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Abstract

A cochlear implant (CI) is a device that restores hearing using an electrode array that is surgically 

placed in the cochlea. After implantation, the CI is programmed to attempt to optimize hearing 

outcome. Currently, we are testing an image-guided CI programming (IGCIP) technique we 

recently developed that relies on knowledge of relative position of intracochlear anatomy to 

implanted electrodes. IGCIP is enabled by a number of algorithms we developed that permit 

determining the positions of electrodes relative to intra-cochlear anatomy using a pre- and a post-

implantation CT. One issue with this technique is that it cannot be used for many subjects for 

whom a pre-implantation CT was not acquired. Pre-implantation CT has been necessary because it 

is difficult to localize the intra-cochlear structures in post-implantation CTs alone due to the image 

artifacts that obscure the cochlea. In this work, we present an algorithm for automatically 

segmenting intra-cochlear anatomy in post-implantation CTs. Our approach is to first identify the 

labyrinth and then use its position as a landmark to localize the intra-cochlea anatomy. 

Specifically, we identify the labyrinth by first approximately estimating its position by mapping a 

labyrinth surface of another subject that is selected from a library of such surfaces and then 

refining this estimate by a standard shape model-based segmentation method. We tested our 

approach on 10 ears and achieved overall mean and maximum errors of 0.209 and 0.98 mm, 

respectively. This result suggests that our approach is accurate enough for developing IGCIP 

strategies based solely on post-implantation CTs.
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1. INTRODUCTION

A cochlear implant (CI) is a device that restores hearing by directly stimulating the auditory 

nerve using an electrode array that is surgically placed in the cochlea. After placement, the 

CI is programmed by an audiologist who determines a number of device programming 

parameters that define how signals are sent to the implanted electrodes to try to optimize 
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hearing outcome. We recently developed and are currently testing an image-guided cochlear 

implant programming (IGCIP) technique that relies on knowledge of the spatial relationship 

between the electrodes and intra-cochlear anatomy [1]. Figure 1a shows the surfaces of the 

two principal intra-cochlear structures, the scala tympani (ST) and the scala vestibuli (SV), 

and a surface representing the spiral ganglion (SG), which is the group of nerves targeted for 

stimulation by the electrode array. Figure 1b shows an example surface model of the 

electrode array inserted into the cochlea, and Figure 1c shows a surface of the active region 

(AR), which is the interface between (1) the SG and (2) the union of the ST and SV. This is 

the region where electrical activation of nerves is most likely.

IGCIP is enabled by a number of algorithms we have developed that permit determination of 

the position of the electrodes relative to intra-cochlear anatomy using a pre- and a post-

implantation CT [2]-[7]. In a preliminary study with over thirty subjects, we have shown 

that IGCIP can significantly improve hearing outcomes [1]. One issue with our current 

technique is that it has not been possible to localize intra-cochlear structures in post-

implantation CTs directly due to the image artifacts caused by the electrode array that 

obscure the cochlea in the image (see Figure 1d and 1e). Thus far, the shape of the cochlea 

and intra-cochlear anatomy has been determined using a pre-implantation CT, which we 

then register to a post-implantation CT. For unilateral CI recipients where only a post-

implantation CT with both ears in the field of view (FOV) is available, we have also 

developed a technique that permits estimating the shape of the cochlea in the implanted ear 

using information from the contralateral normal ear [8]. However, the approaches we have 

developed thus far cannot be used for many CI recipients for whom a pre-implantation CT 

of neither ear is available. In this paper, we present a technique by which we can localize the 

intra-cochlear structures in post-implantation CTs directly, without the need for a pre-

implantation CT of either ear, despite the substantial artifacts present in these images. This 

new approach capitalizes on the physical relationship between the cochlear anatomy and the 

labyrinth, i.e., the rest of the inner ear.

