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KÄHLER-EINSTEIN FILLINGS

VINCENT GUEDJ, BORIS KOLEV, AND NADER YEGANEFAR

Abstract. We show that on an open bounded smooth strongly pseudo-
convex subset of Cn, there exists a Kähler-Einstein metric with positive
Einstein constant, such that the metric restricted to the Levi distribu-
tion of the boundary is conformal to the Levi form. To achieve this,
we solve an associated complex Monge-Ampère equation with Dirich-
let boundary condition. We also prove uniqueness under some more
assumptions on the open set.
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1. Introduction

The study of Einstein metrics is an important and classical subject in
Riemannian geometry, see [Bes08]. The most popular framework is that
of complete manifolds, either compact (without boundary) or noncompact.
However, Einstein metrics on compact manifolds with boundary have also
been investigated more recently, mainly in two directions which we now
describe.

The first direction is that of conformally compact manifolds. Here, one
starts with a compact manifoldM with boundary ∂M . A complete Einstein
metric on (the interior of)M is called conformally compact if after a suitable
conformal transformation, it can be extended smoothly up to the boundary
(think of the ball model of real hyperbolic space, or look at [Biq00] for the
precise definition). This extension is not unique, but different extensions
are easily seen to induce Riemannian metrics on the boundary which are in
the same conformal class, called the conformal infinity of the conformally
compact metric. One of the basic questions is then: a conformal class being
fixed on the boundary, is it possible to find a conformally compact Einstein
metric on M whose conformal infinity is the given conformal class? One
then hopes to get links between the geometric properties of the inner metric
and the conformal properties of the boundary; for more on this very a ctive
research area, the reader may consult e.g. [Biq00, AH08].

We now come to the second direction, which has been explored far less
than the first one and is more closely related to our present work. One starts
again with a compact manifold M with boundary, and fixes some geometric
structure on the boundary (for example a metric). The problem is then to
find an Einstein metric onM which is smooth up to the boundary, and which
induces the given geometric structure on ∂M . Assume for example that
there is an Einstein metric on M with pinched negative curvature such that
the boundary is convex and umbilical and let h0 be the induced metric on
∂M . If h is a metric on ∂M which is sufficiently close to h0, it has been shown
in [Sch01] that there is an Einstein metric on M with negative Einstein
constant such that the induced metric on ∂M is h. One of the interesting
questions, which has not been fully clarified yet, is to know what “right”
geometric structure has to be fixed on the boundary. [And08] considers
the Dirichlet problem as in [Sch01] (given a metric h on ∂M , can one find
an Einstein metric on M inducing h on ∂M?), studies the structure of the
space of solutions and observes that this Dirichlet problem is not a well-posed
elliptic boundary value problem. On the other hand, if one prescribes the
metric and the second fundamental form of ∂M , then any Einstein metric
on M is essentially unique by [AH08].

The main purpose of this article is to investigate similar questions in the
context of compact Kähler manifolds with boundary. Let M be a compact
Kähler manifold with strongly pseudoconvex boundary ∂M . The latter is
a CR manifold whose geometric properties are encoded by the (conformal
class of its) Levi form, a positive definite Hermitian form defined on the Levi
distribution TC(∂M) (the family of maximal complex subspaces within the
real tangent bundle). The question we address is the following:
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Problem. Can one find a Kähler-Einstein metric ω on M such that its
restriction to the Levi distribution is conformal to the Levi form on TC(∂M)?

To simplify we restrict ourselves in the sequel to studying the case of a
strongly pseudoconvex bounded open subset Ω of Cn. One can then always
make a conformal change of the Levi form so that the pseudo-Hermitian
Ricci tensor (introduced by Webster) is a scalar multiple of the Levi form,
i.e. ∂Ω is pseudo-Einstein (see [Lee88]). Our problem is thus intimately
related to the Riemannian questions recalled above.

It is well known that finding a Kähler-Einstein metric is equivalent to
solving a complex Monge-Ampère equation. More specifically, letting µ
denote the Lebesgue measure in C

n normalized such that µ(Ω) = 1, we
will be interested in the following Dirichlet problem : find a smooth strictly
plurisubharmonic function ϕ on Ω which vanishes on the boundary ∂Ω and
satisfies

(ddcϕ)n =
e−εϕµ

∫

Ω e
−εϕ dµ

in Ω,

where ε ∈ {0,±1} is a fixed constant. If ϕ is a solution of this problem,
then it is easy to see that ddcϕ is a Kähler-Einstein metric with the sign of
the Einstein constant given by ε, and moreover its restriction to the Levi
distribution is conformal to the Levi form on TC(∂Ω) (see section 2 for more
details on this). Actually, if ε = 0,−1, then the Monge-Ampère equation
above has always a solution by Theorem 1.1 in [CKNS85], so that we will
only consider the positive curvature case corresponding to ε = 1. Our main
result is

Theorem 1. Let Ω ⊂ C
n be a bounded smooth strongly pseudoconvex do-

main. Then the complex Monge-Ampère problem

(MA) (ddcϕ)n =
e−ϕµ

∫

Ω e
−ϕ dµ

in Ω, and ϕ|∂Ω = 0

has a strictly plurisubharmonic solution which is smooth up to the boundary.

By the considerations of section 2, a consequence of this theorem is that
our geometrical problem has a solution:

Corollary 2. Let Ω ⊂ C
n be a bounded smooth strongly pseudoconvex do-

main. Then there is a smooth (up to the boundary) Kähler-Einstein metric
on Ω with positive Einstein constant such that the restriction of the metric
to the Levi distribution of ∂Ω is conformal to the Levi form.

Let us now say a few words about the proof of our main theorem. We
will use a Ricci inverse iteration procedure, as described first in the com-
pact Kähler setting by [Kel09] and [Rub08], whereas related results have
recently been obtained in [BB11, Ceg11] by other interesting approaches.
More precisely, fix any smooth strictly plurisubharmonic function ϕ0 on Ω
which vanishes on the boundary, and for j ∈ N, let ϕj be the unique strictly
plurisubharmonic solution of the Dirichlet problem

(ddcϕj+1)
n =

e−ϕjµ
∫

Ω e
−ϕj dµ

in Ω, and ϕj+1|∂Ω = 0,
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whose existence is guaranteed by [CKNS85]. We will then show that (ϕj) is
bounded in C∞(Ω̄), so that a subsequence converges in C∞(Ω̄) to a smooth
function which is seen to be a solution of (MA). To prove this bound-
edness in C∞, we proceed in several steps. First, there is a well-known
functional F , defined on the space of plurisubharmonic functions, such that
a function ϕ solves (MA) if and only if ϕ is a critical point of F (see sub-
section 3.2). A key result is that this functional is proper in the sense of
Proposition 6. This properness result is in turn a consequence of a local
Moser-Trudinger inequality (see Theorem 5, and also the recent indepen-
dent results of [BB11, Ceg11]). Next, we show that the sequence (F(ϕj))
is bounded, so that by properness, the sequence (ϕj) has to live in some
compact set. Here, com pactness is for the L1-topology in the class of
plurisubharmonic functions with finite energy introduced in [BGZ09]. Stan-
dard results from pluripotential theory then show that (ϕj) is uniformly
bounded. To get boundedness in C∞, we will finally prove higher order a
priori estimates, along the lines of [CKNS85].

