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OKOUNKOV BODIES ASSOCIATED TO PSEUDOEFFECTIVE DIVISORS

SUNG RAK CHOI, YOONSUK HYUN, JINHYUNG PARK, AND JOONYEONG WON

Abstract. An Okounkov body is a convex subset in Euclidean space associated to a big divisor
on a smooth projective variety with respect to an admissible flag. In this paper, we introduce
two convex bodies associated to pseudoeffective divisors, called the valuative Okounkov bodies
and the limiting Okounkov bodies, and show that these convex bodies reflect the asymptotic
properties of pseudoeffective divisors as in the case with big divisors. Our results extend the
works of Lazarsfeld-Mustaţă and Kaveh-Khovanskii. For this purpose, we define and study
special subvarieties, called the Nakayama subvarieties and the positive volume subvarieties,
associated to pseudoeffective divisors.

1. Introduction

For a divisor D on a smooth projective variety X of dimension n, one can associate a convex
body ∆Y•(D), called the Okounkov body of D, in the Euclidean space Rn with respect to
an admissible flag Y•. After the pioneering works by Lazarsfeld-Mustaţă ([LM]) and Kaveh-
Khovanskii ([KK]), motivated by earlier works by Okounkov ([O1], [O2]), the Okounkov bodies
∆Y•(D) have received a considerable amount of attention in a variety of flavors. It is believed
that this convex body carries rich information of the asymptotic invariants of D. For example,
it was proven in [LM, Theorem A] that if D is big, then the Euclidean volume of ∆Y•(D) in Rn

is equal to the volume volX(D) of a divisor D up to the constant n!, that is, we have

volRn(∆Y•(D)) =
1

n!
volX(D).

However, little is known about the Okounkov bodies for non-big pseudoeffective divisors. One
of the annoying phenomena is that for a pseudoeffective divisor D that is not big, the associated
convex body ∆Y•(D) is not full dimensional in Rn so that its Euclidean volume in Rn is zero.
Nevertheless, it is still tempting to study the asymptotic properties of pseudoeffective divisors
using the associated Okounkov bodies.

In this paper, we introduce and study two different convex bodies, the valuative Okounkov
body ∆val

Y•
(D) and the limiting Okounkov body ∆lim

Y•
(D), associated to a pseudoeffective divisor

D with respect to an admissible flag Y• (see Definition 1.1). Using these convex bodies, we
extend some of the previous works of [LM] and [KK] on big divisors to the pseudoeffective
divisors. We will readily see that ∆val

Y•
(D) and ∆lim

Y•
(D) with respect to a suitable choice of an

admissible flag Y• encode the asymptotic invariants of the divisor D as in the case of big divisors.

Turning to the details, we recall the construction of the Okounkov body that is equivalent
to the ones given by Lazarsfeld-Mustaţă ([LM]) and Kaveh-Khovanskii ([KK]). Let D be an
R-divisor on a projective variety X of dimension n. We fix an admissible flag Y• on X, which
is, by definition, a sequence of subvarieties

Y• : X = Y0 ⊇ Y1 ⊇ · · · ⊇ Yn−1 ⊇ Yn = {x}
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such that each Yi is an (n − i)-dimensional irreducible subvariety of X that is nonsingular at
a point x. After possibly replacing X by an open subset, we may suppose that each Yi+1 is a
Cartier divisor on Yi. Let |D|R := {D′ | D ∼R D′ ≥ 0} and suppose that it is nonempty. We
define a valuation-like function

νY• : |D|R → Rn
≥0

as follows. For D′ ∈ |DR|, let

ν1 = ν1(D
′) := ordY1(D

′) and ν2 = ν2(D
′) := ordY2((D

′ − ν1(D
′)Y1)|Y1).

Assuming we have defined ν1, ν2, · · · , νi−1, we inductively define νi as

νi = νi(D
′) := ordYi

((· · · ((D′ − ν1Y1)|Y1 − ν2Y2)|Y2 − · · · − νi−1Yi−1)|Yi−1).

By collecting the values νi = νi(D
′), we obtain

νY•(D
′) = (ν1, · · · , νn) ∈ Rn

≥0.

Following [LM] and [KK], we define the Okounkov body ∆Y•(D) of a divisor D with respect to
an admissible flag Y• as the closed set

∆Y•(D) := the closure of the convex hull of νY•(|D|R) in Rn
≥0.

In [LM], Lazarsfeld-Mustaţă mainly consider the Okounkov body ∆Y•(D) of a big divisor D.
However, the valuation-like function νY• works for any divisors D with nonempty |D|R, and the
construction of the Okounkov body can be carried out for such divisors without any changes.
See Subsection 3.1 for more details.

Now we define the valuative Okounkov body and the limiting Okounkov body of a divisor.

Definition 1.1. Let D be an R-divisor on a smooth projective variety X of dimension n, and
Y• be an admissible flag on X.

(1) Suppose that D is effective up to R-linear equivalence, that is, |D|R 6= ∅. The valuative
Okounkov body ∆val

Y•
(D) of D with respect to Y• is defined as

∆val
Y•

(D) := the closure of the convex hull of νY•(|D|R) in Rn
≥0.

If |D|R = ∅, then we put ∆val
Y•

(D) := ∅.∗

(2) Suppose that D is pseudoeffective. The limiting Okounkov body ∆lim
Y•

(D) of D with respect
to Y• is defined as

∆lim
Y•

(D) := lim
ε→0+

∆Y•(D + εA) =
⋂

ε>0

∆Y•(D + εA) in Rn
≥0

where A is a fixed ample divisor on X. If D is not pseudoeffective, then we put ∆lim
Y•

(D) := ∅.

Note that the definition of the limiting Okounkov body ∆lim
Y•

(D) is independent of the choice
of the ample divisor A.

We briefly recall definitions of some of basic asymptotic invariants of divisors. Let D be an
R-divisor on a smooth projective variety X. The restricted volume of D along a v-dimensional
subvariety V of X is defined as

volX|V (D) := lim sup
m→∞

h0(X|V, ⌊mD⌋)

mv/v!

∗ By definition, we have in fact ∆Y•
(D) = ∆val

Y•
(D) for any divisor D. However, in this paper, we use the

notation ∆Y•
(D) only when D is a big divisor in order to stress the properties of ∆val

Y•
(D) and ∆lim

Y•
(D) for a

non-big divisor D.
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where h0(X|V, ⌊mD⌋) is the dimension of the image of the restriction map H0(X,OX (⌊mD⌋)) →
H0(V,OV (⌊mD⌋)). Note that volX|X(D) =: volX(D) is the usual volume of the divisorD. When
V 6⊆ B−(D), the augmented restricted volume of D along V is defined as

vol+
X|V (D) := lim

ε→0+
volX|V (D + εA)

where A is some fixed ample divisor on X. It is independent of the choice of the ample divisor
A. For more details, we refer to Subsection 2.3. The Iitaka dimension of D is defined as

κ(D) := max

{
k ∈ Z≥0

∣∣∣∣ lim sup
m→∞

h0(X,OX (⌊mD⌋))

mk
> 0

}

if h0(X,OX(⌊mD⌋)) 6= 0 for some m > 0, and κ(D) := −∞ otherwise. Similarly, the numerical
Iitaka dimension of D is defined as

κν(D) := max

{
k ∈ Z≥0

∣∣∣∣ lim sup
m→∞

h0(X,OX (⌊mD⌋+A))

mk
> 0

}

for some fixed ample Cartier divisor A if h0(X,OX (⌊mD⌋ + A)) 6= 0 for some m > 0, and
κν(D) := −∞ otherwise. It is also independent of the choice of the ample divisor A. For more
details, see Subsections 2.4 and 2.5.

To extract asymptotic invariants of a divisor D with κ(D) ≥ 0 from the valuative Okounkov
body ∆val

Y•
(D), we consider an admissible flag Y• that contains a special subvariety Yn−κ(D) =

U ⊆ X such that the natural restriction map H0(X,OX (⌊mD⌋)) → H0(U,OU (⌊mD|U ⌋)) is
injective for every integer m ≥ 0. We call such U a Nakayama subvariety of D (see Subsection
2.4). Note that any general subvariety of dimension κ(D) is a Nakayama subvariety of D
(Proposition 2.13). If D is big, then X itself is the unique Nakayama subvariety of D.

Theorem A (=Theorem 3.12). Let D be an R-divisor on a smooth projective variety X of
dimension n such that κ(D) ≥ 0. Fix an admissible flag Y• containing a Nakayama subvariety

U of D such that Yn = {x} is a general point. Then ∆val
Y•

(D) ⊆ {0}n−κ(D)×R
κ(D)
≥0 . Furthermore,

we have

dim∆val
Y•

(D) = κ(D) and volRκ(D)(∆val
Y•

(D)) =
1

κ(D)!
volX|U (D)

where ∆val
Y•

(D) is regarded as a convex subset of Rκ(D).

For convenience, we define dim(point) := 0 and volR0(point) := 1 throughout the paper.
Theorem A does not hold if D is only effective up to R-linear equivalence (see Remark 3.14).

To investigate the asymptotic properties of a pseudoeffective divisor D using the limiting
Okounkov body ∆lim

Y•
(D), we consider an admissible flag Y• that contains a special subvariety

Yn−κν(D) = V ⊆ X such that vol+
X|V (D) > 0. We call such V a positive volume subvariety of D

(see Subsection 2.5). Note that that the intersection of (n− κν(D)) general ample divisors is a
positive volume subvariety of D (Proposition 2.22). Thus we may take a general admissible flag
Y• constructed by successively intersecting general ample divisors. If D is big, then X itself is
the unique positive volume subvariety of D.

Theorem B (=Corollary 3.22). Let D be a pseudoeffective R-divisor on a smooth projective
variety X of dimension n. Fix an admissible flag Y• containing a positive volume subvariety V

of D. Then ∆lim
Y•

(D) ⊆ {0}n−κν(D) × R
κν(D)
≥0 . Furthermore, we have

dim∆lim
Y•

(D) = κν(D) and volRκν (D)(∆lim
Y•

(D)) =
1

κν(D)!
vol+

X|V (D)

where ∆lim
Y•

(D) is regarded as a convex subset of Rκν(D).
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In general, we have ∆val
Y•

(D) ⊆ ∆lim
Y•

(D) (see Remark 3.31), and the inclusion can be strict
(see Example 4.2). Note that if D is big, then we have

∆val
Y•

(D) = ∆lim
Y•

(D) = ∆Y•(D).