2. METHODS

Our approach consists of two main steps. First, (A) we localize the entire labyrinth, which 

we use as a landmark structure, by (1) coarsely estimating its position using a shape chosen 

from a library of labyrinth shapes, (2) automatically creating a statistical shape model that is 

specific to the subject, and (3) refining the coarse estimate by performing a statistical shape 

model-based segmentation. The labyrinth is a structure that shares the external wall of the 

cochlea with the intra-cochlear anatomy and that also includes the semi-circular canals. 

Figure 2a and 2b show a surface of the labyrinth and the intracochlear structures that it 

externally bounds. Next, (B) we segment the SOIs by fitting the subset of SOI model points, 

that represent the external wall of the cochlea (see Figure 2d and 2e), to the part of the 

labyrinth that represent the same (see Figure 2c). To do the fitting, we established offline a 

one-to-one point correspondence between the subset of SOI model points and the subset of 

labyrinth model points that represent the exterior of the cochlea. The exterior region of the 

cochlea, which we use to fit the SOIs model, is the only portion of the SOIs that (a) has 

contrast in CT and (b) can also be localized by the labyrinth.
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The following subsections detail our methods. In Section 2.1, we present the datasets we use 

in this study. The image-to-image registration process and active shape segmentation 

process we use at various steps throughout our work are detailed in Section 2.2 and 2.3, 

respectively. Next, in Section 2.4, we present the process we use to create our shape library. 

Finally, in Section 2.5, we present the multi-step process we propose to localize the 

labyrinth and use its position to estimate the position of the intra-cochlear structures.

2.1 Data

In this study, we use several groups of head CT scans, which are presented in Table I. The 

scans were acquired from several conventional scanners and a low-dose flat-panel 

volumetric CT (fpVCT) scanner (Xoran Technologies xCAT® ENT). Conventional CTs of 

70 subjects are used for creating SOI and labyrinth shapes library as discussed in section 2.4, 

conventional CTs of 25 subjects are used for creating an active shape model (ASM) of the 

labyrinth as discussed in section 2.4, fpVCT scans of 14 subjects are used for creating an 

intensity model for each point on an ASM of the labyrinth as discussed in section 2.5.2, and 

CT-fpVCT pairs of 8 subjects are used for validating our segmentation results as discussed 

in 2.5.3. Our validation dataset (dataset 5) is constructed such that it allows us to (1) 

generate automatic segmentations on post-implantation CTs using the approach we propose 

(2) register the post-implantation CTs to the corresponding preimplantation CTs and (3) 

validate our results by comparing registered automatic segmentations to ground truth 

segmentations established on the pre-implantation CTs. Typical voxel size for conventional 

CTs is 0.25×0.25×0.3 mm3; for flat-panel CTs it is 0.4×0.4×0.4 mm3.

2.2. Image registration methods

In this subsection, we present the image-to-image registration process that we use at various 

steps throughout our study. Given a “fixed” image, i.e., an atlas or reference image, and a 

“floating” image, i.e., the target image, we use the process outlined in Figure 3 to register 

them. First, we affinely register the entire but downsampled images using an intensity-based 

affine registration method [9]-[10]. Next, we refine this registration by performing intensity-

based affine registration at full image resolution on a pre-determined region that 

encompasses the ear structures. Finally, we further refine the registration by performing 

intensity-based non-rigid registration on the ear region [11].

2.3. Active shape model (ASM)-based segmentation

Various processes we describe in the following subsections rely on the creation of an active 

shape model (ASM) and performing active shape segmentation. Thus, in the following 

subsections we describe the general ASM framework that we use.

2.3.1. Active shape model (ASM) creation—Given a reference surface and a set of 

training surfaces of a structure with a one-to-one point correspondence between the points 

on the reference surface and the points on each training surface, we perform the following 

steps to create an ASM of a structure. First, we register each training surface to the reference 

surface with a 7-DOF (three translations, three rotations, one isotropic scaling) 

transformation that minimizes the root-mean-squared (RMS) distance between the surfaces. 

