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ABSTRACT

Image quality control (IQC) can be used in automated magnetic resonance (MR) image analysis to exclude
erroneous results caused by poorly acquired or artifact-laden images. Existing IQC methods for MR imaging
generally require human effort to craft meaningful features or label large datasets for supervised training. The
involvement of human labor can be burdensome and biased, as labeling MR images based on their quality is a
subjective task. In this paper, we propose an automatic IQC method that evaluates the extent of artifacts in MR
images without supervision. In particular, we design an artifact encoding network that learns representations
of artifacts based on contrastive learning. We then use a normalizing flow to estimate the density of learned
representations for unsupervised classification. Our experiments on large-scale multi-cohort MR datasets show
that the proposed method accurately detects images with high levels of artifacts, which can inform downstream
analysis tasks about potentially flawed data.
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1. INTRODUCTION

The recent development of deep learning (DL) has benefited various magnetic resonance (MR) image analyses,
such as image synthesis,1,2 segmentation,3,4 registration,5 and volumetric analysis,6 where a large amount of
images are processed without human intervention. Yet, these DL based algorithms are known to be sensitive to
the quality of input images;7 when an image is poorly acquired or contaminated by artifacts, the DL algorithms
are likely to produce erroneous or biased results. Manually inspecting DL results in large datasets is prone to
errors as it is tedious and subjective. Therefore, there is demand for an automatic image quality control (IQC)
method to identify potential failures cases caused by either poor quality or inappropriate data.

Various IQC methods have been developed in recent years.8,9 The goal of an IQC method is to provide an
assessment of image quality ŷ based on the input image x. In general, an IQC algorithm has two parts: feature
extraction and classification. Features m that capture image quality information can either be handcrafted with
expert knowledge8,10 or learned from data.9 Classification is conducted based on the features m, which usually
requires expert labels on a sample dataset—e.g., with y ∈ {0, 1} indicating whether image x passes or fails quality
inspection—from which a supervised classifier is trained. For example, MRIQC8 learned a binary classifier based
on handcrafted features and labels generated by human experts. However, the current IQC methods face two
major limitations. First, labeling datasets by experts requires domain specific knowledge, which can be subjective
and time consuming. Second, because the labels y are limited in number and dataset specific, current IQC
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Figure 1. Schematic framework of the proposed IQC method. Artifact encoder E(·) extracts artifact features m ∈ R2 from
multi-cohort MR images. The learned features m follow an unknown distribution pM (m). A normalizing flow f(·) is then
applied to transform m to z ∈ R2 following a standard Gaussian distribution N (0, I). Due to the special property of f(·),
the likelihood pM (m) can be evaluated using Eq. 2.

(a) (b)
Figure 2. (a) The artifact encoder has a Dense-Net architecture. Artifact representations m are learned based on contrastive
learning with both positive images x+ and negative images x−(i). x

∗ shares the same and different artifact levels with

x+ and x−(i), respectively. (b) The flow network is based on RealNVP11 with six flow modules (affine coupling layers).

{si, ti}6i=1 are trainable neural networks.

methods usually have limited generalizability. The feature extractor and classifier are usually generalizable to
datasets similar to what they have been trained on; however, new datasets will generally require a re-training or
fine tuning, critically this necessitates new labels.

To overcome the limitations of current IQC methods, we developed an unsupervised IQC method to directly
assess artifact levels from MR images. Our method has two advantages. First, we propose an artifact encoder
network that learns latent artifact representations in a data-driven way. Second, we use a normalizing flow11 to
map the learned representations m to a normal distribution, which allows us to conduct unsupervised classification
without expert labels y. It is worth noting that the artifact encoder is also unsupervised, meaning that no labels
are needed in our method. This means our approach is completely unsupervised, making our framework applicable
to more datasets.