We also remark that Di Biagio-Pacienza [DP] also studied valuative Okounkov bodies of effective
divisors and the subvarieties on which the restricted divisors behave like big divisors.

Recall that the Okounkov body of a big divisor is a numerical invariant. More precisely, by
[LM, Proposition 4.1] and [J, Theorem A], for big divisors D,D′ on X, we have ∆Y•(D) =
∆Y•(D

′) for any admissible flag Y• if and only if D ≡ D′. As Theorem C states below, this
result can be extended to the limiting Okounkov bodies ∆lim

Y•
(D) for pseudoeffective divisors D.

We note however that the valuative Okounkov body ∆val
Y•

(D) is not a numerical invariant (see
Remark 3.13), but an invariant of R-linear equivalence (see Proposition 3.15).

Theorem C (=Theorem 3.27). Let D,D′ be pseudoeffective R-divisors on a smooth projective
variety X. Then

D ≡ D′ if and only if ∆lim
Y•

(D) = ∆lim
Y•

(D′) for every admissible flag Y•.

Since the limiting Okounkov body is a numerical invariant, we can consider a function

∆lim
Y•

: Eff(X) → Rn
≥0, ξ 7→ ∆lim

Y•
(ξ)

for a fixed admissible flag Y• on a smooth projective variety X of dimension n. By [LM, Theorem
B] and the definition of the limiting Okounkov body, the shapes of limiting Okounkov bodies
continuously change. In contrast, Example 4.2 also shows discontinuity of valuative Okounkov
bodies at some non-big divisor class.

We finally remark that Boucksom also defined and studied the limiting Okounkov body (the
numerical Okounkov body in his terminology) in [B]. See Remark 3.24 for more details on his
results. In this paper, we do not use any results in [B].

This paper is organized as follows. We start in Section 2 by collecting relevant basic facts on as-
ymptotic invariants such as asymptotic base locus, asymptotic valuation, (augmented) restricted
volume, (numerical) Iitaka dimension, etc., and prove some useful properties of Nakayama subva-
rieties and positive volume subvarieties. Section 3 is the main part of this paper. We first recall
the construction of the Okounkov body ∆Y•(D) of a big divisor D in Subsection 3.1. We then
introduce and study the valuative Okounkov body ∆val

Y•
(D) and the limiting Okounkov body

∆lim
Y•

(D) of a pseudoeffective divisor D in Subsections 3.2 and 3.3, respectively. Especially, we
prove Theorems A, B, and C. Finally, in Section 4, we exhibit various examples of the valuative
Okounkov body ∆val

Y•
(D) and the limiting Okounkov body ∆lim

Y•
(D).

Aknowledgement. We are grateful to Mihai Fulger for helpful suggestions and useful com-
ments. We would like to thank the referee for careful reading of our manuscript and for making
a number of valuable suggestions.

2. Preliminaries

In this section, we collect basic facts and introduce some notions that will be used in later
sections. First, we fix some notations. Throughout the paper, we work over the field C of
complex numbers. For simplicity, a variety in this paper is assumed to be smooth, projective,
reduced and irreducible, but a subvariety can be singular. By a divisor on a variety X, we always
mean an R-divisor unless otherwise stated. Since we assume that X is smooth, every divisor is
R-Cartier. A divisorD is called pseudoeffective if its numerical class [D] ∈ N1(X)R := N1(X)⊗R

lies in the pseudoeffective cone Eff(X), the closure of the cone N1(X)R spanned by the classes
of effective divisors. A divisor is called big if its numerical class lies in the big cone Big(X), the
interior of Eff(X).
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2.1. Asymptotic base locus.

Let D be a divisor on a smooth projective variety X. If D is a Q-divisor, then we define the
stable base locus of D as

SB(D) :=
⋂

m

Bs(mD)

where the intersection is taken over all positive integers m such that mD are Z-divisors, and
Bs(mD) denotes the base locus of the linear system |mD|. Now we assume thatD is an R-divisor.
The augmented base locus B+(D) is defined as

B+(D) :=
⋂

A

SB(D −A)

where the intersection is taken over all ample divisors A such that D − A are Q-divisors. The
restricted base locus B−(D) of D is defined as

B−(D) :=
⋃

A

SB(D +A).

where the union is taken over all ample divisors A such that D + A are Q-divisors. We have
B−(D) ⊆ SB(D) ⊆ B+(D) for a Q-divisor D. One can check that a divisor D is ample (or nef)
if and only if B+(D) = ∅ (respectively, B−(D) = ∅). Furthermore, D is not pseudoeffective
(or not big) if and only if B−(D) = X (respectively, B+(D) = X). The asymptotic base loci
B+(D) and B−(D) depend only on the numerical class of D while SB(D) does not (see [La,
Example 10.3.3]). For more properties, we refer to [ELMNP1].

2.2. Asymptotic valuation.

Let D be a pseudoeffective divisor on a smooth projective variety X, and V ⊆ X be an
irreducible subvariety of X. When D is big, we define the asymptotic valuation of V at D as

ordV (||D||) := inf{ordV (D
′) | D ≡ D′ ≥ 0}.

When D is non-big pseudoeffective, we define

ordV (||D||) := lim
ε→0+

ordV (||D + εA||)

for some ample divisor A. This definition is independent of the choice of A, and the value
ordV (||D||) depends only on the numerical class [D] ∈ N1(X)R (see [N, Chapter III]).

Remark 2.1. By [Le2, Proposition 6.4], if D is an abundant pseudoeffective divisor, then the
limit process in computing ordX(||D||) is unnecessary. Otherwise, it is necessary in general. For
example, let π : S → P2 be the blow-up of P2 at nine general points. Then |−KS| consists of one
irreducible curve C, and | −mKS| = {mC} for any integer m > 0. Thus ordC(D

′) = 1 for every
effective divisor D with D ≡ −KS . On the other hand, since −KS is nef, ordC(|| −KS ||) = 0
by Theorem 2.2.

The restricted base locus B−(D) can be characterized in terms of ordV (||D||) as follows.

Theorem 2.2 ([ELMNP1, Proposition 2.8],[N, Lemma V.1.9]). Let D be a pseudoeffective
divisor on a variety X, and V ⊆ X an irreducible subvariety. Then V ⊆ B−(D) if and only if
ordV (||D||) > 0.

The asymptotic valuation is a birational invariant: for a birational morphism f : Y → X
with the exceptional divisor E such that f(E) = V , we have ordV (||D||) = ordE(||f

∗(D)||) (see
[BBP, Lemma 1.4]). For more details on asymptotic valuations, see [ELMNP1] and [N, Chapter
III].
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2.3. Augmented restricted volume.

In this subsection, we introduce the notion of the augmented restricted volume. For this
purpose, we first recall the restricted volume function. Let D be a divisor on a smooth projective
variety X of dimension n, and V be a v-dimensional irreducible subvariety of X. For the
natural restriction map ϕ : H0(X,OX (⌊D⌋)) → H0(V,OV (⌊D⌋)), we denote the image Im(ϕ)
by H0(X|V, ⌊D⌋) and its dimension by h0(X|V, ⌊D⌋). We define the restricted volume of D
along V as

volX|V (D) := lim sup
m→∞

h0(X|V,OX (⌊mD⌋))

mv/v!
.

Remark 2.3. In [ELMNP2], the restricted volume volX|V (D) is initially defined for a Q-divisor
D. If V 6⊆ B+(D), then volX|V (D) depends only on the numerical class of a Q-divisor D
([ELMNP2, Corollary 2.14]). Furthermore, the restricted volume function uniquely extends to
a continuous function

volX|V : BigV (X) → R≥0

where BigV (X) is the set of all R-divisor classes ξ such that V is not properly contained in any
irreducible component of B+(ξ), and volX|V (ξ) = 0 if and only if V is an irreducible component
of B+(ξ) ([ELMNP2, Theorem 5.2]).

On the other hand, one can easily show that our restricted volume volX|V for Q-divisors is
homogeneous of degree v so that our definition of volX|V (D) coincides with that in [ELMNP2]
for a Q-divisor D. By perturbing by ample divisors and using the continuity property, one
can also check that for any R-divisor D such that [D] ∈ BigV (X), our definition of volX|V (D)

coincides with the value volX|V ([D]) of the continuous function volX|V : BigV (X) → R≥0 in
[ELMNP2, Theorem 5.2]. See also [Le1, Remark 2.13].

By Remark 2.3 and [ELMNP2, Corollary 2.14], volX|V (D) depends only on the numerical
class of an R-divisor D, and by [ELMNP2, Theorem 5.2], we obtain a continuous function

volX|V : BigV (X) → R≥0,

and volX|V (ξ) = 0 if and only if V is an irreducible component of B+(ξ). Furthermore, by
[ELMNP2, Corollary 2.15], ‘lim sup’ can be replaced by ‘lim’ in the definition of the restricted
volume volX|V (D) of a divisor D when V 6⊆ B+(D).

By letting V = X, we recover the classical volume function volX(D) = volX|X(D). Note that

BigX(X) = Big(X). Thus we obtain a continuous function volX : Big(X) → R>0. Furthermore,
the volume function continuously extends to the entire Néron-Severi space

volX : N1(X)R → R≥0,

and volX(ξ) = 0 if and only if ξ 6∈ Big(X) (see [La, Corollary 2.2.45]). For more details on the
functions volX and volX|V , see [ELMNP2], [La], [Le1], etc.

If D is a non-big pseudoeffective divisor, then B+(D) = X. Thus the functions volX|V and
volX do not capture the subtle asymptotic properties of pseudoeffective divisors that are not
big on V or X. In such situations, the following function seems useful.

Definition 2.4. Let D be a pseudoeffective divisor on a smooth projective variety X, and
V ⊆ X be an irreducible subvariety such that V 6⊆ B−(D). The augmented restricted volume of
D along V is defined as

vol+
X|V (D) := lim

ε→0+
volX|V (D + εA)

where A is an ample divisor on X.
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Note that if V 6⊆ B−(D), then V 6⊆ B+(D + εA) for any ample divisor A and for any ε > 0.
Thus using the above basic properties of volX|V , we can deduce that in Definition 2.4, the limit

exists and vol+
X|V (D) is independent of the choice of A.