Next, we use the registered surfaces to build the structure ASM according to the procedure 
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described by Cootes in [12]. Finally, we store the ASM in the reference image space. The 

ASM is represented by the mean shape , with N being the number of points in the 

shape, and L eigenvectors U = [u0, u1, … , uL−1] that are corresponding to the largest 

eigenvalues λ0, λ1, … , λL−1. Mathematically,

(1)

where X is the covariance matrix of the points on registered surfaces.

2.3.2. Active shape segmentation—Active shape segmentation of the structure is 

performed by fitting the ASM to an initial estimate of the shape. This process consists of 

three main steps: (1) Shape initialization: We determine an initial coarse estimate of the 

shape  by projecting the mean shape  from the reference image space to the 

target image space using the registration transformation that registers the two images. This 

registration transformation is computed using the image-to-image registration process 

described in Section 2.2. (2) Shape adjustment: We adjust the initial shape by iteratively 

finding a candidate position for each ith point in the initial shape and fitting the shape model 

to these candidate positions in a weighted least squares sense. The candidate position  for 

each initial point xi is determined along the surface normal  in the interval [−1.5, 1.5] mm, 

equivalently,

(2)

where Δd = 0.15 mm, and kmin is chosen as,

(3)

i.e., the candidate position for the ith point is the position at which the cost function Ci(•) is 

the smallest cost value in the interval [−1.5, 1.5] mm along . The cost function is tailored 

to the type of image we use as described in the following section. We then fit the shape 

model to the candidate points  to obtain an adjusted shape , given by

(4)

where b, a vector of parameters that defines the shape, is given by

(5)

and , defined as

(6)
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is the residual between the mean shape and candidate points, after they are registered to the 

mean shape with a 7-DOF (three translation, three rotation, and one isotropic scaling) 

transformation ψ, computed as,

(7)

We assign a reliability weight wi ∈ [0, 1] for each candidate point. The reliability weight 

computation, as we will explain in the following sections, is tailored for the type of image 

we want to segment. The weight matrix W = diag([w0, w1, … , wN−1]), with wi = [wi, wi, wi], 

in Eqn. (5) is designed so that candidate points with high reliability have more influence on 

the least squares model fitting. (3) Iterate shape adjustment: We iterate the shape adjustment 

process until the RMS distance between the adjusted shape and the initial shape at that 

iteration is small, specifically until  is satisfied, where ε is 

empirically set to 0.01 mm.

In summary, given an ASM of a structure and its initial shape estimate, we iteratively fit the 

ASM to segment the structure. At each iteration, we determine a candidate position for each 

ith point using Eqn. (2), we re-compute a weight for each ith candidate point, and finally we 

determine an adjusted shape by fitting the ASM to the candidate points in a weighted least 

squares sense using Eqn. (4).

2.4. Shape library creation

Our segmentation approach, as we will discuss in the next subsection, relies on first 

determining a coarse estimate of the labyrinth, which we use as a landmark, and of the intra-

cochlear structures, which are the SOIs, by mapping surfaces of the labyrinth and SOIs 

chosen from a library of labyrinth and SOI surfaces to the subject’s images. To enable this 

approach we create a library of internal ear structures segmented in a number of subjects’ 

pre-implantation CTs. Specifically, we use the set of CTs in dataset 2 (see Table I) to create 

a library of surfaces that represent the labyrinth and SOIs of each subject’s left or right ear, 

chosen randomly.

To produce a surface of the labyrinth in each CT in this dataset, we perform an ASM-based 

segmentation of the labyrinth in the CT using the active shape segmentation process 

described in Section 2.3.2. The labyrinth ASM we use in this step is created offline, using 

the reference CT in dataset 1 and the set of training CTs in dataset 3, according to the 

process we previously reported in [8] for the same purpose. When segmenting an image with 

this model, the cost Ci(k) we use for candidate position selection in Eqn. (3) is given by