Now, let us deal with the uniqueness problem. For this, we impose some
restrictions on Ω. First, we assume that Ω contains the origin and is circled;
this means that Ω is invariant by the natural (diagonal) S1-action on C

n.
Next, if ϕ is a S1-invariant solution of the Monge-Ampère equation with
Dirichlet boundary condition, we will say that Ω is (strictly) ϕ-convex if Ω
is (strictly) convex in the Riemannian sense for the metric ddcϕ. Note that
being ϕ-convex has a priori nothing to do with being convex in the usual
Euclidean sense in C

n. We will prove

Theorem 3. Let Ω ⊂ C
n be a bounded smooth strongly pseudoconvex do-

main which is circled. Let ϕ be a smooth S1-invariant strictly plurisubhar-
monic solution of the complex Monge-Ampère problem (MA). If Ω is strictly
ϕ-convex, then ϕ is the unique S1-invariant solution of (MA).

Observe that a S1-invariant solution always exists, as follows from the
proof of Theorem 1: it suffices to start with an initial datum ϕ0 which is S1-
invariant, the approximants ϕj will also be S1-invariant (by the uniqueness
part of [CKNS85]), hence so is any cluster value.

Remark 1. In the proof of this theorem, we will see that we can replace
the ϕ-convexity hypothesis by a spectral assumption. Namely, if the first
eigenvalue of the Laplace operator (of the metric ωϕ = ddcϕ) with Dirichlet
boundary condition is strictly bigger than 1, then (MA) has a unique solu-
tion. By Corollary 1.2 in [GKY11], the condition on the Ricci curvature of
ωϕ and the strict ϕ-convexity imply this desired spectral estimate. However,
[GKY11][Proposition 4.1] shows that this estimate may fail if Ω is merely
strongly pseudoconvex.

To prove Theorem 3, we follow the approach proposed by Donaldson in the
compact (without boundary) setting (see [Don99, BBGZ09]). The heuristic
point of view is the following. The space of all plurisubharmonic functions
on Ω which vanish on the boundary may be seen as an infinite dimensional
manifold with a natural Riemannian structure. In the S1-invariant case, we
may use a convexity result of Berndtsson [Ber06] to show that the functional
F is concave along geodesics of this space. As a consequence, we show that
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S1-invariant solutions of (MA) coincide with S1-invariant maximizers of
the functional F . Now, if ϕ and ψ are two S1-invariant solutions of (MA),
then there exists a geodesic (Φt)0≤t≤1 in the space of Kähler potentials on
Ω vanishing on the boundary which joins ϕ to ψ. Therefore, the function
t 7→ F(Φt), being concave and attaining its maximum at t = 0 and t = 1,
must be constant. In particular, its derivative vanishes, which implies that
Φ̇0 has to satisfy a PDE involving the Laplacian of the metric ddcϕ (see
equation (5.1) below). If Ω is ϕ-convex, or more generally if the spectral
hypothesis alluded to above is satisfied, then the only solution of this PDE
is zero, so that Φ̇0 vanishes identically. From this, we may deduce that (Φt)
is a constant geodesic, hence ϕ = ψ. Note that in the above argument, we
have implicitly assumed that (Φt) is smooth, which may not be the case.
For general continuous geodesics, the proof needs some modifications which
will be given in section 6.

This uniqueness result has the following application. In [BB11, Conjecture
7.5], it is conjectured that if B is a ball in C

n, then any solution of (MA)
has to be radial. Theorem 3 shows that this is the case among S1-invariant
solutions if the radius of the ball is not too large. Indeed, let B ⊂ C

n be the
ball of radius R > 0 centered at 0. Consider the radial function

ϕ =
n+ 1

π

[

log

√

1 + ‖z‖2 − log
√

1 +R2

]

.

In an affine chart, ϕ is the potential of the Fubini-Study metric on complex
projective space Pn(C), normalized to satisfy (MA) on B. Note that B may
also be considered as a ball in P

n(C), whose radius RFS with respect to the
Fubini Study metric is

RFS =

√

n+ 1

π
arctanR.

The diameter of Pn(C) is then

DFS =
√

π(n+ 1)/2.

If RFS < DFS/2, then B is strictly convex in P
n(C), that is B is strictly

ϕ-convex (this is a well-known result, see for example the proof of [GKY11,
Proposition 4.1]). By Theorem 3, ϕ is the unique S1-invariant solution of
(MA), so that all such solutions are radial. We have thus proved

Corollary 4. Let B be a ball in C
n of radius 0 < R < 1. Then there is a

unique S1-invariant solution to (MA) on B, and this solution is radial.

The plan of the paper is as follows. In section 2, we gather some well-
known facts on the geometry of pseudoconvex domains and show how our
geometrical problem is related to the analytical problem of solving a complex
Monge-Ampère equation with Dirichlet boundary condition. In section 3,
we prove a local Moser-Trudinger inequality and use it to prove a properness
result for the functional F . In section 4, we deal with the regularity problem
of solutions of (MA), by getting higher order a priori estimates. This will
allow us to prove Theorem 1 in subsection 4.4. In section 5, we obtain a
variational characterization of solutions of (MA) in the S1-invariant case.
Indeed, we show that S1-invariant solutions of (MA) are not only critical
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points of the functional F , but are exactly maximizers of F . Then we
proceed to prove Theorem 3. In section 6, we comment on the difficulty
of solving (MA) by the usual continuity method, and finally discuss the
optimality of constants in the Moser-Trudinger inequality.

Acknowledgements. It is a pleasure to thank Robert Berman and Bo
Berndtsson for stimulating discussions related to their joint work [BB11].
We would like also to thank Thierry Gallouët and Marc Herzlich for helpful
discussions during the preparation of this paper.

2. Geometric context

2.1. The conformal class of the Levi form. Let Ω ⊂ C
n be a bounded

domain with smooth boundary. Fix a defining function ρ : Cn → R for the
boundary ∂Ω, i.e. ρ is a smooth function satisfying

Ω = {ρ < 0} , ∂Ω = {ρ = 0} ,
and dρ does not vanish on ∂Ω. Such a function ρ is not unique, but if ρ̃ is
another defining function for the boundary, then there is a smooth positive
function u such that ρ̃ = uρ.

Let now x ∈ ∂Ω be a fixed point, and denote by Hx the maximal complex
subspace of the tangent space Tx∂Ω. If J denotes the complex structure on
C
n (which is just multiplication by

√
−1), then we have

Hx = {v ∈ Tx∂Ω; Jv ∈ Tx∂Ω} .
The subspace Hx has real dimension 2n − 2, and as x varies, we get a
distribution H ⊂ T∂Ω, called the Levi distribution. If (z1, . . . , zn) are the
coordinates on C

n, then it is easy to see that

Hx =

{

v = (v1, . . . , vn) ∈ C
n;

n
∑

i=1

∂ρ

∂zi
(x)vi = 0

}

. (2.1)

The Levi form is the Hermitian form defined for v,w ∈ Hx by

Lx(v,w) =

n
∑

i,j

∂2ρ

∂zi∂z̄j
(x)viw̄j .

It is clear from this expression that the Levi form actually depends on ρ, so
talking about the Levi form is a slight abuse. However, if ρ̃ = uρ is another
defining function for the boundary (with u a smooth positive function), then
we have

∂2ρ̃

∂zi∂z̄j
= u

∂2ρ

∂zi∂z̄j
+
∂u

∂zi

∂ρ

∂z̄j
+
∂u

∂z̄j

∂ρ

∂zi
+ ρ

∂2u

∂zi∂z̄j
.

Moreover, by using the characterization (2.1) of H and the fact that ρ = 0

on ∂Ω, we infer, denoting by L̃ the Levi form corresponding to ρ̃, that

L̃ = uL.

In other words, the Levi forms corresponding to different defining functions
for the boundary differ only by a conformal factor. Thus, the geometrically
interesting object on the boundary is the conformal class of the Levi form.

We say that Ω is strongly pseudoconvex if the Levi form is a positive
definite Hermitian form at each point of ∂Ω. Our previous discussion shows
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that this notion does not depend on the choice of a defining function for
the boundary. Note also that by changing ρ to ecρ − 1, where c > 0 is a
large enough positive constant, we may assume that the Levi form is positive
definite in a neighborhood of Ω, and not only on the Levi distribution.