We also observe that vol+
X|V (D) depends only on the numerical class of D. This can be seen

as follows. Let D ≡ D′ and V 6⊆ B−(D) = B−(D
′). Then volX|V (D + εA) = volX|V (D

′ + εA)

so that by taking the limit ε → 0, we obtain vol+
X|V (D) = vol+

X|V (D
′). By the continuity of the

function volX|V , we also see that

vol+
X|V (D) = volX|V (D) for D ∈ BigV (X).

For a divisor D such that [D] ∈ Eff(X) \ Big(X) and V 6⊆ B−(D), by definition, vol+
X|V (D) is

the limit of the values of the continuous function volX|V . Thus we obtain a continuous function

vol+
X|V : Eff

V
(X) → R

where Eff
V
(X) := BigV (X) ∪ {ξ ∈ Eff(X) \ Big(X) | V 6⊆ B−(ξ)}. For D ∈ Eff

V
(X), the

following inequalities hold by definition:

volX|V (D) ≤ vol+
X|V (D) ≤ volV (D|V ).

Both inequalities can be strict in general.

Example 2.5. Let S be a relatively minimal rational elliptic surface, and H be an ample Z-
divisor on S. Take a general element V ∈ |kH| for a sufficiently large integer k > 0. Then

volS|V (−KS) = lim sup
m→∞

h0(S,OS(−mKS))
m

is apparently independent of k and H. However, one can

check that vol+
S|V (−KS) = (−KS) · (kH). Thus vol+

S|V (−KS) can be arbitrarily large depending

on k. Thus we have volS|V (−KS) < vol+
S|V (−KS).

2.4. Nakayama subvariety.

In this subsection, we introduce and study Nakayama subvarieties of divisors, which are closely
related to the Iitaka dimension. Let X be a smooth projective variety.

Definition 2.6. For a divisor D on a variety X, the Iitaka dimension of D is defined as

κ(D) := max

{
k ∈ Z≥0

∣∣∣∣ lim sup
m→∞

h0(X,OX (⌊mD⌋))

mk
> 0

}

if h0(X,OX (⌊mD⌋)) 6= 0 for some m > 0, and κ(D) := −∞ otherwise.

Remark 2.7. If D is a divisor such that κ(D) ≥ 0, then there exists an integer m0 ≥ 1 such

that h0(X,OX (⌊mm0D⌋)) ∼ mκ(D) for m ≫ 0 ([N, Theorem II.3.7]). For this m0, we have
κ(D) = κ(m0D). Thus in many situations below, we may assume that m0 = 1.

Remark 2.8. Note that the Iitaka dimension κ(D) is not a numerical invariant in general ([Le1,
Example 6.1]). Moreover, it is not an R-linear invariant in general, that is, κ(D) 6= κ(D′) even
if D ∼R D′. For instance, let P,Q be distinct points on P1. For an irrational number a ∈ R,
we consider an R-divisor D := a(P − Q). We have D ∼R 0, so D is effective up to R-linear
equivalence. But κ(a(P −Q)) = −∞ since ⌊ma(P −Q)⌋ = ⌊ma⌋P − (⌊ma⌋ + 1)Q < 0 for any
integer m > 0. However, if both D,D′ are effective and D ∼R D′, then κ(D) = κ(D′) holds true
(see [G, Remark 2.1]).

Remark 2.9. We have the following implications:

D is effective ⇒ κ(D) ≥ 0 ⇒ |D|R 6= 0.

If the latter condition holds, then we say that D is effective up to R-linear equivalence. By what
we have seen above, it is easy to check that the converses are not true in general.
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The following is well known, but we include the whole proof for reader’s convenience.

Lemma 2.10. Let P be a principal R-divisor. Then we may write P =
∑k

i=1 ai div(fi) where
a1, · · · , ak are real numbers linearly independent over Q and f1, · · · , fk ∈ C(X) are rational
functions.

Proof. Let k be the minimum of integers m such that we may write P =
∑m

i=1 aidiv(fi) where
ai are real numbers and fi ∈ C(X) are rational functions. We now fix an expression P =∑k

i=1 aidiv(fi). Suppose that a1, · · · , ak are not linearly independent over Q. Possibly by
reordering the indices, we have

ak =
p1
q1

a1 + · · · +
pk−1

qk−1
ak−1

where pi, qi are relatively prime integers with qi 6= 0. Then we obtain

P =
k−1∑

i=1

ai

(
div(fi) +

pi
qi
div(fk)

)
=

k−1∑

i=1

ai
qi
div
(
f qi
i fpi

k

)

which is a contradiction to the minimality of k. �

The following lemma is useful when we deal with effective R-divisors.

Lemma 2.11. Let D be an effective divisor on a variety X, and D′ ∈ |D|R be any element.
Suppose that we can write D =

∑
i aiEi and D′ =

∑
j a

′
jE

′
j where Ei, E

′
j are prime divisors and

ai, a
′
j > 0. Then for any sufficiently small ε > 0, there exist a sufficiently large and divisible

integer m > 0 and an effective divisor G ∈ |⌊mD⌋| such that we can write G
m

=
∑

i biEi+
∑

j b
′
jE

′
j

where bi < ε and |a′j − b′j| < ε for all i, j.

Proof. Since D ∼R D′, there exist rational functions fk ∈ C(X) and real numbers ck such that
D = D′ +

∑
k ckdiv(fk). By Lemma 2.10, we may assume that ck are linearly independent

over Q. Then Suppdiv(fk) ⊆ Supp(D) ∪ Supp(D′) for each k. There are arbitrarily small real
numbers c′k such that ck − c′k are rational numbers, D′ +

∑
k c

′
kdiv(fk) is an effective divisor,

and |multE′
j
(D′ +

∑
k c

′
kdiv(fk))− a′j | are arbitrarily small for all j. We now have

D =

(
D′ +

∑

k

c′kdiv(fk)

)
+
∑

k

(ck − c′k)div(fk) ∼Q

(
D′ +

∑

k

c′kdiv(fk)

)
.

For a sufficiently large and divisible integer m > 0, let G := ⌊m (D′ +
∑

k c
′
kdiv(fk))⌋. Then we

have

⌊mD⌋ ∼ G and
G

m
=

⌊
∑

j ma′jE
′
j +

∑
k mc′kdiv(fk)⌋

m
.

Since m > 0 is sufficiently large, Supp(div(fk)) ⊆ Supp(D) ∪ Supp(D′) and c′k are arbitrarily
small for all k, we obtain the assertion. �

Now we define the Nakayama subvariety associated to an effective divisor.

Definition 2.12. Let D be a divisor on a variety X with κ(D) ≥ 0. An irreducible subvariety
U ⊆ X is called a Nakayama subvariety of D if κ(D) = dimU and the natural map

H0(X,OX(⌊mD⌋)) → H0(U,OU (⌊mD|U⌋))

is injective (or equivalently, H0(X,IU ⊗OX(⌊mD⌋)) = 0 where IU is an ideal sheaf of U in X)
for every integer m ≥ 0.

By definition, U = X is the (unique) Nakayama subvariety of D if and only if D is big. The
following lemma guarantees the existence of smooth Nakayama subvarieties. It also shows that
a Nakayama subvariety is not unique in general.
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Proposition 2.13 (cf. [N, Lemma V.2.11]). Let D be a divisor on a variety X with κ(D) ≥ 0.
Any general subvariety U ⊆ X of dimension κ(D) is a Nakayama subvariety of D. In particular,
U = A1 ∩ · · · ∩ An−κ(D) is a Nakayama subvariety of D where A1, · · · , An−κ(D) are general
members of sufficiently ample linear systems.

Proof. Consider a dominant rational map ϕm : X 99K Zm induced by a complete linear series
|⌊mD⌋| for any integer m > 0 such that |⌊mD⌋| 6= ∅. We have dimZm ≤ κ(D) = dimU . Let
f : Y → X be the blow-up at U with the exceptional divisor E. Since U ⊆ X is general,
f∗(⌊mD⌋)− kE is not effective for any k > 0. Thus H0(X,IU ⊗OX(⌊mD⌋)) = 0, and hence, U
is a Nakayama subvariety of D. The latter statement also follows from this argument. �

Nakayama subvarieties have the following properties.

Lemma 2.14. If D,D′ are divisors on a variety X such that κ(D), κ(D′) ≥ 0 and D ∼R D′,
then they have the same Nakayama subvarieties.

Proof. The given conditions imply that κ(D) = κ(D′). Suppose that U is a Nakayama subvariety
of D, but it is not a Nakayama subvariety of D′. Then for some integer m > 0, there exist an
effective Z-divisor E such that E ∼ ⌊mD′⌋ and an irreducible component E0 of E that contains
U . This means that there exists an element D′′ ∈ |D′|R = |D|R such that E0 is a component of
D′′. By Lemma 2.11, we can find an integer m′ > 0 such that some element of ⌊m′D⌋ contains
E0 as an irreducible component. Then such an element should also contain U . Thus we have a
contradiction to our assumption that U is a Nakayama subvariety of D. �

Let V be a smooth subvariety of a variety X. A birational morphism f : Y → X is said to

be V -birational if V is not contained in the image of the f -exceptional locus. We denote by Ṽ

the proper transform of V on Y . Then the pair (Y, Ṽ ) is called a V -birational model of X (see
[Le1, Definition 2.10]).

Proposition 2.15. Let U ⊆ X be a Nakayama subvariety of a divisor D on a variety X with

κ(D) ≥ 0. If f : Y → X is a U -birational morphism, then Ũ is also a Nakayama subvariety of
f∗D.

Proof. Suppose that Ũ is not a Nakayama subvariety of f∗D. Then there exists an integer

m > 0 and an effective Z-divisor E on Y such that E ∼ ⌊mf∗D⌋ and Ũ ⊆ Supp(E). Then
f∗E ∼ f∗⌊mf∗D⌋ = ⌊mD⌋ and U ⊆ Supp(f∗E). By definition, this is a contradiction. �

Theorem 2.16. Let D be a divisor on a variety X with κ(D) ≥ 0, and U ⊆ X be its Nakayama
subvariety. Then D|U is big.

