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Abstract. The segmentation of images is a critical step in many computer vision applications. Additionally, some
applications require the achievement of acceptable segmentation quality while the algorithm is executed in real
time. In this study, we present a split-and-merge segmentation methodology that uses integral images to improve
the execution time. We call our methodology integral split and merge (ISM) segmentation. The integral images
are used here to calculate statistics of the image regions in constant time. Those statistics are used to guide the
splitting process by identifying the homogeneous regions in the image. We also propose a merge criterion that
performs connected component analysis of the homogeneous regions. Moreover, the merging procedure is able
to group regions of the image showing gradients. Furthermore, the number of regions resulting from the seg-
mentation process is determined automatically. In a series of tests, we compare ISM against other state-of-the-
art algorithms. The results from the tests show that our ISM methodology obtains image segmentations with
a comparable quality, using a simple texture descriptor instead of a combination of color-texture descriptors.
The proposed ISM methodology also has a piecewise linear computational complexity, resulting in an algorithm
fast enough to be executed in real time. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, includ-
ing its DOI. [DOI: 10.1117/1.JEI.24.1.013007]
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1 Introduction
The segmentation of images is a common procedure in image
analysis applications. This procedure is the first step in many
processes meant to extract useful information from scenes. It
consists of partitioning the image into different disjoint
regions that are homogeneous for one or more features com-
puted from the image. Those regions are assumed to corre-
spond to meaningful parts of the objects in the scene, regions
that are easier to analyze. In their survey, Vantaram and
Saber1 classify the segmentation methodologies in three
main classes: spatially blind, spatially guided, and miscella-
neous methods.

As their name suggest, the segmentation of images using
the spatially blind methods is not guided by the spatial rela-
tionships of the pixels in the image. These methods include
approaches using clustering or histogram thresholding. The
spatially blind methods have the advantage of being easy
to implement and not requiring any a priori information.
However, the number of clusters to use for clustering
must be determined in advance. This has proven to be a chal-
lenging task. Moreover, the histogram thresholding methods
have problems with low-contrast images and are difficult to
use in color images.

The segmentation of images using spatially guided meth-
ods is directed by the relationships between pixels in an
image region. These methods group regions that are homo-
geneous regarding a given image feature. The spatially guided
methods are further subdivided into region-based, energy-
based, and region and contour-based methods. The region-

based methods include procedures such as the growing, the
splitting, and the merging of regions. Some algorithms from
this category include the J-segmentation algorithm, proposed
by Deng and Manjunath,2 the gradient segmentation algo-
rithm, proposed by Ugarriza et al.,3 and a multiresolution
extension of the gradient segmentation algorithm, proposed
by Vantaram et al.,4 among others. The energy-based meth-
ods attempt to minimize cost functions that model regions in
the image. Those cost functions may be contour- or region-
based functions. The regions covered by the functions evolve
until a given energy model is minimized. Some algorithms in
this category include the active contours (a.k.a. snakes), first
proposed by Kass et al.5 and variants, such as the fast active
contours algorithm proposed by Chan and Vese6 or the active
contours without edges, proposed by Vantaram and Saber.7

Finally, the contour-based methods consist of different var-
iants of the watershed algorithm. This algorithm considers a
gray-scale image as a topographic relief, where the intensity
of the pixels determines the corresponding height of that par-
ticular zone. The relief is then flooded in a simulation and
the water flows to local minima and forms basins, corre-
sponding to different regions in the image. Some examples
of these methods include the work of Gao et al.,8 where
watersheds are used to segment color images, the study of
Hill et al.9 that uses a texture gradient to partition textured
regions using watershed, and the method by Kim and Kim,10

where a multiresolution watershed segmentation using wave-
lets is presented.

In this study, we propose a methodology called integral
split and merge (ISM) segmentation. This methodology is a
region-based segmentation algorithm, where the split-and-
merge segmentation and an image representation called inte-
gral image are combined to achieve two main goals: to obtain
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acceptable segmentation outcomes and to attain a computa-
tional complexity low enough to use the method in real-time
applications (i.e., 15 fps or more). The split-and-merge seg-
mentation was proposed by Horowitz and Pavlidis11,12 in
1974. It consists of recursively partitioning an image into
homogeneous parts and then merging those parts into bigger
homogeneous regions. Our ISM methodology uses the inte-
gral images to improve the computing time performance.
The integral image representation was first used in the object
recognition field by Viola and Jones,13 to achieve a fast fea-
ture evaluation for real-time face detection applications.

The proposed ISM method works over intensity images,
where the pixels in the homogeneous regions have similar
intensity values. The method consists of two main parts:
the splitting and the merging steps. The splitting process
divides the image into homogeneous regions. This process
is performed in a single step, using a quad-tree search.
The image is partitioned into regions (i.e., quads) that are
evaluated for homogeneity. Because determining the homo-
geneity of a region is computationally expensive, we use the
integral images to improve the time performance. On the
other hand, the merging process combines the homogeneous
regions obtained from the splitting process, into bigger areas.
We propose a merge criterion that is performed in an efficient
time and exhibits three main properties. First, it assigns dif-
ferent labels to spatially disconnected regions, independent
of their similitude. This is equivalent to performing a con-
nected-component analysis. Second, our method is able to
follow gradients in image areas showing this property and
group them into single regions. This process is similar to
that performed by region-growing methods. Last, our merg-
ing procedure is able to automatically determine the number
of disjoint regions in the segmentation.