2.2. Kähler metrics. We give here a brief review of Kähler metrics, mainly
to set up some notations and conventions. For more details and proofs, the
reader may consult e.g. [Mor07]. Although we will be dealing with domains
in C

n in the sequel, we consider a general complex manifold X of complex
dimension n, and denote by J its complex structure.

2.2.1. Kähler form. A Riemannian metric g on X is called Hermitian if it
is J-invariant, i.e. g(J ·, J ·) = g(·, ·). The C-bilinear extension of g to the
complexified tangent bundle TX⊗C will also be denoted by the same symbol
g. The fundamental form associated to g is the real (1, 1)-form ω defined by

ω(·, ·) = g(J ·, ·).
The metric g is called a Kähler metric if ω is a closed differential form; ω
is then referred to as the Kähler form of g. It can be shown that g being a
Kähler metric is equivalent to the complex structure J being parallel with
respect to the Levi-Civita connection of g.

Let (z1, . . . , zn) be local complex coordinates, and let

z1 = x1 +
√
−1y1, . . . , zn = xn +

√
−1yn

be the decomposition giving the corresponding real coordinates. As usual,
for i = 1, . . . , n, we set

∂

∂zi
=

1

2
(
∂

∂xi
−

√
−1

∂

∂yi
),

∂

∂z̄i
=

1

2
(
∂

∂xi
+
√
−1

∂

∂yi
),

dzi = dxi +
√
−1dyi, dz̄i = dxi −

√
−1dyi,

and for i, j = 1, . . . , n,

gij̄ = g(
∂

∂zi
,
∂

∂z̄j
).

Then the Kähler form is given locally by

ω =
√
−1

n
∑

i,j=1

gij̄dzi ∧ dz̄j .

Note that on C
n, we have gij̄ = δij/2 for the canonical Euclidean metric.

2.2.2. Ricci curvature form. We denote by r the Ricci tensor of X as a
Riemannian manifold. The Ricci form of X, to be denoted by Ric (ω) or
simply Ric, is the (1, 1)-form associated to r, i.e.

Ric (ω)(·, ·) = r(J ·, ·).
In local holomorphic coordinates, it can be shown that

Ric (ω) = −
√
−1∂∂̄ log det gij̄ .
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There follows that the Ricci form is a closed form. Moreover, its cohomology
class is equal to 2πc1(X) , where c1(X) is the first Chern class ofX. A Kähler
metric ω on X is called Kähler-Einstein if for some constant λ ∈ R, we have

Ric (ω) = λω.

2.2.3. Normalization of dc. We set

dc =
1

2π
√
−1

(∂ − ∂̄),

so that √
−1∂∂̄ = πddc.

This normalization is of common use in complex analytic geometry, having
the following advantages: the positive current T = ddc log ‖z‖ has then
Lelong number 1 at the origin in C

n; moreover the Fubini-Study form ωFS
writes, in some affine chart Cn,

ωFS = ddc log

√

1 + ‖z‖2.
Its cohomology class thus coincides with that of a hyperplane (as it should),
having total volume

∫

Pn

ωnFS =

∫

Cn

(

ddc log

√

1 + ‖z‖2
)n

= 1.

Note finally that Ric (ωFS) = (n+ 1)πωFS.
Likewise, the Laplacian ∆ associated to a Kähler metric ω is defined as

∆ = tr (ddc),

where tr denotes the trace with respect to ω. Hence, we have

∆ = − 1

π
∂̄∗∂̄.

2.3. Kähler-Einstein metrics on strongly pseudoconvex domains.

Fix Ω ⊂ C
n a bounded strongly pseudoconvex domain.

2.3.1. Associated complex Monge-Ampère equations. In this section, we show
that finding Kähler-Einstein metrics is equivalent to solving a complex Monge-
Ampère equation.

We assume first that Ω is endowed with a Kähler metric ω which is smooth
up to the boundary, and which satisfies the following normalized Einstein
condition:

Ric (ω) = επω,

where ε ∈ {0,±1} (the somewhat unusual π factor is due to our normaliza-
tion convention for the dc operator). We choose a smooth potential ϕ for ω,
so that

ω = ddcϕ.

Such a potential is unique up to the addition of a pluriharmonic function on
Ω. We are going to see that ϕ satisfies a complex Monge-Ampère equation.
As recalled in the previous section, if we denote by (gij̄) the components of
the metric in coordinates, then the Ricci form is given by

Ric (ω) = −πddc log (det gij̄).
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Letting V0 be the canonical volume form on C
n, it is easily checked that ωn

is equal to det (gij̄)V0, up to a multiplicative constant. Therefore, we have
the following intrinsic formula for the Ricci form:

Ric (ω) = −πddc log ω
n

V0
.

The Einstein condition on ω can then be written

ddc
[

log
(ddcϕ)n

V0
+ εϕ

]

= 0.

Thus, there is a pluriharmonic function h such that

log
(ddcϕ)n

V0
+ εϕ = h,

which we may write as a complex Monge-Ampère equation

(ddcϕ)n = e−εϕehV0. (2.2)

Conversely, if ϕ is a smooth function satisfying the previous equation for
some given pluriharmonic function h, and if ω = ddcϕ is positive definite,
we let the reader verify that ω is a Kähler-Einstein metric with Einstein
constant επ.

2.3.2. Boundary conditions. Let ρ be a boundary defining function for Ω,
as described in section 2.1. Recall that L is the Levi form associated to
ρ. The (1, 1)-form associated to L, that is L(J ·, ·), is equal to πddcρ with
our normalization conventions. Let now ϕ be a smooth real valued function
defined on Ω̄. On a collar neighborhood [−δ, 0] × ∂Ω of ∂Ω (where δ > 0
is fixed), we can write the expansion of ϕ in powers of ρ as follows: for all
N ∈ N,

ϕ = ϕ0 + ρϕ1 + ρ2ϕ2 + · · ·+ ρNϕn + o(ρN ). (2.3)

Here, the functions ϕi are initially defined on {0} × ∂Ω ≃ ∂Ω, but we
can view them as functions defined on the collar neighborhood [−δ, 0]× ∂Ω
by setting, with obvious notations, ϕi(ρ, x) = ϕi(0, x). Thus, we have for
example ϕ0 = 0 if ϕ|∂Ω = 0. From the expansion (2.3), we get

ddcϕ = ddcϕ0 + ϕ1dd
cρ+ dρ ∧ dcϕ1 + (dϕ1 + 2ϕ2dρ) ∧ dcρ+O(ρ).

Using the fact that dρ = dcρ = 0 on the Levi distribution H (see the
characterization (2.1) of H), the previous expansion implies

ddcϕ|H = ddcϕ0|H + ϕ1dd
cρ.

In particular, if ϕ0 = 0, or more generally if ddcϕ0 = 0, then ddcϕ|H is
conformal to the Levi form.

Consider now the following geometrical problem: find a Kähler-Einstein
metric ω on Ω such that its restriction to the Levi distribution is conformal
to the Levi form. Our previous discussion shows that in order to solve
this problem, it is enough to solve the following analytical problem: find a
function ϕ such that

(1) ddcϕ is positive definite,
(2) ϕ satisfies the Monge-Ampère equation (2.2),
(3) ϕ satisfies the Dirichlet boundary condition on ∂Ω, i.e. ϕ|∂Ω = 0.
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Indeed, the form ω = ddcϕ is then a solution to the geometrical problem.
Note that in the case of nonpositive Ricci curvature, which corresponds
to ε = 0 or −1 in equation (2.2), the geometrical problem always has a
solution by [CKNS85, Theorem 1.1]. We will therefore consider only the
positive curvature case (ε = 1).