Proof. By the definition of Nakayama subvariety, we have

h0(U,OU (⌊mD|U⌋)) ≥ h0(X,OX (⌊mD⌋))

for every integer m ≥ 0. Since h0(X,OX (⌊mD⌋)) ∼ mκ(D) for m ≫ 0, the assertion follows. �

2.5. Positive volume subvariety.

In this subsection, we introduce and study positive volume subvarieties of divisors, which are
closely related to the numerical Iitaka dimension and the restricted volume. First, we review
the numerical Iitaka dimension.

Definition 2.17. Let D be a divisor on a variety X. We define the numerical Iitaka dimension
of D as the nonnegative integer

κν(D) := max

{
k ∈ Z≥0

∣∣∣∣ lim sup
m→∞

h0(X,OX (⌊mD⌋+A))

mk
> 0

}

for some fixed ample Cartier divisor A if h0(X,OX (⌊mD⌋ +A)) 6= ∅ for infinitely many m > 0
and we let κν(D) := −∞ otherwise.
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The numerical Iitaka dimension κν(D) depends only on the numerical class [D] ∈ N1(X)R.
Note that D is pseudoeffective if and only if κν(D) ≥ 0. One can easily check that κ(D) ≤ κν(D)
holds and the inequality is strict in general (see [Le1, Example 6.1]). However, if κν(D) = dimX,
then κ(D) = dimX. See [N], [Le1], and [E] for detailed properties of κ and κν .

The following theorem relates the numerical Iitaka dimension κν(D) and vol+
X|V (D).

Theorem 2.18 ([Le1, Theorem 1.1]). Let D be a pseudoeffective divisor on a variety X. Then
we have

κν(D) = max{dimW | vol+
X|W (D) > 0 and W 6⊆ B−(D)}.

The numerical Iitaka dimension κν(D) actually coincides with many other invariants defined
with D. For details, see [Le1] and [E].

Now we define the positive volume subvariety associated to a pseudoeffective divisor.

Definition 2.19. Let D be a pseudoeffective divisor on a variety X. A subvariety V ⊆ X
of dimension κν(D) such that vol+

X|V (D) > 0 and V 6⊆ B−(D) is called a positive volume

subvariety of D. (In other words, a positive volume subvariety V ⊆ X is the subvariety at which
the maximum in Theorem 2.18 is attained.)

Remark 2.20. In [CPW, Lemma 4.3], we show that vol+
X|V (D) > 0 implies V 6⊆ B−(D). Thus

the condition V 6⊆ B−(D) in the definition of the positive volume subvariety is redundant.

Example 2.21. Let S be a relatively minimal rational elliptic surface with a reducible singular
fiber, and E a (−2)-curve in a singular fiber. Then E 6⊆ B−(−KS) but vol+

S|E(−KS) = 0. In

this example, we see that V 6⊆ B−(D) and dimV = κν(D) does not imply vol+
X|V (D) > 0.

By definition, if D is a big divisor on X, then V = X is the unique positive volume subvariety
of D. Theorem 2.18 guarantees the existence of a positive volume subvariety in general. Fur-
thermore, we can also find a smooth positive volume subvariety by the following. It also shows
that a positive volume subvariety is not unique in general.

Proposition 2.22. Let D be a pseudoeffective divisor on a variety X of dimension n. If
κν(D) < n, then the subvariety V := A1 ∩ · · · ∩ An−κν(D) satisfies vol+

X|V (D) > 0, where

A1, · · · , An−κν(D) are general members of sufficiently ample linear systems. In particular, V is
a positive volume subvariety of D.

Proof. By Theorem 2.18, there exists a positive volume subvariety W of D. In particular, we
have vol+

X|W (D) > 0. We can take a sequence {Hi}i∈Z≥0
of ample divisors on X such that each

D + Hi is a Q-divisor and Hi → 0 as i → ∞. For a large and sufficiently divisible integer

k, choose κν(D) general divisors E1
k,i, · · · , E

κν(D)
k,i ∈ |k(D + Hi)|. Since A1, · · · , An−κν(D) are

sufficiently ample divisors, we have

#(V ∩ E1
k,i ∩ · · · ∩ E

κν(D)
k,i \ SB(D +Hi)) ≥ #(W ∩ E1

k,i ∩ · · · ∩ E
κν(D)
k,i \ SB(D +Hi)).

Thus by applying [ELMNP2, Theorem B], we obtain

volX|V (D +Hi) = lim
k→∞

#(V ∩E1
k,i

∩···∩E
κν(D)
k,i

\SB(D+Hi))

kκν(D)

≥ lim
k→∞

#(W∩E1
k,i

∩···∩E
κν(D)
k,i

\SB(D+Hi))

kκν(D) = volX|W (D +Hi).

This implies that vol+
X|V (D) ≥ vol+

X|W (D) > 0. Since A1, · · · , An−κν(D) are sufficiently ample,

we also have V 6⊆ B−(D). �

We prove some notable properties of positive volume subvariety.
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Lemma 2.23. If D and D′ are pseudoeffective divisors on a variety X such that D ≡ D′, then
they have the same positive volume subvarieties.

Proof. Note first that B−(D) = B−(D
′). The statement then follows from the fact that

vol+
X|V (D) depends only on the numerical class [D] for any V 6⊆ B−(D) = B−(D

′). �

Proposition 2.24. Let V ⊆ X be a positive volume subvariety of a pseudoeffective divisor D

on a variety X. If f : Y → X is a V -birational morphism, then Ṽ is also a positive volume
subvariety of f∗D.

Proof. The birational transform Ṽ ⊆ Y of V has dimension dim Ṽ = dimV = κν(D) = κν(f
∗D).

If Ṽ ⊆ B−(f
∗(D)), then V = f(Ṽ ) ⊆ f(B−(f

∗(D)) = B−(D). Thus Ṽ 6⊆ B−(f
∗(D)). It is

enough to show that vol+
Y |Ṽ

(f∗D) > 0. Since V 6⊆ B−(D) by definition, for any ample divisor

A on X, we have V 6⊆ B+(D + A). We can also check that Ṽ 6⊆ B+(f
∗D + f∗A) using [BBP,

Proposition 2.3]. Note that there is an effective divisor E on Y such that f∗A − E is ample.
Thus we have

vol+
Y |Ṽ

(f∗D) = lim
ε→0+

vol
Y |Ṽ (f

∗D + ε(f∗A− E)).

The difference | vol
Y |Ṽ

(f∗D+ ε(f∗A−E))−vol
Y |Ṽ

(f∗D+ εf∗A)| can be arbitrarily small when

ε > 0 is sufficiently small. On the other hand, by [ELMNP2, Lemma 2.4], we have

vol+
X|V (D) = lim

ε→0+
volX|V (D + εA) = lim

ε→0+
vol

Y |Ṽ (f
∗D + εf∗A).

Since vol+
X|V (D) > 0, it follows that vol+

Y |Ṽ
(f∗D) > 0. �

It is known that D|V is pseudoeffective for any subvariety V ⊆ X such that V 6⊆ B−(D).
Thus κ(D|V ) ≥ 0. Furthermore, we have the following.

Theorem 2.25. Let V be a positive volume subvariety of a pseudoeffective divisor D on a variety
X. Then volV (D|V ) > 0. In particular, D|V is big on V and κν(D) = κν(D|V ) = dimV .

Proof. By taking a suitable V -birational model and considering Proposition 2.24, we may assume
that V is smooth. We can take a sequence of ample divisors Ai such that D+Ai are Q-divisors
and Ai → 0 as i → ∞. Since V ⊆ X is a positive volume subvariety of D, there exists a constant
C0 such that for any large integer k > 0, we have

lim sup
m→∞

h0(X|V,m(D +Ak))

mκν(D)
> C0

where m is taken over all positive integers such that m(D + Ak) is a Z-divisor. Note that
h0(X|V,m(D +Ak)) ≤ h0(V,m(D|V +Ak|V )). Thus for any large integer k > 0, we also have

lim sup
m→∞

h0(V,m(D|V +Ak|V ))

mκν(D)
> C0.

By the continuity of the volume function volV , we obtain volV (D|V ) > 0. Thus D|V is big on
V . �

3. Okounkov body of a pseudoeffective divisor

In this section, we introduce and study the valuative Okounkov body ∆val
Y•

(D) and the limiting

Okounkov body ∆lim
Y•

(D) associated to a divisor D on a variety X.
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3.1. Okounkov body ∆Y•(D).
Let X be a (possibly singular) projective variety of dimension n, and D be an R-divisor on X

such that the R-linear system |D|R is nonempty. In Introduction, we have defined the function
νY• : |D|R → Rn for a given admissible flag Y• on X. We also recall that the Okounkov body
∆Y•(D) of a divisor D with respect to an admissible flag Y• is defined as

∆Y•(D) := the closure of the convex hull of the image νY•(|D|R) in Rn
≥0.

We remark that such construction of ∆Y•(D) is equivalent to the one given in [LM] where
∆Y•(D) is defined as the natural extension of the Okounkov body defined for Z-divisors using
the homogeneity and the continuity of the Okounkov bodies. See [LM] for details.

In this Subsection, we also recall from [LM] the construction of the Okounkov body of a
graded linear series W• associated to D.

Let D be a Cartier Z-divisor on X such that H0(X,OX (D)) 6= 0, and fix an admissible flag
Y• on X. For a non-zero section s ∈ H0(X,OX(D)) \ {0}, we can find an effective divisor
D′ = div(s) ∼ D. Thus we can also define the following function

νY• : H0(X,OX (D)) \ {0} → Zn
≥0, νY•(s) := νY•(D

′).

Recall that a graded linear series W•(D) = {Wm := Wm(D)}m≥0 associated to D consists of
subspaces Wm ⊆ H0(X,OX(mD)) with W0 = C satisfying Wm · Wl ⊆ Wm+l for all m, l ≥ 0.
The volume of W• is defined as

volX(W•) := lim
m→∞

dimWm

mn/n!

Note that the above limit exists by [LM, Theorem 2.13 and Remark 2.14]. We define the graded
semigroup of W• as

Γ(W•) := {(ν(s),m) | Wm 6= {0} and s ∈ Wm \ {0} } ⊆ Zn
≥0 × Z≥0.