In addition to the ISM split and merge processes, a small-
region elimination procedure is presented. This procedure is
used to improve the visual appeal of image segmentations, if
required. This step first removes the small regions obtained
from the ISM segmentation. Then the removed pixels are
reassigned to bigger regions using a region growing process.
The tests performed show that the small regions have no sig-
nificant impact in the overall evaluation of a segmentation,
therefore, this step may be omitted if necessary.

The ISM methodology was tested to ascertain its perfor-
mance in segmentation accuracy and computing time. The
tests were performed on a collection of natural images
where texture patterns are abundant. For this kind of image,
it is better to use texture information for the segmentation.
Different image features (e.g., texture descriptors) may be
used to obtain an intensity map that shows different homo-
geneity properties. In this work, we use a single texture
descriptor: the standard deviation (SD) map. We calculate
the SD map in a preprocessing stage. This preprocessing
transforms texture features into intensity values that are suit-
able to be used by our ISM methodology. The SD image
describes texture as intensity levels, where each pixel in
the SD image is the standard deviation of the intensity values
in a neighborhood, centered at the given pixel position in the
original image. The ISM methodology used on SD images
produces segmentations where the regions are uniform in
regard to the standard deviation of their values. Even though
there may be better texture descriptors than the SD images,
their study is beyond the scope of this work. Here, the SD

images are used only to present the ISM methodology.
However, despite its simplicity, the SD images have obtained
good results in segmentation applications, as in the work of
Lizarraga-Morales et al.14

The results obtained were evaluated using the normalized
probabilistic random (NPR) index. The NPR index is a
robust methodology developed by Unnikrishnan et al.15,16

to evaluate the quality of image segmentations. The image
segmentations obtained from a given algorithm are normally
compared against one or more human-made references. To
this end, we use the Berkeley segmentation dataset and bench-
mark (BSDS),17 a collection of 300 natural images and several
human-made segmentation references for each image. The
BSDS has been previously used along with the NPR index.
An example is the work of Pantofaru and Hebert,18 where
the BSDS and the NPR index are used to evaluate image
segmentations, obtained using mean-shift, the efficient
graph-based segmentation proposed by Felzenszwalb and
Huttenlocher,19 and a hybrid method that combines both,
in order to determine if the hybrid method improves the seg-
mentation quality. The NPR index and the BSDS were also
used by Vantaram and Saber1 to evaluate the segmentation
quality of 11 state-of-the-art algorithms. In this study, we
compare, in equal terms, the results obtained using our
ISM methodology and the results obtained from the 11 algo-
rithms, reported by Vantaram and Saber.1

The results obtained from the tests performed show that
our ISM methodology obtains a similar segmentation quality
to the other state-of-the-art algorithms that are used for com-
parison purposes. However, while the other methods com-
bine both color and texture features, our ISM methodology
only requires a single texture feature (i.e., the SD image) to
achieve similar results. Furthermore, our tests show that
using integral images to calculate the statistics required by
the split and merge segmentation improves the execution
time of the method. We have found that the ISM methodol-
ogy is efficiently executed in a piecewise linear time. These
contributions may be advantageous for real-time segmenta-
tion applications.

The rest of this paper is organized as follows. In Sec. 2,
the proposed segmentation methodology is described. Then,
performance evaluation and parameter optimization proce-
dures are discussed in Sec. 3. Finally, some concluding
remarks are presented in Sec. 4.

2 Methodology
In this section, the proposed split and merge segmentation
methodology is described. The section starts by discussing
the integral images that are adapted to this particular appli-
cation. Then the splitting and merging procedures of our
methodology are described along with their implementation
details. Additionally, two more procedures that may be used
after the segmentation are discussed. The first one is a pro-
cedure that declassifies small regions, and the second one is a
region growing procedure that assigns the declassified pixels
to the remaining classes.

2.1 Integral Images
The proposed ISM methodology makes use of the integral
images to improve the time required to obtain an image seg-
mentation. This procedure is essential, because it allows the
ISM method to be executed in real time.
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The integral images13 (a.k.a. summed area tables) are used
to efficiently compute sums of pixel intensities in square
regions of an image. The time required to compute such
sums is constant and does not depend on the region size.
Moreover, the integral image may be computed in linear
time.

This section describes the method to compute the integral
image and to obtain the area sums. These sums are used to
compute the mean intensity and the variance of the inten-
sities in an image region. These statistics are used by our
splitting process to improve the execution time.

2.1.1 Summed area table

The integral image, or summed area table, is obtained from
the original image and has the same dimensions. This image
representation is used to efficiently compute the sum of
intensities in a square area of the image.