(8)

where I(•) is image intensity in the CT at a given point. It is thus designed such that a 

candidate position for the ith point is chosen to be the position with the largest intensity 

gradient over the interval [−1.5, 1.5] mm along . We use two different approaches for 

selecting candidate positions, one for contrasted points , which are the subset 
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of points we know a priori are well contrasted in CT, and one for non-contrasted points 

, which are the rest of the labyrinth surface points. Points that belong to C 

and C’ have been labeled at the time the models were created. For each xi ∈ C, we 

determine a candidate position  using Eqn. (2) and assign a reliability weight of wi = 0.99, 

while for each xi ∈ C’ we use its original initial position determined via image registration 

as a candidate position and we assign a reliability weight of wi = 0.01. A relatively high 

weight is thus assigned to the candidate positions for C so that the shape fitting is influenced 

more by those points with contrast in the CT. Although the results obtained with this 

techniques are generally satisfactory, there are cases where mis-segmentation is observed. 

This is likely caused by the limited number of shapes we use to create our ASM, which may 

not be able to capture enough variability to segment accurately all the images in our library. 

To deal with this issue, at each iteration, we determine the final adjusted point for the ith 

point using the equation

(9)

which is a weighted combination of the position of the fitted model position , given by 

Eqn. (4), and the candidate position , given by Eqn. (2), controlled by the weight 

parameter α. We set α to be 0.8 initially and we perform our iterative shape adjustment 

while decrementing α by 0.1, at the end of each iteration, for the first six iterations and use 

the final value of α for the remaining iterations. The value of α is set such that we largely 

rely on the model at the beginning. As we iteratively obtain better estimates of the shape, we 

gradually rely more on the candidate points which are likely to be positions with strong 

image gradient.

Finally, after the labyrinth is segmented algorithmically we manually adjust the 

segmentation to correct for any visually identifiable error. We then rely on the segmented 

labyrinth surface and an ASM of the SOIs, which we previously created and reported in [2], 

to segment the SOIs. To do this, we first establish offline a one-to-one point correspondence 

between the model points of the SOIs and the model points of the labyrinth. The SOI model 

points are then fitted to the corresponding points on the segmented labyrinth.

We produce the surfaces such that there is a one-to-one, across subject, point 

correspondence between the points composing the surfaces. For the purpose of segmentation 

strategy, which we will explain, we divide the points on each labyrinth included in the 

library into two groups: near points, which are points that may be close to implanted 

electrodes, and far points, which are the rest of points. Figure 2f shows a surface of the 

labyrinth with the two point groups rendered with different colors.

2.5. Labyrinth and SOIs segmentation

Our approach for segmenting both the labyrinth and SOIs in a target CT is to first determine 

a coarse estimate of the structures and then refine this coarse estimate. To identify a coarse 

estimate of the structures we map surfaces of the structures, chosen from our shape library, 

that best localize the structures in the target CT. We then create ASM models for the 

structures using the subset of shapes chosen, from our shape library, based on their 
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similarity to the corresponding structure shapes in the target CT. Finally, we refine the 

coarse estimate using a standard weighted ASM-based segmentation method. The following 

subsections detail our shape library-based coarse shape estimation and our shape model-

based segmentation refinement steps.

2.5.1. Shape library-based segmentation initialization—We coarsely localize the 

labyrinth with a labyrinth surface chosen from our shape library. The surface is chosen such 

that its far points (see Figure 2f) best approximate the far points portion of the labyrinth in 

the target image. This process includes several steps. First, we determine the far points of 

the labyrinth in the target image by fitting the far points of the labyrinth ASM (see Section 

2.3.1) following the segmentation process described in Section 2.3.2. The far points are 

likely to be far from implanted electrodes. They are thus unlikely to have been affected by 

implant-related artifacts in the image. Next, we register each labyrinth surface in our shape 

library to the target image using the transformation that minimizes the RMS distance 

between the far points on the library surface and the far points localized in the target image 

in the previous step. Finally, we compute a dissimilarity quantity for each registered surface 

as the residual RMS. The registered surface with the smallest dissimilarity quantity ks is 

used as the coarse segmentation, with ks defined as

(10)

i n which M is the number of subjects in the library,  is the set of far points 

localized in the image,  is set of far points in the kth shape in the library, Nf is the 

number points in the far portion of the labyrinth, and Tk is the 6-DOF (three rotations, three 

translations) transformation that registers the two far point sets, computed as,

(11)