2.4. The strategy. In the sequel we let Ω = {ρ < 0} ⊂ C
n be a bounded

strongly pseudoconvex domain and µ denote the euclidean Lebesgue volume
form in C

n, normalized so that

µ(Ω) = 1.

We consider the following Dirichlet problem

(MA) (ddcϕ)n =
e−ϕµ

∫

Ω e
−ϕdµ

in Ω with ϕ|∂Ω = 0,

where ϕ is strictly plurisubharmonic and C∞-smooth up to the boundary of
Ω.

We are going to solve (MA) by the an iterative process, solving for each
j ∈ N the Dirichlet problem

(MA)j (ddcϕj+1)
n =

e−ϕjµ
∫

Ω e
−ϕjdµ

in Ω with ϕj+1|∂Ω = 0,

where ϕ0 = ρ (we could actually start from any smooth plurisubharmonic
initial data ϕ0 with zero boundary values).

It follows from the work of Cafarelli-Kohn-Nirenberg-Spruck [CKNS85]
that the Dirichlet problem (MA)j admits a unique plurisubharmonic solu-
tion ϕj which is smooth up to the boundary. We are going to show that a
subsequence of the sequence (ϕj) converges in C∞(Ω̄) towards a solution ϕ
of (MA).

In a compact setting this approach coincides with the time-one discretiza-
tion of the Kähler-Ricci flow and was first considered by Keller [Kel09] and
Rubinstein [Rub08] (see also [BBEGZ11]).

Remark 2. As the proof will show, our result actually holds for any (nor-
malized) volume form µ and with more general boundary values.

3. Energy estimates

We now move on to showing that the sequence (ϕj) is relatively compact
in C∞(Ω̄). The proof reduces to establishing a priori estimates. We first
show that one has a uniform a priori control on the energy of the solutions.

3.1. Local Moser-Trudinger inequality. The following local Moser-Trudinger
type inequality is of independent interest.1

Theorem 5. There exists 0 < βn < 1 and C > 0 such that for all smooth
plurisubharmonic functions ϕ in Ω with ϕ|∂Ω = 0,

∫

Ω
e−ϕdµ ≤ C exp (βn |E(ϕ)|) ,

1While we were finishing the writing of this paper, two preprints appeared [BB11,
Ceg11] which propose similar inequalities with different and interesting proofs.
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where E(ϕ) = 1
n+1

∫

Ω ϕ (ddcϕ)n.

We refer the reader to [Mos71, Ono82, Tia97, Tia00, CL04, PSSW08] for
related results both in a local and global context. The proof we propose is
new and relies on pluripotential techniques, as developed in [BT82, Kol98,
Ceg98, Zer01, GZ05, BGZ09].

Proof. Recall that the Monge-Ampère capacity has been introduced by Bed-
ford and Taylor in [BT82]. By definition the capacity of a compact subset
K ⊂ Ω is

Cap(K) := sup

{∫

K
(ddcu)n; u plurisubharmonic in Ω with 0 ≤ u ≤ 1

}

.

We will use the following useful inequalities. For any γ < 2 there exists
Cγ > 0 such that for all K ⊂ Ω,

µ(K) ≤ Cγ exp

[

− γ

Cap(K)1/n

]

(3.1)

(see e.g. [Zer01]). For all smooth plurisubharmonic functions ϕ in Ω with
zero boundary values, for all t > 0,

Cap(ϕ < −t) ≤ (n + 1) |E(ϕ)|
tn+1

,

where

E(ϕ) := 1

n+ 1

∫

Ω
ϕ(ddcϕ)n.

For the latter inequality, we refer the reader to Lemma 2.2 in [ACKPZ09].
We infer

∫

Ω
e−ϕdµ = −1 +

∫ +∞

0
etµ(ϕ < −t)dt ≤ C

∫ +∞

0
exp(t− λt1+1/n)dt,

where
λ :=

γ

(n+ 1)1/n |E(ϕ)|1/n
.

We let the reader check that the function h(t) = t − λt1+1/n attains its
maximum value at point tc = λ−n(1 + 1/n)−n. Moreover h(t) ≤ −t for
t ≥ 4ntc. This shows that

∫ +∞

0
exp(t− λt1+1/n)dt ≤ 4ntc exp(h(tc)) +

∫ +∞

4ntc

exp(−t)dt

≤ 4ntc exp

(

tc
n+ 1

)

+ 1.

Using the definition of λ and the formula defining tc, we arrive at
∫ +∞

0
exp(t− λt1+1/n)dt ≤ cn |E(ϕ)| exp

(

β′n |E(ϕ)|
)

+ 1,

where

β′n =
1

γn(1 + 1/n)n
.

We can fix e.g. γ = 1 so that β′n < 1 for all n ≥ 1. Moreover the desired
inequality is obtained by choosing βn so that β′n < βn < 1 and enlarging the
constant C. �
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Remark 3. Note for later use that the same proof yields an inequality
∫

Ω
e−Aϕdµ ≤ CA exp(βA |E(ϕ)|), (3.2)

where

βA :=
An+1

γn(1 + 1/n)n

is smaller than 1 only if A = An is not too large. When n = 1, the critical
value is A = 2. This is related to a theorem of Bishop as we shall see in
section 4.4.

It follows from the recent work [ACKPZ09] that the optimal exponent γ is
actually 2n, improving the bound 2 obtained in [Zer01], hence also enlarging
the allowed constant An above, when n > 1.

3.2. Properness. We let

E(ϕ) := 1

n+ 1

∫

Ω
ϕ(ddcϕ)n

denote the energy of a plurisubharmonic function ϕ and set

F(ϕ) := E(ϕ) + log

[
∫

Ω
e−ϕdµ

]

.

Recall that the energy functional is a primitive of the complex Monge-
Ampère operator, namely if ψs is a curve of plurisubharmonic functions with
zero boundary values, then

dE(ψs)
ds

=

∫

Ω
ψ̇s(dd

cψs)
n,

as follows from Stokes theorem. A similar computation shows that a function
ϕ solves (MA) if and only if it is a critical point of the functional F (in other
words (MA) is the Euler-Lagrange equation for F).

Inspired by techniques from the calculus of variations, it is thus natural
to try and maximize the functional F so as to build a critical point. This
usually requires the functional to be proper in order to be able to restrict
to compact subsets of the space of functions involved. It follows from the
Moser-Trudinger inequality (Theorem 5) that the functional F is indeed
proper, in the following strong sense:

Proposition 6. There exists a > 0, b ∈ R such that for all smooth plurisub-
harmonic function ψ in Ω, with zero boundary values,

F(ψ) ≤ aE(ψ) + b.

Proof. Immediate consequence of Theorem 5 with a = 1 − βn and b =
logC. �

3.3. Ricci inverse iteration. Given ϕ ∈ PSH(Ω) ∩ C∞(Ω̄) with zero
boundary values, it follows from the work of Cafarelli, Kohn, Nirenberg and
Spruck [CKNS85] that there exists a unique function ψ ∈ PSH(Ω)∩C∞(Ω̄)
with zero boundary values such that

(ddcψ)n =
e−ϕµ

∫

Ω e
−ϕdµ

in Ω. (∗)
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We let

T :=
{

ϕ ∈ PSH(Ω) ∩ C∞(Ω̄) |ϕ|∂Ω = 0
}

denote the space of test functions and

T : ϕ ∈ T 7→ ψ ∈ T
denote the operator such that ψ = T (ϕ) is the unique solution of (∗). Ob-
serve that solving (MA) is equivalent to finding a fixed point of T .

The key to the dynamical construction of solutions to (MA) lies in the
following monotonicity property:

Proposition 7. For all ϕ ∈ T ,

F(Tϕ) ≥ F(ϕ)

with strict inequality unless Tϕ = ϕ.

