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ABSTRACT

As intermittent renewable energy penetrates electrical power grids more and more, assessing grid reliability
is of increasing concern for grid operators. Monte Carlo simulation is a robust and popular technique to
estimate indices for grid reliability, but the involved computational intensity may be too high for typical
reliability analyses. We show that various reliability indices can be expressed as expectations depending
on the rare event probability of a so-called power curtailment, and explain how to extend a Crude Monte
Carlo grid reliability analysis with an existing rare event splitting technique. The squared relative error
of index estimators can be controlled, whereas orders of magnitude less workload is required than when
using an equivalent Crude Monte Carlo method. We show further that a bad choice for the time step size
or for the importance function may endanger this squared relative error.

1 INTRODUCTION

Contemporary societies have grown accustomed to a very reliable supply by electrical power grids. However,
substantial implementation of intermittent renewable generation, such as photovoltaic power or wind power,
may threaten grid reliability. Power imbalances caused by generation intermittency may force grid operators
to curtail power to preserve grid stability. To assess long-term grid investments or decide on short-term
operational strategies, the responsible grid operator should be able to estimate grid reliability.

For this purpose, various grid reliability indices exist (Li and Billinton 1994), and many depend on the
probability P(C), where

C = {A power curtailment occurs during [0,T ]} (1)

denotes the event of a power curtailment during the time interval [0,T ] of interest. We model the uncertain
energy sources as stochastic processes, discretized in time. At each time step, the mapping from the state
of these processes to the outcome of C (true or false) requires solving a nonlinear algebraic system. As
this mapping is defined implicitly, we can not derive P(C) directly, and we estimate it by a Monte Carlo
(MC) simulation.

However, as power curtailments are undesirable, we may expect C to be rare. In case of a time
interval T equal to one week, values for P(C)≈ 10−4 or even much smaller are not uncommon (Carden
and Wintermantel 2013, CEER 2011). Crude Monte Carlo (CMC) estimators for rare event probabilities
require a large number of samples to achieve a fixed accuracy (Rubino and Tuffin 2009). Since one CMC
sample already involves solving a large number of high dimensional nonlinear systems, CMC estimation
is computationally too intensive for grid reliability analyses in general.

Rare event simulation techniques have been developed to accurately estimate very small probabilities,
of which importance sampling and (importance) splitting are two well-known variants. In importance
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sampling, one samples from an alternative distribution, whereafter the estimator is multiplied by an
appropriate likelihood ratio to correct for the induced bias (Rubino and Tuffin 2009). Crucial for variance
reduction is to find a distribution that increases rare event occurrences. Adaptive importance sampling
techniques (Juneja and Shahabuddin 2006) have been developed to recursively learn this distribution. For
example, the Cross-Entropy Method (CEM) iteratively changes the distribution parameters of random
variables responsible for approaching the rare event in a pilot run (Rubinstein and Kroese 2004). However,
in general power grids various typical paths may lead to rare event C, especially when considering a large
number of stochastic sources and a large time domain. In this case CEM changes the distribution of all
corresponding random variables, wherefore the resulting alternative distribution may (counterproductively)
increase the variance by pushing too much in the direction of C.

Splitting techniques do not change the distribution, but resample trajectories as soon as they are presumed
substantially closer to the rare event (Rubino and Tuffin 2009, Garvels 2000, L’Ecuyer et al. 2006). In
this way, variance reduction is achieved using an increased occurrence of rare events, without the need
to understand the most likely occurrences a priori. In the literature splitting techniques have rarely been
applied to power systems. Wang et al. (2011) estimated small probabilities of instantaneous, unforeseen
failures of grid components. Our work though considers the rare event of power curtailments over a certain
time domain due to (and given) the uncertain nature of generation. Further, Schlapfer and Mancarella
(2011) estimated the probability of a transmission line temperature exceeding a critical value, using Markov
processes with a discrete state space. Our model considers Markov processes with a continuous state space,
and allows for the assessment of more general reliability indices.

