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Multibump, Blow-Up, Self-Similar Solutions of the Complex Ginzburg–Landau
Equation∗
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Abstract. In this article we construct, both asymptotically and numerically, multibump, blow-up, self-similar
solutions to the complex Ginzburg–Landau equation (CGL) in the limit of small dissipation. Through
a careful asymptotic analysis, involving a balance of both algebraic and exponential terms, we de-
termine the parameter range over which these solutions may exist. Most intriguingly, we determine
a branch of solutions that are not perturbations of solutions to the nonlinear Schrödinger equation
(NLS); moreover, they are not monotone, but they are stable. Furthermore, these axisymmetric
ring-like solutions exist over a broader parameter regime than the monotone profile.
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1. Introduction. The complex Ginzburg–Landau equation (CGL),

i
∂Φ

∂t
+ (1 − iε)∇2Φ + (1 + iδ)|Φ|2Φ = 0, x ∈ Rd, t > 0,(1.1)

arises as a model equation in a variety of problems from physics, biology, and chemistry. These
include nonlinear optics, models of turbulence, Rayleigh–Bénard convection, superconductiv-
ity, superfluidity, Taylor–Couette flow, and reaction-diffusion systems; see [18, 3, 23, 8, 9] and
in particular the review article [1]. The CGL can be seen as a normal form that describes the
leading order behavior of small perturbations in “marginally unstable” systems of nonlinear
PDEs defined on unbounded domains [17]. Hence, it is relevant for understanding the dynam-
ics of “instabilities” in a wide variety of physical and other contexts. The coefficients in the
equation can be expressed in terms of the coefficients of the underlying system of PDEs and
thus their meaning depends on the problem at hand [1]. As such, in this paper we would like
to consider the dynamics of the CGL for a wide range of parameters.

In the limit of ε = δ = 0 the CGL reduces to the well-known nonlinear Schrödinger
equation (NLS), which lies at the heart of many physical problems related to wave modulation.
This limit can be obtained from the standard form of the CGL

At = rA + (1 + ib)∇2A + (1 + ic)|A|2A, b, c ∈ R,
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650 C. J. BUDD, V. ROTTSCHÄFER, AND J. F. WILLIAMS

by rescaling and considering the limit |b|, |c| → ∞. The case of ε > 0 which we consider in
this paper is a dissipative perturbation of the NLS.

The cubic NLS has the important property that when posed in dimension d ≥ 2, there are
sets of initial data that lead to solutions which become infinite (blow up) at a finite time T .
This phenomenon is called self-focusing in the context of nonlinear optics and collapses when
applied to problems on turbulence. We will study the related question of blow-up in the CGL
in this article. We focus on ε � 1 and δ � 1 to study the case where the CGL can be seen
as a small perturbation of the NLS.

Blow-up in the NLS has been extensively studied by many authors, and a recent mono-
graph [24] gives a survey of the current literature. The dimension d = 2 is critical for the
cubic NLS and marks the boundary between blow-up and integrable behavior. When d = 2
the singularity formation is approximately self-similar where ‖Φ‖∞ is believed to be propor-
tional to log | log(T−t)|(T−t)−1/2 [24]. When d > 2 the blow-up takes a self-similar form with
‖Φ‖∞ proportional to (T − t)−1/2 as t → T . A proof of the existence and local uniqueness of
radially symmetric, monotone, self-similar, blow-up solutions for d close to 2 is given in [15],
with an extension of this result given in [21]. In [5] and [4] numerical calculations supported
by formal asymptotic calculations give evidence for the existence of further multibump, self-
similar, blow-up solutions for d > 2 where multibump is in the sense that |Φ| may have many
local maxima. Moreover, the existence and local uniqueness of these multibump, blow-up,
self-similar solutions is proved in [22].

The NLS is an example of a Hamiltonian PDE of hyperbolic type with various conserved
quantities. While |Φ| becomes singular at a single point, the unitary nature of the NLS implies
that Φ has a constant L2-norm (power) and a conserved Hamiltonian

H =

∫
|∇Φ|2 − 1

2
|Φ|4 dV.(1.2)

In this article we will explore the nontrivial relationship between blow-up solutions in the
CGL and the NLS. In particular, we determine for which values of the dimension d and the
parameters ε and δ self-similar blow-up is observed. This relationship was first considered by
Fibich and Levy [11] who looked at the CGL problem in the limit of small ε and δ by using
modulation theory. Their analysis concentrates on the blow-up of solutions in two dimensions.
In [12] the asymptotic results are extended by applying a modulational approach to general
perturbations of NLS-type equations for fixed d = 2. The main result of this analysis was
the observation that when α ≡ ε + 2δ > 0 there are no stable blow-up solutions which are
modulated NLS blow-up solutions. Indeed, it is established that the solutions are bounded, for
all time, by a term exponentially large in α−1. In contrast, finite time blow-up is observed if
α < 0. The latter results are not unexpected since, if we consider spatially uniform solutions,
then blow-up in the ODE iφt = −(1 + iδ)φ|φ|2 occurs only for δ < 0. Similarly for ε < 0,
the CGL is a nondissipative perturbation of NLS and is close to the backward heat equation.
What is remarkable is that blow-up can be observed if ε or δ is positive but only for d > 2.
It is the range of values for which this occurs that is of interest to us in this article.

The radially symmetric, blow-up solutions of the CGL in dimensions d higher than 2
were already studied in [19]. There it is assumed that the blow-up profile is self-similar
and a similarity reduction is made; we review this dynamical rescaling in section 2. The
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MULTIBUMP BLOW-UP IN CGL 651
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Figure 1. The (k = 1)-solution branch, the solutions with one maximum on (−∞,∞), and the (k = 2)-
solution branch, the solutions with two maxima on (−∞,∞), plotted in the (ε, a)-plane, where d = 3 and δ = 0.
The solutions corresponding to the *’s are given in Figure 2. On the upper part of the (k = 1)-solution branch
and the lower part of the (k = 2)-solution branch the solutions are found to be stable, whereas on the other
parts the solutions are unstable. The parameter a relates to the length scale of rescaled solutions. It is one of
the governing parameters in this problem and is fully described in section 2.

rescaling reduces the study of the radially symmetric blow-up solutions of the CGL to that
of a related second order complex ODE combined with certain far field conditions on the
solutions at infinity. While no rigorous proof of the existence of the solutions of this ODE is
available (although some partial results are known) strong numerical evidence reported in [19]
indicates that when d > 2, the self-similar blow-up solutions of the NLS described in [4]
smoothly continue as ε, δ increase from zero, to give a family of multibump, self-similar, blow-
up solutions. We show that for δ = 0, multibump solutions appear to exist in a parameter
range 0 ≤ ε ≤ ε∗k(d), where ε∗k(d) → 0 as d → 2 and k is an integer index denoting the
number of maxima of the modulus of a solution on the real line. Every k-solution branch
consists of two parts which coalesce in a fold bifurcation at ε = ε∗k(d). The solutions on
the upper part of the branch are smooth perturbations of the NLS self-similar solutions.
In contrast, the solutions on the lower part of the branch, which tends weakly to zero as
ε → 0, are not a simple perturbation of the solutions of the NLS. In Figure 1, we give two
of these branches where solutions are found in the (ε, a)-plane; these branches were obtained
numerically (see section 7). Here a is a small parameter that will appear when introducing
the dynamical rescaling into the equation in section 2. The two solution branches given in
the figure correspond to solutions with one maximum at ξ = 0, k = 1, and with two maxima,
k = 2, on the real line. The norm of the solutions that are found on the upper and lower parts
of both of the branches at ε = 0.1, the points indicated by the *’s, are given in Figure 2.

The study by Plecháč and Šverák [19] is primarily numerical in nature. They computed
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652 C. J. BUDD, V. ROTTSCHÄFER, AND J. F. WILLIAMS

0 5 10 15
0

0.5

1

1.5

2

2.5

3

3.5

4

ξ

|Q
(ξ

)|

k = 2, lower branch, a = .0979 

k=2, upper branch, a = .3056 

k=1, lower branch, a = .4929 

k=1, upper branch, a = .8458 

Figure 2. Final-time profiles in the rescaled variables for d = 3, δ = 0, and ε = 0.1. The solutions
correspond to the *’s in Figure 1. The rescaled ampliture Q and spatial variable ξ are fully described in
section 2.

both the bifurcation diagrams presented here and the spectrum of the linearization about
these discrete solutions. In this paper we carry their numerical computations further along
the lower solution branch and also perform full time-dependent PDE simulations. Moreover,
we asymptotically describe both the structure of the bifurcation diagram in the limit a → 0
and the structure of the ring-like solutions. We present an asymptotic analysis which supports
both the numerical results presented here and those in [19]. The form of the monotonically
decreasing solution, k = 1, and the solution with two maxima on the real line, k = 2, are
determined. Also, an indication of how to extend these results to a general k-solution is given.
Furthermore, an asymptotic description of the branches of the various multibump solutions
is obtained, including an estimate of the location of the fold bifurcation point ε∗k(d). An
interesting feature of this calculation is that whereas the description of the solutions on the
upper part of a branch (which are perturbations of the solutions of the NLS) is valid only
for d − 2 small, the description of the solutions on the lower part of the branch remains
valid in the case of quite general d (for small ε), including the physically interesting case of
d = 3. A particular conclusion of the present study is the estimate for the location of the
fold bifurcation. While this can be calculated in principle for general δ it is easiest to express
when δ = 0.

