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Abstract

Recently, MR simulators gain popularity because of unnecessary radiation exposure of CT 

simulators being used in radiation therapy planning. We propose a method for pseudo CT 

estimation from MR images based on a patch-based random forest. Patient-specific anatomical 

features are extracted from the aligned training images and adopted as signatures for each voxel. 

The most robust and informative features are identified using feature selection to train the random 

forest. The well-trained random forest is used to predict the pseudo CT of a new patient. This 

prediction technique was tested with human brain images and the prediction accuracy was 

assessed using the original CT images. Peak signal-to-noise ratio (PSNR) and feature similarity 

(FSIM) indexes were used to quantify the differences between the pseudo and original CT images. 

The experimental results showed the proposed method could accurately generate pseudo CT 

images from MR images. In summary, we have developed a new pseudo CT prediction method 

based on patch-based random forest, demonstrated its clinical feasibility, and validated its 

prediction accuracy. This pseudo CT prediction technique could be a useful tool for MRI-based 

radiation treatment planning and attenuation correction in a PET/MRI scanner.
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1. INTRODUCTION

Computed tomography (CT), with its high availability and geometric accuracy, has proven 

an invaluable tool for cancer diagnosis and treatment. Since a CT voxel’s intensity directly 

relates to its attenuation of X-rays, CT images provide a means of estimating tissue electron 

density, which, in turn, is necessary to simulate radiation transport. For this reason, CT is a 

cornerstone of both radiotherapy planning and attenuation correction of Positron Emission 

Tomography (PET) images. Recently, there has been increasing interest in replacing CT with 

magnetic resonance (MR) in MRI-only radiotherapy treatment planning as well as in 

*Corresponding author: xyang43@emory.edu. 

HHS Public Access
Author manuscript
Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2019 October 11.

Published in final edited form as:
Proc SPIE Int Soc Opt Eng. 2017 February ; 10133: . doi:10.1117/12.2253936.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



PET/MR attenuation correction. The first application is in certain types of radiotherapy 

planning, where CT’s limited soft tissue contrast stunts accurate tumor delineation whereas 

MR provides valuable guidance [1]; such cases include stereotactic radiosurgery of brain 

disorders and radiotherapy treatment of prostate cancer [2, 3]. The second application is in 

combined PET/MR imaging currently transitioning to reach its full clinical potential, where 

attenuation correction is necessary but CT acquisition would require an additional scan [4]. 

Therefore, there is an increasing clinical need to reliably estimate electron densities (called 

pseudo CT images) in these applications based on the MR images. The benefits of pseudo 

CT images include reducing medical cost, sparing the patient from X-ray exposure, 

eliminating registration errors between MR and CT images and simplifying clinical 

workflow. These issues greatly motivate the development of methods for estimate of CT 

image from the corresponding MR image.

Several methods have been investigated to estimate electron density information using MRI 

[5–19], which can be characterized into four categories: segmentation-based, atlas-based, 

pseudo-CT based and sequence-based methods. Each has its advantages and limitations. (1) 

In segmentation-based methods [6, 14, 16, 17, 19, 20], MR images are manually or 

automatically segmented into different tissue types (bone, soft tissue and air) with 

predefined electron density or attenuation coefficient. The main drawback of these 

approaches is the inter-observer inconsistency of the manual contours or the segmentation 

errors of the auto-contours [21]. (2) In atlas-based methods [15, 22], a deformable image 

registration is used to map a sample patient or atlas with known tissue label or electron 

density (typically derived from CT) to an individual’s MR image. The electron density map 

for this individual can then be obtained. These methods could suffer from inherent 

registration errors due to inter-patient anatomical differences. (3) In pseudo-CT based 

methods [5, 8, 10, 12, 18], tissue properties are directly characterized based on the MR 

image intensity and anatomy. However, due to the lack of a one-to-one relation between 

electron density and MR image intensity, this approach could lead to ambiguous results. In 

particular, the differentiation of bone from air has been challenging because of their similar 

and short T2 characteristics (both appear dark on MRI) [23]. (4) In MRI sequence-based 

methods [9, 13, 24], MR sequences such as the ultra-short echo time (UTE) sequence are 

used to visualize bony anatomy. However, the currently available image quality of UTE 

imaging is still far from satisfactory. Moreover, the non-standard MR sequence also adds 

considerable scan time, which may introduce more patient motion and discomfort. In this 

study we proposed to develop a learning-based method to derive electron density from 

standard clinical MRI. In this approach we integrated patch-based anatomical signature into 

machine learning framework to predict pseudo CT using MRI.