Let I be an image consisting of W ×H pixels. Also, con-
sider the pixel (0,0) to be at the top-left corner of the image
and the pixel (W − 1, H − 1) at the bottom-right corner. The
pixel at column i and row j in I is denoted by Iði; jÞ. The
integral image S consisting of W ×H cells is calculated, as
shown in Eq. (1). The cell at column i and row j in S is
denoted by Sði; jÞ. Each cell Sði; jÞ is the sum of all the inten-
sities above and to the left of its corresponding image pixel
Iði; jÞ, including itself. The computation of Sði; jÞ may be
optimized using the data already computed, as shown in
Eq. (2).

Sði; jÞ ¼
X
i 0≤i
j 0≤j

Iði 0; j 0Þ (1)

Sði; jÞ ¼ Iði; jÞ þ Sði − 1; jÞ þ Sði; j − 1Þ − Sði − 1; j − 1Þ
(2)

The function Sði; jÞ ¼ 0 for the values i, j < 0. Notice
that using Eq. (2), the integral image is obtained in linear
time OðnÞ.

2.1.2 Sum of intensities in a region

The integral image may be used to compute the sum of pixel
intensities of a square region of arbitrary size. The time
required to compute this sum is constant, and it is indepen-
dent of the size of the area involved.

Consider a square area defined by a ¼ ðx0; y0Þ, b ¼
ðx1; y0Þ, c ¼ ðx0; y1Þ and d ¼ ðx1; y1Þ, where x0, y0, x1,
and y1 are integer numbers representing the coordinates of
the region in the image (see Fig. 1). Then, the sum of the
pixel intensities (s) in the region is obtained using Eq. (3).

s¼Sðx1;y1Þ−Sðx0−1;y1Þ−Sðx1;y0−1ÞþSðx0−1;y0−1Þ
(3)

The function Sði; jÞ ¼ 0 for the values i, j < 0. Notice
that the computation of the Eq. (3) is obtained in constant
time Oð1Þ.

2.1.3 Fast computation of statistics

In their article, Bradley and Roth20 use the integral image to
compute the mean intensity of a rectangular region of an

image. In this work, a similar approach is used to calculate
the mean. Additionally, we also calculate the variance of the
pixel intensities in square regions of arbitrary size by using
statistical moments.

First, consider Eq. (4), where sr is the sum of all the inten-
sity values, raised to the power of r, in a region defined by x0,
y0, x1, and y1. The mean μ and variance σ2 of the region data
may be computed as a function of sr, using Eqs. (5) and (6),
respectively.

sr ¼
Xy1
j¼y0

Xx1
i¼x0

IðrÞði; jÞ (4)

μ ¼ s1
N

(5)

σ2 ¼ s2
N

−
�
s1
N

�
2

; (6)

where s1 ¼ sr¼1 and s2 ¼ sr¼2. Notice that the sum sr may
be efficiently computed using integral images. First, the
summed area table of an image with intensities raised to
the power of r is calculated as shown in Eq. (7).

Srði;jÞ¼ IðrÞði;jÞþSrði−1;jÞþSrði;j−1Þ−Srði−1;j−1Þ
(7)

This operation is also performed in linear time OðnÞ.
Then, the sum of intensities sr is calculated using the
summed area table Sr, as shown in Eq. (8).

sr ¼ Srðx1; y1Þ − Srðx0 − 1; y1Þ − Srðx1; y0 − 1Þ
þ Srðx0 − 1; y0 − 1Þ (8)

The function Srði; jÞ ¼ 0 for the values i, j < 0. The com-
putation of Eq. (8) is also performed in constant time Oð1Þ.

2.1.4 Optimization details

The integral images discussed in this section are intended to
be used for image segmentation, and because the intensity
values of the image pixels are integer (in [0,255]), an integer

Fig. 1 Area to sum in a summed area table.
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integral image may be used. This data representation may be
advantageous, because the integer arithmetic is faster than
the floating point arithmetic. Thus, the segmentation meth-
odology discussed in this work may be fully implemented
using only integer arithmetic. Even though the mean and
variance values obtained from pixel intensities may be real
numbers, an integer approximation is acceptable. Therefore,
the division operations required to calculate the mean and
the variance may be performed using integer arithmetic
alone. Moreover, the division operations required by the
splitting process described next may be replaced by bit shifts.

2.2 Splitting Process
The first step of the proposed segmentation methodology is a
splitting process. This process divides the image into regions
of homogeneous intensity. First, the image is divided into
quads and each quad is tested for homogeneity. If the region
is not homogeneous, that region is further subdivided into
quads, and the process is repeated until the homogeneity
condition is reached, or until a stop condition is met.

A region homogeneous in intensity is a region in the
image that has the same intensity for all its pixels. In practice,
this situation rarely occurs. Small differences between pixel
intensities are expected in perceptually homogeneous
regions. Therefore, a certain tolerance to intensity variation
may be allowed for homogeneous regions. The maximum
intensity variation allowed is determined by a variance
threshold (σ2T) that is required to be calculated for each
image. To that end, an automatic method to detect the vari-
ance threshold is also discussed in this section.

2.2.1 Quad-tree building

Before starting the subdivision process, the original image
should be slightly modified in order to make the subdivision
easier. First, it results more convenient if the image is square,
with sides that are powers of two. This assures the image to
be divisible at every level of the tree, and the divided regions
to be always powers of two.