The value of the dissimilarity term is low when the shape represented by the far points 

localized in the image closely matches the shape represented by the far points in the kth 

surface. As we will show in the results section, the far portion of the labyrinth can be used 

as a good landmark for predicting the position of the labyrinth. A coarse segmentation of the 

SOIs is obtained by projecting the ks-th subject’s SOI surfaces to the target image through 

Tk.

2.5.2. Shape model-based segmentation refinement—To refine the coarse 

segmentations, we first segment the labyrinth by performing a weighted active shape 

segmentation and then segment the SOIs by fitting their ASM to the segmented labyrinth. 

This process is summarized in Figure 4.

First, we create two ASMs, one for the labyrinth and another for the SOIs using a subset of 

surfaces from our shape library. These are chosen as the five (a number chosen 
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experimentally) surfaces with the smallest dissimilarity quantity. The ASMs we create are 

thus specific to each target image. Next, using this target-specific ASM, we refine the initial 

labyrinth segmentation as discussed in Section 2.3.2. In this process, we use the coarse 

labyrinth localized in section 2.5.1 as the initial shape. We then iteratively refine it by first 

finding candidate position  (see Eqn. (2)) for each ith point xi and then fitting the ASM to 

the candidate positions in a weighted least squares sense (see Eqn. (4)). The cost function 

Ci(•) we use for candidate position selection in Eqn. (3) is a function of an intensity model 

of the image at that point. To build the intensity model, we rely on a set of manually 

segmented labyrinth surfaces obtained from dataset 4. For each jth training surface 

an intensity profile p(xji) is extracted at each ith point along the normal  using the 

equation

(12)

where Δd = 0.15 mm, and Ij(•) is the intensity fo the jth training image at a given point. The 

intensity model at the ith point is given by , where M is the number of training 

surfaces. Finally, the cost function is designed as

(13)

which defines the cost for selecting  as the candidate position for xi as the 

minimum Euclidean distance between the intensity profile at  and all the M 

intensity profiles contained in the set of model profiles at the ith point. The reliability wi ∈ 

[0, 1] we assign for each ith point is based on the intensity profile extracted at the ith point 

in I, and is given by,

(14)

where R is an intensity threshold that separates the bright metallic artifact from the rest of 

the structures. This weight is high when the set of intensity values in a given profile are 

below R, which indicates that the extracted profile is far from the image artifact in the image 

and is thus more likely to be reliable. To determine this threshold, the maxima along all the 

intensity profiles extracted along the surface normals at the points composing the initial 

shape are first computed. The threshold is then chosen experimentally to be the 90th 

percentile of the distribution of maxima. It is thus adapted to each image. Finally, we 

segment the SOIs by fitting the points on the target-specific SOIs’ ASM to their 

corresponding points on the segmented labyrinth, as discussed in Section 2.4.

2.5.3. Segmentation validation—We validate our method by automatically segmenting 

the ST, SV, SG and labyrinth in the post-implantation CTs in dataset 5 (see Table I) using 

the approach we propose and by measuring the resulting segmentation errors. The gold-

standard surfaces that we use for comparison were created in the corresponding pre-

implantation CTs by manually editing surface points on segmentations that are automatically 

initialized by pre-implantation CT segmentation techniques we previously developed [2], 
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[8]. For each structure, we measure a distance from each point on its automatically 

generated surface to the corresponding point on its gold-standard surface, and report the 

mean, standard deviation, median and maximum of the distances we measure over all points 

on the surface. To quantify the improvement afforded by our refinement method, we 

measure the same segmentation error when we only use the segmentation initialization step.