2. METHODS

Suppose we have a set of pairs of MR and CT training images. For each pair, the CT image 

is used as the regression target of the MR image. We further assume that the training data 

have been preprocessed by removing noise and uninformative regions, and have been 

aligned. The proposed prediction method consists of two major stages: the training stage and 

the prediction stage. During the training stage, patch-based anatomical features are extracted 

from the registered training images with patient-specific information, and the most robust 
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and informative CT-MR features are identified by feature selection to train a random forest. 

During the prediction stage, we extract the selected features from the new (target) MR image 

and feed them into the well-trained forests for CT image prediction. The four major steps are 

briefly described below.

2.1 Image Alignment for Dataset

Before doing prediction, some preprocessing is performed for all CT and MR images in 

dataset, which includes noise reduction, inhomogeneity correction, and inter-subject 

intensity normalization. Such preprocessing steps are to improve the accuracy of the 

following prediction. The intra-subject registration is used to align each pair of CT and MR 

images of the same subject. We perform rigid and deformable registration with B-Splines 

[25], using mutual information as a similarity measure. The inter-subject registration is used 

to align each CT-MR pair images among the different subjects. During the inter-subject 

alignment processing of training set, we first select one MR-CT pair image as the template, 

and align other MR images to the template MR image. We use the corresponding 

transformation obtained from training MR image alignment to align the corresponding CT 

images of each subject to the template CT images. Since the CT images of each training 

image are available, we again align each training CT image to the template CT images to 

optimize the alignment of the training set, and then apply the corresponding transformation 

obtained from training CT image alignment to align the corresponding MR images to the 

template MR images. For each newly acquired MR image, all aligned training images in 

training set are rigidly registered to this new image. The rigid registration is used to obtain 

the spatial deformation field between the new MR image and training MR images. The same 

transformations are applied to the CT in training set.

2.2 Patch-based Feature Extraction

Patch-based representation has been widely used as voxel anatomical signature in computer 

vision and medical image analysis [5, 26–28]. The principle of the conventional patch-based 

representation is to first define a small image patch centered at each voxel and then use the 

voxel intensities of image patch as the anatomical signature of each voxel. However, due to 

the noise and anatomical complexity of MR images, patch-based representation using voxel 

intensities alone may not be able to effectively distinguish the voxels of different tissue in 

MRI. We propose to use a patch-based anatomical features are used as signature for each 

voxel to characterize the image appearance. Two types of images features – the Gabor 

wavelet feature and the local binary pattern (LBP) feature – are extracted from a small image 

patch centered at each voxel of each aligned training image. Gabor can provide 

complementary anatomical information to each other, and LBP can capture texture 

information from the input image. The 16 Gabor feature is used in this study. The LBP 

feature is extracted in three resolution levels and it has a dimension 30. Therefore, for each 

voxel, it is represented by a 46 dimensional feature signature.

2.3 Patch Preselection Based on Features

Patch preselection is applied here among all candidate patches, in order to reduce the 

computational burden and improve prediction accuracy by excluding irrelevant patches [26]. 

Based on the above features, we can obtain patch-based representation of each voxel. It 
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should be noted that the patch-based anatomical signature may contain noisy and redundant 

features which will affect the performance in excluding the irrelevant patches. Therefore, 

feature selection should be performed to identify the most informative and salient features in 

the anatomical signature of each voxel [28]. The aim of feature selection is to select a small 

subset of most informative feature as anatomical signature, which can be well accomplished 

by enforcing the sparsity constraint during the regression process. Therefore, the feature 

selection problem can be formulated as a logistic sparse least-absolute- shrinkage-and-

selection operator (LASSO) problem [29]. It is defined as,

J( β , b) = ∑
c = 1

P
log(1 + exp(− β

T
f ( x c) + b))) + λ β 1 (1)

where f x c  denotes the original feature signature of voxel x c. β  is the sparse coefficient 

vector, ‖ · ‖1 is the l1 norm, b is the intercept scalar, and λ is the regularization parameter. 