Proposition 1.1. In the limit d → 2+, for the case of δ = 0, the range of ε for which
a multibump, self-similar, blow-up solution may exist on the k-solution branch is given by
0 ≤ ε < ε∗k(d), where

ε∗k(d) = Ck
d− 2

| log( Dk
d−2)|

,(1.3)
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MULTIBUMP BLOW-UP IN CGL 653

to leading order. Here Ck > 0 and Dk > 0 are constants that can be determined explicitly and
that depend upon the structure of the solution. For instance, in the special case of a multibump
solution with two maxima on the real line, for which k = 2, we have

ε∗2(d) =
λ2(d− 2)

log(3λ2/(d− 2))
+ O

(
1

log(d− 2)2

)
,(1.4)

where λ2 = 2π
3 −

√
3

2 .

In Table 1 in section 3 a comparison is made between the asymptotic formula above and
the results of numerical computations of the fold location for k = 1 and k = 2. These show
excellent agreement.

We use a numerical method for ODEs (on infinite domains) to obtain the branches in
Figure 1 and the solutions in Figure 2. Note that in Figure 1 the range of ε for which
(k = 2)-solutions exist is larger than that of the monotone (k = 1)-solutions. This leads to
the question of stability of the solutions. In [19], stability is studied by numerically examining
the spectrum of the linearization of the computed solutions. We investigate this further by
doing a numerical calculation of the radially symmetric forms of blow-up of the full PDE
(1.1). This simulation was suggested but not implemented in [19]. We use a scale-invariant
adaptive numerical method that exploits scaling structures of the underlying equations to
give an optimal temporal and spatial resolution of the solution as a blow-up singularity is
approached. In particular, we calculate solutions that grow in amplitude from their initial
data by over nine orders of magnitude. This simulation allows us to determine both the
stability of the various types of blow-up profiles and the effect of taking different initial data
for varying values of ε; the results will be discussed in detail in section 7. We find that
the solutions on the upper part of the (k = 1)-solution branch and on the lower part of the
(k = 2)-solution branch are stable. On the other parts solutions are unstable. This is denoted
in Figure 1 by the solid and dashed curves. Our most interesting observation is that the
(k = 2)-solution not only is stable over a range of values of ε but can be the only stable profile
observed for certain ranges of ε, namely, for ε∗1(d) < ε < ε∗2(d) . This is in complete contrast
to blow-up in other systems such as the NLS, the semilinear heat equation, and chemotaxis,
where stable, exact, nonmonotone, self-similar, blow-up profiles are not seen.

The layout of the remainder of this paper is as follows. In section 2 we describe the basic
scaling laws and self-similar profiles associated with blow-up in the CGL system. We state
in section 3 the main asymptotic result related to the behavior of the solution branches. In
section 4 we analyze the phase of the solution which makes a matching possible between the
far field solution and the solution close to the peaks. The monotone solution (k = 1) is the
subject of section 5, and in section 6 we focus on the self-similar multibump solutions. In
section 7 we first determine the numerical solution of the ODE that the self-similar solutions
must satisfy. This allows us to determine the accuracy of the asymptotic calculation. We then
apply a scale-invariant adaptive method to find the time-dependent solutions of the full PDE.

2. Blow-up and scaling laws. In this section we consider the equations satisfied by the
self-similar blow-up solutions of (1.1). We will assume that blow-up occurs at time T at the
spatial origin and is radially symmetric. (In the case of the NLS such solutions are believed
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654 C. J. BUDD, V. ROTTSCHÄFER, AND J. F. WILLIAMS

from numerical calculations reported in [24] to be attractors.) Such solutions satisfy the PDE

i
∂Φ

∂t
+ (1 − iε)

(
∂2Φ

∂r2
+ (d− 1)

∂Φ

∂r

)
+ (1 + iδ)|Φ|2Φ = 0.(2.1)

In physical applications d will be an integer; however, it is very convenient for asymptotic
analysis to consider the case of noninteger d. In particular, numerical calculations of solutions
in the physically interesting case of d = 3 can be continuations of solutions determined when d
is close to 2. Furthermore, keeping a cubic nonlinearity and varying d are essentially equivalent
to fixing d and varying the nonlinearity.

In Figure 3, we give results of a numerical simulation of the CGL when starting with a
monotone initial condition for d = 3 and ε = 0.1. In the physical coordinates the blow-up
occurs at the origin, and in the rescaled variables we see convergence to a stationary profile.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10
0

10
2

10
4

10
6

10
8

10
10

x

|Φ
|

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

y = x/(T−t)1/2

Q
 =

 |Φ
|(

T
−

t)
1/

2

Initial data in rescaled co−ordinates 

Figure 3. Numerical simulation of the full CGL for d = 3 and ε = 0.1, δ = 0, and u0(x) = e−x2

. Left:
Blow-up in physical coordinates. Right: Blow-up in rescaled coordinates; notice the convergence to a stationary
profile.

It is easy to see that (2.1) is invariant under a change in the phase of the solution and
also under a change in the scale of r, t, and Φ or under a translation in time. That is, it is
invariant under the continuous group of transformations

Φ �→ eiθΦ, or t �→ λt, r → λ1/2r, Φ → λ−1/2Φ, where λ > 0.

Blow-up of the solution occurs at the origin for this equation at the blow-up time T < ∞
if

max
r

|Φ(r, t)| → ∞ as t → T−,

with |Φ(r, t)| < ∞ for all t < T , r ≥ 0 and limt→T− |Φ(r, t)| < ∞ for all r > 0.
In the NLS, blow-up occurs on a length scale L(t) with L(t) → 0 as t → T [24]. We

assume that similar behavior occurs in the CGL. Accordingly, to resolve the temporal and
spatial structure we introduce a dynamic rescaling of the solution so that space, time, and Φ
are scaled by factors of L(t), leading to a more regular equation. Taking

ξ ≡ |x|
L(t)

, τ ≡
∫ t

0

1

L2(s)
ds, u(ξ, τ) = L(t)Φ(x, t),(2.2)
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MULTIBUMP BLOW-UP IN CGL 655

the rescaled solution u(ξ, τ) satisfies the rescaled PDE

iuτ + (1 − iε)

(
uξξ +

d− 1

ξ
uξ

)
+ (1 + iδ)|u|2u + ia(τ)(ξu)ξ = 0,(2.3)

where

a = −L
dL

dt
= − 1

L

dL

dτ
.

True self-similar blow-up behavior with L(t) → 0 arises when a(τ) is a positive constant
and

u(ξ, τ) = eiωτQ(ξ).(2.4)

In this case there is a separation of variables in (2.3) leading to exact similarity solutions. In
many examples of PDE evolution, under generic assumptions, self-similar solutions are the
attracting form of dynamics [2]. The numerical calculation presented in Figure 3 strongly
indicates such behavior for this case. For simplicity we will consider only the case ω ≡ 1.
Although left in as an unknown constant by the authors in [19], this does not affect the
solutions under consideration as ω can easily be scaled out by scaling Q, ξ, and a with ω. The
resulting solutions are then precisely the self-similar, blow-up solutions which themselves are
invariant under the group transformations. We have

L(t) =
√

2a(T − t) and τ = log(T − t)/2a(2.5)

and

(1 − iε)

(
Qξξ +

(d− 1)

ξ
Qξ

)
−Q + ia(ξQ)ξ + (1 + iδ)|Q|2Q = 0.(2.6)

The constant a > 0 above is a nonlinear eigenvalue for the reduced equation (2.6) and
represents a coupling between the length scale and the phase. The value of a needs to be
determined as part of the solution process.

Note that choosing different initial values for the PDE (2.1) will in general correspond to
different values of Q(0) and ω, where ω �= 1 can also be found. However, these all reduce to
the same ODE (2.6). We will consider a solution to (2.6) to be stable if, in the limit t → T ,
a solution of (1.1) converges to a solution of (2.6) under the rescalings (2.2) and (2.4).