3. RESULTS AND DISCUSSIONS

In Table II, we present errors obtained in segmenting the entire SOIs. The mean, standard 

deviation, median and maximum errors are 0.254, 0.128, 0.224, 0.76 mm, respectively, for 

results achieved using our segmentation initialization approach alone and 0.209, 0.128, 

0.181, 0.98 mm, respectively, for results achieved by refining the initial results using our 

segmentation refinement approach. Table III presents the same information for the labyrinth. 

Overall SOI average segmentation error is close to half the voxel size in the segmented CT 

and errors are all sub-millimetric (<1 mm). In Figure 5, we show renderings of segmented 

SOI surfaces colormapped with segmentation errors for all testing ears. For the majority of 

the cases, SOI segmentation errors are sub-voxel, except for one (1L). For ear 1L we 

observed that the labyrinth surface chosen from the shape library using Eqn. (10) does not 

localize the SOIs as well as it does the far points region of the labyrinth, i.e., the relative 

position of the far points and the near points in this particular subject is different than in the 

selected library shape. This is also the case for the subset of surfaces selected to build the 

target-specific ASM for performing our segmentation refinement step. Because of this, the 

initial SOI segmentation errors are relatively large and they get worse when using our 

segmentation refinement step. We conducted an experiment for 1L where we perform our 

segmentation refinement step using an ASM built with all the shapes, rather than a subset of 

shapes, in our library. The final errors in segmenting the SOIs we obtain by doing so are 

0.37, 0.12, 0.36, 0.78, which are smaller than the initial errors. This indicates that for ear 1L 

our target-specific ASM did not capture the target structure shapes well. The same 

phenomenon has been observed for ear 7R. However, for 80% of the test ears (8 out of 10), 

performing our segmentation refinement step has led to a reduction in initial segmentation 

errors. We do not use all shapes in the library to create the target specific ASMs because 

experiments we conducted show that the smallest segmentation error overall ten ears is 

obtained when we use target specific ASMs built with the five most similar shapes.

A method we previously developed for segmenting the SOIs in pre-implantation CTs [2] 

resulted in mean and maximum segmentation errors of 0.15 and 1.6 mm, respectively. This 

shows that the segmentation errors we achieve in post-implantation CTs are close to those 

that are achievable in pre-implantation CTs, despite the presence of metallic artifacts in the 

image that obscure the structures. Figure 6 shows qualitative results for a case whose 

average error is close to the overall average error (7R). Both the gold-standard (yellow) and 

automatic (red for ST, blue for SV and green for SG) contours are overlaid on both the pre-

implantation CT and the registered post-implantation CT. As can be seen in the figure, 

although the structures are obscured by the bright artifact introduced by the implant, there is 

a good agreement between the two contours along the length of the structures.
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Table IV presents, for each testing ear, mean, standard deviation, median and maximum 

surface distance errors in mm for the AR, which is the part of the SOIs most likely to be 

stimulated by implanted electrodes and thus the most important surface for our 

programming application. The overall mean, standard deviation, median, and maximum 

errors in segmenting the AR are 0.202, 0.131, 0.169 and 0.98 mm, respectively. The 

corresponding errors we obtain in segmenting the AR using our segmentation initialization 

step alone, prior to performing our segmentation refinement step, are 0.258, 0.127, 0.225 

and 0.70 mm, respectively. Figure 7 shows renderings of the segmented AR surface for each 

testing ear that are colormapped with surface distance errors in mm. As can be seen from 

these, errors are sub-voxel (< 0.4 mm) for the majority of AR for all testing ears, except for 

one (1L).

5. CONCLUSIONS

The IGCIP strategies we recently developed and are currently testing require accurate 

localization of the position of implanted electrodes relative to intra-cochlear anatomy. So 

far, we have made this possible for subjects for whom a CT has been acquired prior to 

implantation, where we segment the SOIs in the pre-implantation CT, identify the electrodes 

in the post-implantation CT, and register the two CTs to determine the spatial relationship 

between the implanted electrodes and the SOIs. We have also recently presented a technique 

that makes IGCIP possible for subjects with no pre-implantation CT but who are implanted 

unilaterally. For this population of subjects, we determine the SOIs in the implanted ear 

using information extracted from the normal ear in the post-implantation CT. In this study, 

we have presented a shape library-based algorithm that does not require a pre-implantation 

CT of either ear to segment the SOIs.