If the original image does not meet the aforementioned
size requirements, the image canvas is enlarged, adding
empty pixels to the right and to the bottom of the image,
until obtaining an image of 2l × 2l pixels, where l is a
positive integer value such that 2l−1 < maxðW;HÞ ≤ 2l.
Additionally, it is recommended to assign a special value
to the empty pixels. This special value has the property of
being always different from any other pixel intensity, regard-
less of the variance threshold (σ2T) used. This way, the empty
pixels can only be grouped together, and the space added by
the canvas enlargement does not interfere with the segmen-
tation process.

2.2.2 Subdivision process

The subdivision process starts with the whole image after
the canvas enlargement step. Because the side length of the
image equals 2l, consider the number of levels in quad three
to be l.

The homogeneity of the level l of the image is deter-
mined by obtaining the variance of the region (in this case
the variance of the whole image) and comparing it against
the variance threshold σ2T . The variance of the region is effi-
ciently computed by our ISM methodology using integral

images, applying Eq. (6). Notice that, for this equation
N ¼ ð2lÞ2 ¼ 22l, yielding a number that is also a power
of two, therefore, the variance calculation requires no divi-
sion operations, and a bit shift may be used instead.

To decide if the region (in this case the whole image) is
homogeneous, its variance should be below the variance
threshold level σ2T . Otherwise, the region is considered non-
homogeneous, and is subdivided into four square regions of
side 2l−1.

The process is repeated for each one of the four regions.
If a region is nonhomogeneous, the region is further sub-
divided. The process is repeated until the homogeneity con-
dition is met, or the level l ¼ 0 is reached. At this point, all
the image is divided into different regions that are homo-
geneous in intensity.

Additionally, the process may be initiated or finalized at
arbitrary levels. For example, the splitting process may start
at level l. However, until the level l − α is reached, all the
regions are considered nonhomogeneous. This consideration
is used to avoid segmentation errors produced by big regions
containing small areas that should be assigned to a different
class. If the mean intensity of such a region is below σ2T, the
error may not be detected. However, as mentioned by Ojala
and Pietikäinen,21 smaller initial regions are easily merged
together again by the merging process. In this work, we
use a maximum region of 26 × 26 pixels to avoid this
kind of error. On the other hand, the process may also be
finalized before the level l ¼ 0 is reached. This may
speed up the subdivision process, because the lower levels in
quad three have more regions to process than the upper levels.
However, doing this increases the error in the detection of the
boundaries between regions, reducing the quality of the seg-
mentation. For this reason, in this work, we use l ¼ 0.

In our implementation, we use a data structure called
“node,” to store the information of a given homogeneous
region. This information is used to further reduce the oper-
ations required by the splitting process. The nodes are stored
in a vector as soon as the homogeneous regions are found.
Because the quad tree is explored using a breadth-first
search, the resulting vector is sorted. This is required by
the merging process.

2.2.3 Automatic variance threshold selection

It is often inconvenient to define a constant variance thresh-
old σ2T for all images, because the optimum variance thresh-
old is dependent on the image under segmentation. In their
article, Ugarriza et al.3 propose an automatic approach,
called “adaptive gradient thresholds,” that initializes the
seeds of their region growing segmentation methodology.
We adapted this methodology to determine the best value of
σ2T from a gradient map obtained from a given image. This
process is fast and should be performed for every image
before starting the segmentation. The methodology adapted
from the work of Ugarriza et al.3 is discussed in this section.

An estimation of σ2T may be obtained using the next pro-
cedure. First, a gradient image is obtained from the original
image, which is assumed to have only one channel. The
image consists of K ¼ W · H pixels of intensity U ¼
fu1; u2; u3; : : : ; uKg, while the gradient image is made of
K ¼ W · H values G ¼ fg1; g2; g3; : : : ; gKg, for an image
ofW ×H pixels, where each k index from the uk and gk val-
ues corresponds to the image position k ¼ Wjþ i.
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The value for each pixel in the gradient imageG is defined
as g ¼ ffiffiffi

λ
p

, where λ is obtained using Eq. (9) presented by
Ugarriza et al.3

λ ¼ 1

2

�
qþ hþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqþ hÞ2 − 4ðqh − t2Þ

q �
: (9)

The variables q, t, and h are defined in Eqs. (10), (11) and
(12), respectively. The variables x and y are the spatial coor-
dinates of the image.

q ¼
�
du
dx

�
2

(10)

t ¼
�
du
dx

·
du
dy

�
(11)

h ¼
�
du
dy

�
2

(12)

The differential terms of Eqs. (10)–(12) are calculated as
functions of image intensity values, as shown in Eqs. (13)
and (14).

du
dx

¼ Iði; jÞ − Iði − 1; jÞ (13)

du
dy

¼ Iði; jÞ − Iði; j − 1Þ (14)

After obtaining the gradient image G, its histogram is cal-
culated, and the threshold variance σ2T is obtained from this
histogram. It is required to find a threshold p in the histo-
gram where a given percentile is reached. For convenience,
the threshold p is normalized in [0,1] and not in [0,100] as is
the percentile, but still reflecting the same proportion. The
threshold p signals the maximum intensity deviation that
should be considered as homogeneous, which is equivalent
to σT (see Fig. 2). Even though p is also a threshold value,
its behavior is different from σ2T . While σ2T changes from
image to image, p is a constant that may be experimentally
determined. Ugarriza et al.3 reported that the optimum
value for their adaptive gradient threshold is near 0.8. We
experimentally obtained a similar value for the gradient
threshold p ¼ 0.82; the protocol used for this experiment
is discussed in Sec. 3.3.1.