In the rescaled equation (2.3), the perturbations in the CGL of the nonlinear and Laplacian
terms of the NLS are given by δu|u|2 and ε∇2u. As u and ξ are of unit order when blow-up is
approached, these perturbations are of equivalent order in the sense that uξξ ∼ |u|2u ∼ O(1)
provided that δ ∼ ε. This is the motivation to set

δ = γε, γ ∈ R,

and henceforth, without loss of generality, we assume ε �= 0. This balance between ε and δ is
also found in formulae derived in [11] for the saturation of blow-up in the CGL.
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656 C. J. BUDD, V. ROTTSCHÄFER, AND J. F. WILLIAMS

3. Admissible solution branches.

3.1. Existence of solution branches. The complex ODE equation (2.6) must be satisfied
by the self-similar solutions. Considered as an initial value problem, it has many solutions,
and only those that satisfy certain conditions at infinity are admissible as being related to
self-similar solutions of the PDE. These conditions are compatible with the NLS limit, ε → 0.
Briefly, the admissible solutions are those solutions of (2.6) that are slowly varying at infinity.
More precisely, the initial and asymptotic conditions for a self-similar solution Φ(x, t) of the
PDE, namely, that Φ(x, 0) = Φ0(x) and that |Φ| vanishes as |x| → ∞, respectively, lead to
the following initial and asymptotic conditions for Q(ξ), respectively:

Qξ(0) = 0, ImQ(0) = 0,(3.1)

|Q(ξ)| → 0 as |ξ| → ∞.(3.2)

Here we have exploited the phase invariance of the differential equation to define the phase of
Φ at the origin. Alternatively, we could have kept ω as an unknown in (2.4) and set Q(0) = 1
as in [19]. From a related regularity result (see [24]), it also follows that∣∣∣∣ξQξ +

(
1 +

i

a

)
Q

∣∣∣∣ → 0 as |ξ| → ∞(3.3)

must hold for solutions Φ with finite H1-norm. In the NLS limit this corresponds to solutions
with finite Hamiltonian H (1.2).

The majority of the solutions of (2.6) are rapidly varying as |ξ| → ∞ and do not satisfy the
condition (3.3). Such solutions are proportional to exp(iaξ2) in this limit and have unbounded
H1-norm. In contrast, the slowly varying solutions (for both the CGL and the NLS) are
polynomially decaying, and

Q(ξ) ∼ μ

ξ
exp

(
− i

a
log(ξ)

)
= μξ−1− i

a as ξ → ∞.(3.4)

The value of μ given by these solutions of (2.6) that are slowly varying at infinity plays a
central role in the later work on matching.

Monotone solutions. It is believed that the solutions of (2.6) that are slowly varying at
infinity occur only for isolated values of the nonlinear eigenvalue a. However, in the case
that |Q(ξ)| is a monotonically decreasing function of ξ (monotone solution), a proof of the
existence and local uniqueness is known only for the NLS close to d = 2 and a = 0 [15, 21].
In particular, if a = ε = δ = 0, then (2.6) reduces to

Qξξ +
d− 1

ξ
Qξ −Q + |Q|2Q = 0.(3.5)

It is known that this equation has a discrete set of exponentially decaying solutions, of which
the monotone decreasing solution is called the ground state or Townes soliton and is known to
be unique [16]. For a > 0 and ε = δ = 0 the following results are known about the monotone
solutions of (2.6) satisfying the conditions (3.1)–(3.3) [24, 21].
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MULTIBUMP BLOW-UP IN CGL 657

Theorem 3.1 (Sulem and Sulem, Rottschäfer and Kaper). (i) As d → 2 then there exists a
monotone solution of the NLS with a → 0: indeed,

d− 2 ∼ A

a
e−π/a.(3.6)

(ii) For d = 2 +O(ap) and a sufficiently small, a monotone solution of (2.6) exists and is
locally unique.

Nonmonotone solutions. In [4] the above result for the NLS is extended through a formal
asymptotic argument that implies the existence of further nonmonotone slowly varying solu-
tions of (2.6). These have also been detected in numerical computations [5]. The computations
reported in [19] indicate that similar solutions characterized by the number of turning points
of the amplitude of |Q| are found for the CGL. Accordingly we define a k-solution branch to
be a branch of solutions, denoted by Qk(ξ), for which |Qk| has k maxima on the whole real
line ξ ∈ (−∞,∞) (so that the monotone solutions lie on the (k = 1)-solution branch). A
particular conclusion of [4] was the existence of a (k = 2)-solution branch, where in the limit
of d → 2 there is a solution Q2(ξ) with a local minimum at ξ = 0 and isolated peaks at points
asymptotically close to |ξ| = 1/a. In the limit of d → 2 and a → 0, this solution exists when

d− 2 ∼ 3

a
e−λ2/a and λ2 = 2π/3 −

√
3/2.(3.7)

There is no reason to expect that this is the only two-bump solution; in fact, the following
existence and uniqueness result is also known [22].

Theorem 3.2 (Rottschäfer and Kaper). For each a sufficiently small, there exists an n0(a)
such that, if 2 ≤ n ≤ n0(a), then with d = 2 + O(al) for any l > d + 1 there exist 4(n − 1)
locally unique symmetric (2n−1)-bump solutions with a maximum at ξ = 0 and n−1 maxima
for ξ > 0.

While this theorem indicates that in the case of the NLS there are multiple multibump
solutions, the construction in [22] shows that they are exponentially close to each other.
While we anticipate that these families persist for ε and δ small but nonzero, they cannot be
distinguished by the asymptotics discussed in this paper, and we denote any member of this
family as “the k-bump solution.” We show presently that we can extend both of the results
(3.6) and (3.7) to the CGL system by looking at the limit of the solutions when the nonlinear
eigenvalue a is small. In particular, we have the following.

Proposition 3.3. For a and ε sufficiently small, the following hold.

(i) There exists a branch of monotone solutions (k = 1) which are smooth perturbations of
the monotonically decreasing solution of the NLS. On this branch the values of a, d, ε, and δ
are related through the asymptotic formula

e−λ1/a = (C1(d− 2)a− C2ε− C3δ)
(
1 + O

(
a2, aε, aδ

))
, λ1 = π/2,(3.8)

with explicitly computable constants Ci(d) > 0 for all d (defined in section 5), and C3/C2 → 2
as d → 2.

(ii) There also exist k-solution branches, k ≥ 2, on which the solutions Qk(ξ) with k
maxima on the real line are found. Along every k-solution branch the values of a, d, ε, and δ
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658 C. J. BUDD, V. ROTTSCHÄFER, AND J. F. WILLIAMS

are related through

e−
λk
a = (C1,k(d− 2)a− C2,kε− C3,kδ) (1 + O (a)) ,(3.9)

where the constants λk and Ci,k can be computed from integrals of the solution Qk(ξ) along
each branch.

The solutions on the (k = 2)-solution branch have a local minimum at the origin and
maxima located at the points |ξ| = O(κ/a) where κ can be determined explicitly, and

e−λ2/a = (C1,2(d− 2)a− C2,2ε− C3,2δ) (1 + O (a)) .(3.10)

For δ = 0 then

λ2 = 2π/3 −
√

3/2, κ = 1, and C1,2 = C2,2 = 1/3.

In section 6 we present the explicit computation of the coefficients in (3.9) where a (k = 2)-
solution is constructed.

It is possible to consider the solutions as functions of d, ε, and δ. In calculations it is
convenient to fix d and δ and to vary the value of ε; the branches of the solutions can then be
represented in a diagram by plotting the value of a. A numerical calculation of the (k = 1)-
and (k = 2)-solution branches in the (ε, a)-plane is given in Figure 4 for a range of values of
d, where δ = 0. Also, the value of the fold bifurcation point ε∗k(d) is given for each of the
branches. Note that the range of existence of the branch drops to zero as d → 2.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε

a

d = 3, ε* = .1980 

d = 2.5, ε* = .1029 

d = 2.1, ε* = .0182 

d = 2.001, ε* = 1.110 10−4

0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

0.3

ε

a

d = 3, ε* = .2438 

d = 2.1, 
ε* = .0161

d = 2.001, ε* = 8.990 10−5

d = 2.5, 
ε* = .1111

Figure 4. Left: The (k = 1)-solution branch. The monotone solution is found here, in the (ε, a)-plane for
different choices of d where δ = 0. Right: The (k = 2)-solution branch. The solution Q2 with two maxima
on the real line is found here, in the (ε, a)-plane for different choices of d where δ = 0. The value of the fold
bifurcation point ε∗k(d) is also given for the branches.