Definition 3.1. LetW• be a graded linear series associated to a Cartier Z-divisorD on a variety
X of dimension n. We can associate the convex body ∆Y•(W•) called the Okounkov body of a
graded linear series W• with respect to an admissible flag Y• on X as follows:

∆Y•(W•) := Σ(Γ(W•)) ∩ (Rn
≥0 × {1}) ⊆ Rn

≥0 × {1} = Rn
≥0

where Σ(Γ(W•)) denotes the closure of the convex cone in Rn
≥0 × R≥0 spanned by Γ(W•).

Note also that ∆Y•(W•) is a convex subset in Rn, that is, ∆Y•(W•) ⊆ Rn
≥0. If W• is a complete

graded linear series (that is, Wm = H0(X,O(mD)) for each m) of a Cartier Z-divisor D, then
we write W• = W•(D) and we have

∆Y•(D) = ∆Y•(W•(D)).

By construction, the Okounkov body ∆Y•(D) of a divisor D or the Okounkov body ∆Y•(W•)
of a graded linear series W• depends on the choice of the admissible flag Y•.

Remark 3.2. Let Y• be an admissible flag on a variety X of dimension n. For each integer k
such that 0 ≤ k ≤ n, we can define the k-th partial flag Yk• of Y• as

Yk• : Yk ⊇ Yk+1 ⊇ · · · ⊇ Yn = {x}.

Then Yk• is an admissible flag on a projective variety Yk of dimension n− k. If D is an effective
divisor on X such that ordYk

(D) = 0, then we obtain an effective divisor D|Yk
on Yk. As above,

we can define

νYk•
(D) := (νk+1(D), · · · , νn(D)) ∈ Rn−k

≥0 .
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If ordYk
(D) > 0, then we set νYk•

(D) = (0, · · · , 0) ∈ Rn−k
≥0 . The k-th partial Okounkov body of a

divisor D on X with respect to the k-th partial flag Yk• is defined as

∆Yk•
(D) := the closure of the convex hull of νYk•

(|D|R) in Rn−k
≥0 .

These partial flags and partial Okounkov bodies will be useful in the next subsections.

Under the following conditions, the Okounkov body ∆Y•(W•) behaves well.

Definition 3.3 ([LM, Definitions 2.5 and 2.9]).

(1) We say that a graded linear series W• satisfies Condition (B) if Wm 6= 0 for all m ≫ 0, and
for all sufficiently large m, the rational map ϕm : X 99K P(Wm) defined by |Wm| is birational
onto its image.
(2) We say that a graded linear series W• satisfies Condition (C) if

i. for every m ≫ 0, there exists an effective divisor Fm such that the divisor Am := mD−Fm

is ample, and
ii. for all sufficiently large p, we have

H0(X,OX (pAm)) ⊆ Wpm ⊆ H0(X,OX (pmD)).

If W• is complete, that is, Wm = H0(X,OX (mD)) for all m ≥ 0 and D is big, then it
automatically satisfies Condition (C).

Theorem 3.4 ([LM, Theorem 2.13]). Suppose that a graded linear series W• satisfies Condition
(B) or Condition (C). Then for any admissible flag Y• (with a general choice of the point
Yn = {x} when W• only satisfies Condition (B)), we have

dim∆Y•(W•) = dimX(= n) and volRn(∆Y•(W•)) =
1

n!
· volX(W•).

Note that [LM, Theorem 2.13] also requires Condition (A) ([LM, Definition 2.4]), but it is
automatically satisfied in our situation since we always assume that our variety X is projective.
The smoothness assumption on X is not necessary for this theorem.

Remark 3.5. It is well known by [LM, Proposition 4.1] that for a fixed admissible flag Y• on
X, if D is a big divisor on X, then ∆Y•(D) depends only on the numerical class of D. If D is
not big, then it is no longer true. See Remark 3.13.

We will use the following result, which generalizes [LM, Theorem 4.26]. Many of our subse-
quent results will rely on this nontrivial theorem. The detailed proof is given in [CPW].

Theorem 3.6 ([CPW, Theorem 1.1]). Let D be a big divisor on a smooth projective variety X
of dimension n. Suppose that Y• is an admissible flag on X such that Yk 6⊆ B+(D). Then we
have

∆Y•(D) ∩ ({0}k × Rn−k
≥0 ) = ∆Yk•

(D).

Remark 3.7. If Yk ⊆ B+(D), then the conclusion of Theorem 3.6 does not hold in general. For
example, following [ELMNP2, Example 5.10], we consider the blow-up π : X → P3 of P3 at a
line with exceptional divisor E. Let D ∈ |π∗OP3(1)| be an effective divisor, and C be a smooth
curve of type (2, 1) in E ≃ P1 × P1. Note that D is nef and big and C ⊆ B+(D) = E. Fix an
admissible flag

Y• : X = Y0 ⊇ E = Y1 ⊇ C = Y2 ⊇ Y3 = {x}

on X where x is any point on C. We may regard both ∆Y•(D) ∩ ({0}2 × R1
≥0) and ∆Y2•(D) as

convex subsets in R1
≥0. We then have

∆Y•(D) ∩ ({0}2 × R1
≥0) = {x ∈ R1

≥0 | 0 ≤ x ≤ 2} ) {x ∈ R1
≥0 | 0 ≤ x ≤ 1} = ∆Y2•(D).
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3.2. Valuative Okounkov body ∆val
Y•

(D).
Throughout the subsection, X is a smooth projective variety of dimension n.

Definition 3.8. Let D be a divisor on a variety X of dimension n such that |D|R 6= ∅. The
valuative Okounkov body ∆val

Y•
(D) associated to D with respect to an admissible flag Y• on X is

defined as
∆val

Y•
(D) := ∆Y•(D) ⊆ Rn

≥0.

For a divisor D with |D|R = ∅, we define ∆val
Y•

(D) := ∅.

Remark 3.9. Note that the constructions for the valuative Okounkov body ∆val
Y•

(D) and for the
usual Okounkov body ∆Y•(D) are the same. However, for a non-big divisor D, we will use the
notation ∆val

Y•
(D) in order to emphasize special properties of valuative Okounkov body ∆val

Y•
(D).

Clearly, the valuative Okounkov body ∆val
Y•

(D) of a divisor D depends on the choice of the
admissible flag Y•. However, we will see below that if κ(D) ≥ 0 and Y• contains a Nakayama
subvariety U = Yn−κ(D) of D, then the valuative Okounkov body ∆val

Y•
(D) depends only on the

choice of a Nakayama subvariety of D and the (n − κ(D))-th partial flag Yn−κ(D)• on U .
Let D be a divisor on X with κ(D) ≥ 0, and fix an admissible flag Y• on X containing a

Nakayama subvariety U = Yn−κ(D) of D. As in Remark 3.2, we can also consider νYn−κ(D)•
(D′) ∈

R
κ(D)
≥0 for any D′ ∈ |D|R.

Proposition 3.10. Under the notations as above, for any D′ ∈ |D|R, we have

νY•(D
′) = (0, . . . , 0︸ ︷︷ ︸

n−κ(D)

, νYn−κ(D)•
(D′)).

In particular, ∆val
Y•

(D) ⊆ {0}n−κ(D)×R
κ(D)
≥0 , and so we can regard ∆val

Y•
(D) as a subset of R

κ(D)
≥0 .

Proof. By Lemma 2.14, U = Yn−κ(D) is also a Nakayama subvariety of D′. By the definition of
Nakayama subvariety, we have

H0(X,IU ⊗OX(⌊mD′⌋)) = 0

for all m ≥ 0. This implies that U 6⊆ Supp(D′). Since Yk ⊇ U for 1 ≤ k ≤ n − κ(D), it follows
that Yk 6⊆ Supp(D′). Thus we obtain νk(D

′) = 0 for 1 ≤ k ≤ n − κ(D), and the assertions
immediately follow. �

Now let D be a Z-divisor on X such that κ(D) ≥ 0, and fix a Nakayama subvariety U ⊆ X of
D. By Theorem 2.16, D|U is a big divisor on U . Consider the restricted complete graded linear
series W•(D|U) of a Z-divisor D along U which is given by

Wm(D|U) := H0(X|U,mD)

for each m ≥ 0. Recall that H0(X|U,mD) is the image of the natural restriction map ϕU :
H0(X,OX (mD)) → H0(U,OU (mD|U )). Note that W•(D|U) is a graded linear subseries of
W•(D|U ) on U .

Remark 3.11. Let Y• be an admissible flag containing a Nakayama subvariety U of a Z-divisor
D on X such that κ(D) ≥ 0. Then the valuative Okounkov body ∆val

Y•
(D) can be constructed

alternatively as follows. Consider the (n− κ(D))-th partial flag Yn−κ(D)• on U . Since W•(D|U)
is a graded linear subseries associated to D|U on U , we can define the Okounkov body

∆Yn−κ(D)•
(W•(D|U)) ⊆ R

κ(D)
≥0

as in Definition 3.1. By regarding ∆val
Y•

(D) as a subset of Rκ(D) (Proposition 3.10), we have

∆val
Y•

(D) = ∆Yn−κ(D)•
(W•(D|U)).
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Thus ∆Yn−κ(D)•
(W•(D|U)) gives an alternative construction of ∆val

Y•
(D).

The following is the main property of ∆val
Y•

(D).

Theorem 3.12. Let D be a divisor such that κ(D) ≥ 0 on a smooth projective variety X, and
fix an admissible flag Y• containing a Nakayama subvariety U of D such that Yn = {x} is a
general point. Then ∆val

Y•
(D) ⊆ {0}n−κ(D) × Rκ(D). Furthermore, we have

dim∆val
Y•

(D) = κ(D) and volRκ(D)(∆val
Y•

(D)) =
1

κ(D)!
volX|U (D)

where ∆val
Y•

(D) is regarded as a convex subset of Rκ(D).

Proof. The first part of the assertions is shown in Proposition 3.10. We now prove the second
part. We first consider the case where D is a Z-divisor. We can easily check that ∆val

Y•
(mD) =

1
m
∆val

Y•
(D) for any integer m > 0. Thus we may assume that the constant m0 in Remark 2.7

is equal to 1. In particular, h0(X,OX (mD)) > 0 for any integer m > 0. By Remark 3.11, we
have ∆val

Y•
(D) = ∆Yn−κ(D)•

(W•(D|U)). By the properties of a Nakayama subvariety, there exits

an integer m0 such that h0(X,OX (mm0D)) = dimWmm0 ∼ mκ(D) for all m ≫ 0 (cf. Remark
2.7) and dimU = κ(D). Furthermore, Yn = {x} is assumed to be general. By [LM, Remark
2.8], the assertions follow from Theorem 3.4.