In this paper, we speed up an MC method for grid reliability estimation with an existing splitting
technique called Fixed Number of Successes (FNS). In Section 2, we introduce common reliability indices
for transmission power grids. In Section 3, we describe a CMC method that estimates these indices. We
specify a stochastic model for the intermittent energy sources, define the mapping from these sources to
the outcome of a power curtailment and explain the computational intensity of this brute force approach.
In Section 4 we extend the CMC method with the FNS technique. We investigate the computational
performance of the FNS technique in Section 5 on an example power grid, and demonstrate how to choose
the time step size and the importance function such that the estimate accuracy can be controlled.

2 GRID RELIABILITY INDICES

A reliability assessment of a power grid during a time interval [0,T ] of interest (e.g. day/week/year) involves
estimating to what extent electrical constraints are violated. The power grid topology may be regarded as an
undirected graph, with M edges representing connections (lines or cables), and with N nodes representing
buses where power is possibly injected or extracted. Two important types of constraints (Wangdee 2005)
are absolute voltage constraints at all grid nodes

Vmin < |V(t)|< Vmax, for all t ∈ [0,T ], (2)

and absolute current constraints at all grid connections

|I(t)| < Imax, for all t ∈ [0,T ]. (3)

Here V(t) and I(t) are complex-valued vector functions of nodal voltages and connection currents, re-
spectively, at time t, and Vmin,Vmax,Imax real-valued vectors of the allowed extrema. In practice, when
constraints are violated, grid operators perform corrective actions to restore stability. These actions include
rescheduling of generation and curtailing power. For simplicity, we assume that a violation of (2) at
some node or a violation of (3) at some connection is a sufficient (and necessary) condition for a power
curtailment. That is, such constraint violation immediately affects power delivery somewhere in the grid.

Various indices exist (IEEE PES T&D Committee et al. 2004, Li and Billinton 1994) to indicate the extent
of load curtailments, where load refers to power consumption. These can broadly be divided in probability,
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duration, frequency and severity of curtailments. The indices of interest may differ per consumer, depending
on the behavior of their connected devices during and shortly after a power outage. Most conventional
index definitions measure the extent of load curtailments only. However, in contemporary privatized energy
markets grid operators must ensure power supply by electricity producers as well. Therefore, load-based
definitions are easily generalized to power curtailments (where power denotes both load and supply) in
general. We describe four of these indices below.

1. The Probability of Power Curtailments during [0,T ]

PPC(T ) := P(C), (4)

with C as defined in (1).
2. The Expected Duration of Power Curtailments

EDPC(T ) := E [D(T )] , (5)

with D(T ) the total duration of curtailments during [0,T ].
3. The Expected Number of Power Curtailments

ENPC(T ) := E [NC(T )] , (6)

with NC(T ) the number of distinct power curtailments during [0,T ].
4. The Expected Energy Not Supplied accounts for the severity of the curtailment

EENS(T ) := E
[∫ T

0
SC(t)dt

]
, (7)

with SC(t) the size of power curtailment (in MW) at time t.

Other well-known indices account for duration, frequency and unsupplied energy per curtailment or per
customer. These include SAIDI, CAIFI, SAIFI, CAIDI, denoting the System Average Interruption Duration
Index, the Customer Average Interruption Frequency Index, and so on (IEEE PES T&D Committee et al.
2004), and they can easily be derived from the above indices.

3 A CONVENTIONAL RELIABILITY ESTIMATION METHOD

To assess the risk of curtailment caused by intermittent generation, one should properly model the uncertain
power generation. Typically, the meteorological source (e.g. wind speed, solar radiation) is modeled
instead of the amount of power generation itself, as data of the latter are often scarce, especially when
considering investments in infrastructure by estimating reliability of a future grid. A source can be modeled
as a Markov process, of which the distribution should be realistic and exhibit temporal periodicities due
to daily and seasonal cycles. Further, one should take into account spatial correlations between sources at
different locations, as they may affect reliability indices significantly (Wangdee and Billinton 2006). In
case of wind power, Lojowska et al. (2010) and Lujano-Rojas et al. (2011) proposed wind speed ARMA
models, whereas Wadman et al. (2012) and Wangdee and Billinton (2006) extended such models to the
multivariate case, imposing spatial dependency.

