases the distance of the modified version
from C by 1. Let C, denote the atomic version of C. A split
operation on a non-atomic call-flow C' can be simulated by

replacing a dialog in C' by its atomic components from (
Observe that no split operation was required for minimisi
the number of dialogs in a call-flow because the initial cz
flow was atomic. In this case, however, since the referer
call-flow need not be atomic, we need to support the sy
operation.

1) MASQ: Given a sequential, not necessarily atomic r
erence call-flow L" and a memory constraint M, MAS
constructs a call-flow L7 , a minimally altered version of
that satisfies the memory constraint M. MASQ is simple. If a
dialog can be accommaodated within A, it remains unchangt
For the others, it has to be split.

MASQ

1) input: atomic sequential call-flow L ,.
2) input: reference sequential call-fow L ".
3) output: minimally altered sequential call-flow L 7,.
4) Construct a graph G(V, E) as follows:
a) Represent all dialogs by vertices labelled {1,...,n}
b) Let L7, =L".
c) for each vertex i(1 <1i <n)
d) if (m(g:) > M), then split(i, L7,).
5) output L;,.
6) split(v, L;,)
a) Find the set of atomic components S, = {v1, ..., v¢} of
v from L.
b) If Jv; € Sy, m(v;) > M, output “IMPOSSIBLE” and
exit.
¢) Otherwise,
i) i =158, =0.
i) Find the largest & such that IT¥m(v,;) < M.
i) i =(k+1).
S8, =88, U{i—k}.
if (k < {), repeat previous step.
d) Replace v by SS.,.

Claim 4: MASQ is correct and efficient.
Proof: The basic idea is to split only those dialogs that use
memory larger than M. The split routine ensures the smallest
number of splits. Each call to split involves a linear search of
the corresponding atomic component set. This greedy method
yields an optimal solution. [|

2) MATREE: MATREE works on tree-type call-flows. In this
case, the ‘splitting” of a vertex is like an ‘unfolding’ (similar
to the fold operation being analogous to the merge). The
unfolding operation may cause the depth of the tree to increase,
but the memory requirement at the vertex decreases.

MATREE

1) input: atomic tree-type call-flow T',.
2) input: reference tree-type call-flow 7' ".
3) output: minimally altered tree-type call-flow T';,.
4) initialise T,,, = T";
5) do
a) Traverse Ty, in preorder and if (m(Ty,) > M), then
i) unfold(T,) ;
ii) matree(Ta,Tyy,) ;
6) output T7,.
7) unfold(T)
a) Identify the corresponding subtree T of T in Ty,.

<M - Characteristic Plot

1000000

4460800

100000
10000
N *1920 —e—Cf | ex
1000 —=—Cshort

100 oW

Menory Required (bytes)
s/

*4— — o2
10

"o 1 2 3 2 5 6

Nunber of Dial ogs
Fig. 4. Sample (m, ¢)-characterisation plots for Cflex and Cshort. Due to
reorganisational constraints, Cshort has a minimum of two questions. Cfex is
more flexible and can support devices with lower memories.

b) Traverse 7" bottom-up and for each vertex v' € T”,
T,, = shorten(T”, v).
c) Replace T with T7,.

Claim 5: MATREE produces a tree with the minimum num-
ber of alterations.
Proof: Every vertex in T}/, can be created by merging several
vertices in T,. Each vertex in 7T, corresponds to a unique
subtree in T,,. The unfolding operation identifies this subtree,
and attempts to shorten it as much as possible to minimise
alteration. Since each vertex corresponds to a unique subtree,
the order of replacing the subtrees is inconsequential. [|

D. Device-independent Call-flow Characterisation

Given a call-flow C, the above algorithms can be run with
various values of memory size m;,1 < i < n and their
corresponding minimum number of questions obtained. This
gives us a device-independent characterisation of C. Since
these (m;, ¢;)-pairs are unique for a given call-flow, they can
be thought of as a reorganisational signature of the call-
flow. We call this signature an (m, q)-characterisation of C.
From a practical perspective, the (m, g)-characterisation of C
provides a means for comparing two call-flows that essentially
(semantically) perform the same task, that of doing airline
reservation, for example, and traces the memory requirements
of each. This is important in call-flow design.