Our approach for segmentation relies on first approximating the shape of the labyrinth by 

mapping a labyrinth surface that is selected from a library of such surfaces, and then refining 

this shape by performing a weighted active shape segmentation with an ASM built to be 

specific for the target image. We then segment the SOIs by fitting their shape model to the 

external wall of the cochlea established on the segmented labyrinth. As the results we 

present show, we achieve sub-millimetric errors at all points on the surfaces, and overall 

SOI segmentation error averages 0.209 mm. This average error is 0.202 mm for the AR, the 

“important” part of the SOIs. These results, which we achieve on post-implantation CTs, are 

comparable to those that are achievable on pre-implantation CTs and this suggests that our 

approach is accurate enough for use in position-based sound processing strategies. It is of 

note that our approach achieves this level of accuracy on an imperfect dataset composed of 

low-dose fpVCT images. We speculate that our approach could produce even more accurate 

segmentations when employed on post-implantation CTs acquired with standard CT 

scanners.

The segmentation results we achieve using our segmentation initialization approach alone 

are very close to the results we achieve by refining the initial results using our segmentation 

refinement approach. This suggests that the segmentation initialization approach alone can 

be used to achieve the task of segmenting the SOIs, particularly, in cases where the external 

wall of the cochlea in the image is completely obscured by the implant, which could prevent 
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our segmentation refinement approach from improving the initial results. Future work will 

focus on exploring techniques for automatically determining when to use the segmentation 

initialization step alone to achieve the segmentation task.
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Figure 1. 
Shown in (a) and (b) are surfaces of the ST (red), the SV (blue), and the SG (green). In (b), a 

surface model of a CI electrode array inserted into the ST is shown. Panel (c) shows surfaces 

of the AR (green), the ST (transparent red), and the SV (transparent blue). Panel (d) shows 

contours of the ST (red), the SG (green), and the electrodes (purple) in the coronal view of a 

pre-implantation CT and a corresponding post-implantation CT. Shown in (e) are contours 

of the SV (blue) in the coronal view of a pre-implantation CT and a corresponding post-

implantation CT.
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Figure 2. 
Shown in (a) are surfaces of a labyrinth (transparent orange) and of the intra-cochlear 

anatomy (ST (transparent red), SV (transparent blue), and SG (transparent green)). Panel (b) 

shows the same structures in a different orientation. In (c) the set of points that represent the 

external wall of cochlea and that are used to fit the SOI model to the labyrinth model is 

shown on the surface of the labyrinth. In (d) and (e) the same set of points is shown on the 

SOI surfaces. Panel (f) shows a labyrinth surface with near points in yellow and far points in 

purple.
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Figure 3. 
Image registration process.
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Figure 4. 
Segmentation refinement process.
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Figure 5. 
Surfaces of intra-cochlear structures colormapped with segmentation errors viewed on the 

coronal plane (top row) and sagittal plane (bottom row).
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Figure 6. 
Results for a case with average error close to the overall average error. The contours shown 

are the ST (left panel), SV (middle panel), and SG (right panel). Contours for gold-standard 

ST (red), SV (blue), SG (green) surfaces and contours for automatic surfaces
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Figure 7. 
Surface of the active region colormapped with segmentation errors for each testing ear.
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Table I

Datasets used in this study

Dataset # Purpose Dataset
Size

Acquisition CI electrodes

Xoran fpVCT Conventional No CIs One CI Two CIs

1 Reference (atlas) 1 × ×

2 Shape library creation 70 × ×

3 Labyrinth ASM creation 25 × ×

4 Intensity model creation 14 × ×

5 Segmentation validation

6
× ×

× ×

2
× ×

× ×
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Table II

Mean, standard deviation, median and maximum intra-cochlear anatomy (SOIs) segmentation errors in 

millimeters for the segmentation initialization and for the segmentation refinement steps. L is for left and R is 

for right ear.