Suppose we are interested in the value of one of the indices (4)-(7), and write it as E[I] for an
appropriately defined random variable I (note that P(C) = E[1C], with 1 the indicator function). Then at
each time step, the function f : S 7→ I from the stochastic sources S to I requires solving the power flow
equations

Pi =
N

∑
j
|Vi||Yi j||Vj|cos(θi j +δ j−δi), (8)

Qi =−
N

∑
j
|Vi||Yi j||Vj|sin(θi j +δ j−δi), (9)
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for each grid node i = 1, . . . ,N. Here, Pi,Qi ∈R denote the active and reactive power, respectively, injected
at node i. Pi,Qi > 0 indicates generation, whereas Pi,Qi < 0 indicates extraction at node i. |Vi|,δi ∈ R
denote the voltage magnitude and voltage angle, respectively, at grid node i. |Y |,θ ∈ RN×N denote the
absolute value and angle, respectively, of the complex admittance matrix, containing the grid topology and
electrical admittances of all grid connections. We desire the solution of this nonlinear algebraic system for
the state vectors |V|,δ , given vectors P,Q. We can not solve system (8)-(9) directly, so we approximate
the solution numerically using a Newton-Raphson method (Grainger and Stevenson 1994). Using Ohm’s
law we can then immediately derive all other electrical quantities required to check curtailment constraints
(2) and (3).

Note that Pi,Qi are random variables if an intermittent generator is connected at node i. By nonlinearity
of (8)-(9), the function f is only implicitly defined. Therefore, we can not derive E[I] directly, and instead
we estimate it using an MC simulation. That is, we sample a realization of the discrete time Markov
processes corresponding to all intermittent generators. Then at each time step, the power flow equations
are solved and curtailment constraints are checked. Repeating this for all time steps yields one realization
of I. The average over many such realizations constitutes a CMC estimate for the index.

To estimate power grid reliability accurately, the time interval of the MC simulation should cover the
significant temporal periodicities of generation and consumption. On the other hand, the step size should
be sufficiently small to address sudden changes of consumption and generation. For example, Frunt (2011)
states that less than 10 minutes is required in case of wind power. Hence, one MC sample may already
require thousands of solutions of (8)-(9), each of which will take on the order of milliseconds (see Table
1).

Table 1: Average CPU time requires on the order of milliseconds to solve the power flow equations at one
time step. Typical power flow test cases (University of Washington 2006) are considered, and simulations
are performed using MATLAB R2011a on an Intel Core 2.80GHz.

Number of grid nodes 14 30 57 118 300
Average CPU time (ms) 0.72 0.78 1.5 2.2 11.6

However, as power curtailments are undesirable, we may expect their occurrence to be rare. For the
unbiased CMC estimator for P(C)

P̂n :=
1
n

n

∑
j=1

1{C in sample j},

the squared relative error

SRE
(
P̂n
)

:=
Var
(
P̂n
)

P(C)2 =
1−P(C)

nP(C)
(10)

goes to infinity as P(C) goes to 0. If accuracy is considered sufficient when the squared relative error is less
than, say, 1/2, we require n > 160000 CMC samples for probabilities smaller than 10−4. Estimating all
other indices requires a similar sample size: n = 1/P(C) CMC samples will on average yield one nonzero
realization for E[I], which obviously is the bare minimum for a magnitude indication. Recalling the high
computational intensity of one MC sample, we conclude that CMC estimation is not feasible in practice
for general grid reliability analyses.