The (m, ¢)-characterisation function of C' is typically a
decaying function — a composition of lines with negative,
decreasing slopes. Consider a sequential call-flow L of n
dialogs where each dialog 7 requires memory m;, a single
question requires II¥m,. This is the largest value of the
function. The smallest value is maz m;. When all the numbers
are the same, this function reduces to an exponential function
on my. In the most general case, this function is similar to the
falling factorial function, except that the the numbers are not
necessarily consecutive, so the slope of the curve continues to
decrease faster than the falling factorial function. In the case
of tree-type call-flows, since the numbers get added rather than
multiplied, the effect is less pronounced.

Figure 4 shows a comparison of the (m, ¢)-characteristics
of two imaginary call-flows, Cflex and Cshort. Both call-

flows are semantically equivalent in that they perform the
same task (for example, airline reservation) but were designed
with different assumptions and considerations in mind. The
choice of the call-flow could depend on a number of factors.
For example, if the designer expects client devices (with less
than 90 bytes) to access the application, Cflex is preferable.
However, if the designer is concerned that he does not want
to ask more than 3 questions, then Cshort accomplishes this
with lesser memory.

IV. SAMVAAD: ARCHITECTURE, IMPLEMENTATION AND
EXPERIMENTS

In this section, we detail the architecture and implemen-
tation of SAMVAAD, a dialog call-flow reorganisation sys-
tem. We use a sample airline reservation system call-flow
to illustrate the functioning of SAMVAAD and to analyse the
behaviour of the algorithms for different memory constraints.
We also present the outcomes of a user study we conducted to
evaluate the usability of the reorganised call-flows, the output
of SAMVAAD.

SAMVAAD is implemented in Java2(v1.5.0) and the gen-
erated dialogs were deployed on an IBM WebSphere \oice
Response browser that uses the IBM WebSphere Voice Server
for speech recognition and speech synthesis. We tested the
system on several working VXML dialogs and note that it
generates syntactically correct dialogs.

A. Architecture and Implementation

Figure 5 shows the architecture of SAMVAAD. A VXML
dialog file specifies the dialog call-flow, its prompts, and
grammars. The VXML dialog file is first parsed by the VXML
Parser. The Grammar Parser parses the SRGS grammars re-
ferred to in the VXML dialog. The Reorganisation Algorithms
module processes the call-flow graph output by the VXML
parser. This module outputs the reorganised call-flow graph
and identifies the grammars that need to be merged. The
Grammar Merger module merges the grammars and finally the
VXML Generator reconverts the call-flow graph into VXML.
We describe the five components in detail:

o VXML Parser: This parser parses VXML (version 2.0)
dialogs and extracts the call-flow in a DOM tree rep-
resentation. Each node of the tree corresponds to an
input element in a VXML dialog and has an associated
grammar. The number of children at a node is equal to
the number of choices after the input <field> block. The
VXML parser outputs a sequential or tree-type call-flow.
It invokes the Grammar Parser, when required, by passing
a <grammar-file> handle to it.

o Grammar Parser: It parses the grammar file associated
with a node of the call-flow DOM tree. We preferred the
SRGS-XML format so that we couls use a JAXP imple-
mentation of the DOM parser. We parse the grammar file
to count the number of choices the grammar encapsulates:
If the elements of a node are present in a <one-of>
(an SRGS-XML tag element) block, all choices within

TABLE |
MEMORY REQUIREMENT FOR THE DIFFERENT GRAMMAR SIZES

Grammar Memory Grammar Memory

size required (bytes) size required (bytes)
1 47916 3000 53356

116 47960 4000 58712

280 48080 5000 60532

370 48052 7000 61888

960 48412 9600 62860

1440 48644 10670 63060

each of these elements are added; otherwise, they are
multiplied.

o Reorganisation Algorithms: This module contains the
algorithms explained in Section II1.

o Grammar Merger: Grammar merges are of two types:
OR-type and the AND-type. For a OR-type merge, the
final root will comprise of <one-of> block that contains
references to the nodes of original grammars as its
children. An AND-type grammar merge contains the rule
references of the original grammars in its root node.

o VXML generator: The VXML generator takes the reor-
ganised call-flow and generates the final VXML dialog
that contains the merged grammars.

The VXML generator requires new prompts for the merged
grammars. Our implementation of the system generates these
prompts by concatenating the prompts corresponding to the
original grammars. However these can be re-authored manu-
ally to provide a better correspondence with their associated
grammars. The reorganisation constraints are specified in
the input VXML dialog through a special reorganisation tag
<must-separate> that is parsed by the VXML parser and is
appropriately represented in the call-flow DOM tree structure.