2. METHODS

Figure 1 shows the framework of the proposed method. MR images from multiple cohorts are first encoded into a
two-dimensional latent space of artifact features m. In general, m follows an unknown distribution pM (m). We
then apply a normalizing flow11 f(·) to transform m to z ∈ R2, which follows a standard Gaussian distribution.
f(·) also enables density estimation of pM (m) for unsupervised IQC.

2.1 Artifact encoder based on contrastive learning

Our artifact encoder E(·) extracts artifact representations based on contrastive learning.12 The key concept of
contrastive learning is to learn discriminative features from query, positive, and negative examples. Figure 2(a)
shows the architecture of E(·). For each MR image x∗ ∈ R288×288, we assume the positive example x+ has the
same artifact level as the query example x∗. We achieve this by selecting image slices x∗ and x+ from different
orientations of the same 3D volume (e.g., axial and coronal slices). Our negative examples {x−(i)}

N
i=1 are chosen

to have different artifact levels than x∗. We prepare our negative examples by either selecting slices from a
volume different from the source of x∗ or augmenting x∗ with simulated artifacts including noise and motion. The
simulated images are used to prevent E(·) from learning irrelevant information such as contrast and anatomy,
since slices from different volumes may differ both in their level of artifacts and in their contrasts and anatomies.



Because we also introduce real MR images as negative examples, E(·) after training can capture different kinds of
artifacts—beyond just noise and motion—which we show in Sec. 3.

With x∗, x+, and x−(i)’s composing our input mini-batch, we expect the learned feature m∗ to be similar (if

not identical) to m+ and sufficiently distinct from the m−(i)’s. We encourage this relationship using

L(m∗,m+, {m−(i)}
N
i=1) = − log

[
exp(m∗ ·m+)

exp(m∗ ·m+) + 1
N

∑N
i=1 exp(m∗ ·m−(i))

]
(1)

as our loss function for E(·). Since we prepare our x+ and x−(i) based on their relative extent of artifact with

x∗ and encourage m to preserve this relationship, we would expect m to capture the artifact information of the
input image. Note that m is learned based on the relative extent of artifact between x∗, x+, and x−(i), there is no

assumption made about the absolute extent of artifact of x∗ (i.e. x∗ is not assumed to be free from artifacts).

2.2 Density estimation with normalizing flows

With sufficiently large datasets, one can assume that most acquired MR images have acceptable image quality
with a relatively small sample of images being poorly acquired or contaminated by artifacts. This ratio is reflected
by the likelihood pM (m); when an image has uncommonly high artifact level m̃, we would expect pM (m̃) to be
small. Unsupervised IQC can then be achieved by finding {xi}’s with pM (mi)’s below a percentile. Evaluating
pM (m) is a nontrivial task, but it can be approximated using a normalizing flow network11 f(·). As shown in
Fig. 2(b), f(·) is composed of six flow modules with each module affinely processing a proportion of the input
variable, e.g., m′1 = m2 and m′2 = m1 · es1(m2) + t1(m2), where m = [m1,m2] ∈ R2 and {si, ti}6i=1 are neural
networks. The output variable z = f(m) follows a standard Gaussian distribution N (0, I). It is easy to show
that the Jacobian matrix of f(m) is a triangular matrix with positive determinant and the density pM (m) can be
calculated by

pM (m) = pZ (f (m))

∣∣∣∣det
∂f(m)

∂m

∣∣∣∣ . (2)

During training, we use − log pM (m) calculated with Eq. 2 as our loss function for f(·), where the trainable
modules are {si, ti}6i=1.

3. EXPERIMENTS AND RESULTS

3.1 Datasets and preprocessing

The training data for E(·) include 200 T1-weighted (T1-w) MR volumes acquired from 16 different cohorts.
Detailed information about image acquisition is provided in Table 1. Our preprocessing includes inhomogeneity
correction13 and registration to a 0.8mm3 isotropic template. For each 3D volume, we extracted and padded
axial, coronal, and sagittal slices to dimension 288× 288. E(·) was trained on 2D slices following Sec. 2.1. Our
evaluation dataset for E(·) has 1,400 3D images acquired from the 16 cohorts. For each volume, we calculated
the average m values of its 20 center axial slices as the artifact representation. f(·) was then trained and applied
following Sec. 2.2 to estimate the density pM (m) based on all the 1,400 volumes.