2.3 Merging Process
The ISM merging process combines the homogeneous
regions obtained from the splitting process into bigger
regions that are assigned to a class. The regions in a class
should be homogeneous in intensity and be spatially con-
nected. The ISM merging methodology proposed here has
three main characteristics: the number of classes is automati-
cally determined for each image, smooth gradients are con-
sidered as homogeneous regions, and different classes are
assigned for disconnected regions. The details of our ISM
merging algorithm are discussed next.

2.3.1 Conditions and cases

The homogeneous regions identified by the splitting process
(nodes) may be merged together if they fulfill the next
merging conditions. First, an unclassified region is always
merged into a classified region. Second, the unclassified
region should be equal in size or smaller than the region
into which it is going to be merged. Third, the difference of
the mean intensities between the classified and the unclassi-
fied regions should not be greater than σT . Last, the regions
must be adjacent in the vertical and horizontal directions
only.

If a region is not classified and has no classified neighbors
that fulfill the merging conditions, a new class is created for
that region. Additionally, an unclassified region may have
more than one adjacent region that fulfills the aforemen-
tioned conditions. There may be up to four suitable neigh-
bors for each unclassified region, because of the second
merging condition. If those regions share the same class
label, the assignment of the region to that class is straightfor-
ward. However, if the adjacent regions have different class
labels, those labels need to be reassigned to a single class.

2.3.2 Class assignment

At the beginning of the merging process, there is no class
assigned to any region. In this case, and whenever a region
has no neighbors that meet any of the merging conditions, a
group structure (gw) is generated. All the neighboring nodes
(ni) that fulfill the merging conditions are pointed to a group
structure (see Fig. 3). This structure keeps a record of the
sum of the pixel intensities from all the nodes.

Whenever a new node is created, a new class (Cj) struc-
ture is also defined, and the group is pointed to that class
structure. The class contains a unique label and stores a vec-
tor containing all the group structures that point to the class.

Fig. 2 Histogram of the gradient image showing the p threshold level.
Fig. 3 Graphic representation of the node (ni ) and group (gw ) struc-
tures. The arrows depict pointers to structures.
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If two or more regions of different classes are merged
together, their corresponding groups are added to the group
vector of the class. This reduces the computing time other-
wise used in node reassignment. Figure 4 shows the relation-
ship between the class and group structures.

The merging process is performed using the vector of
node structures generated during the splitting process. This
vector is sorted by the size of the regions, where the first
nodes correspond to the biggest homogeneous regions in the
image. This means that all the classes are started using the
biggest region possible and smaller regions are added later.

The use of intermediate group structures between the
node and the class structure is useful for the implementation
only. It considerably reduces the number of operations that
are required to merge multiple classes together. At the end of
this process, the remaining classes are labeled from 1 to L,
consecutively.

2.4 Small-Region Elimination
At the end of the split and merge segmentation process, all
the pixels in the image are assigned to a class in the resulting
segmentation. However, there are many classes among them
that are associated only with a small group of pixels.

Normally, it is expected that an image segmentation will
have a reduced number of classes, and those classes are
expected to group the important areas in the image. For
this reason, an excess of small classes may pose a problem
for some applications. It may be convenient to eliminate
those small classes and later reassign their pixels to bigger
classes. The elimination process is straightforward. All the
class structures are inspected and if the number of pixels
associated to that class is below M pixels, the class is elim-
inated along with the structures used by it. All the pixels
affected are declassified.

If elimination of small classes is used, it is more conven-
ient to perform the class labeling afterwards.

2.5 Region Growing
The declassified pixels from the small region elimination
procedure are reassigned to the class that is more convenient
with a region growing procedure. Considering that most of
the pixels are already classified, the time required to perform
this operation should be short, because the region growing is
applied only to a small number of pixels.

The process starts by introducing all the unclassified pix-
els into an FIFO stack. Each element of the queue is tested in
order to determine if that particular pixel may be assigned to
a neighboring class. There are two conditions to meet in

order to perform that assignment. First, the pixel should
be a neighbor of a pixel that is already classified. Second,
the pixels recently assigned to a class by this process are
not considered as classified pixels.

Those pixels that do not meet the assignment conditions
are pushed to another FIFO stack to start a second cycle. The
pixels that were assigned in the previous step are now con-
sidered as classified pixels. This distinction is made in order
to make the regions to grow in layers. The same process is
repeated until no unclassified pixels remain.