In Figure 5 we plot the amplitude of the multibump solution Q2(ξ) on the (k = 2)-solution
branch in the case of d = 3, δ = 0, and we show how this solution changes along the branch.
In this figure the peak of the solution moves uniformly to the right as a decreases along the
branch (so that ε initially starts at zero, reaches a maximum at ε∗k(d), and then decreases to
zero again as the peaks move to the right). The solution with the peak nearest to the origin
is found for ε = 0, a = 0.3124 . . . , which is the solution of the NLS computed in [5]. This
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d = 2.5 
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Figure 5. Left: The amplitude of the solutions |Q2(ξ)| for ξ > 0 as a and ε are moving along the (k = 2)-
solution branch for d = 3. The peak of the solution moves to the right as a is decreased to zero. For smaller
values of a, the solutions have a similar form and the peak ξ∗ is located close to 1

a
. Right: The location of the

maximum ξ∗ along the (k = 2)-solution branch for various choices of d where aξ∗ is plotted as a function of a.

solution does not have a form which is easy to analyze. In contrast, as a and ε tend to zero
(along the solution branch), the solution takes on a localized form, with a peak located at a
point ξ∗ close to 1/a. We demonstrate this in Figure 5 by plotting aξ∗ as a function of a for
various d. It is this solution with a peak located close to 1

a , found on the lower part of the
solution branch which is described by the asymptotic formula (3.10), that will be analyzed in
detail in section 6.

3.2. The existence of two solutions on each branch. In Figure 4 we clearly see that
there exists a ε∗k(d), where the value of ε∗k depends upon the branch, such that for every
value of ε < ε∗k there are two solutions on each k-solution branch with corresponding values
of a: a+ > a−. In fact, in the limit of d → 2 and/or ε → 0 we can determine, from the
asymptotic formulae (3.8) and (3.10), both the two values a− and a+ and the position of the
fold asymptotically for δ = 0. More specifically, when we set ε = 0 and δ = 0 in (3.9) we
obtain an asymptotic expression for a+, and when we set a = 0 and δ = 0 in (3.9) we obtain
an asymptotic expression for a−:

a+ ∼ λk

| log(C1,ka+(d− 2))| and a− ∼ εAk

(d− 2)
.(3.11)

It is clear from comparing these results with those of Theorem 3.1 that the solution
corresponding to a = a+ is a natural perturbation of the solution of the NLS in the limit of
small ε. Moreover, a+ is only small when d− 2 is small, and the asymptotic description of a+

is only valid in this limit.
In contrast, the solution corresponding to a = a− is not a perturbation of the solution

of the NLS. Furthermore, the value of a− is small provided that ε is small, regardless of the
value of d− 2; we may even take d = 3.

The agreement between the numerical results of the branches and the asymptotic calcula-
tions is very good indeed, as can be seen in Figure 6. There we present a plot comparing the
values of a given in (3.11) to the numerically computed (k = 2)-solution branch for various
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Figure 6. Comparison of the numerical results (solid line) and the asymptotic expansion for a− and a+

(dashed line) of the (k = 2)-solution branch. Left: Here d = 2.1, 2.001 and ε is plotted on a log-scale. Right:
For d = 2.5 and d = 3.

values of d. We observe from this figure that the lower branch a− is well approximated for a
wide range of values of d provided that ε is small. In contrast, the upper branch a+ is only
well approximated when d− 2 is small.

This nice agreement for a− leads us to believe that it may be possible to prove the existence
of this part of the branch for general 2 < d < 4 and, therefore, in the physically important
case of three dimensions. We leave this for future work.

3.3. The position of the fold bifurcation. The two parts of the branch corresponding to
a = a+ and a = a− coalesce in a fold bifurcation at the point (a∗k, ε

∗
k), and solutions for each

of these parts of the branch exist only for ε < ε∗k. We can derive the estimates (1.3) and (1.4)
for ε∗k(d) from the asymptotic results presented in (3.9) and (3.10). Indeed, differentiating
(3.9) with respect to a and applying the condition

dε

da
(a∗k) = 0

determine (a∗k, ε
∗
k) exactly. In the case of δ = 0, this condition yields that a∗k satisfies the

asymptotic relation

a∗k =
λk

log
(

λk
C1,k(d−2)

)
− 2 log(a∗k)

so that as d → 2 we have asymptotically

a∗k ∼ λk

log
(

λk
C1,k(d−2)

) .
The critical value of ε for the k-solution branch is then determined by substituting the differ-
entiated expression back into (3.9) as

ε∗k = (d− 2)

(
a∗k −

(a∗k)
2

λk

)
C1,k

C2,k
.(3.12)

Combining these expressions gives (1.3) to leading order, where ε∗k → 0 as d → 2.
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MULTIBUMP BLOW-UP IN CGL 661

Table 1
Comparison of the asymptotic and numerical locations of the fold point ε∗ for k = 1 and k = 2 for various

values of d with δ = 0.

k = 1 k = 2

d Asymptotic Numerical Asymptotic Numerical

3 .1517 .1980 .2616 .2439

2.5 .0914 .1024 .1034 .1111

2.1 .0151 .0182 .0148 .0161

2.001 9.177 10−5 1.110 10−4 8.770 10−5 8.991 10−5

In Table 1 we present a comparison of the asymptotic values of ε∗k given by formula (3.12)
with the numerical values for the (k = 1)- and (k = 2)-solution branches for various values of
d. The agreement between the numerical and asymptotic calculations is excellent, especially
when considering the various approximations that have been made to obtain the asymptotic
formula for the fold location. A comparison between the asymptotic formula and numerical
simulations is presented in Figure 6.

The restriction on the range of ε over which self-similar blow-up is observed is fully con-
sistent with the calculations presented in [11] in the case of d = 2. In particular, we see that
the range of the dissipative values of ε > 0 and δ > 0 over which we see self-similar blow-up
reduces to the empty set as d → 2 when each branch collapses to a single point. In the case of
d = 2 (when the blow-up of the NLS is marginal) we see blow-up only for the nondissipative
values of ε, δ < 0 described in [11]. In contrast, for d = 3 (where blow-up is observed for the
NLS) the range of ε values over which self-similar blow-up exists is quite large.

4. Construction of the asymptotic solution.

4.1. Overview. The construction of asymptotic solutions leading to the statements in
Propositions 1.1 and 3.3 is similar to that described in [4] although rather more subtle as it
involves both polynomial and exponential terms. In all parts of the analysis we presume that
a is small, but in contrast to the NLS case described in [4] we do not necessarily require that
d− 2 is also small. The calculation is rather different for the case of the monotone solutions
on the (k = 1)-solution branch compared to that for the multibump solutions on the other
branches, although both follow similar lines.

The solutions are constructed by determining them on three distinct ranges of ξ which are
then matched to each other. First, we examine the far field solution when aξ � 1. Then, the
solution is small and (2.6) can be approximated by a linear equation. Second, we determine
global estimates on the evolution of the phase of the solution that allow a comparison between
the form of the solution for the large values of aξ described above and smaller values of aξ.
Next we construct an inner solution valid over the range aξ � 1. Similar to the cases described
in [4], this solution is either a regular perturbation of the monotone decreasing ground-state
solution of (3.5) or an exponentially growing perturbation of the ground-state or the zero-
solution. However, these exponentially growing perturbations are only small if aξ is small.
The regular perturbations of the ground-state solution lead to monotone solutions of the
CGL, whereas the exponentially growing perturbations lead to multibump solutions of the
CGL related to those described in [4]. In the case of the monotone solutions we match an
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662 C. J. BUDD, V. ROTTSCHÄFER, AND J. F. WILLIAMS

exponential decay in the solution for aξ < 2 with a polynomial decay when aξ > 2 by using
a WKB analysis. In contrast, the exponentially growing perturbations lead to multibump
solutions, and we study these in the vicinity of the isolated peaks which occur when aξ = O(1).
Following this analysis, we again match a solution decaying exponentially away from the peak
for aξ < 2 with a polynomial decay when aξ > 2 by using a WKB analysis.

4.2. Far field behavior aξ � 1. We now consider the behavior of Q for large values of
aξ. The boundary condition (3.2) requires that |Q| is very small in this range of ξ values, and,
therefore, (2.6) can be closely approximated by the linearized equation

(1 − iε)

(
Qξξ +

d− 1

ξ
Qξ

)
−Q + ia(ξQ)ξ = 0.(4.1)

This equation is also obtained after rescaling in ξ with
√

1 − iε in the far field equation that
is satisfied by the solutions of the NLS (when ε = 0). The solutions to that equation for the
NLS are parabolic cylinder functions that now must be rescaled. For small ε, the solutions
of (4.1) change type when aξ = 2 (as in the NLS case), admitting exponentially decaying
solutions for aξ < 2 and polynomially decaying solutions for aξ > 2. Applying the rescaling
of ξ to the solutions given in [4] implies that there are (complex) constants μ, ν such that as
aξ → ∞ (so that aξ > 2) and ε small

Q(ξ) ∼ μξ−1−i/a

(
1 + O

(
1

aξ2

))

or

Q(ξ) ∼ νξ1−d+i/ae−iaξ2/2eaεξ
2/2

(
1 + O

(
1

aξ2

))
.