The first term is obtained by inputting the values of drawn samples and their original feature 

signatures to the function, and then takes the logarithm for maximum likelihood estimation. 

The second term is the l1 norm which aims to enforce the sparsity constraint for LASSO. 

Through minimizing the sparse LASSO energy function the features with superior 

discriminant power are selected. Based on the selected features, we can directly measure 

their discriminant power to exclude the irrelevant patches, based on the Fisher’s score.

2.4 Random Forest Training and Pseudo CT Prediction

The random forest classifier is a learning-based method for classification and regression 

problems, and has been widely adopted in medical imaging applications [30]. A random 

forest comprises of multiple decision trees. At each internal node of a tree, a feature is 

chosen to split the incoming training samples to maximize the information gain. Specifically, 

let u ∈ U ⊂ ℝ be an input feature vector, and v ∈ U ⊂ ℝ be its corresponding target value for 

regression. For a given internal node j and a set of samples S j ⊂ U × V , the information gain 

achieved by choosing the kth feature to split the samples in the regression problem is 

computed by:

I j
k = H S j −

S j, L
k

S j
H S j, L

k −
S j, R

k

S j
H S j, R

k (2)

H S = 1
V ∑

v
v − v 2 (3)

Yang et al. Page 4

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2019 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



v = 1
V ∑

v
v (4)

where L and R denote the left and right child nodes, S j, L
k = u, v ∈ S j uk < θ j

k , 

S j, R
k = S j/S j, R

k , uk is the kth feature of feature vector u, θ j
k is the splitting threshold chosen to 

maximize the information gain I j
k for the kth feature uk, and |•| is the cardinality of the set. H 

(S) denotes the variance of all target values in our regression problem. During the training 

stage, the splitting process is performed recursively until the information gain is not 

significant, or the number of training samples falling into one node is less than a pre-defined 

threshold. In the testing stage, to predict the CT image, the new given MR image follows the 

same sequence as learned during the training stage, to generate the final prediction.

3. EXPERIMENTS AND RESULTS

In order to test the proposed method, we applied our method to5 patients’ MR and CT data. 

All patients’ MR data were acquired using a Siemens MR scanner. Each 3D T1W MR data 

sets consisted of 256×256×147 voxels to cover the whole head and the voxel size was 

1.0×1.0×1.0 mm3. All patients’ CT data were acquired using a Siemens CT scanner. Each 

3D CT data sets consisted of 512×512×160 voxels to cover the whole head and the voxel 

size was 0.8×0.8×1.0 mm3. We performed leave-one-out cross-validation method to evaluate 

the proposed CT prediction algorithm. In other words, we used the 4 CT and MRI images as 

the training set and applied the proposed method to predict the remaining subject. Our 

pseudo CT were compared with the original CT images. In order to get a quantitative 

evaluation, we used peak signal-to-noise ratio (PSNR) [31] and feature similarity (FSIM) 

index [32]. Figure 1 shows an example of MR-based pseudo CT predicted by the proposed 

method. This pseudo CT is close to original CT images. Figure 2 shows the PSNR and FSIM 

between the pseudo and original CT for each patient. Overall the mean PSNR and FSIM 

were 27.27±1.00 and 0.77±0.03, which demonstrated the prediction accuracy of the 

proposed learning-based method.

4. CONCLUSION

In this paper, we propose a novel learning-based approach to predict a pseudo CT image 

from a MR image based on a random forest regression with a patch-based anatomical 

signature to effectively capture the relationship between the CT and MR images. We have 

demonstrated that the proposed method is capable of reliably predicting the CT image from 

the MR image. This pseudo CT prediction technique could be a useful tool for MRI-based 

radiation treatment planning and attenuation correction in PET/MRI scanner.
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Figure 1. 
MR-based pseudo CT prediction results. Images from left to right are MRI, CT, pseudo CT 

and the difference between pseudo and original CT images.
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Figure 2. 
PSNR (a) and FSIM (b) between the pseudo and original CT for each patient.

Yang et al. Page 9

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2019 October 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	METHODS
	Image Alignment for Dataset
	Patch-based Feature Extraction
	Patch Preselection Based on Features
	Random Forest Training and Pseudo CT Prediction

	EXPERIMENTS AND RESULTS
	CONCLUSION
	References
	Figure 1.
	Figure 2.