To summarize the ISM segmentation algorithm presented
in this section, a series of examples obtained from each step
of the methodology are shown in Fig. 5. Figure 5(a) shows
the original image. Then, Fig. 5(b) shows the intensity values
obtained from the original image, used here as a descriptor.
Figure 5(c) shows the homogeneous regions obtained from
the splitting process. Their boundaries are shown in black.
Figure 5(d) shows the homogeneous regions obtained after
the merging process. The boundaries are also shown in
black. Figure 5(e) shows in red the small regions containing
less than M pixels. Finally, Fig. 5(f) shows the resulting seg-
mentation, obtained after the region growing procedure. This
image shows each class label in a different color.

3 Tests and Results
This section presents the results obtained from of a series of
tests, divided into three categories. The first set of tests is
made to determine the optimum segmentation parameters
for the proposed algorithm. The second one compares the
outcome of the proposed methodology with other state-of-
the-art segmentation algorithms. The third set is made to
experimentally ascertain the execution time of the method.

It is desirable that the proposed methodology reaches
results similar to other state-of-the-art methods. Also, the
methodology proposed is expected to be fast enough to
be used in real-time applications (i.e., 15 fps or more).
Our algorithm is compared with the 11 segmentation
methods presented in the survey made by Vantaram and
Saber.1 These algorithms are: the Edge Detection and Image
Segmentation (EDISON) system by Christoudias et al.,22

the Compression-based Texture Merging (CTM) by Yang
et al.,23 the J-Segmentation (JSEG) algorithm by Deng and
Manjunath,2 the Dynamic Color Gradient Thresholding
(DCGT) by Balasubramanian et al.,24 the Gradient
Segmentation (GSEG) algorithm by Ugarriza et al.,3 a multi-
resolution extension of the GSEG methodology called
MAPGSEG by Vantaram et al.,4 the Level Set-based
Segmentation (LSS) by Sumengen,25 the Gibbs Random
Field (GRF) algorithm by Vantaram and Saber,7 the
Graph-based Segmentation (GS) algorithm by Felzenszwalb
and Huttenlocher,19 the Ultra-metric Contour Map (UCM)
segmentation by Arbeláez and Cohen,26 and a Color Texture
Segmentation (CTS) by Hoang et al.27 These segmentation
algorithms are evaluated using the normalized probability
rand (NPR) index proposed by Unnikrishnan et al.15 The
NPR index requires reference segmentations to determine the
evaluation measure, and the Berkeley Segmentation Dataset
and Benchmark (BSDS) proposed by Martin et al.17 is used
for that purpose. This is a collection of 300 natural images
that includes from 5 to 10 human-made segmentations for
each image.

Fig. 4 Graphic representation of the group and class structures. The
arrows depict pointers to structures.
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Our ISM algorithm is also evaluated using the NPR index
and the BSDS images in order to compare our results with
those from the 11 algorithms of the survey under equal con-
ditions. Additionally, to ascertain the significance of the
results obtained, a statistical t-test was performed. The test
protocols explaining the different experiments are presented
next, along with a discussion of the obtained results.

3.1 Evaluation of Results, Using the NPR Index
The segmentations resulting from the tests performed were
evaluated using the NPR index, a segmentation evaluation
methodology proposed by Unnikrishnan et al.15 This meth-
odology compares an image segmentation against a refer-
ence segmentation (i.e., the ideal outcome) and determines
their similitude. The NPR index has four desirable properties
for segmentation evaluation: first, the method is able to com-
pare segmentations that have a different number of regions.
This property is important, because the ISM segmentation
methodology automatically determines the number of labels
of a segmentation and may differ from the references or
the results from other algorithms. Second, the NPR index
presents no degenerate cases in which bad segmentations
obtain abnormally good results. Third, the NPR index is
able to use multiple segmentation references to obtain a

more objective result and is able to accommodate the refine-
ment of regions found in the references. Finally, the measure
obtained from the NPR index allows the comparison
between segmentations of different images or between seg-
mentations from different algorithms.

In this work, the Matlab toolkit provided by Yang et al.23

is used to compute the probabilistic random (PR) index. The
required human-made references are provided in the BSDS.
The NPR index is obtained using Eq. (15):

NPR ¼ PR − E½PR�
max½PR� − E½PR� ; (15)

where max½PR� ¼ 1, and E½PR� ¼ 0.6064, according to
Vantaram and Saber,1 for the set of 300 natural images in
the BSDS.

3.2 Statistical Tests
For all the tests performed, the segmentation results obtained
using the NPR index were averaged. This result is the mean
performance of the ISM algorithm over the 300 images in the
BSDS. This mean result was compared with the results from
the 11 algorithms in the survey of Vantaram and Saber,1 in
order to determine their differences in quality. However, a

(a)

(c) (d)

(f)(e)

(b)

Fig. 5 Segmentation steps: Original image (a), feature description image (b), image after the splitting
process (c), image after the merging process (d), elimination of small regions (e), and the resulting
segmentation classes obtained after the region growing procedure (f).
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simple comparison of the mean performance is not enough to
provide a conclusion from such comparisons. In cases where
the results are too close, the difference may not be signifi-
cant. In order to identify such cases, statistical significance
tests need to be performed for all the comparisons made. In
this study, we use a two-sample t-test, where different var-
iances are assumed. Our null hypothesis is that the mean
results of two test sets are the same. On the other hand,
our alternative hypothesis is that the mean results of two
test sets are actually different.