Intra-cochlear anatomy

Ear
Initial Error Final Error

Mean Std. Dev. Median Maximum Mean Std. Dev. Median Maximum

1L 0.39 0.12 0.40 0.76 0.44 0.18 0.44 0.98

2R 0.41 0.11 0.41 0.72 0.26 0.05 0.27 0.39

3L 0.27 0.09 0.26 0.52 0.24 0.10 0.23 0.53

4L 0.16 0.07 0.15 0.38 0.13 0.05 0.12 0.31

5R 0.18 0.07 0.17 0.50 0.13 0.04 0.13 0.27

6R 0.16 0.06 0.16 0.37 0.17 0.06 0.17 0.31

7L 0.35 0.09 0.35 0.66 0.25 0.09 0.25 0.54

7R 0.18 0.06 0.18 0.35 0.23 0.08 0.23 0.50

8L 0.15 0.05 0.15 0.27 0.14 0.05 0.14 0.29

8R 0.30 0.09 0.28 0.54 0.11 0.05 0.10 0.33

Overall 0.254 0.128 0.224 0.76 0.209 0.128 0.181 0.98
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Table III

Mean, standard deviation, median and maximum labyrinth anatomy segmentation errors in millimeters for the 

segmentation initialization and for the segmentation refinement steps.

Labyrinth Anatomy

Ear
Initial Error Final Error

Mean Std. Dev. Median Maximum Mean Std. Dev. Median Maximum

1L 0.32 0.16 0.34 0.76 0.32 0.18 0.26 0.95

2R 0.32 0.18 0.27 0.88 0.24 0.07 0.24 0.54

3L 0.24 0.12 0.20 0.72 0.24 0.12 0.23 0.75

4L 0.19 0.10 0.17 0.52 0.16 0.07 0.14 0.47

5R 0.15 0.09 0.13 0.56 0.12 0.06 0.12 0.42

6R 0.15 0.08 0.14 0.49 0.13 0.06 0.13 0.39

7L 0.28 0.15 0.25 0.79 0.21 0.10 0.19 0.49

7R 0.15 0.07 0.15 0.46 0.19 0.10 0.18 0.50

8L 0.15 0.07 0.14 0.42 0.16 0.08 0.15 0.44

8R 0.28 0.12 0.27 0.77 0.14 0.08 0.12 0.45

Overall 0.223 0.139 0.185 0.88 0.192 0.131 0.169 0.95
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Table IV

Mean, standard deviation, median and maximum active region (AR) segmentation errors in millimeters for the 

segmentation initialization and for the segmentation refinement steps. L is for left and R is for right ear.

Active Region

Ear
Initial Error Final Error

Mean Std. Dev. Median Maximum Mean Std. Dev. Median Maximum

1L 0.41 0.09 0.42 0.69 0.45 0.19 0.46 0.98

2R 0.42 0.10 0.41 0.70 0.28 0.04 0.28 0.39

3L 0.25 0.08 0.24 0.44 0.21 0.10 0.20 0.53

4L 0.15 0.07 0.14 0.35 0.11 0.05 0.10 0.28

5R 0.18 0.06 0.18 0.32 0.12 0.03 0.12 0.22

6R 0.16 0.05 0.17 0.33 0.17 0.07 0.18 0.30

7L 0.36 0.08 0.37 0.62 0.24 0.09 0.23 0.50

7R 0.18 0.05 0.18 0.34 0.22 0.09 0.23 0.44

8L 0.15 0.05 0.16 0.27 0.14 0.04 0.15 0.25

8R 0.32 0.08 0.31 0.54 0.10 0.05 0.09 0.29

Overall 0.258 0.127 0.225 0.70 0.202 0.131 0.169 0.98
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