Now, we assume that D is a Q-divisor. There exists a sufficiently divisible integer m > 0 such
that mD is a Z-divisor. We can also see that ∆val

Y•
(D) = 1

m
∆val

Y•
(mD). Thus the assertions for

Q-divisors follow from the Z-divisor case.
Finally, we treat the case where D is an R-divisor. Consider a sequence of Q-divisors Dm :=

⌊mD⌋
m

converging to D as m → ∞. Then Em := D − Dm = mD−⌊mD⌋
m

forms a sequence of
effective R-divisors converging to 0 as m → ∞. We have

∆val
Y•

(Dm) + ∆val
Y•

(Em) ⊆ ∆val
Y•

(D) and lim
m→∞

∆val
Y•

(Em) = {the origin of Rκ(D)}

as convex subsets in R
κ(D)
≥0 . Take any D′ ∈ |D|R. For any sufficiently small number ε > 0, by

applying Lemma 2.11, we can find D′
m ∈ |Dm|Q := {D′

m | Dm ∼Q D′
m ≥ 0} for a sufficiently

large and divisible integer m > 0 such that

|νi − ν ′i| < ε for all i

where νY•(D
′) = (ν1, · · · , νn) and νY•(D

′
m) = (ν ′1, · · · , ν

′
n). Observe that if m | m′, then Dm ≤

Dm′ . Since m > 0 is sufficiently large, Dm′ −Dm = Em − Em′ is arbitrarily small. Thus for a
sufficiently large and divisible integer m′ > 0 with m | m′, we can also find D′

m′ ∈ |Dm′ |Q such
that

|νi − ν ′′i | < ε for all i

where νY•(D
′
m′) = (ν ′′1 , · · · , ν

′′
n). Therefore, by considering sufficiently divisible integers m > 0,

we may assume that

lim
m→∞

∆val
Y•

(Dm) = ∆val
Y•

(D).

On the other hand, by definition of the Iitaka dimension, we have κ(Dm) = κ(D) for a sufficiently
large m > 0. By definition of the restricted volume, we have

volX|U (D) = lim
m→∞

volX|U (Dm).

Note that U is a Nakayama subvariety of Dm for a sufficiently large m > 0. Thus the assertions
for R-divisors follow from the Q-divisor case. �
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Remark 3.13. It is natural to ask whether ∆val
Y•

(D) is a numerical invariant of D or not. If D

is a big divisor on X, then by Remark 3.5, ∆val
Y•

(D) = ∆Y•(D) depends only on the numerical
class of D. However, in general, we may have κ(D) < κ(D′) even if D ≡ D′ (see [Le1, Example
6.1]). Thus by choosing an admissible flag Y• containing Nakayama subvarieties of D and D′,
we obtain ∆val

Y•
(D) 6= ∆val

Y•
(D′).

Remark 3.14. If D is only effective up to R-linear equivalence, then Theorem 3.12 does not
hold in general. As in Remark 2.8, take two distinct points P,Q on P1 and an irrational number
a. Set D := a(P −Q). Then D ∼R 0 and ∆val

Y•
(D) = {0 ∈ R1}. However, we have κ(D) = −∞.

On the other hand, we have the following.

Proposition 3.15. If two divisors D, D′ satisfy D ∼R D′, then ∆val
Y•

(D) = ∆val
Y•

(D′) with respect
to any admissible flag Y•.

Proof. It is trivial by definition. �

Remark 3.16. The converse of Proposition 3.15 is false even if D is big. Indeed, for two big
divisors D,D′ such that D ≡ D′ but D 6∼R D′, we have ∆Y•(D) = ∆Y•(D

′) for any admissible
flag Y• (see [LM, Proposition 4.1]). Moreover, we can also construct such non-big effective
divisors. For example, consider a minimal ruled surface f : S → C over a smooth projective
curve of genus g ≥ 1. Let F1 := f∗P and F2 := f∗Q where P and Q are two distinct points on
C. Note that F1 6∼R F2. However, we claim that ∆val

Y•
(F1) = ∆val

Y•
(F2) for any admissible flag Y•

on S. To see this, observe that a curve Y1 is either a fiber of f or dominating C via f . In the
first case, we have

∆val
Y•

(F1) = ∆val
Y•

(F2) = {(x1, x2) ∈ R2 | 0 ≤ x1 ≤ 1, x2 = 0}.

In the second case, note that Y1 is a Nakayama subvariety of both F1 and F2. Furthermore, we
have

volS|Y1
(F1) = Y1 · F1 = Y1 · F2 = volS|Y1

(F2),

and hence, the claim follows.

3.3. Limiting Okounkov body ∆lim
Y•

(D).
Throughout the subsection, X is a smooth projective variety of dimension n.

Definition 3.17. Let D be a pseudoeffective divisor D on a variety X of dimension n. The
limiting Okounkov body ∆lim

Y•
(D) of D with respect to an admissible flag Y• is defined as

∆lim
Y•

(D) := lim
ε→0+

∆Y•(D + εA) =
⋂

ε>0

∆Y•(D + εA) ⊆ Rn
≥0

where A is an ample divisor. If D is not a pseudoeffective divisor, then we define ∆lim
Y•

(D) := ∅.

Remark 3.18. It is easy to see that the definition of the limiting Okounkov body does not
depend on the choice of an ample divisor A. If D is big, then ∆lim

Y•
(D) coincides with ∆Y•(D)

for any admissible flag Y• on X.

We are mainly interested in the limiting Okounkov bodies ∆lim
Y•

(D) when Y• contains contains

a positive volume subvariety V of D. To investigate such ∆lim
Y•

(D) in detail, we introduce the

following alternative construction, which also gives the same convex body as ∆lim
Y•

(D) after all
(see Proposition 3.21). This construction is often more convenient to study the asymptotic
invariants of pseudoeffective divisors. To begin with, we first consider a pseudoeffective Cartier
Z-divisor D on a variety X of dimension n. Let V ⊆ X be a v-dimensional irreducible subvariety
of D. We will mainly concern the case that V is a positive volume subvariety of D. Fix an
admissible flag V• on V :

V• : V = V0 ⊇ V1 ⊇ · · · ⊇ Vv = {x}.
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Let A be an ample Cartier Z-divisor on X. For each integer k ≥ 1, consider the restricted
graded linear series W k

• := W•(kD + A|V ) of kD + A along V given by Wm(kD + A|V ) =
h0(X|V,m(kD + A)) for m ≥ 0. We define the restricted limiting Okounkov body of a Cartier
divisor D along V with respect to V• as

∆lim
V•

(D) := lim
k→∞

1

k
∆V•(W

k
• ) ⊆ Rv

≥0.

One can easily check that ∆lim
V•

(D) = limε→0+∆V•(D + εA). We can extend this definition for
any pseudoeffective R-divisor D.

Definition 3.19. Let D be a pseudoeffective divisor on a variety X, and V ⊆ X be a v-
dimensional irreducible subvariety. The restricted limiting Okounkov body ∆lim

V•
(D) of D along

V with respect to V• as

∆lim
V•

(D) := lim
ε→0+

∆V•(D + εA) ⊆ Rv
≥0

for some ample divisor A on X. If D is not pseudoeffective, then we define ∆lim
V•

(D) := ∅.

This definition depends on the choice of V and the admissible flag V• on it, but it is indepen-
dent of the choice of A. By definition, ∆lim

V•
(D) is a closed convex subset of Rv. By the inclusion

Rv = {0}n−v × Rv →֒ Rn, we often treat ∆lim
V•

(D) as a subset of Rn.

The following is the main property of the restricted limiting Okounkov body ∆lim
V•

(D).

Theorem 3.20. Let D be a pseudoeffective divisor on a variety X, and V be a v-dimensional
irreducible subvariety of X. Fix an admissible flag V• on V . Suppose that V 6⊆ B−(D) and
vol+

X|V (D) > 0. Then we have

dim∆lim
V•

(D) = v and volRv(∆lim
V•

(D)) =
1

v!
vol+

X|V (D).

Proof. We first consider the case where D is a Z-divisor. Let A be an ample Z-divisor on
X. Since V 6⊆ B−(D) by definition, it follows that V 6⊆ B+(kD + A) for any k ≥ 1. Let
W k

• := W•(kD + A|V ) be the restricted graded series of kD + A along V for k ≥ 1. Then W k
•

satisfies Condition (C) by [LM, Lemma 2.16]. It follows from Theorem 3.4 that for each k ≥ 1,
we have

dim∆V•(W
k
• ) = dimV = v and volRv(∆V•(W

k
• )) =

1

v!
volX|V (kD +A).

The first equality implies dim∆lim
V•

(D) = v, and the second equality yields the following compu-
tation:

volRv(∆lim
V•

(D)) = volRv

(
lim
k→∞

1
k
∆V•(W

k
• )

)

= lim
k→∞

1
kv

volRv(∆V•(W
k
• ))

= lim
k→∞

1
v! volX|V

(
D + 1

k
A
)

= 1
v! vol

+
X|V (D).

Thus we have shown the assertion for Z-divisors. When D is a Q-divisor, there is a sufficiently
divisible integer m > 0 such that mD is a Z-divisor. It is easy to check that ∆lim

V•
(D) =

1
m
∆lim

V•
(mD). Thus the assertions for Q-divisors follow from the Z-divisor case.

Now, we assume that D is an R-divisor. Then there exists a sequence of ample divisors Ai on
X such that D + Ai are Q-divisor and limi→∞Ai = 0. Note that V 6⊆ B+(D + Ai). Thus V 6⊆
B−(D+Ai) and vol+

X|V (D+Ai) = volX|V (D+Ai) > 0. Since ∆lim
V•

(D) = limi→∞∆lim
V•

(D+Ai),

the assertion for R-divisors follow from the Q-divisor case. �
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Proposition 3.21. Let D be a pseudoeffective divisor on a variety X of dimension n, and fix
an admissible flag Y• containing a positive volume subvariety V = Yn−κν(D) of D. Consider the
(n− κν(D))-th partial flag V• := Yn−κν(D)•. Then

∆lim
Y•

(D) = ∆lim
V•

(D).