Of these two solutions, the first is slowly varying and decaying, whereas the second is rapidly
varying and growing when ε > 0. Only this first solution can be matched to the boundary
conditions satisfied by a self-similar solution and the consequent far field condition for Q(ξ)
given in (3.4). Consequently, if we decompose Q in amplitude and phase as

Q(ξ) = A(ξ)exp

(
i

∫ ξ

0
ψ(x)dx

)
,(4.2)

then for aξ � 1

A ≈ μ

ξ

(
1 + O

(
1

aξ2

))
and ψ ≈ − 1

aξ

(
1 + O

(
1

aξ3

))
.(4.3)

4.3. Global estimates. We can link the far field solution to the global behavior of Q via
a rigorous result that relates the amplitude and phase of the solutions of (2.6). This relation
is central in our final analysis and we will state it here. Substituting the decomposition (4.2)
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MULTIBUMP BLOW-UP IN CGL 663

of Q in amplitude and phase into (2.6) leads to the following expression for A and ψ:

Aξξ = ψ2A− d− 1

ξ
Aξ + A−A3 − ε

(
2Aξψ + Aψξ +

d− 1

ξ
Aψ

)
+ aξAψ,(4.4)

ψξ = −2ψ
Aξ

A
− d− 1

ξ
ψ +

ε

A

(
Aξξ −Aψ2 +

d− 1

ξ
Aξ

)
(4.5)

− a

A
(A + ξAξ) − γεA2,

where δ = γε. From this system we obtain the following integral equation for ψ.
Lemma 4.1. The phase ψ and the amplitude A satisfy

ψ +
aξ

2
=

1

ξA2

∫ ξ

0

(
(2 − d)A2ψ + εxA

(
Axx −Aψ2 +

d− 1

x
Ax

)
− γεxA4

)
dx.(4.6)

Proof. Consider first the identity

d

dx

(
xA2

(
ψ +

ax

2

))
= (A2 + 2xAAx)

(
ψ +

ax

2

)
+ xA2

(
ψx +

a

2

)
= (A2 + 2xAAx)

(
ψ +

ax

2

)
+ xA2

[
a

2
− 2ψ

Ax

A
− d− 1

x
ψ

+
ε

A

(
Axx −Aψ2 +

d− 1

x
Ax

)
− a

A

(
A + xAx − γεA2

)]

= (2 − d)ψA2 + εxA
(
Axx −Aψ2

)
+

d− 1

x
Ax − γεxA4.

Integrating this identity from 0 to ξ and using the fact that ψ(0) = 0, we obtain the statement
of the lemma.

From Lemma 4.1 and the asymptotic estimates (4.3), it follows that for aξ � 1

aξ

2
=

ξ(2 − d)

μ2

∫ ξ

0
A2ψdx +

ξε

μ2

∫ ξ

0
xA

(
Axx −Aψ2 +

d− 1

x
Ax − γA3

)
dx,(4.7)

where both integrals converge as ξ → ∞. Thus, we find the exact expression,

μ2 =
2(2 − d)

a

∫ ∞

0
A2ψdx +

2ε

a

∫ ∞

0
xA

(
Axx −Aψ2 +

d− 1

x
Ax − γA3

)
dx.(4.8)

This is a regular perturbation of formulae for the NLS which are given in [24, section 8.1.3].
Once the structure of a solution is fixed the integrals can be determined. To obtain the
result as stated in Proposition 3.3 we make two estimates of μ. One estimate follows from
matching the solution in the region ξ � 1, aξ < 2, on the left-hand side of the peak, to the
solution for aξ � 1. For this, we link a WKB estimate of the exponential decay rate of either
the monotone solution or the multibump solution, for ξ � 1, aξ < 2, to the slowly varying
solution for aξ � 1. The second estimate for μ follows from (global) estimates of both of the
integral terms in (4.8). In order to do this we use approximations for the amplitude A which
are derived in the next two sections. In the case of a solution with one maximum, we find the
ground-state solution (see section 5), and for the multibump solution we obtain a sech profile
(see section 6). In the latter case the quadratures can be evaluated exactly while the former
requires numerical approximation.
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4.4. Asymptotic analysis of the inner region. We consider next the general behavior of
the solutions when aξ is small—the inner region. This analysis is similar to that reported
in [24] and more relevant details are given there. Inspection of (4.4) and (4.5) shows that if ε
and aξ are both small , then to leading order A and ψ satisfy the ODEs

Aξξ = ψ2A− d− 1

ξ
Aξ + A−A3,

ψξ = −2ψ
Aξ

A
− d− 1

ξ
ψ.

From Lemma 4.1 we have that to leading order

ψ = −aξ

2
+

1

ξA2

∫ ξ

0
(2 − d)A2ψdx,

which validates the introduction of the rescaling ψ = aξφ. Then the equation for A becomes

Aξξ +
d− 1

ξ
Aξ −A + A3 = a2ξ2φ2A,(4.9)

and Lemma 4.1 gives to leading order

φ = −1

2
− (d− 2)

ξ2A2

∫ ξ

0
A2xφdx.

Accordingly, if aξ � 1, A will to leading order be given by a solution R(ξ) of the ground-state
equation

Rξξ +
d− 1

ξ
Rξ + R3 −R = 0, R′(0) = 0, lim

ξ→∞
R(ξ) = 0.(4.10)

This equation has a discrete set of exponentially decaying solutions [16]: R0 ≡ 0, the unique
monotone solution R1 (the ground-state solution or Townes soliton), and an infinite sequence
of nonmonotone solutions RK , with

RK(ξ) =
νK

ξ(d−1)/2
e−ξ as ξ → ∞.

Note that the equation also admits exponentially growing solutions.
Starting with one of these solutions RK it follows that, to leading order, φ satisfies the

Volterra integral equation

φ = −1

2
− (d− 2)

ξ2R2
K

∫ ξ

0
R2

Kxφdx.

We may generally solve this integral equation by using a Volterra series. In the limit of d → 2
this gives

φ = −1

2
+

(d− 2)

2ξ2R2
K

∫ ξ

0
R2

Kxdx + O((d− 2)2).
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MULTIBUMP BLOW-UP IN CGL 665

Note that as RK is exponentially decaying all of the integrals in the Volterra series are rapidly
convergent.

The amplitude A now is a perturbation of one of the solutions RK of the ground-state
equation (4.10). Substituting the leading order expression ψ = aξφ, where φ = O(1), and
A = RK into (4.4), it follows that the perturbation to (4.10) is of order O(a2ξ2) + O(aε).
Therefore, the leading order expressions for A and ψ must be perturbed; these perturbations
take a similar form as those described in [4] (see also [24]). If we set A = RK + B, then, to
leading order, the perturbation B evolves according to the expression

LB ≡ Bξξ +
(d− 1)

ξ
Bξ −B + 3R2

KB = O(a2ξ2) + O(aε).(4.11)

Therefore, we may develop a regular expansion for A of the form

A = RK + a2A1 + aεA2 + · · · ,(4.12)

where each of the terms Ai is exponentially decreasing. For K = 1 this is a natural perturba-
tion of the ground-state solution.

Significantly, this expansion for A is in general incomplete. For large ξ, the linear equation
LB = 0 has two linearly independent solutions, which are to leading order given by

ψ1 = ξ−(d−1)/2e−ξ and ψ2 = ξ−(d−1)/2eξ.

The regular expansion (4.12) is sufficient as a perturbation of the ground-state solution R1;
however, it excludes the contributions due to ψ2, and these should not be ignored in general.
Thus, a more general expression for the perturbation is obtained by adding the exponentially
growing terms given by ψ2. These terms become important when looking at a perturbation of
the nonmonotone solutions RK , K > 1. Accordingly, following [4], we extend the expansion
for the perturbation to give

A = RK + a2A1 + aεA2 + · · · α

ξ(d−1)/2
eξ

(
1 + a2B1 + aεB2 + · · ·

)
.(4.13)

To ensure that the perturbation to the ground-state solution RK is small, we require in this
expansion that α is an exponentially small term in a of the form α = e−β/a. The terms a2ξ2

and αeξ then become significant when aξ is of order one.