Proof. Fix ϕ ∈ T and set ψ := Tϕ. Recall that

F(ϕ) = E(ϕ) + log

[
∫

Ω
e−ϕdµ

]

and

E(ψ)− E(ϕ) = 1

n+ 1

n
∑

j=0

∫

Ω
(ψ − ϕ)(ddcψ)j ∧ (ddcϕ)n−j .

It follows from Stokes theorem that for all j,
∫

(ψ − ϕ)(ddcψ)j ∧ (ddcϕ)n−j =

∫

(ψ − ϕ)(ddcψ)n

+

∫

d(ψ − ϕ) ∧ dc(ψ − ϕ) ∧ S,

where S is a positive closed form of bidegree (n− 1, n − 1). Thus

E(ψ) − E(ϕ) ≥ 1

n+ 1

∫

Ω
(ψ − ϕ)(ddcψ)n.

We now set

ϕ̃ := ϕ+ log[

∫

e−ϕdµ], ψ̃ := ψ + log[

∫

e−ψdµ],

and

µϕ := e−ϕ̃µ, µψ := e−ψ̃µ.

Note that the latter are probability measures in Ω with (ddcψ)n = µϕ.
It follows from the definition of F and our last inequality that

F(ψ) −F(ϕ) ≥
∫

Ω
(ψ̃ − ϕ̃)dµϕ =

∫

Ω
F log F dµψ,

where F = eψ̃−ϕ̃, hence the latter quantity denotes the relative entropy of
the probability measures µϕ, µψ. It follows from the convexity of − log that

∫

Ω
− log[F−1]Fdµψ ≥ − log

[
∫

Ω
F−1Fdµψ

]

= 0,

with strict inequality unless F = 1 almost everywhere, i.e. ϕ̃ = ψ̃.
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Observe finally that since ψ and ϕ both have zero boundary values, the
equality ϕ̃ = ψ̃ can only occur when ϕ ≡ ψ, i.e. when ϕ = Tϕ is a fixed
point of T , as claimed. �

We infer that the energies E(ϕj) of the solutions ϕj of (MA)j−1 are uni-
formly bounded:

Corollary 8. The sequence (F(T jϕ0))j is bounded, hence so is (E(T jϕ0)j .

Proof. Fix ϕ0 ∈ T (for example ϕ0 = ρ) and set ϕj = T jϕ0. Observe that
E(ϕj) ≤ 0 since ϕj ≤ 0, hence it suffices to establish a bound from below.
The previous proposition insures that the sequence F(T jϕ0))j is increasing.
It follows from Proposition 6 that

F(ϕ0) ≤ F(T jϕ0) ≤ aE(T jϕ0) + b ≤ b

so that the energies E(T jϕ0) are uniformly bounded. �

4. Higher order estimates

4.1. Uniform a priori estimates. Recall that ϕj is a smooth plurisub-
harmonic solution of (MA)j−1. Its Monge-Ampère measure thus satisfies

(ddcϕj)
n = fjµ, with fj =

e−ϕj−1µ
∫

Ω e
−ϕj−1dµ

.

It follows from the previous section that the ϕ′
js have uniformly bounded en-

ergy. Thus they form a relatively compact family (for the L1-topology) in the
class E1(Ω) of plurisubharmonic functions with finite energy (see [BGZ09]).
When the complex dimension is n = 1, the latter is the class of negative
plurisubharmonic functions with zero boundary values and whose gradient
is in L2; since (normalized) plurisubharmonic functions are uniformly L2,
the family (ϕj) is thus included in a finite ball of the Sobolev spaceW 1,2. In
higher dimension, the class E1(Ω) is a convenient substitute for the Sobolev
spaces, we refer the reader to [BGZ09] for more details.

We simply recall here that functions in E1(Ω) have zero Lelong numbers.
For such a function ψ, Skoda’s integrability theorem [Sko72] ensures that e−ψ

is in Lq for all q > 1. Since the family (ϕj) is moreover relatively compact,
Skoda’s uniform integrability theorem [Zer01] insures that the densities fj’s
satisfy

∫

Ω
f2j dµ ≤ C

for some uniform constant C > 0.
Recall now the following fundamental result due to Kolodziej [Kol98]: if

ψ is a smooth plurisubharmonic function in Ω with zero boundary values
and such that

(ddcψ)n = fdµ

where f ∈ L2(µ), then

‖ψ‖L∞(Ω) ≤ Cf ,

where the constant Cf only depends on Ω and ‖f‖L2 . Applying this to
ψ = ϕj yields:
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Lemma 9. For all j ∈ N,

− C0 ≤ ϕj ≤ 0 (4.1)

for some uniform constant C0 > 0.

4.2. C2-a priori estimates. The goal of this section is to establish the
following a priori estimates on the Laplacian of the solutions to (MA)j−1.

Theorem 10. There exists C > 0 such that for all j ∈ N,

sup
Ω̄

|∆ϕj | ≤ C.

These estimates are “almost” contained in [CKNS85], however hypothesis
(1.3) on p. 213 is not satisfied, hence neither [CKNS85, Theorem 1.1] nor
[CKNS85, Theorem 1.2] can be applied to our situation.

We nevertheless follow their proof as organized by S. Boucksom [Bou11],
explaining some of the necessary adjustments. It will be a consequence of
the following series of lemmas.

Lemma 11. There exists C1 > 0 such that

sup
∂Ω

|∇ϕj | ≤ C1.

Proof. It follows from the order zero uniform estimates (4.1) that

(ddcϕj)
n ≤ eC0µ in Ω.

Let u denote the unique smooth plurisubharmonic function in Ω̄ such that

(ddcu)n = eC0µ in Ω with u|∂Ω ≡ 0.

The latter exists by [CKNS85, Theorem 1.1]. It follows from the comparison
principle that

u ≤ ϕj ≤ 0 in Ω.

This yields the desired control of ∇ϕj on ∂Ω. �

Lemma 12. There exists C2 > 0 such that

sup
Ω

|∆ϕj | ≤ C2(1 + sup
∂Ω

|∆ϕj |).

Proof. We let ∆j denote the Laplace operator with respect to the Kähler
form ωj = ddcϕj , while ∆ denotes the euclidean Laplace operator. We claim
that for all j ≥ 1,

∆j {log ∆ϕj + ϕj−1} ≥ 0. (4.2)

Assuming this for the moment we show how to derive the desired control
on ∆ϕj . Let zj ∈ Ω̄ be a point which realizes the maximum of the function

hj := ϕj + ϕj−1 + log∆ϕj .

It follows from (4.2) that zj ∈ ∂Ω, otherwise ∆jhj(zj) ≤ 0 contradicting

∆jhj ≥ ∆jϕj > 0.

We infer from Lemma 9 that for all w ∈ Ω,

log∆ϕj(w) ≤ 2C0 + hj(zj) ≤ 2C0 + log sup
∂Ω

∆ϕj ,

which yields the desired upper bound.
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It remains to establish (4.2). We shall need the following local differen-
tial inequality which goes back to the works of Aubin and Yau: if ω is an
arbitrary Kähler form and β = ddc ‖z‖2 denotes the euclidean Kähler form,
then

∆ω log trβ(ω) ≥ −trβ(Ricω)

trβ(ω)
. (4.3)

We apply this inequality to ω = ωj = ddcϕj . Observe that Ric(ωj) = ωj−1

since
(ddcϕj)

n = e−ϕj−1ecjdV.

Observe that
trβ(ωj−1)

trβ(ωj)
=

∆β(ϕj−1)

trβ(ωj)
≤ ∆j(ϕj−1).