3.2 Unsupervised IQC on simulated data

After training, f(·) transforms m to z, which follows a standard Gaussian distribution. Density pM (m) can then
be evaluated using Eq. 2. Figure 3(a) shows z values of the 1,400 volumes after applying the normalizing flow
f(·). We then applied the proposed method to a held-out simulated dataset with various kinds of artifacts that
could potentially fail downstream analyses. In Fig. 3(b), m’s of eight representative images are shown on top
of the density contours of the 1,400 volumes. The eight images are A) a T1-w image that passed our manual
inspection, B) a non-T1-w image, C) a T1-w image with a bias field, D) a T1-w image with high noise, E) a T1-w
image with motion artifacts, F ) a T1-w image with wrap-around artifacts, G) a T1-w image with one side of the
head removed, and H) a T1-w image with registration errors. We assume the original 1,400 volumes are fairly
diverse samples of T1-w MR images and that most of them have acceptable artifact levels with a small proportion



Table 1. Key information about image acquisition of each imaging cohort. Unavailable information is marked as “–”. Data
source: C1 and C2 (IXI-Brain);14 C3 thru C6 (OASIS3);15 C7 thru C10 (BLSA);16 C11 thru C16 (Private).

Cohort C1 C2 C3 C4 C5 C6 C7 C8

Open data ËË ËË ËË ËË ËË ËË ËË ËË

Manufacturer Philips Philips Siemens Siemens Siemens Siemens Philips Philips

Field (T) 1.5 3.0 3.0 3.0 3.0 1.5 1.5 3.0

Resolution (mm)1.2×0.9×0.9 1.2×0.9×0.9 1.0×1.0×1.0 1.0×1.0×1.0 1.0×1.0×1.0 1.1×1.1×1.2 0.9×0.9×1.5 1.0×1.0×1.2

TE/TR/TI (ms) 4.6/− /− 4.6/− /− 3.9/1900/1100 3.2/2400/1000 3.2/2400/1000 2.9/2300/900 3.3/3000/− 3.1/3000/800

Cohort C9 C10 C11 C12 C13 C14 C15 C16

Open data ËË ËË éé éé éé éé éé éé

Manufacturer Philips Philips Siemens GE Siemens GE Siemens Siemens

Field (T) 1.5 3.0 3.0 3.0 3.0 1.5 1.5 3.0

Resolution (mm)1.2×0.9×0.9 1.2×0.9×0.9 1.0×1.0×1.0 1.0×1.0×1.0 1.0×1.0×1.0 1.1×1.1×1.2 0.9×0.9×1.5 1.0×1.0×1.2

TE/TR/TI (ms) 3.1/3000/800 3.1/3000/800 3.0/2300/900 3.1/− /− 3.6/2500/− 2.6/− /− 3.0/2300/900 3.4/2300/900

Figure 3. (a) scatter plot of z from 1,400 T1-w MR volumes after a normalizing flow z = f(m). (b) m values of held-out
MR images are shown on top of the density contours fitted on m. Eight example MR images are shown on the right.
Indexes A to H represent an MR image A) a T1-w image that passed our manual inspection, B) a non-T1-w image, C) a
T1-w image with a bias field, D) a T1-w image with high noise, E) a T1-w image with motion artifacts, F ) a T1-w image
with wrap-around artifacts, G) a T1-w image with one side of the head removed, and H) a T1-w image with registration
errors.