4 SPLITTING THE RELIABILITY ESTIMATION METHOD

To reduce the computational burden of the conventional reliability estimation method, we write all indices
(4)-(7) as a function of a rare event probability. That is, the law of total expectation gives

E[I] = P(C)E[I|C]+P(Cc)E[I|Cc] = P(C)E[I|C].



Wadman, Crommelin, and Frank

Here Cc denotes the complement of C, i.e. no curtailment has occurred. The last equality holds since all
the mentioned indices are zero given that no curtailment has occurred. Hence, E[I] can be written as the
product of the curtailment probability and the conditional index. This representation suggests estimation
of E[I] by Î := P̂ÎC, with P̂ and ÎC independent unbiased estimators for P(C) and E[I|C], respectively. As
P(C) and E[I|C] are independent, Î is obviously an unbiased estimator for E[I], and its variance is

Var
(
Î
)
= Var

(
P̂ÎC)= E2[I|C]Var

(
P̂
)
+P(C)2 Var

(
ÎC)+Var

(
P̂
)

Var
(
ÎC) .

Dividing by P(C)2E2[I|C] results in a decomposition of the squared relative error of Î

SRE(Î) = SRE
(
P̂
)
+SRE

(
ÎC)+SRE

(
P̂
)

SRE
(
ÎC) . (11)

Expression (11) basically states that to control the precision of the index estimator, one should control the
precision of both the probability estimator P̂ and the conditional estimator ÎC.

4.1 Controlling the Probability Estimator Precision

As P̂ is the estimator of a rare event probability, a splitting technique may control SRE(P̂) using significantly
less workload compared to a CMC method. The basic idea of a splitting technique is to decompose the
probability into several conditional probabilities that are separately estimated using less total computational
effort. This is done by splitting each sample path into multiple paths whenever the process is substantially
closer to the rare event set. This subsection we adapt a splitting technique for the described MC reliability
estimation method.

By defining the vector of discrete time Markov processes X(t) =
(
−|V(t)| |V(t)| |I(t)|

)
with state

space E , we can concatenate the three vector inequalities of curtailment constraints (2)-(3):

X(t)≤ U, with U =
(
−Vmin Vmax Imax

)
.

In accordance with a general splitting procedure, we should choose an appropriate importance function
h : E 7→ R, assigning importance values to the states of X(t). Increasing values of h should correspond to
approaching the rare event. We propose an intuitive importance function that takes the maximum over all
ratios between the state variables and their allowed extrema:

h(X(t)) = max
i

(
Xi(t)−Li

Ui−Li

)
, with L =

(
−Vmax+Vmin

2
Vmax+Vmin

2 0
)
. (12)

Here the subscript i = 1, . . . ,2N +M denotes the index of the vector. For h(X(t)) < 1, h indicates how
relatively close we are to a constraint violation at time t. If for some constraint Xi(t)> Ui, then h(X(t))> 1,
signifying that the rare event is hit, i.e. a curtailment occurs at time t. The linear transformation of each Xi
in (12) ensures that the ratio of each constraint type has the same codomain [0,1] as long as the rare event
is not hit, and h↗ 1 corresponds to approaching the rare event. In this sense, each constraint is assumed
equally important when evaluating h(X(t)).

Using importance function (12), a general splitting technique is set up. The codomain [0,1] is partitioned
into m subintervals with boundaries 0 = l0 < l1 < · · · < lm = 1. We define Tk = inf{t > 0 : h(X(t)) ≥ lk}
as the time of hitting the k-th level and Dk = {Tk < T} as the event that the k-th level is hit during [0,T ].
Obviously, P(D0) = 1, and P(Dm) = P(C) is the value that we are interested in. As Dm ⊂Dm−1 ⊂ ·· · ⊂D0,
we decompose the probability of interest

P(C) =
m

∏
k=1

P(Dk|Dk−1)

in m conditional probabilities pk := P(Dk|Dk−1), which we will estimate separately. Generating independent
sample paths from Gk−1, the distribution of the entrance state (Tk−1,X(Tk−1)) conditional on Dk−1 would
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give us an estimate for pk. However, as we do not know Gk−1 for k > 1, we use the empirical distribution
Ĝk−1 for Gk−1, obtained from samples of the previous stage. In this way, we proceed recursively, and we
estimate pk at each stage k by the proportion of level hits

p̂k = Rk/Nk−1,

with Rk the number of sample paths where Dk occurs and Nk the total number of sample paths at stage k.