Combined with (4.3), this yields

∆j log trβ(ωj) ≥ −∆j(ϕj−1),

whence (4.2). �

Lemma 13. There exists C3 > 0 such that

sup
∂Ω

∣

∣D2ϕj
∣

∣ ≤ C3(1 + sup
Ω

|∇ϕj |2).

Proof. This follows from a long series of estimates which are the same as
those of [CKNS85], up to minor modifications. We only sketch these out,
following the proof of [Bou11, Lemma 7.17]. To fit in with the notations of
[Bou11], we set ψ = ϕj − ρ and η = ddcρ so that ψ is a η-psh function (still)
with zero boundary values on ∂Ω such that

(η + ddcψ)n = e−ψeF ηn

where F is some smooth density. Our problem is thus equivalent to showing
an a priori estimate

sup
∂Ω

∣

∣D2ψ
∣

∣ ≤ C3(1 + sup
Ω

|∇ψ|2),

where C3 is under control.
Fix p ∈ Ω. It is classical that one can choose complex coordinates

(zj)1≤j≤n so that p = 0 and

ρ = −xn + ℜ





n
∑

j,k=1

ajkzj z̄k



+O(|z|3)

where zj = xj + iyj . We set for convenience

t1 = x1, t2 = x1, . . . , t2n−1 = yn, t2n = x2n.

Let (Dj) be the dual basis of dt1, . . . , dt2n−1,−dρ so that for j < 2n,

Dj =
∂

∂tj
−
ρtj
ρxn

∂

∂xn
and D2n = − 1

ρxn

∂

∂xn

Step 0: bounding the tangent-tangent derivatives. Observe that the Dj ’s
commute and are tangent to ∂Ω for j < 2n, we thus have a trivial control
on the tangent-tangent derivatives at p = 0,

DiDjψ(0) = 0, for 1 ≤ i, j < 2n.
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Step 1: bounding the normal-tangent derivatives. Set K = sup∂Ω |∇ψ|. We
claim that for all 1 ≤ i < 2n

|DiD2nψ(0)| ≤ C(1 +K),

for some uniform constant C > 0.
Let h be the smooth function in Ω with zero boundary values such that

∆ηh := n
ddch ∧ ηn−1

ηn
= −n in Ω.

The proof requires the construction of a barrier b = ψ + εh− µρ2 such that

0 ≤ b and ∆ψb := n
ddcb ∧ (η + ddcψ)n−1

(η + ddcψ)n
≤ −1

2
trψ(η) in B,

where B is a half ball centered at p = 0 of positive radius and ε, µ > 0 are
under control. This can be done exactly as in [Bou11, Lemma 7.17, Step
1], as the only information needed is that (η+ ddcψ)n is uniformly bounded
from above by Cηn, which follows here from our C0-estimate.

One then shows the existence of uniform constants µ1, µ2 > 0 such that
the functions v± := K(µ1 + µ2 |z|2)±Djψ both satisfy

0 ≤ v± on B and ∆ψv± ≤ 0 in B.

It follows then from the maximum principle that v± ≥ 0 in B so that
D2nv±(0) ≥ 0 since v±(0) = 0. Thus

|D2njψ(0)| ≤ CK(1 +D2nb(0)) ≤ C ′(1 +K),

as claimed.

Step 2: bounding the normal-normal derivatives. This is somehow the most
delicate estimate. Set again K = sup∂Ω |∇ψ|. We want to show that
∣

∣D2
2nψ(0)

∣

∣ ≤ C(1 + K2) for some uniform constant C > 0. Using previ-
ous estimates on DiDjψ(0), it suffices to show that

|ψznz̄n(0)| ≤ C(1 +K2).

Recall that

det
(

ρziz̄j (0) + ψziz̄j (0)
)

1≤i,j≤n
= e−ψ(0)+F (0)

is bounded from above, and for i < n,

|ψziz̄n(0)| ≤ C(1 +K).

Expanding the determinant with respect to the last row thus yields the
expected upper bound, provided we can bound from below the (n−1, n−1)-
minor

det
(

ρziz̄j (0) + ψziz̄j(0)
)

1≤i,j≤n−1
.

A (by now) classical barrier argument shows that ddcϕ = η + ddcψ is uni-
formly bounded from below by εη on the complex tangent space to ∂Ω (see
[Bou11, Lemma 7.16] which can be used since ϕj is uniformly bounded). �

Lemma 14. There exists C4 > 0 such that

sup
Ω

|∇ϕj | ≤ C4.
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Proof. It follows from previous estimates that

sup
Ω

∆ϕj ≤ C

(

1 + sup
Ω

|∇ϕj|2
)

.

Assume that supΩ |∇ϕj | is unbounded. Up to extracting and relabelling,
this means that

Mj := |∇ϕj(xj)| = sup
Ω

|∇ϕj | → +∞

where xj ∈ Ω̄ converges to a ∈ Ω̄. We set

ψj(z) := ϕj(xj +M−1
j z).

This is a sequence of uniformly bounded plurisubharmonic functions which
are well defined (at least) in a half ball B around zero and satisfy

|∇ψj(0)| = 1 and sup
B

∆ψj ≤ C.

We infer that the sequence (ψj) is relatively compact in C1, hence we can
assume that (up to relabeling) ψj → ψ ∈ C1(B) where ψ is plurisubharmonic
and satisfies ∇ψ(0) = 1.

If a ∈ ∂Ω, it follows from the proof of Lemma 11 that ψ ≡ 0, contradicting
∇ψ(0) = 1. Therefore a ∈ Ω, so we can actually assume that B is a ball of
arbitrary size, hence ψ can be extended as a plurisubharmonic function on
the whole of Cn. Since ϕj is uniformly bounded, so are ψj and ψ. Thus ψ
has to be constant, contradicting ∇ψ(0) = 1. �

4.3. Evans-Krylov theory. It follows from Schauder’s theory for linear
elliptic equations with variable coefficients that it suffices to obtain a priori
estimates

‖ϕj‖2,α ≤ C (4.4)

for some positive exponent α > 0, in order to obtain a priori estimates

‖ϕj‖k+2,α ≤ Ck (4.5)

at all orders k ∈ N. Here

‖h‖k,α :=

k
∑

j=0

sup
Ω

∣

∣Djh
∣

∣+ sup
z,w∈Ω,z 6=w

∣

∣Dkh(z)−Dkh(w)
∣

∣

|z − w|α

denotes the norm associated to the Hölder space of functions h which are k-
times differentiable on Ω̄ with kth-derivative Hölder-continuous of exponent
α > 0.

Moreover the Evans-Krylov theory (as simplified by Trudinger) can be
adapted to the case of complex Monge-Ampère equations, showing that the
a priori estimates (4.4) follow directly from Theorem 10. We refer the reader
to [Blo05] for a detailed presentation of this material.
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4.4. Conclusion. It follows from the previous sections that the sequence
(ϕj) is relatively compact in C∞(Ω̄). We let K denote the set of its cluster
values. We infer from Proposition 7 that the functional F is constant on K:
for all ψ ∈ K,

F(ψ) = lim
j→+∞

ր F(T jϕ0).

Now K is clearly T -invariant, hence F(Tψ) = F(ψ) for all ψ ∈ K. Thus
Proposition 7 again insures that Tψ = ψ, i.e. ψ is a solution of (MA).

As explained earlier, this is equivalent to saying that there exists a Kähler-
Einstein metric ω = ddcϕ with Ric(ω) = πω and prescribed values on the
boundary of Ω, hence we have solved our geometrical problem.

5. Uniqueness

Recall that (MA) is the Euler-Lagrange equation of the functional

F(ϕ) := E(ϕ) + log

[∫

Ω
e−ϕdµ

]

.