B. Experimenting with Grammar Memory

To demonstrate the varying memory requirements of gram-
mars on a device, we calculated memory required by a speech
recognition system for grammars of various sizes. We used a
large vocabulary English speech recognition system to decode
a speech utterance. The utterance comprised of a single word.
The grammars used for decoding consisted of isolated words.
The size of grammar therefore reflects the vocabulary of the
recognition system. The decoding was performed for the same
utterance, but with varying grammar sizes. Table | shows the
memory required to perform decoding on a 450 MHz Quad
processor AlX machine with 2GB of RAM. These numbers
may vary depending upon the particular implementation of
the speech recognition system and the hardware. The memory
requirement of 47916 bytes for decoding the utterance against
a one word grammar can be interpreted as the footprint that
is required by the non-grammar specific portion of the speech
recognition system. The additional memory requirement with
the increase of grammar size is a reflection of the increased
memory requirement for decoding the same speech utterance.

C. Reorganisation Experiments

Figure 6(a) shows a sample airline reservation system call-
flow. The reorganisation constraints, which are of the must-

=
—
=
s
= vl | A Reorg o] oL
P - | Algorithm Generator
Input VL file HISED Call-flow tree | &1
I Grammar
Ilerger
b
¥
Initial Grammars | Grammar
Parszer

Fig. 5. System Architecture of SAMVAAD

<29>

<29>

Day of journey
Month of journey

<8>

<3>

Credit card type
Credit card number

Credit card exp month

Credit card exp year

Contact number

@

<7>
<25> [l
<1>

<2.5>

<2>
<2.5>

<6>

Contact number

<2.5>

<2.5>
(b)

Fig. 6.

Departure City

Day of journey

i
it

Month of journey

Airline name &
Flight number

Class of reservation &
Number of seats

Credit card type &
Credit card number

Credit card exp month &
Credit card exp year

<29>
2 Departure City <29>

<29> <20>

<8> Day of journey &
<93>
Month of journey

<3> ‘

Airline name &
Flight number &

Class of reservation &
Number of seats

<70> <2800>

<10>

CCtype&
CC number &

CC exp month &

CC exp year

Contact number

<2400>

<20>

<2.5>

<30>

<2.5>

©

(8 An airline reservation atomic cal-fiow. (b) Output of the RESEQUENCE agorithm with m=70KB. (c) Output of the RESEQUENCE

agorithm with m=3400KB. The memory (in KB) required by ASR to process the grammar is shown in < > against each diaog.

separate type, are represented by a dashed line in the call-flow
and are extracted from the <must-separate> tag in the VXML
file.

RESEQUENCE: For the input call-flow of figure 6(a), 6(b)
and 6(c) show the output of RESEQUENCE for memory sizes
m = T0K B and m = 2400K B respectively. While the first
call-flow requires 9 questions, the second call-flow requires 6
questions to gather the same information. The decrease in the
number of questions is a result of merging the corresponding
grammars.

The (m, ¢) characteristics of the above call-flow is shown
in Figure 7. Each bar in the chart corresponds to a unique
call-flow. If the call-flow has only one question, its memory
requirement is too big to be accommodated by any device.
On the other extreme, the call-flow that has six questions
can run on all devices. The value on the y-axis refers to
the memory required to execute the largest grammar in the

respective call-flow. The plot has been generated by running
the RESEQUENCE algorithm on the call-flow mentioned in
Figure 6(a) by varying m and finding the corresponding ¢
values.

MASQ: Figure 8(a) shows an ideal call-flow corresponding
to the call-flow shown in figure 6(a). The ideal call-flow,
atomic call-flow, reorganisation constraints and the device’s
memory resources form an input to MASQ. The output of
the algorithm is the optimal call-flow with minimum distance
between the output and the ideal call-flow. Figure 8(b) shows
a call-flow for m = 29K B. It requires 12 questions to be
answered during the course of the call-flow execution.

The implication of the distance between two call-flows can
be observed by comparing the output of RESEQUENCE and
MASQ. With reference to the atomic call-flow described in
figure 6(a) for m = 29, the output of the two algorithms
would be different. RESEQUENCE can output a merged

g 7
4
§ 6 Comparg Ipag H3970
& £ Mitac Wlio 338
k] — Soty Clie-PEG-Mx70V
g 4] Hokia 6600
= Hokia 76350
2 3 - = Mokia 6585
g 5 Mokia 3100
L

y 1

o T T T T .