5. The monotone solution. First, we focus on constructing the monotone solutions Q1

on the (k = 1)-solution branch. We expect these solutions to have the form of the regular
perturbation to the monotone solution R1(ξ) described in (4.12). Since there exist no further
maxima, apart from the one in ξ = 0, the solutions do not contribute to the leading order for
ξ � 1 (far field profile). Substituting the expressions (4.12) and ψ = aξφ into (4.8), we have
to leading order

μ2 = 2(2 − d)

∫ ∞

0
R2

1φx
(
1 + O(a2, aε)

)
dx

+
2ε

a

∫ ∞

0
xR1

(
R1,xx −R1a

2x2φ2 +
d− 1

x
R1,x − γR3

1

)(
1 + O(a2, aε)

)
dx.(5.1)
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666 C. J. BUDD, V. ROTTSCHÄFER, AND J. F. WILLIAMS

Each of these integrals can be estimated in turn, where semiexplicit expressions are possible
in the limit of d → 2 and numerical expressions otherwise. In particular, for d− 2 small∫ ∞

0
R2

1φxdx ≈ −1

2

∫ ∞

0
R2

1xdx + O(d− 2),

since φ = −1
2 +O(d− 2), where the remainder term in this expression depends on (d− 2) but

does not depend upon a or ε. Likewise, the contribution to the second integral in (5.1) is also
dominated by the ground-state profile and∫ ∞

0
xR1

(
R1,xx − a2φ2R1x

2 +
d− 1

x
R1,x

)
dx ≈

∫ ∞

0
xR2

1(1 −R2
1)
(
1 + O(a2(d− 2))

)
dx

since R1 satisfies (4.10). Hence

μ2 = (d− 2)

(∫ ∞

0
xR2

1 dx + O
(
(d− 2), a2, aε

))

+
2ε

a

(∫ ∞

0
xR2

1(1 − (1 + γ)R2
1) dx + O

(
a2, aε

))
.(5.2)

5.1. The matching for the monotonically decreasing solution. To leading order, the
behavior of the function A at large values of ξ for the CGL is identical to that for the monotone
solution of the NLS described in [24]. In particular, the matching between the exponentially
decaying solution for aξ < 2 and the polynomially decaying solution for aξ > 2 is identical.
Following [24], we have that in this case, a solution which is a perturbation of R1(ξ) evolves
smoothly into one of the form μ/ξ with the matching constant

μ2 = 2ν2
1

e−π/2a

a
.(5.3)

Substituting into (5.2), we obtain

2ν2
1

e−π/2a

a
=

(
(d− 2)M1 +

2ε

a
(M1 − (1 + γ)M2)

)(
1 + O

(
a2, aε, (d− 2)2

))
,(5.4)

where

M1 =

∫ ∞

0
xS2(x) dx ≈ 1.862 and M2 =

∫ ∞

0
xS4(x) dx ≈ 3.725.

Rearranging, this gives the asymptotic expression (3.8) in Proposition 3.3.

Here S is the monotone solution of the ground-state equation (4.10) with d = 2 and the
integrals are evaluated by numerical quadrature. It can be shown [12] that 2M1 = M2 for
d = 2. We also have from numerical quadrature that when d = 2

ν1 = lim
x→∞

x(d−1)/2exS(x) ≈ 3.150.
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MULTIBUMP BLOW-UP IN CGL 667

Critically, this gives a condition on the relationship between ε and δ for which the monotoni-
cally decreasing solutions Q1 may exist and we require

(d− 2)M1 +
2ε

a
(M1 − (1 + γ)M2) > 0.

In the limit case d = 2 [12], this implies that ε(1+2γ) = ε+2δ < 0 must be satisfied, recovering
exactly the result in [11], where modulational analysis is used to determine the stability of
monotonically decreasing blow-up profiles. Their instability result relies on exactly the same
comparison of integrals [12, 11]. For d− 2 > 0 and small we see existence over a wider range
of ε and δ. In particular, for δ = 0 (hence γ = 0) there exists a solution for a small (the
branch a−) with

ε ∼ (d− 2)a−/2.

For more general values of d we must evaluate expressions for R1, φ, and the integrals in (5.1)
by numerical methods. In particular, if d = 3, ν1 ≈ 2.713,∫ ∞

0
xR2

1 dx ≈ 2.580 and

∫ ∞

0
xR4

1 dx ≈ 18.813.

This leads to the expression (3.8) with C1 ≈ 0.1753, C2 ≈ 2.205, and C3 ≈ 0.1359. Similar
calculations may be performed for any dimension.

6. Asymptotic analysis of the multibump solutions.

6.1. Overview. We now consider the possible multibump solutions that were observed in
the numerical calculations presented here and in [19]. In the analysis for the inner solution
(the solution for aξ small) in section 4.4, we identified the possibility of having exponentially
growing perturbations of the solutions of the ground-state equation (4.13). This result was
obtained by studying (4.11). We find that in the region where ξ = O(1/a) the perturbation
a2ξ2 in (4.11) to the ground-state equation has the same order as the other terms. In addition,
there is a large perturbation of the solution from RK(ξ) as the terms αeξ become significant. It
is precisely in this range of ξ = O(1/a) that we observe, in numerical simulations, the existence
of additional peaks of order one. When a is small, we are able to give a precise description
of these peaks in the following two cases: the case of d− 2 small (indeed, exponentially small
in a), and the case of general d but with ε small (ε proportional to a). When either of these
conditions is satisfied we are able to give a complete description of the bifurcation diagram.

We shall concentrate our analysis only on solutions with two maxima on the interval
ξ ∈ (−∞,∞). This is due the numerical ODE computations reported in [19] suggesting that
only the single- and two-bump solutions are stable. We have also seen numerically that the
higher multibump solutions are unstable through both PDE and ODE computations. As such
we leave their further investigation for a future time.

6.2. The form of the peaks. The numerical evidence presented in Figure 5 indicates
that the peaks of the function |Q| are asymptotically located at the points κ/a, with κ = 1.
Also, the solution |Q| takes on a localized form that is independent of a, provided that ε is
small. We follow the asymptotic analysis of [4] and assume that the multibumps are found
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668 C. J. BUDD, V. ROTTSCHÄFER, AND J. F. WILLIAMS

in the region where ξ = O( 1
a). Here the peaks strongly resemble a localized solution of the

one-dimensional focusing NLS equation. We assume that the peak is located at the point

ξ∗ = κ/a

and seek to determine κ. In order to do this we rescale the Q-equation (2.6) by setting

ξ =
κ

a
+ s(6.1)

and consider an expansion of the solution in terms of a with a � 1. From this an expression
for κ will be obtained.

Substituting (6.1) into (2.6) leads to

Qss + iκQs −Q + |Q|2Q = iεQss − a
(d− 1)

κ + as
Qs − ia(sQ)s − iγε|Q|2Q + O(aε).(6.2)

We now express Q(s), in the neighborhood of s = 0, as an asymptotic series in a:

Q(s) = Q0(s) + aQ1(s) + o(a).(6.3)

This gives the following reduced equation for Q0:

Q0,ss + iκQ0,s −Q0 + |Q0|2Q0 = 0.(6.4)

We now rescale the phase of Q0 in (6.4) by setting

Q0(s) = e−
iκs
2 S0(s),(6.5)

which leads to

S0,ss −
(

1 − κ2

4

)
S0 + |S0|2S0 = 0.(6.6)

Without loss of generality we may assume the solution of (6.6) to be real, so that up to an
arbitrary multiplicative constant of modulus one, we have

S0(s) =

√
2

(
1 − κ2

4

)
sech

(√
1 − κ2

4
s

)
.(6.7)

Observe that this solution is valid provided that we are in the region κ < 2 (i.e., ξ < 2/a).
Note further that the form of S0 is independent of a. Important for the matching later is that
for |s| large and a small, this solution is exponentially decaying. From (6.5) it also follows
that the gradient of the phase ψ is −κ

2 to leading order.
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MULTIBUMP BLOW-UP IN CGL 669

6.3. Locating the peaks. The terms on the right-hand side of (6.2) are of the same order
when ε and a are of the same order, and, therefore, we set ε = Ka and estimate the value of
K. Consider now the equation for Q1. The values of κ and K are fixed by the compatibility
condition, and thus in the asymptotic series, the term a|Q1| is small in comparison to |Q0|.
Taking the terms of O(a) together gives the following equation for Q1:

Q1,ss + iκQ1,s −Q1 + Q2
0Q̄1 + 2|Q0|2Q1

= iKQ0,ss +
(1 − d)

κ
Q0,s − i(sQ0)s − iγK|Q0|2Q0.(6.8)

Again, we rescale the phase by setting

Q1(s) = e−
iκs
2 S1(s);(6.9)

then, using (6.5), we obtain

S1,ss −
(

1 − κ2

4

)
S1 + S2

0 S̄1 + 2|S0|2S1 = iK

(
−κ2

4
S0 − iκS0,s + S0,ss

)
(6.10)

+

(
(1 − d)

κ
− is

)(
− iκ

2
S0 + S0,s

)
− iS0 − iγKS3

0 .