If a smooth strictly plurisubharmonic function ϕ with zero boundary val-
ues maximizes F , then it is a critical point of F hence ϕ is a solution of
(MA). Indeed for any smooth function v

d

dt
F(ϕ + tv)|t=0 =

∫

Ω
v(ddcϕ)n −

∫

Ω ve
−ϕdµ

∫

Ω e
−ϕdµ

= 0,

thus (ddcϕ)n = e−ϕµ/
(∫

Ω e
−ϕdµ

)

.
Our purpose here is to show that the converse holds true when Ω satisfies

an additional symmetry property.

5.1. Continuous geodesics. In the setting of compact Kähler manifolds,
Mabuchi [Mab87], Semmes [Sem92] and Donaldson [Don99] have shown that
the set of all Kähler metrics in a fixed cohomology class has the structure of
an infinite Riemannian manifold with non negative curvature. The notion
of geodesic joining two Kähler metrics plays an important role there and we
refer the reader to [Che00] for more information on this.

Our purpose here is to consider similar objects for pseudoconvex domains
in order to study the uniqueness of solutions to (MA). Let A denote the
annulus A = {ζ ∈ C / 1 < |ζ| < e} and fix two functions φ0, φ1 which are
plurisubharmonic in Ω, continuous up to the boundary, with zero boundary
values. We let G denote the set of all plurisubharmonic functions Ψ on Ω×A
which are continuous on Ω̄× Ā and such that

Ψ|∂Ω×A ≡ 0 and Ψ|Ω×∂A ≤ φ,

where φ(z, ζ) = φ0(z) for |ζ| = 1 and φ(z, ζ) = φ1(z) for |ζ| = e. We set

Φ(z, ζ) := sup {Ψ(z, ζ) /Ψ ∈ G} .
Proposition 15. The function Φ is plurisubharmonic in Ω×A, continuous
on Ω̄× Ā and satisfies

(i) Φ(z, eiθζ) = Φ(z, ζ) for all (z, ζ, θ) ∈ Ω×A× R;
(ii) Φ(z, 1) = φ0(z) and Φ(z, e) = φ1(z) for all z ∈ Ω;
(iii) (ddcz,ζΦ)

n+1 ≡ 0 in Ω×A.
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Proof. The invariance by rotations (i) follows from the corresponding in-
variance property of the family G. The continuity and boundary properties
(ii) follow standard arguments which go back to Bremermann [Bre59] and
Walsh [Wal69].

The maximality property (iii) is a consequence of Bedford-Taylor’s solu-
tion to the homogeneous complex Monge-Ampère equation on balls, through
a balayage procedure: by Choquet’s lemma, the sup can be achieved along
an increasing sequence which is maximal on an arbitrary ball B ⊂ Ω × A,
one then concludes by using the continuity property of the complex Monge-
Ampère operator along increasing sequences [BT82]. �

Definition 16. Set Φt(z) = Φ(z, et). The continuous family (Φt)0≤t≤1 is
called the geodesic joining φ0 to φ1.

Recall that

E(ϕ) := 1

n+ 1

∫

Ω
ϕ(ddcϕ)n

denotes the energy of a plurisubharmonic function ϕ.

Lemma 17. Let (Φt)0≤t≤1 be a continuous geodesic. Then t 7→ E(Φt) is
affine.

Proof. We let the reader verify that if (z, ζ) 7→ Φ(z, ζ) is a continuous
plurisubharmonic function in Ω×A, then

ddcζ E ◦ Φ = π∗
(

(ddcz,ζΦ)
n+1

)

,

where π : Ω×A→ A denotes the projection onto the second factor.
It thus follows from Proposition 15 that ζ ∈ A 7→ E ◦Φ(ζ) ∈ R is harmonic

in ζ. The same proposition insures that it is also invariant by rotation, hence
it is affine in t = log |ζ|. �

5.2. Variational characterization. We now make an additional hypoth-
esis of S1-invariance in order to use an important result by Berndtsson
[Ber06]. Namely we assume here below that Ω is circled, i.e.

Ω contains the origin and is invariant under the rotations z 7→ eiθz,

and

φ0, φ1 are S1-invariant, i.e. φi(e
iθz) = φi(z).

Under this assumption, it follows from [Ber06, Theorem 1.2] that

t 7→ − log

(∫

Ω
e−Φtdµ

)

is a convex function of t if (Φt) is a continuous geodesic.

Proposition 18. Assume Ω is circled and let ϕ be a S1-invariant solution
of (MA). Then

F(ϕ) ≥ F(ψ),

for all S1-invariant plurisubharmonic functions ψ in Ω which are continuous
up to the boundary, with zero boundary values.
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Proof. Let (Φt)0≤t≤1 denote the geodesic joining φ0 := ϕ to φ1 := ψ. It
follows from the above mentioned work of Berndtsson [Ber06] that

t 7→ − log

(∫

e−Φtdµ

)

is convex, while we have just observed that

t 7→ E(Φt)
is affine, thus

t 7→ F(Φt) is concave.

It therefore suffices to show that the derivative of F(Φt) at t = 0 is non
positive to conclude that F(ϕ) = F(Φ0) ≥ F(Φt) for all t, in particular
at t = 1 where it yields F(ϕ) ≥ F(ψ). When t 7→ Φt is smooth, a direct
computation yields, for t = 0,

d

dt
(F(Φt)) =

∫

Ω
Φ̇t

[

(ddcΦt)
n − e−Φtµ/(

∫

e−Φtdµ)

]

= 0

since Φ0 = ϕ is a solution of (MA). For the general case, one can argue as
in the proof of Theorem 6.6 in [BBGZ09]. �

Corollary 19. A smooth S1-invariant plurisubharmonic function ϕ : Ω̄ →
R with zero boundary values is a solution of (MA), i.e. satisfies

(ddcϕ)n =
e−ϕµ

∫

Ω e
−ϕdµ

in Ω

if and only if it maximizes the functional F .

5.3. Uniqueness of solutions. The purpose of this section is to establish
a uniqueness result for (MA). Recall that if ϕ is a solution of (MA), we say
that Ω is strictly ϕ-convex if Ω is strictly convex for the metric ddcϕ.

Theorem 20. Assume that Ω is circled and strictly ϕ-convex, where ϕ is a
S1-invariant solution of (MA). Then ϕ is the only S1-invariant solution to
(MA).

Proof. Assume we are given ϕ,ψ two S1-invariant solutions of (MA). Let
(Φt)0≤t≤1 denote the continuous geodesic joining φ0 = ϕ to φ1 = ψ. Since
the functional F is concave along this geodesic and attains its maximum
both at φ0 and φ1, it is actually constant, hence each Φt is a S1-invariant
solution to (MA) by Corollary 19, so that

(ddcΦt)
n =

e−Φtµ
∫

Ω e
−Φtdµ

in Ω.

Assume that the mapping (z, t) ∈ Ω×A 7→ Φt(z) ∈ R is smooth. Taking
derivatives with respect to t, we infer

n ddcΦ̇t ∧ (ddcΦt)
n−1 =

[

−Φ̇t +

∫

Ω
Φ̇t(dd

cΦt)
n

]

(ddcΦt)
n,

so that 1 is an eigenvalue with eigenvector Φ̇t−
∫

Ω Φ̇t(dd
cΦt)

n for the Lapla-
cian ∆t associated to the Kähler form ddcΦt. Without the regularity as-
sumption, we can take derivatives in the sense of distributions to insure
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that at t = 0,

n ddcΦ̇0 ∧ (ddcΦ0)
n−1 =

[

−Φ̇0 +

∫

Ω
Φ̇0(dd

cΦ0)
n

]

(ddcΦ0)
n,

as in the proof of Theorem 6.8 in [BBGZ09]. Note that Φ0 = ϕ is smooth.