      

    

 

 

l
1

l
2

l
3

T
1

T
2

T
3

        t

h(
X

(t
))

Figure 1: Example of an importance function realization splitting two times with N1 = 1, N2 = N3 = 2 and
R1 = R2 = R3 = 1. The hit h(X(t))> l3 would correspond to a constraint violation somewhere in the grid.

Amrein and Künsch (2011) prove that for several splitting techniques,

P̂ :=
m

∏
k=1

p̂k

is an unbiased estimate for P(Dm). One of these techniques, Fixed Splitting (FS), determines in advance
the number of splittings per level hit. A disadvantage of this technique is that, especially when the number
of stages and the level heights are far from optimally chosen, paths may hit the next level many times or
never. The former situation results in a high computational burden, the latter situation in a useless estimate
P̂ = 0. The splitting technique Fixed Effort (FE) attempts to overcome these issues by fixing Nk, and
thereby fixing the expected workload per stage. Unfortunately, as the realized number of hits rk may differ
from the expected number of hits E[Rk], the same issues, although to a lesser extent, may persist. Amrein
and Künsch (2011) proposes the Fixed Number of Successes (FNS) splitting technique, where the authors
fix the number of hits rk, repeating the simulation at one stage until rk hits are observed. This technique
avoids the issues of path explosion and extinction by adjusting the computational effort. We choose to
extend the CMC method with this splitting technique.

The optimal level heights and number of stages are not known beforehand, and the authors recommend
a pilot run to determine these parameters. This pilot run uses a large number of equidistant levels and
r := rk of moderate size, say r = 20, yielding first estimates p̂k. The optimal value for pk in terms of
variance reduction is popt ≈ 0.2032 (Amrein and Künsch 2011). A pilot run estimate for p̂k close to one
suggests to merge stage k with a neighboring stage, whereas an estimate close to zero suggests to divide
the stage into multiple stages. More precisely, one finds an improved stage partition for the final run by
interpolating the pilot stage partition on the log scale.

An unbiased estimator for the variance of the FNS (and FE) estimate is not known. However, Amrein
and Künsch (2011) showed that under the assumption that the conditional hitting probability does not
depend on the entrance state of the previous stage,

P(Dk|Dk−1,(Tk−1,X(Tk−1))) = P(Dk|Dk−1) for all (Tk−1,X(Tk−1)), for all k, (13)
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one can bound the squared relative error of P̂ by choosing rk appropriately:

SRE(P̂)≤ q :=−1+
m

∏
k=1

(
1

rk−2
+1
)
. (14)

In this way, we are able to control the precision of P̂.

4.2 Controlling the Conditional Estimator Precision

We can reuse the sample paths that hit the rare event set to estimate E[I|C], by performing one additional
splitting stage. We randomly choose one of the rm realizations of the last stage entrance state (Tm,X(Tm))
and continue to generate the path from this point up till time T , obtaining an index realization ÎC

i . Repeating
this n times yields the estimator

ÎC :=
1
n

n

∑
i=1

ÎC
i (15)

for E[I|C]. One might question whether IC
i is unbiased as it depends on a randomly chosen realization of

(Tm,X(Tm)), instead of directly on (Tm,X(Tm)). However, randomly choosing this realization is equivalent
to sampling it from the empirical distribution Ĝm of the distribution Gm of (Tm,X(Tm)). Therefore, as Ĝm
is an unbiased estimator for Gm, we conclude that IC

i (and thus IC) is indeed an unbiased estimator for
E[I|C]. Appendix A contains a more rigorous proof.