The results obtained are reported in the following sections.
Additionally, different tests were performed to optimize the
parameter p required by the ISM methodology, the parameter
M used for small-region elimination, and the parameter R
used in the preprocessing stage to calculate the SD image.

3.3 Parameter Optimization
This section presents the tests conducted in order to deter-
mine the best segmentation parameters for the proposed
methodology. There are three parameters to optimize. The
first one is the parameter p of the ISM methodology,
used to determine the variance threshold σ2T of the image.
This parameter specifies the percentile of the image inten-
sities that should be below σ2T in an adaptation of the method
proposed by Ugarriza et al.3 The second parameter is the
minimum sizeM allowed for a class in the resulting segmen-
tation. This parameter is used by the small-region elimina-
tion process. All pixels of classes below the value of M
are declassified and reassigned to bigger classes. The last
parameter R defines the size of the window W ¼ 2Rþ 1.
This window size is required to calculate the SD image of
the preprocessing stage. The SD image is used here as a tex-
ture descriptor.

3.3.1 Gradient histogram threshold

The threshold p used to determine the value of σ2T is adapted
from the work of Ugarriza et al.3 They report a value of 0.8
for their adaptive gradient thresholds. However, because the
adaptation of this method may lead to differences in the
results, we conducted a test to independently determine
the value of p.

For this test, we used the 300 images from the BSDS pro-
posed by Martin et al.17 as a training set. All the images in
this set were segmented using different values in 0 ≤ p ≤ 1.
The segmentation evaluations obtained using the NPR index
show that the best value is p ¼ 0.82. Even though this is the
best average evaluation value, the statistical significance test
performed shows that the differences of the segmentation
results are not significant for values in 0.49 < p < 0.88,
meaning that the method is robust for different values of
p. This means that the value of p ¼ 0.82 and the value of
0.8 reported by Ugarriza et al.3 for their adaptive gradient
thresholds have no significant differences. From now on,
we use the value of p ¼ 0.82 only as a preference.

3.3.2 Size of a small region

We conducted a test to determine the optimal value for the
minimum class size M used in the small-region elimination
step. The 300 testing images from the BSDS were seg-
mented, this time using different values of M that vary

from zero to 500 pixels. The results were evaluated using
the NPR index and the next results were found.

First, we found that the optimal value obtained is
M ¼ 400. However, the statistical significance test per-
formed showed that there is no significant difference in
0 ≤ M ≤ 500. Therefore, the elimination of the small classes
is not relevant to ascertain the quality of the image. However,
it may be used for display purposes. We choose the value of
M ¼ 400 for the comparison tests, described in Sec. 3.4.

3.3.3 Window size to obtain a deviation image

Another test was conducted to determine the optimal size of
the inspecting window that was used to obtain the SD image
in the preprocessing stage. We used the 300 images in the
BSDS to obtain different segmentation sets for different val-
ues of R. We average the results from the 300 segmentations
for a given R value and then compare the different average
results obtained using different R values. The values of R
vary in the range of 0 ≤ R ≤ 20. The result obtained
shows a maximum for R ¼ 8. However, the statistical signifi-
cance test shows that the differences are not significant for
values in 5 ≤ R ≤ 12. In our implementation, we also used
the integral images in the preprocessing stage to calculate the
SD image. This has two advantages: first, the SD image is
obtained in linear time, and second, that time is independent
of the size of the window that is used, i.e., R. Therefore, we
can use any value of R without performance losses. We
choose R ¼ 8 for the performance tests, only as a preference.

3.4 Segmentation Performance
This section presents the results obtained from the proposed
ISM methodology using the SD images as input after the
small-region elimination process. Figure 6 shows a diagram
of the segmentation process performed using the ISM meth-
odology. The results were compared with other state-of-the-
art segmentation methods and were also evaluated using the
NPR index.

The evaluation of the segmentations, obtained from the
300 images from the BSDS using the ISM methodology,
obtains an average evaluation μ ¼ 0.390, and a standard
deviation σ ¼ 0.636. The parameters used were R ¼ 8 for
the SD image in the preprocessing stage, p ¼ 0.82 for the
ISM segmentation, and M ¼ 400 for the small-region elimi-
nation step.

The results from our ISM methodology were compared
with the 11 algorithms reported by Vantaram and Saber.1

Some image examples obtained from these results are shown
in Fig. 7. The 11 algorithms used for comparison were
applied to the same 300 images from the BSDS as our
ISM methodology, and their segmentation results were

Fig. 6 Diagram of the segmentation process using the integral split
and merge (ISM) methodology.

Journal of Electronic Imaging 013007-8 Jan∕Feb 2015 • Vol. 24(1)

Correa-Tome and Sanchez-Yanez: Integral split-and-merge methodology. . .



also evaluated using the NPR index. Therefore, the tests were
conducted under the same evaluation conditions.

Table 1 shows a comparison of the results obtained by
our algorithm and the 11 algorithms. Each algorithm was
applied to the 300 images from the BSDS. The resulting
segmentations were evaluated using the NPR index. The

table shows the mean result for each algorithm (μi), and the
standard deviation of the results (σi).