In particular, ∆lim
Y•

(D) depends on the (n− κν(D))-th partial flag V•.

Proof. We will denote κν := κν(D). If κν = n, then there is nothing to prove. Therefore, we
assume that 0 ≤ κν < n. Fix an ample divisor A on X. By definition, the positive volume
subvariety Yn−κν = V is not contained in B−(D). Since Yi ⊇ Yn−κν for 0 ≤ i ≤ n − κν , we
have Yi 6⊆ B+(D + εA) for any ε > 0. Thus Theorem 3.6 implies that if 0 ≤ i ≤ n − κν , then
∆Y•(D + εA) ∩ ({0}i × Rn−i) = ∆Yi•

(D + εA). By taking the limit ε → 0, for 0 ≤ i ≤ n − κν ,
we obtain

(*) ∆lim
Y•

(D) ∩ ({0}i × Rn−i) = lim
ε→0+

∆Yi•
(D + εA) =: ∆lim

Yi•
(D).

Since Yn−κν = V , it is enough to check ∆lim
Y•

(D) ⊆ {0}n−κν × Rκν to prove ∆lim
Y•

(D) = ∆lim
V•

(D).
Suppose that this does not hold, that is,

∆lim
Y•

(D) 6⊆ {0}n−κν × Rκν ⊆ Rn.

We will derive a contradiction to [Le1, Theorem 1.1 (2)], which says that κν is the maximum
of integers k ≥ 0 such that there exists a constant C > 0 with volX(D + εA) ≥ Cεn−k for all
ε > 0. By Theorem 3.20, l := dim∆lim

Y•
(D) > κν = dim∆lim

V•
(D) and we have

∆lim
Y•

(D) ⊆ Ri1 ×Ri2 × · · · × Rin−κν × Rκν

where ij = 0 or 1,
∑n−κν

j=1 ij = l − κν and R0 := {0}. For simplicity, we may just assume

∆lim
Y•

(D) ⊆ Rl−κν × {0}n−l ×Rκν .

Now consider a sufficiently positive ample divisor A′ so that ∆Y•(εA
′) contains

△ε :=

{
(x1, · · · , xn)

∣∣∣∣∣xi ≥ 0 and

n∑

i=1

xi ≤ ε

}

for all ε > 0. We may assume that A is sufficiently ample so that A′′ := A − A′ is also ample.
By the convexity of ∆Y•(D) (cf. [LM, Proof of Corollary 4.12]), we have

∆lim
Y•

(D) +△ε ⊆ ∆lim
Y•

(D) + ∆Y•(εA
′) ⊆ ∆Y•(D + εA′′) + ∆Y•(εA

′) ⊆ ∆Y•(D + εA).

Since dim∆lim
Y•

(D) = l, it follows that

C · volRl ∆lim
Y•

(D) · εn−l ≤ volRn ∆Y•(D + εA) =
1

n!
· volX(D + εA).

for some constant C > 0 depending only on n and l. We get a contradiction to [Le1, Theorem
1.1 (2)] since l > κν . �

Corollary 3.22. Let D be a pseudoeffective divisor on a smooth projective variety X. Fix a
positive volume subvariety V ⊆ X of D and consider an admissible flag Y• on X containing V .

Then ∆lim
Y•

(D) ⊆ {0}n−κν(D) × R
κν(D)
≥0 . Furthermore, we have

dim∆lim
Y•

(D) = κν(D) and volRκν (D)(∆lim
Y•

(D)) =
1

κν(D)!
vol+

X|V (D)

where ∆lim
Y•

(D) is regarded as a convex subset of Rκν(D).

Proof. Immediate by Theorem 3.20 and Proposition 3.21. �
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Remark 3.23. We do not need to assume the generality of Yn = {x} as we did for the valuative
Okounkov body in Theorem 3.12.

Remark 3.24. Boucksom also studies the limiting Okounkov body (the numerical Okounkov
body in his terminology) of a pseudoeffective divisor with respect to any admissible flag in [B,
4.1.3]. He defines the limiting Okounkov body as a fiber of the global Okounkov body (see [LM,
Theorem B]) over a given pseudoeffective divisor class. He proves that dim∆lim

Y•
(D) ≤ κν(D)

for any admissible flag Y• ([B, Lemma 4.8]) and the inequality can be strict ([B, Example 4.14]).
Furthermore, he also shows that there exists an admissible flag Y• such that dim∆lim

Y•
(D) =

κν(D) when D is nef ([B, Proposition 4.9]). Our result Corollary 3.22 generalizes his result.

Using Corollary 3.22, we can give a new characterization of numerical Iitaka dimension.

Corollary 3.25. Let D be a pseudoeffective divisor on a smooth projective variety X. Then we
have

κν(D) = max{dim∆lim
Y•

(D) | Y• is an admissible flag on X }.

Proof. By [B, Lemma 4.8], we know that dim∆lim
Y•

(D) ≤ κν(D) for any admissible flag Y•

on X. If Y• contains a positive volume subvariety, then it follows from Corollary 3.22 that
dim∆lim

Y•
(D) = κν(D). Thus the assertion follows. �

If D is a big divisor, then by [LM, Proposition 4.1] and [J, Theorem A] it is known that
∆Y•(D) = ∆Y•(D

′) for all admissible flags Y• on X if and only if D ≡ D′. Remark 3.13 implies
that the statement is false in general in the pseudoeffective case for ∆val

Y•
(D). We prove next

that ∆lim
Y•

(D) is an appropriate generalization of ∆Y•(D) which makes the statement true.
For a pseudoeffective divisor D, we define the following set of divisors

div(∆lim(D)) :=

{
E

∣∣∣∣
there exists an admissible flag Y• with Y1 = E
such that∆lim

Y•
(D)x1=0 = ∅

}
.

Lemma 3.26. The divisors in div(∆lim(D)) are precisely the divisorial components of B−(D)
and the set div(∆lim(D)) is finite.

Proof. Let Y• be an admissible flag on X such that Y1 = E. By the definition of the Okounkov
body, it is easy to see that for any ample divisor A and ε > 0,

ordE(||D + εA||) = inf {x1 |(x1, · · · , xn) ∈ ∆Y•(D + εA)} .

If we let ε → 0, then we have

ordE(||D||) = inf
{
x1

∣∣∣(x1, · · · , xn) ∈ ∆lim
Y•

(D)
}
.

By Theorem 2.2, ordE(||D||) > 0 if and only if E ⊆ B−(D). Thus we obtain the desired
statement. The set div(∆lim(D)) is finite by [N, Corollary 1.11]. �

We now prove a generalization of Jow’s theorem for the limiting Okounkov bodies.

Theorem 3.27. Let D and D′ be pseudoeffective divisors on X. Then the following are equiv-
alent:

(1) D ≡ D′

(2) ∆lim
Y•

(D) = ∆lim
Y•

(D′) with respect to any admissible flags Y• on X.

Proof. The equivalence (1) ⇔ (2) is known for big divisors by [LM, Proposition 4.1] and [J,
Theorem A]. Thus we assume that D,D′ are not big. The implication (1)⇒(2) follows from the
big case: since ∆Y•(D + εA) = ∆Y•(D

′ + εA) for any ample divisor A and any ε > 0, we have

∆lim
Y•

(D) = lim
ε→0

∆Y•(D + εA) = lim
ε→0

∆Y•(D
′ + εA) = ∆lim

Y•
(D′).
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To prove (1)⇐(2), we use the argument used to prove the big case by Jow in [J]. Let E1, · · · , El

be the divisorial components of B−(D) and A an ample divisor on X. For any sufficiently
general admissible flag Y• on X such that Yn−1 6⊆ B−(D), we have Yn−1 6⊆ B+(D + A) for any
ample divisor A. We see that

volR1(∆lim
Y•

(D)x1=···=xn−1=0)

= volR1

(
lim
ε→0+

∆Y•(D + εA)

)

x1=···=xn−1=0

= volR1

(
lim
ε→0+

∆Y•(D + εA)x1=···=xn−1=0

)

= lim
ε→0+

volR1(∆Y•(D + εA)x1=···=xn−1=0)

= lim
ε→0+

volX|Yn−1
(D + εA) (by Theorem 3.6 or [J, Theorem 3.4 (b)])

= Yn−1 ·D −
l∑

i=1

∑
p∈Yn−1∩Ei

ordEi
(||D||) (by Lemma 3.28).

As can be seen in the proof of Lemma 3.26, we can read off ordEi
(||D||) from the limiting

Okounkov bodies ∆lim
Y ′
•
(D) with respect to admissible flags Y ′

• such that Y ′
1 = Ei. Therefore,

if ∆lim
Y•

(D) = ∆lim
Y•

(D′) for any admissible flags Y• on X, then Yn−1 · D = Yn−1 · D
′. Let ρ :=

dimN1(X)R. As in [J, Proof of Theorem A], we can choose general admissible flag Y 1
• , · · · , Y

ρ
•

consisting of subvarieties that are transversal complete intersections of very ample divisors such
that Y 1

n−1, · · · , Y
ρ
n−1 form a basis of N1(X)R. Since we can read off the intersection numbers

Y i
n−1 ·D = Y i

n−1 ·D
′ from the limiting Okounkov bodies ∆lim

Y i
•
(D) = ∆lim

Y i
•
(D′) for 1 ≤ i ≤ ρ, we

can conclude that D ≡ D′. �

It remains to prove the following lemma that is used in the proof above.

Lemma 3.28 (cf. [J, Corollary 3.3]). Let Y• be a sufficiently general admissible flag on X.
For a pseudoeffective divisor D on X, let E1, E2, · · · , El be the divisorial components of B−(D).
Then we have

vol+
X|Yn−1

(D) = lim
ε→0+

volX|Yn−1
(D + εA) = Yn−1 ·D −

l∑

i=1

∑

p∈Yn−1∩Ei

ordEi
(||D||).

Proof. Suppose first that D is big. Since Yn−1 is very general, we have D ∈ BigYn−1(X). Thus
vol+

X|Yn−1
(D) = volX|Yn−1

(D) and the statement is nothing but [J, Corollary 3.3].