Setting S1 = t + iv and splitting into real and complex parts lead to (since S0 is real)

tss −
(

1 − κ2

4

)
t + 3tS2

0 = KκS0,s +
1 − d

κ
S0,s −

κs

2
S0 =: f(6.11)

and

vss −
(

1 − κ2

4

)
v + vS2

0 = K

(
κS0,ss −

κ2

4
S0

)
+

d− 3

2
S0 − sS0,s − γKS3

0 =: g.(6.12)

For the asymptotic expansion to be consistent we require

t(0) = v(0) = 0, and |t| → 0, |v| → 0 as |s| → ∞.

We will determine the form of t and v by using the variation of constants formula. For
subsequent use, we define the right-hand side of (6.11) to be the function f and the right-hand
side of (6.12) to be the function g. First, we focus on the equation for t and more specifically
on the homogeneous part of (6.11). A solution to this homogeneous equation is ψ1(s) = S0,s(s)
(which is odd and exponentially decaying). Also, there exists an exponentially growing, even
valued solution ψ2 that is linearly independent of ψ1(s); ψ1(s) and ψ2(s) have a constant
Wronskian W1. Computing directly,

ψ2(s) = S0,s

∫ s

0

dy

S2
0,y(y)

∼ exp

(√
1 − κ2

4
s

)
for large s.(6.13)D
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670 C. J. BUDD, V. ROTTSCHÄFER, AND J. F. WILLIAMS

It follows by the variation of constants, using t(0) = 0, that

t(s) = A1ψ2(s) + ψ1

∫ s

0

ψ2f

W1
dz − ψ2

∫ s

0

ψ1f

W1
dz,(6.14)

where A1 is arbitrary. Then, using the fact that ψ1 decays exponentially, we find that

t(s) →
(
A1 −

I1
W1

)
ψ2(s) as s → ∞,(6.15)

t(s) →
(
A1 +

I1
W1

)
ψ2(s) as s → −∞,(6.16)

where I1 is defined as

I1 =

∫ ∞

0
fψ1ds =

∫ ∞

0

(
KκS0,s +

1 − d

κ
S0,s −

κs

2
S0

)
S0,sds.(6.17)

Now, we study v and we find that φ1 = S0 is a solution of the homogeneous part of (6.12).
Again, φ1 is exponentially decaying and odd. There also exists a second linearly independent,
exponentially growing, even valued solution

φ2 = S0

∫ s

0

dy

S2
0(y)

,

and φ1 and φ2 have a constant Wronskian W2. In a similar way as before, using v(0) = 0, it
follows that

v(s) = A2φ2(s) + φ1

∫ s

0

φ2g

W2
dz − φ2

∫ s

0

φ1g

W2
dz,

where A2 is a constant. Then

v(s) →
(
A2 −

I2
W2

)
φ2(s) as s → ∞,(6.18)

v(s) →
(
A2 +

I2
W2

)
φ2(s) as s → −∞,(6.19)

where

I2 =

∫ ∞

0
gφ1ds =

∫ ∞

0

(
K

(
κS0,ss −

κ2

4
S0

)
+

d− 3

2
S0 − sS0,s −KγS3

0

)
S0ds.(6.20)

First, we focus on those solutions with one maximum in the region ξ = O(κa ). These
solutions decay exponentially away from s = 0 and therefore cannot have an exponential
growth in t(s) and v(s) for s → ∞ and for s → −∞. Thus, it follows from (6.15), (6.16),
(6.18), and (6.19), since ψ2 and φ2 are both exponentially growing, that A1 = 0, I1 = 0,
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MULTIBUMP BLOW-UP IN CGL 671

A2 = 0, and I2 = 0. Substituting the expression for S0 (6.7) into I1 and I2 and using the
exact integrals ∫ ∞

0
(S0,s)

2ds =
2

3

(√
1 − κ2

4

)3

,

∫ ∞

0
sS0S0,sds = −

√
1 − κ2

4
,

∫ ∞

0
S0S0,ssds = −2

3

(√
1 − κ2

4

)3

,

∫ ∞

0
S2

0ds = 2

√
1 − κ2

4
,(6.21)

and

∫ ∞

0
S4

0ds =
8

3

(√
1 − κ2

4

)3

lead to

I1 =
1

2κ

√
1 − κ2

4

[
4

3

(
1 − κ2

4

)
(Kκ2 + 1 − d) + κ2

]
(6.22)

and

I2 =

√
1 − κ2

4

[
−2

3
Kκ

(
1 − κ2

4
+

3κ

4

)
+ d− 2 − 8

3
γK

(
1 − κ2

4

)]
.(6.23)

A relationship among the values of κ, K, and γ then follows from the two conditions

I1 = 0 and I2 = 0.(6.24)

We consider first the case of δ = 0 and hence of γ = 0. In this case there is precisely one
exact solution of (6.24) with 0 < κ < 2 which is given by

κ = 1 and K = d− 2.(6.25)

Therefore, we find that

ε = (d− 2)a, ξmax =
1

a
+ hot (higher order terms).(6.26)

A key result of this calculation is that the location of the peak depends upon a but
not explicitly upon d. Indeed, in the limit of d = 2 we still have κ = 1. The dominant
contribution to the function A = |Q| in the global identity (4.8) thus comes from the localized
peak, centered at 1/a for which both the functional form and the form of the phase ψ are as
given in section 6.2. The integrals in (4.8) can thus be evaluated explicitly.

It also follows from the above expression that in the limit of d = 2 we find that ε = 0 to
leading order in a. In fact we see presently that as d → 2, both ε and d− 2 are exponentially
small functions of a, which is consistent with the above estimate.

Now we consider δ �= 0 (hence γ �= 0) and ε = 0. Setting ε = 0 would imply that K = 0;
however, if we first substitute γ = δ

aK where δ �= 0 and then set K = 0, we find that

δ = a
d2 − 4

8
, κ = 2

√
d− 1

d + 2
.

Similar to the above calculation, we obtain that κ → 1 and δ → 0 as d → 2.
Additional solutions for general δ may also be found, but we will concentrate on the case

δ = 0 for comparison with numerics.
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672 C. J. BUDD, V. ROTTSCHÄFER, AND J. F. WILLIAMS

6.4. Evaluating the integrals in the identity (4.8). So far, we have studied the structure
of the multibump solutions in different regions of ξ. As a final step in constructing these
solutions, we determine the integrals in (4.8). We obtain the condition on a, d, ε, and δ under
which they exist as stated in the in Proposition 3.3. For this we use the asymptotic solution
determined in the previous section. The key result we exploit here is that, for small a, the
solution has a peak at 1/a, to leading order, independent of the value of d. Thus, we study
the solution with a single peak at ξ = 1

a + hot over a range of values of d; we construct the
(k = 2)-solution. This solution will be estimated on different ranges of ξ. To evaluate the
integrals in (4.8), we split both integrals into three parts from 0 to ξ1 to ξ2 to ∞, where
1 � ξ1 � 1

a � ξ2. On each of these three regions the solution is known from previous sections
to leading order and the integrals can be estimated.

When integrating from 0 to ξ1, in other words, x � 1
a , either A(x) is exponentially small

or A(x) ≈ RK and ψ = −ax
2 . The contribution over this region to the first integral in (4.8) is

therefore smaller than

−a

∫ ∞

0
R2

Kxdx = O(a).

In a similar way, the contribution to the second integral in this region is either exponentially
small (in the case that A is exponentially small) or O(1) when A ≈ RK .