Estimators ÎC and P̂ are indeed independent, a fact that we used at the start of Section 4, before we
explicitly defined these estimators. Further, the construction of FNS (in contrast to FS and FE) ensures the
existence of realizations (Tm,X(Tm)) and thus ÎC as long as the rare event probability P(C) is not zero. We
can estimate all desired indices using only one simulation run, just as in a similar CMC run. Furthermore,
we attain an arbitrarily small SRE(ÎC) by choosing n sufficiently large, thereby controlling the conditional
estimate precision. As we do not estimate a rare event probability here, we expect the computational
intensity to be negligible compared to the estimation of P(C).

5 PERFORMANCE RESULTS ON AN EXAMPLE GRID

We will investigate the computational intensity of the proposed FNS technique for grid reliability estimation
on a very simple transmission grid. As shown in Figure 2, the grid exists of one wind farm node, one
consumption node and one so-called slack node, where the total surplus or shortage of power is absorbed
or emitted, respectively.

1

2 3

Figure 2: A small power grid with one slack node (1), one intermittent source node (2), and one consumption
node (3).

All nodes are connected by identical transmission lines. The discrete time domain is one week. For
simplicity, we omit periodicities and model the active power P2(t) of the wind farm in node 2 as an
Ornstein-Uhlenbeck (OU) process

dP2(t) = θ(µ−P2(t))dt +σdW (t).
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Here W (t) denotes a Brownian motion and the long-term mean µ = P3 = 15 base MVA (using the scalable
per-unit system (Grainger and Stevenson 1994)) equals the constant active power consumption at node
3. The process initiates under normal conditions by setting P2(0) = µ , and realistic values for the mean-
reverting rate θ = 0.13 per hour and volatility σ = 1.3 are chosen by fitting the model to historical wind
power measurements (KNMI 2013). We choose the extrema Vmin,Vmax and Imax such that P(C) is indeed
small (around 10−4), using a preliminary CMC simulation with 100000 MC samples. Other parameter
values can be found in Appendix B.

The results of the pilot run as described in Section 4.1 recommend to use m = 6 stages in this case.
Then according to the squared relative error bound in (14), choosing rk = r = 100 will yield a squared
relative error smaller than q = 0.063. Assuming asymptotic normality of P̂, we will obtain the conservative
95% confidence interval

[P̂−1.96
√

qP̂, P̂+1.96
√

qP̂]≈ [P̂/2,3P̂/2].

Similarly, rk = r = 40 will yield q = 0.17 and thus a conservative confidence interval of the form [c,10c]
for some c, rather indicating the order of magnitude. For the final run, we choose r = 100, a time step size
of 6 minutes and the importance function h as in (12). We further assume that (13) and thus (14) hold. The
resulting index estimates are displayed in the first column of Table 2. The second column lists estimates
ŜRE

(
ÎC
)

of SRE(ÎC). Finally, (11) suggests to estimate the bound for SRE(Î) by

qÎ := q+ ŜRE
(
ÎC)+qŜRE

(
ÎC) .

Values for qÎ are displayed in the third column. Since the estimates for SRE(ÎC) will contain an error, the
bound SRE(Î)< qÎ for the relative error of the index estimate is not guaranteed. However, as explained in
Section 4.2, we can have SRE(ÎC) arbitrarily small by choosing sufficiently large n in (15). The estimates
for SRE(ÎC) are indeed significantly smaller than q (using only n = 5r = 500 samples, with a workload
comparable to that of one splitting stage). Therefore, the conservative estimate SRE(Î) ≈ qÎ will be
satisfactory for most practical reliability assessments.

Table 2: Estimates Î for indices (4)-(7) of the three node grid reliability over one week, the squared relative
error estimate ŜRE

(
ÎC
)

of the conditional index (standard error in parentheses), and the corresponding
bound estimate qÎ for SRE(Î). The time step size is 6 minutes, and q = 0.063.