In particular Φ̇0 is solution of

−△ψ = ψ − c(ψ) in Ω with ψ|∂Ω = 0, (5.1)

where

c(ψ) =

∫

Ω
ψ(ddcϕ)n.

We are going to show that any solution of equation (5.1) has to vanish
identically if Ω is strictly ϕ-convex. Namely, assume first that c(ψ) ≥ 0.
Write ψ = ψ+ − ψ−, where ψ+ = max {ψ, 0} and ψ− = max {−ψ, 0}.
Multiplying equation (5.1) by ψ+ and integrating by parts, we get

∫

Ω

∣

∣dψ+
∣

∣

2
(ddcϕ)n =

∫

Ω
(ψ+)2(ddcϕ)n − c(ψ)

∫

Ω
ψ+(ddcϕ)n

≤
∫

Ω
(ψ+)2(ddcϕ)n.

By the variational characterization of the first eigenvalue of the Laplacian,
if ψ+ doesn’t vanish identically, then the last inequality means that the first
eigenvalue of ∆ with Dirichlet boundary condition is at most 1. However,
by [GKY11][Corollary 1.2], we know that this eigenvalue is strictly bigger
than 1 because of the strict convexity condition2. This shows that ψ+ = 0
and therefore ψ = 0 because c(ψ) ≥ 0. If c(ψ) ≤ 0, the reasoning is similar
and ψ = 0 as well.

As a conclusion, we see that Φ̇0 = 0 on Ω. Therefore, since the energy

t 7→ E(Φt)

is affine along the geodesic, and its derivative at t = 0 vanishes, it is constant
on the interval [0, 1]. Now, along the geodesic, the derivative of F vanishes
and since

F(Φt) = E(Φt) + log

(∫

e−Φtdµ

)

,

we obtain finally that
∫

Φ̇te
−Φtdµ = 0.

But Φ̇t ≥ 0 since t 7→ Φt is convex (by subharmonicity and S1-invariance)

and therefore Φ̇t = 0 almost everywhere. This leads to Φ0 = Φ1. �

2Due to our normalization convention for dc, there is a π factor difference between the
definition of ∆ in our present work and the one in [GKY11].
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6. Concluding remarks

6.1. The continuity method. A classical strategy to solve (MA) is to use
the continuity method, looking at a continuous family of similar Dirichlet
problems,

(MA)t (ddcϕt)
n =

e−tϕtµ
∫

Ω e
−tϕtdµ

in Ω with ϕt|∂Ω = 0,

where the parameter t runs from 0 to 1. One sets

I := {t ∈ [0, 1] / (MA)t admits a (smooth plurisubharmonic) solution}
and then tries to show that I is non empty, open and closed, so that I =
[0, 1]. Observe that 1 ∈ I is equivalent to solving the Dirichlet problem
(MA) = (MA)1.

It follows from the work of Cafarelli-Kohn-Nirenberg-Spruck [CKNS85]
that 0 ∈ I, hence the latter is non empty (see the discussion in section 2.3.2).

The a priori estimates derived in section 4 can be adapted to show that I
is closed. This is in general the most difficult part of the method. It however
turns out here that proving the openness is a delicate issue. Indeed, to do
so, we need to show that the linearized (MA)t equation has a trivial kernel.
More precisely, we have to prove that if ϕt is a solution of (MA)t, then every
solution3 of

−△ψ − tψ + tc(ψ) = 0 in Ω with ψ|∂Ω = 0, (6.1)

where

c(ψ) :=

∫

ψ(ddcϕt)
n

must vanish. Let’s introduce the differential operator

D : C∞(Λ0,1Ω) → C∞(Λ0,1Ω⊗ Λ0,1Ω)

defined by

Dα := ∇0,1α.

We have have then a Bochner formula (up to an inessential multiplicative
π factor which we omit for brevity 4)

−△α = D∗Dα+Ric(α), α ∈ C∞(Λ0,1Ω). (6.2)

Applying (6.2) to ∂̄ψ where ψ is a solution of (6.1), we get

−△∂̄ψ = t∂̄ψ = D∗D∂̄ψ + t∂̄ψ

because △ and ∂̄ commute and Ric(α) = tα. Therefore

D∗D∂̄ψ = 0. (6.3)

Then, taking the L2 inner product of D∗D∂̄ψ and ∂̄ψ and integrating by
parts, without neglecting boundary terms (see [GKY11] for details) and
using the fact that on the boundary we have

△ψ = tc(ψ),

3In the following, covariant derivative, Ricci tensor and Laplacian referred to the metric
defined by ϕt.

4In the following computation △ is the ∂̄-Laplacian.
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we obtain

∥

∥D∂̄ψ
∥

∥

2

L2 = −1

2

∫

∂Ω
(n · ψ)2

[

trLρ +Hess ρ(Jn, Jn)
]

σ. (6.4)

where ρ is a boundary defining function for ∂Ω, n is the outward unit nor-
mal vector field on ∂Ω and Lρ is the Levi form corresponding to ρ (see
section 2.1).

If Ω is a strictly pseudoconvex domain then trLρ is positive at each point
of ∂Ω, however we do not have a priori any control on Hess ρ(Jn, Jn). So,
contrary to what happens on a closed manifold where we do not have to
deal with this disturbing boundary term, we cannot conclude here.

Remark 4. In the same spirit, we have shown in [GKY11] that a ball of
sufficiently large radius in complex projective space provides an example
of a strongly pseudoconvex domain which is not convex, and for which the
Lichnerowicz estimate fails.

6.2. Optimal constants. It is natural to wonder whether it is possible to
solve

(MA)t (ddcϕt)
n =

e−tϕtµ
∫

Ω e
−tϕtdµ

in Ω with ϕt|∂Ω = 0,

for bigger values of t > 1. As noticed in Remark 3, our Moser-Trudinger
inequality allows us to get control on slightly larger values of t, with a
maximal value depending on n, namely

t < (2n)1+1/n(1 + 1/n)(1+1/n).

It should be noticed that one can not expect to solve (MA)t for big values
of t, as follows from Bishop’s volume comparison theorem. Indeed, let B

denote the unit ball in C
n. If we can find a solution ϕ of (MA)t on B, this

means that we can find a Kähler-Einstein metric ω = ddcϕ on B satisfying
Ric (ω) = tπω. Moreover, the volume V of this metric is

V =

∫

B

(ddcϕ)n

n!
=

1

n!
.

But by the Bishop volume comparison theorem, the volume has to be less
than or equal to the volume of the 2n-real dimensional sphere endowed with
a metric of constant curvature k, with k = (tπ)/(2n− 1). This implies that

1

n!
≤ (4π)n(n− 1)!

kn(2n − 1)!
,

so that

t ≤ 4(2n − 1)

[

(n− 1)!n!

(2n − 1)!

]1/n

.

The interested reader will find in [BB11] further motivation and references
about (MA)t for large (critical) values of t.
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LATP, Université de Provence, 39 Rue F. Joliot-Curie, 13453 Marseille

Cedex 13, France

E-mail address: Nader.Yeganefar@cmi.univ-mrs.fr


	1. Introduction
	2. Geometric context
	2.1. The conformal class of the Levi form
	2.2. Kähler metrics
	2.3. Kähler-Einstein metrics on strongly pseudoconvex domains
	2.4. The strategy

	3. Energy estimates
	3.1. Local Moser-Trudinger inequality
	3.2. Properness
	3.3. Ricci inverse iteration

	4. Higher order estimates
	4.1. Uniform a priori estimates
	4.2. C2-a priori estimates
	4.3. Evans-Krylov theory
	4.4. Conclusion

	5. Uniqueness
	5.1. Continuous geodesics
	5.2. Variational characterization
	5.3. Uniqueness of solutions

	6. Concluding remarks
	6.1. The continuity method
	6.2. Optimal constants

	References