Now let D be a pseudoeffective divisor. Applying the statement for the case of big divisors
to volX|Yn−1

(D + εA), we obtain

vol+
X|Yn−1

(D) = lim
ε→0+

volX|Yn−1
(D + εA)

= lim
ε→0+

(
Yn−1 · (D + εA)−

l∑
i=1

∑
p∈Yn−1∩Ei

ordEi
(||D + εA||)

)

= Yn−1 ·D −
l∑

i=1

∑
p∈Yn−1∩Ei

ordEi
(||D||).

�

Remark 3.29. Fulger pointed out to us that in the equation of Lemma 3.28 we actually have

l∑

i=1

∑

p∈Yn−1∩Ei

ordEi
(||D||) = Yn−1 ·N

where N is the negative part of the divisorial Zariski decomposition of D.
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Remark 3.30. In Theorem 3.27, it is tempting to expect that D ≡ D′ if and only if ∆lim
Y•

(D) =

∆lim
Y•

(D′) for any admissible flags Y• containing positive volume subvarieties of both D and
D′. However, it is not true and we also need to consider the admissible flags not containing
the positive volume loci of the divisor. For example, consider a pseudoeffective divisor D 6≡ 0
on a variety X with κν(D) = 0. Let D′ := 2D so that D 6≡ D′. Every point x ∈ X with
x 6∈ B−(D) = B−(D

′) is a positive volume subvariety of both D and D′. However, we see that
for any admissible flag Y• containing x, we have

∆lim
Y•

(D) = ∆lim
Y•

(D′) = {the origin of RdimX}.

In fact, if we consider the admissible flags Y• containing positive volume subvarieties of both D
and D′ in Theorem 3.27, then using Remark 3.29 we only obtain P ≡ P ′ where D = P +N and
D′ = P ′ +N ′ are the divisorial Zariski decompositions.

Remark 3.31. Let D be a pseudoeffective divisor on X, and V ⊆ X be a smooth positive
volume subvariety of D. Fix an admissible flag Y• containing V . The (n − κν(D))-th par-
tial flag Y(n−κν(D))• induces an admissible flag V• on V . Recall that ∆lim

Y•
(D) = ∆lim

V•
(D) =

limε→0+∆V•(D+ εA) where A is an ample divisor on X. By Theorem 2.25, D|V is a big divisor
on V , and A|V is an ample divisor on V . By definition, ∆V•(D+ εA) ⊆ ∆V•((D+ εA)|V ). Thus
we obtain

∆lim
Y•

(D) = lim
ε→0+

∆V•(D + εA) ⊆ lim
ε→0+

∆V•((D + εA)|V ) = ∆V•(D).

By Theorem 3.4, we have

dim∆V•(D|V ) = κν(D) and volRκν (D) ∆V•(D|V ) =
1

κν(D)!
volV (D|V ).

Let Y• be an admissible flag on X that is general enough so that it contains both a Nakayama
subvariety U and a positive volume subvariety V of a pseudoeffective divisor D. Then we have
the following inclusions:

(#) ∆val
Y•

(D) ⊆ ∆lim
Y•

(D) ⊆ ∆V•(D|V ).

This confirms the inequalities volX|V (D) ≤ vol+
X|V (D) ≤ volV (D|V ) which we saw in Subsection

2.4. If D is big, then all the inclusions are equalities. However, we will see in the next section
that if D is not big, then they are strict in general.

4. Examples

In this section, we exhibit various examples and counterexamples related to our results. We
start with an example that shows that for some badly chosen admissible flags, Theorems 3.12
and 3.20 do not hold.

Example 4.1. Let π : S → P2 be a blow-up of P2 at two distinct points with exceptional
divisors E1 and E2, and L ∈ |π∗OP2(1)| be an effective divisor containing E1 but not containing
E2. Consider a non-big effective divisor D := (L− E1) + E2, and fix an admissible flag

Y• : S ⊇ E2 ⊇ {x}

where x is a general point on E2. Here we note that E2 is neither a Nakayama subvariety nor a
positive volume subvariety of D. We have

∆val
Y•

(D) = ∆lim
Y•

(D) = {(x1, x2) ∈ R2 | 1 ≤ x1 ≤ 2 and x2 = 0}

whose Euclidean volume in the x1-axis is 1. However, note that B−(D) = B+(D + εA) = E2

for an ample divisor A and a small ε > 0. Thus we see that volX|E2
(D) = vol+

X|E2
(D) = 0. We

also remark that ∆val
Y•

(D) = ∆lim
Y•

(D) is not in the x2-axis as expected.
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Examples 4.2 and 4.3 show that the inequalities in (#) of Remark 3.31 can be strict.

Example 4.2. In this example, we see that ∆val
Y•

(D) ( ∆lim
Y•

(D) even if κ(D) = κν(D). Let
S be a relatively minimal rational elliptic surface, and H a sufficiently positive ample divisor.
Take a general element V ∈ |H|. Fix an admissible flag

Y• : S ⊇ V ⊇ {x}.

Note that κ(−KS) = κν(−KS) = 1, and V is both a Nakayama subvariety and a positive volume
subvariety of −KS . Thus we have volR1(∆val

Y•
(−KS)) = volS|V (−KS) and volR1(∆lim

Y•
(−KS)) =

vol+
S|V (−KS). However, we saw in Example 2.5 that volS|V (−KS) < vol+

S|V (−KS). Thus

∆val
Y•

(−KS) ( ∆lim
Y•

(−KS).

Example 4.3. Let S := P(E) where E is a rank two vector bundle on an elliptic curve C such
that it is a nontrivial extension of OC by OC , and H be the tautological divisor of P(E). Then
we can easily check that H is nef and κ(H) = 0 but κν(H) = 1. Let F be a general fiber of the
natural ruling π : S → C. Note that any general point in S is a Nakayama subvariety of H and
F is a positive volume subvariety of H. Thus take an admissible flag

Y• : S ⊇ F ⊇ {x}

where x is a general point on a general fiber F . Then we can easily compute the following.

(1) ∆val
Y•

(H) = {(0, 0)} and volS|{x}(H) = 1 by convention.

(2) ∆lim
Y•

(H) = {(x1, x2) | x1 = 0 and 0 ≤ x2 ≤ 1} and vol+
S|F (H) = 1.

(3) ∆Y•(H|F ) = ∆lim
Y•

(H).

For ∆lim
Y•

(H), we see the convergence of limε→0+∆Y•(H + εA) for any ample divisor A in the
following picture.

x2

x1

1 + ε

1

∆lim
Y•

(H)

∆(H + εA)

In fact, we use the following theorem to compute the limiting Okounkov body ∆lim
Y•

(D) of a
pseudoeffective divisor D on a surface (cf. [LM, Theorem 6.4])

Theorem 4.4. Let S be a smooth projective surface, and D be a pseudoeffective divisor on S.
Fix an admissible flag Y• : S ⊇ C ⊇ {x}. Let a := multC N where D = P + N is the Zariski
decomposition, and µ := sup{s ≥ 0 | D−sC is pseudoeffective}. Consider a divisor Dt := D−tC
for a ≤ t ≤ µ. Denote by Dt = Pt +Nt the Zariski decomposition. Let α(t) := ordx(Nt|C) and
β(t) := α(t) + C.Pt. Then the limiting Okounkov body of D is given by

∆lim
Y•

(D) = {(x1, x2) ∈ R2 | a ≤ x1 ≤ µ and α(x1) ≤ x2 ≤ β(x2)}.

Proof. Let Dε := D + εA for some ample divisor A and a positive number ε ≥ 0, and Dε
t :=

Dε − tC. Denote by Dε
t = P ε

t + N ε
t the Zariski decomposition. By Lemma 4.6 below, we see

that the Zariski decomposition Dt = Pt +Nt is given by

Pt = P 0
t = lim

ε→0+
P ε
t and Nt = N0

t = lim
ε→0+

N ε
t .
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Since ∆lim
Y•

(D) = limε→0+∆Y•(D + εA), the assertion now follows from [LM, Theorem 6.4]. �

Remark 4.5. In Theorem 4.4, we do not need to assume that an admissible flag Y• contains a
positive volume subvariety.

In the proof of Theorem 4.4, we use the following continuity property of the Zariski decom-
position on a surface.

Lemma 4.6. Let S be a smooth projective surface, D be a pseudoeffective divisor and A an
ample divisor on S. Consider the divisor Dε := D+ εA for ε ≥ 0, and denote by Dε = P ε+N ε

the Zariski decomposition. Then P 0 = limε→0+ P ε and N0 = limε→0+N ε.

Proof. It is sufficient to show that N0 = limε→0+N ε. We write N0 =
∑

i a
0
iDi where Di are

prime divisors and a0i > 0. Since Supp(N ε) = B−(D
ε) ⊆ B−(D

0) = Supp(N0), we can also
write N ε =

∑
i a

ε
iDi with aεi ≥ 0 for any ε ≥ 0. Note that aεi = ordDi

(||Dε||) for any ε ≥ 0 (see
[N, Remark III.1.17 (1)]). By definition, we have

lim
ε→0+

ordDi
(||Dε||) = lim

ε→0+
ordDi

(||D + εA||) = ordDi
(||D||) = a0i .

Thus it follows that N0 = limε→0+N ε. �

Examples 4.7 and 4.8 provide examples in higher dimensions. It is in general very difficult to
compute the Okounkov body in higher dimensions.

Example 4.7. Let D be a nef divisor on a smooth projective variety X, and fix an admissible
flag Y• containing a positive volume subvariety V = Yn−κν(D) of D. Then we have

∆lim
Y•

(D) = ∆Yn−κν (D)
(D|V ) and volRκν (D)(∆lim

Y•
(D)) =

1

κν(D)!
(D|V )

κν(D).

Example 4.8. Let X be a smooth projective toric variety, and D be a T -invariant divisor on
X. Fix an admissible flag Y• consisting of T -invariant subvarieties. In toric geometry, one can
associate a rational polytope PD to D (see [F]). In [LM, Proposition 6.1], it is shown that
PD is nothing but the Okounkov body ∆Y•(D) up to translation when D is big. When D is
pseudoeffective, one can find an admissible flag Y• consisting of T -invariant subvarieties such
that

PD = ∆val
Y•

(D) = ∆lim
Y•

(D)

up to translation.
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