Additionally, the table shows the conclusions obtained
from the statistical significance t-test. The mean result of
each algorithm used for comparison (μi) was tested against
the mean result from our ISM methodology (μ). The t-test
determines whether the difference between mean values is sig-
nificant or not. The table shows μ ¼ μi when the differences
are not statistically significant, and μ ≠ μi otherwise.

The results from the t-test show that there are no signifi-
cant differences between the results obtained from our meth-
odology and the algorithms used for comparison, with the
exception of the GSEG and the UCM algorithms that obtain
better results and the CTS algorithm that obtains worse
results. Therefore, our ISMmethodology using the SD image
as a texture descriptor obtains results comparable to most of
the eleven algorithms tested. However, the use of a feature
descriptor other than the SD image may lead to better results.

3.5 Execution Time and Algorithmic Complexity
An execution time test was performed to determine the com-
plexity of the ISM methodology relevant to the number of
pixels processed. For the test, 150 scaled sets of the BSDS
were used. The ISM segmentation was applied to all 300
images in each scaled set. The segmentation of each scaled
set was repeated 100 times in order to increase the accuracy
of the registered time t. This process was repeated for all the
150 scaled versions. Figure 8 shows as dots the time (ms)
obtained experimentally for different number of pixels (n),
corresponding to different scaled versions of the BSDS.
The average segmentation time for a typical n-pixel image
from the database is obtained by computing t∕30;000.

The results show a piecewise linear behavior. The dis-
continuities between segments are related to the canvas
enlargement step of the ISM methodology. For nonsquare
W ×H image sizes, having minðW;HÞ < 2l∕2, two quads
are filled only by empty pixels. The processing required

(a) (b) (c) (d)

Fig. 7 Example results: the input image (a), the SD image (b), the segmentation of the SD image using
ISM (c), and a human-made reference segmentation (d).

Table 1 Results from the evaluation of the 300 image segmenta-
tions, using the NPR index. The table shows the algorithm names
(Alg.), a numerical label (i), the mean result (μi ), the standard
deviation of the sample (σi ), and the significance test decision (t-test).

Alg. i μi σi t-test

ISM 0.390 0.636

EDISON 1 0.377 0.383 μ ¼ μ1

CTM 2 0.386 0.368 μ ¼ μ2

JSEG 3 0.440 0.318 μ ¼ μ3

DCGT 4 0.394 0.375 μ ¼ μ4

GSEG 5 0.496 0.306 μ ≠ μ5

MAPGSEG 6 0.495 0.312 μ ¼ μ6

LSS 7 0.329 0.344 μ ¼ μ7

GRF 8 0.488 0.309 μ ¼ μ8

GS 9 0.457 0.324 μ ¼ μ9

UCM 10 0.507 0.322 μ ≠ μ10

CTS 11 0.214 0.419 μ ≠ μ11
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for those quads is negligible. However, for images having
minðW;HÞ ≥ 2l∕2, there are no empty quads, and the
number of quad divisions increases significantly. The
time “jump” occurs for image sizes having minðW;HÞ ¼
2l∕2þ 1. Even though these jumps seem to increase the
time consumption, their occurrence decrease in frequency
as n increases because the occurrence of the jumps are func-
tions of powers of two.

The results of the different experiments shown as dots in
Fig. 8 were adjusted to lines, using the least squares fitting
methodology. The tests performed on the 300 images from
the BSDS for images of 481 × 321 pixels show that a single
image is segmented in an average time of 32.6 ms, using a
microprocessor fourth generation Intel Core i7 at 3.40 GHz.
Because of its piecewise linear time complexity, the ISM
methodology may achieve real-time segmentation using
adequate hardware.

4 Concluding Remarks
In this study, we propose the ISM segmentation methodol-
ogy, a split-and-merge segmentation algorithm that uses inte-
gral images to achieve real-time segmentation through the
fast computation of statistics. Additionally, the ISM method-
ology performs connected component analysis. Therefore,
regions showing equal features are labeled as different
regions if they are not spatially connected. Also, the method
is able to follow the gradients present in some image areas
and group those areas into a single region. Last, the ISM
methodology automatically determines the number of
regions in each image segmentation. The comparison of
results between our ISM methodology and other state-of-
the-art algorithms shows that our ISM methodology obtains
results as good as most of the methods evaluated. Even
though the results from the GSEG and the UCM algorithms
obtained a better performance, the outcomes from the ISM
method using a simple SD image as a texture descriptor are
comparable to those of the rest of the algorithms. However,
this quality is achieved by the ISM method using a single
texture feature, while the other methods use a combination
of both color and texture features. Additionally, better results
may be achieved using different feature descriptors, or by

the combination of two or more descriptors. Regarding
the execution time, the execution tests show that the ISM
methodology is executed with a piecewise linear algorithmic
complexity. To our knowledge, none of the comparison algo-
rithms achieves this execution time. Our methodology is able
to obtain image segmentations at a rate of about 32 fps for
images of 481 × 321 pixels; in this instance, the application
may be considered real-time. The results show that the ISM
methodology may be a good alternative for applications that
need a fast segmentation using few image features, while still
achieving an acceptable segmentation quality.
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