being poorly acquired. Unsupervised IQC is achieved by thresholding pM (m) with a predefined threshold τ . We
found τ = 5% achieved satisfactory results on our simulated dataset. As shown in Fig. 3(b), the image that
passed our manual inspection has an m located in the high density region, while the remaining seven images
have pM (m) below τ . Our unsupervised IQC method has two advantages over existing works. First, we do not
require knowledge of the absolute artifact levels of training images, so that our method can be trained on very
large datasets. In fact, we only assume that most our training data have acceptable image quality; this is likely
true in many application scenarios. Based on contrastive learning, our artifact encoder E(·) during training only
needs to know if a sample has the same (for positive examples) or a different (for negative examples) artifact
level as the query image x∗. Second, since we construct our negative examples with both real data and simulated
artifacts (i.e., motion and noise), E(·) after training can capture various kinds of artifacts, many of which have
not been simulated in training. This makes our model more generalizable.

3.3 Quantitative evaluation on real data

To quantitatively evaluate the proposed method on real MR datasets, we manually inspected and rated 569 T1-w
MR images acquired from cohorts C11 to C16 (see Table 1 for more details). After manual inspection, each image
was assigned a label from one of the three labels low, medium, or high based on the level of artifacts present in the
volume. We assume images with low levels of artifacts passed our manual quality check, and assume images with
either medium or high artifact levels as failed cases. Figure 4(a) shows the learned m values of the images with
manual ratings. Green, orange, and red represent low, medium, and high levels of artifacts, respectively. Two



Figure 4. (a) Scatter plot of m values on a dataset with manual ratings. Example images are shown on the right. Dashed
lines show 5% and 3% likelihood contours of pM (m). (b) Contingency tables of the proposed method based on τ = 5%
and τ = 3%. Images with either medium or high artifacts levels are categorized as failed cases.

density contours (5% and 3%) of pM (m) are also shown in Fig. 4(a). It is encouraging to see that most images
that passed our manual inspection (green) have m values with pM (m) > 5%, while most images that failed our
manual inspection (with medium and high artifact levels) have pM (m) < 5%. Furthermore, images with high
levels of artifacts (red) usually have even lower pM (m) than images with medium levels of artifacts (orange).
Figure 4(a) also shows six example images with different levels of artifacts, where A) has passed our manual
quality check and it has pM (m) > 5%. B) has a medium level of artifacts due to the intensity inhomogeneity, and
C) has strong motion artifacts. Interestingly, image D) has passed our manual quality check, but the proposed
method identified it as a low density example (pM (m) < 5%). We hypothesize the reason for this is because the
uncommon noise pattern of the image; the noise level is only high inside the orange box. E) shows an example
with medium artifact level according to our manual inspections, but our method failed to identify it as a poor
quality image. F ) is an extreme case where a non-T1-w image was processed and identified by our algorithm as
potential bad data.

In Fig. 4(b), we show the contingency tables of the proposed method based on two thresholds: τ = 5%
and τ = 3%. Here, we assume any images with pM (m) < τ at test time should be highlighted as potential
artifact-laden images (potential failed cases). τ = 5%, which we used on simulated data in Sec. 3.2, achieves a
sensitivity of 91.0% and a specificity of 97.8%. τ = 3% achieves a sensitivity of 80.0% and a specificity of 99.4%.

4. DISCUSSION AND CONCLUSION

In this paper, we present a novel unsupervised IQC approach by assessing the levels of artifacts from MR images.
Our approach learns representations of image artifacts without domain knowledge. This unsupervised nature
enables our approach to be trained on a large variety of datasets with improved applicability over existing IQC
methods. We showcase using normalizing flow that after artifact representations are learned, classification can be
achieved with a simple thresholding on feature densities. The fact that the threshold τ needs to be determined at
test time is a limitation of our work, as it may vary from dataset to dataset. We regard this as a direction for
future improvements. We believe introducing a very small amount of labels during training (for semi-supervised
training) would benefit the proposed method to learn more robust feature extractors and classifiers.

Experiments on both simulated and real MR datasets show that the proposed method achieves both high
sensitivity and specificity. Our approach can be used to inform downstream analyses about potential bad quality
data by accurately highlighting different kinds of artifact cases as low likelihood examples.
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