1 2 3 4 5 8

Mumber of Questions

Fig. 7. The (m, q)-characterisation of the dialog call-flbow shown in Figure 6.

grammar corresponding to either ‘Flight number’ with ‘Class
of reservation” or ‘Class of reservation’ with ‘Number of
seats’. The output is such because the memory requirement
for both the merged grammars is same. S0 RESEQUENCE
algorithm can arbitrarily pick one of them. However in MASQ,
the output call-flow would have a merged grammar of ‘Class
of reservation” and ‘Number of seats’. This is because the
resulting call-flow is at the least distance from the ideal
reference call-flow 8(b).

D. User Experiments

We ran an experiment using the reorganised airline reserva-
tion dialog call-flow with 14 users. The original call-flow had
9 questions and the reorganised call-flow had 6. The users
were asked to rate the reorganised call-flow on a scale of 1-
5 (5 being most satisfactory) for the number of questions,
recognition accuracy and dialog completion time. Of the
three merges in the reorganised call-flow, one of the merges
resulted in poor recognition accuracy and led to decreased
user satisfaction. The users were otherwise satisfied with the
reorganised dialog.

V. SUMMARY AND FUTURE WORK

We introduce, formulate and analyse device-specific adap-
tation of dialog call-flows and realise it in the form of SAM-
VAAD. We believe that the concept of (m, ¢)-characterisation
captures the essence of the adaptability of a call-flow and
needs to be probed further for a clearer and quantifiable
interpretation.

The reorganisation algorithms require an atomic call-flow as
input. It would be interesting to know how these atomic call-
flows can be automatically derived. One potential approach
could be to split a grammar by exposing the intermediate
non-terminals in the grammar. Another objective is the au-
tomatic generation of prompts for the merged/split grammars.
This might require the use of Natural Language Processing
techniques. Our user experiments have shown that we need
to take into account the recognition accuracy before merging
grammars. It would be nice to have a method for estimating
the recognition accuracy of merged grammars.

More generally, the idea of extending call-flow adaptation
for systems that use language models (rather than small

<29> <29>

Departure City

Departure City
|

<29> <09>

D f j
<o3> ay of journey

Day of journey &

Month of journey

Airline name &
Flight number

Month of journey <3>

<70> <7>

Airline name

T

Flight number <25>
Class of reservation & <10>
Number of seats
¢ Class of reservation & <10>
Number of seats
CCtype&
CC number & <2400> - <>
CC exp month & Credit card type
CC exp year
Credit card number <25>
¢
Credit card exp month <6>
Credit card exp year <25>
Contact number <2.5>

@ (b)
Fig. 8. (a) Anided reference cal-flow, (b) Output of MASQ for m=29KB.

“enumerated” grammars) coupled with an NLU engine would
be interesting. Building a mechanism for adaptation in the ab-
sence of grammar operations appears to be a very challenging
problem.

As speech applications become available on more and
more devices, various interesting usability issues are likely
to surface. Meeting the user expectation without having to
manually customise a conversation for every person on every
device is a worthy goal for the speech research community.

REFERENCES

G. Banavar et.a., “Tooling and System Support for Authoring Multi-
Device Applications,” Journal of Systems and Software, 69(3), Jan 2004,
pp. 227-242.

E. Braun et. a., “Single Authoring for Multi-Device Interfaces,” Adjunct
Proceedings of the 8th ERCIM Workshop: User Interfaces For All, 2004.
A. Jameson, “Adapting to the user’'s time and working memory limita-
tions: New directions of research,” ABIS-98, FORWISS.

D. Litman and S. Pan, “Emperically Evaluating an Adaptable Spoken
Dialogue System,” International Conference on User Modeling, Banff,
Canada,1999.

P. Heisterkamp et.al., “Intelligent Dialog Overcomes Speech Technology
Limitations: The SENECa Example,” ICIUI, Miami, Florida, Jan 2003,
pp. 267—269.

E. Levin et.d., “A Stochastic Model of Human-Machine Interaction for
Learning Dialog Strategies,” |EEE Transactions on Speech and Audio
Processing, 8(1), January 2000.

G. N. Ramaswamy and P. S. Gopalakrishnan, “Compression of acoustic
features for speech recognition in network environments,” 1CASSP98,
Vol 2, pp 977-980.

SRGS, W3C Recommendation, http://www.w3.org/TR/speech-grammar/
VXML, W3C Recommendation, http://www.w3.org/TR/voicexml20/

(1

(2
(3]
(4

(9]
6]
(7

(8]
(9

IBM, AIX and WebSphere are Trademarks of International Business Machines
Corporation in the United States, other countries, or both. Other company,
product, or service names may be trademarks or service marks of others.