Î ŜRE
(
ÎC
)

qÎ
PPC(T ) 6.35e-5 0.0e-3 0.0628
EDPC(T ) (hour) 2.89e-5 2.4e-3 (1.5e-4) 0.0710
ENPC(T ) 1.01e-4 6.1e-4 (3.9e-5) 0.0666
EENS(T ) (per-unit MWh) 2.18e-5 5.7e-3 (3.6e-4) 0.0819

In total 3075 MC samples where required using the FNS technique. To obtain a CMC estimate for
PPC(T ) with a comparable squared relative error, equation (10) suggests to use as many as 250000 MC
samples. This workload decrease of a factor 79 illustrates the computational gain of the FNS technique
compared to the CMC method. For smaller values of PPC(T ), the gain will be even larger.

5.1 Choice for the Time Step Size

The approximation SRE(Î)≈ ql relies on assumption (13), which holds as long as the level hitting probability
does not depend on the entrance state (Tk−1,X(Tk−1)) of the previous stage. We will explain that this is not
necessarily the case in the proposed power grid model. Repeating the FNS index estimation would yield
an unbiased estimate of the variance under general circumstances. However, this will heavily increase the
computational effort, so we are interested under which circumstances (13) and thus (14) hold approximately.
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Note that a sample path of h(X(t)) may skip stage k entirely by a very large increment in a single time
step. Then any sample path started from this entrance state has immediately hit level k, as shown in Figure
3. This example shows the dependence of the hitting probability on X(Tk−1). In general, large increments
are undesirable as they may increase the squared relative error beyond bound q.

t

l
3

l
2

l
1

Figure 3: The problem of too large increments in an extreme example: the only survived path skips level
3 entirely at time t, wherefore p̂3 = 1 will probably overestimate p3.

As we can not bound an OU increment, there is no step size in general that bounds the increments of
h(X(t)). However, decreasing the time step size ∆ may reduce the variance of an OU increment sufficiently
for (13) to hold approximately. Using the exact solution of the OU process (Gillespie 1996), one can derive
the OU increment variance

Var(P2(t +∆)−P2(t)) =
σ2

2θ

(
2
(

1− e−θ∆

)
− e−2θ t

(
1− e−θ∆

)2
)
,

which indeed approaches zero as ∆→ 0. By computing FNS estimates for PPC(T ) 50 times, we estimate
SRE(P̂) and investigate for which time step sizes the squared relative error bound (14) holds. Table 3
shows that a step size of one hour is too large (as SRE(P̂) 6< q), whereas runs with a step size of 6 minutes
or smaller are consistent with (14). This is in agreement with the statement in Frunt (2011) that one will
not fully capture the typical variability of wind power generation when using step sizes larger than 10
minutes. Although the optimal time step size is a priori unknown, such knowledge on the variability of
the stochastic sources may hint a proper choice for ∆. Further, the typical increment size of h in the pilot
run described in Section 5 may test as well whether the time step is sufficiently small.

Table 3: Estimates for SRE(P̂), using importance function h in (12). Estimates are consistent with bound
(14) for sufficiently small time step sizes ∆. We used 50 estimates for P̂.

∆ q = 0.169, (r = 40) q = 0.063, (r = 100)
1 hour 0.847 0.482
6 minutes 0.168 0.051
1 minute 0.164 0.034

5.2 Choice for the Importance Function

We would like to address the relevance of choosing a suitable importance function. For example, one may
have chosen the importance function

h1(X(t)) = max
i

((Xi(t)−Ui)/Ui) (16)
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instead of (12), where h1(X(t))↗ 0 corresponds to approaching the rare event. Since now the codomain
of arguments (Xi(t)−Ui)/Ui differ per constraint i, some constraint ratios may be much more volatile
than others, which may significantly increase the probability of large increments. This can be seen in the
three node power grid if we reestimate SRE(P̂) using h1. Table 4 shows that SRE(P̂) is larger than q, even
for small step sizes. This illustrates the relevance of a choosing a suitable importance function.

Table 4: Estimates for SRE(P̂), using importance function h1 in (16). Estimates exceed bound q, even for
small step sizes ∆. We used 100 estimates for P̂.

∆ q = 0.169, (r = 40) q = 0.063, (r = 100)
1 hour 2.18 1.26
6 minutes 1.28 0.38
1 minute 1.18 0.32

A priori known (or recursively learned) relations between certain system states and the conditional
probabilities may help to improve the choice for the importance function. Finding and using these relations
is part of further research.

6 CONCLUSION AND RECOMMENDATIONS

We demonstrated the high computational intensity of a typical Crude Monte Carlo method for reliability
estimation of electrical power grids. We showed in Table 2 that a splitting technique may decrease the
workload of estimating various reliability indices by orders of magnitude while controlling the squared
relative error of the estimators. The reliability indices may either be the rare event probability of a power
curtailment or an expectation depending on this probability. An implementation on a small transmission
network shows that the proposed method requires 79 times less workload to estimate four common reliability
indices than an equivalent Crude Monte Carlo simulation would require. To control the squared relative
error of the estimator, an appropriate choice for the time step size and the importance function is crucial.
The time step size should be sufficiently small to capture the typical variability of the stochastic power
sources. Furthermore, the importance function should assign equal importance to all curtailment risks, like
importance function (12) does.
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gratefully acknowledged for sharing knowledge on power grid reliability.

A PROOF THAT ESTIMATOR IS UNBIASED

To prove that ÎC in (15) is an unbiased estimator for E[I|C], note that ÎC
i = ÎC

i (Z) is a function of Z ∼ Ĝm,
the entrance state randomly chosen from all simulated entrance states Z1, . . .Zrm ∼ Gm into the rare event.
So Ĝm is the empirical distribution of Gm and we can write

EĜm

[
ÎC
i (Z)

∣∣∣ all but Z
]
=

1
rm

rm

∑
j=1

ÎC
i (Z j).

Here we conditioned on all random variables that IC
i depends on except Z, that is: Z1, . . . ,Zrm and the

sample path from Z on. Unbiasedness of ÎC immediately follows since

E
[
ÎC]= 1

n

n

∑
i=1

E
[
ÎC
i
]
= E

[
ÎC
1 (Z)

]
= E

[
EĜm

[
ÎC
1 (Z)

∣∣∣ all but Z
]]

=
1
rm

rm

∑
j=1

E
[
ÎC
1 (Z j)

]
= E

[
ÎC
1 (Z1)

]
= E [I|C] ,



Wadman, Crommelin, and Frank

where we used the law of total expectation in the third equality.

B PARAMETERS OF THE THREE NODE GRID

The injected reactive wind power is equal to one third of the active power: Q2(t) = P2(t)/3. Similarly, for
the consumed reactive power in node 3: Q3 = P3/3. Admittance matrix Y consists of elements Yii =−200ι

and Yi j = 100ι for i 6= j, where ι is the imaginary unit.
To estimate the curtailment size SC(t) in (7) at an unfeasible time step (that is, when a constraint is

violated), we assume a simple strategy: the grid operator instantaneously reschedules generation as it was
during the last feasible time step. The absolute differences between all nodal powers at the feasible and
unfeasible situations sum up to the power curtailment size at time t:

SC(t) = ∑
nodes i

∣∣Pfeasible
i −Punfeasible

i

∣∣ . (17)

After obtaining SC(t) at all discrete times steps, numerical time integration yields a realization of EENS(T ).
More realistic strategies would include a linear optimization problem where the curtailment size is minimized
such that all curtailment constraints are satisfied. As we expect a curtailment to be rare, we do not expect
significant increase of the total simulation workload if we replace the curtailment strategy (17) by a more
realistic one.
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