Now we focus on the integrals in (4.8) in the range where x > ξ2 � 1
a . We find by using

(4.3) that A2ψ = − μ2

ax3 to leading order so that the contribution to the first integral in (4.8)
over this range is of order a. Similarly, we find that

xA

(
Axx −Aψ2 +

d− 1

x
Ax − γA3

)
≈ −μ2

x3

(
1

a2
+ d− 3 − γμ2

)

so that the contribution to the second integral is to leading order given by −μ2

8 .
Finally, in the middle range of ξ values, in the neighborhood of 1

a , here ξ1 < x < ξ2, we
know from section 6.2 that A and ψ are to leading order given by

S(x) =

√
2

(
1 − κ2

4

)
sech

(√
1 − κ2

4

(
x− κ

a

))
and ψ = −κ

2
.(6.27)

Therefore, in this region the contribution to the first integral is to leading order given by

−
∫ ξ2

ξ1

κ

(
1 − κ2

4

)
sech2

(√
1 − κ2

4

(
x− κ

a

))
dx

= −κ

(
1 − κ2

4

)∫ ∞

−∞
sech2

(√
1 − κ2

4
y

)
dy + hot

= −2κ

√
1 − κ2

4
+ hot,

where the first equality is obtained by introducing the rescaled variable y = x− κ
a and using

the fact that a � 1.
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MULTIBUMP BLOW-UP IN CGL 673

The contribution to the second integral in (4.8) for ξ1 < x < ξ2 is to leading order given
by ∫ ξ2

ξ1

xS

(
Sxx − Sψ2 +

d− 1

x
Sx − γS3

)
dx

=

∫ ∞

−∞

(
y +

κ

a

)
S

(
Syy − Sψ2 +

d− 1

y + κ
a

Sy − γS3

)
dy + hot

=

∫ ∞

−∞

κ

a
S
(
Syy − Sψ2 − γS3

)
dy

= −κ

a

∫ ∞

−∞

(
(Sy)

2 + S2ψ2 + γS4
)
dy

= −2κ

3a

√
1 − κ2

4

(
2 + κ2 + 8γ

(
1 − κ2

4

))
,

where A is given by (6.27). A similar error analysis to the previous case implies that the error
in the above integral when extended to the real line is O(1) as a → 0.

Summarizing, the two integrals in (4.8) when integrated from 0 to ∞ are given to leading
order by

∫ ∞

0
A2ψdx = −2κ

√
1 − κ2

4
,

and∫ ∞

0
xA

(
Axx −Aψ2 +

d− 1

x
Ax − γA3

)
dx = −2κ

3a

√
1 − κ2

4

(
2 + κ2 + 8γ

(
1 − κ2

4

))
.

Substituting these expressions for the integrals into (4.8) and including the error terms
give

μ2 =

[
−4κ

a

√
1 − κ2

4

(
2 − d +

ε

3a
(2 + κ2) + γε

8

3a

(
1 − κ2

4

))]
(1 + O(a)) .(6.28)

To complete the matching we estimate the value for the parameter μ. This is done by
matching the exponentially decaying behavior to the right and away from the main peak of
the solution to the polynomially decaying behavior in the tail. The analysis is, to leading
order, identical to the NLS calculation for the multibump solutions, and it is based on the
WKB approximation that was described in [4]. We obtain that

μ2 =
16κ(1 − κ2/4)3/2

a2
e−λ2/a, λ2 = π − 2 sin−1(κ/2) − κ

√
1 − κ2/4(6.29)

so that if κ = 1 (as in the case of δ = 0), we find that

μ2 =
6
√

3

a2
e−(2π/3−

√
3/2).
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674 C. J. BUDD, V. ROTTSCHÄFER, AND J. F. WILLIAMS

The value of κ in general follows by imposing both conditions in (6.24).
We now substitute (6.29) into the expression (6.28) to determine a condition relating κ,

K, and γ. On rearranging we obtain

(4 − κ2)e−λ2/a =

(
(d− 2)a− ε

3
(2 + κ2) − 8

3
aγε

(
1 − κ2

4

))
(1 + O(a)) .(6.30)

In general, this expression is complicated since there is a subtle relationship among d, κ, ε,
and γ, although in all cases κ → 1 as d → 2. In the case of δ = 0 (γ = 0 and κ = 1), (6.30)
reduces to

3e−λ2/a ∼ (d− 2)a− ε, λ2 = 2π/3 −
√

3/2.(6.31)

We observe that the values of κ = 1, ε = a(d − 2) that were obtained in section 6.3 by
the use of the Fredholm alternative set the right-hand side of (6.31) identically to zero. This
is consistent with the exponentially small estimate of μ when a is small. However, the value
of the Fredholm alternative calculation in finding the location (ξ = 1

a) and form of the peak
is plain, as when combined with the global estimate we not only recover the earlier condition
linking a and ε but also find the exponential link between a and d − 2 in the limit of d → 2
and a → 0.

7. Numerical results. In this section, we consider two numerical simulations. First, we
look at numerical solutions of the ODE (2.6) that must be satisfied by the self-similar solutions.
These numerics are compared to the asymptotic formulae computed in the previous sections.
It should be noted that the existence of solutions to this ODE does not in any way guarantee
the formation of blow-up solutions to the full CGL for a broad class of initial data. Therefore,
we also solve the PDE problem (1.1) directly.

7.1. Solution of the ODE. In order to find solutions of the ODE (2.6) a parameter con-
tinuation with respect to ε was performed with the (collocation based) two-point boundary
value solver and path following algorithms in the package AUTO [10]. This package requires
a good initial guess for the solution at a certain value of ε. This initial solution was computed
with a shooting algorithm combining the ODE solver DOP853 [13] and the nonlinear solver
DNSQE [20]. In light of the prediction for the location (6.26) of the maximum of the non-
monotone profile with two bumps on the real line (k = 2), the boundary value problem (2.6)
was solved with the normalization and symmetry conditions (3.1) enforced at the origin and
the slow-growth condition (3.3) enforced at finite L = 1000. From (6.26), ξmax = 1

a +hot, this
means that we should be able to continue the (k = 2)-solution branch until a ∼ 10−3. The
bifurcation diagram in the (a, ε)-plane where solutions with two maxima exist as computed
in this manner is shown in Figure 4, and the structure of the solution as moving along the
branch in the (a, ε)-plane is given in Figure 5.

The ODE computation that really motivated us to solve the PDE directly is given in
Figure 1. Here we see the remarkable feature that the range of ε for which multibump solutions
exist is larger than that for the monotone solutions! This begs the question of whether or not
multibump solutions in this regime are stable. In [19], the authors considered this question
by numerically examining the spectrum of the linearization about the computed solutions.
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MULTIBUMP BLOW-UP IN CGL 675

Intriguingly, they found that the lower part of the branch of (k = 2)-solutions is linearly
stable for ε sufficiently small. This is in contrast to the monotone solutions that are found
to be stable on the upper part of the k = 1 branch. We now consider computations of the
solutions of the full PDE to examine the stability of the solutions and to see which initial data
converge to the various types of stable self-similar blow-up profiles. Our PDE computations
demonstrate that the (k = 2)-solutions actually have a rather large basin of attraction.

7.2. Solution of the PDE. The numerical approximation of the large solutions of the full
PDE (1.1), which evolve over small length and time scales, requires the use of an adaptive
method. To ensure spatially accurate final-time profiles we use the scale-invariant moving
mesh PDE approach [14] that has previously been used in the study of blow-up problems of
this type [6, 5]. In this semidiscretization method, a set of computational nodes are distributed
in a finite spatial interval, and the spatial derivatives of the PDE are discretized by using a
collocation method. Then, the resulting system of ODEs is solved by using a stiff ODE
solver. To ensure a correct resolution of the singularity, the computational nodes are moved
to equidistribute the integral of a user-defined quantity, a monitor function, between mesh
points. We use the scale-invariant monitor function

M = |Φ|2

so that the blow-up solutions are resolved at all times in that the local grid spacing at a point
(x, t) will be proportional to |Φ(x, t)|2. This was effective for the computations of the NLS
reported in [5], and it has the property that it admits moving meshes which move nodes along
level sets of the similarity variables defined in (2.2). Since the symmetries of the CGL are
the same as those for the NLS, a similar method is expected to work well in this case. We
take a slightly different approach from the dynamic rescaling method described in [24], as we
are not assuming any particular relation between the solution magnitude and the spatial and
temporal scales on which the solution is evolving. Instead we follow any emergent scaling in
the problem.

In Figure 7, we consider a numerical simulation of the full PDE starting with a nonmono-
tone initial condition for d = 3 and ε = 0.2 This value of ε is chosen such that it lies beyond
the range of existence of the monotone solutions. The resulting calculation, presented in the
rescaled coordinates, shows a stabilization of the blow-up solution to a multibump profile
(k = 2).

The history of the numerical investigation of blow-up phenomena is plagued with errors
and false starts. We have confidence in the methods used here because they give results
consistent with asymptotics and numerically computed ODE profiles. However, that might not
be enough for the skeptical reader. The reliability of these methods comes from the fact that
they can, under appropriate assumptions, lead to uniform error estimates [7]. This is because
of the special scaling structure of the monitor function used. As an extra consequence, the
dynamic grid follows level sets of any emergent similarity variable. Hence, the computational
variables can be thought of as mimicking the similarity variables. This can be seen in Figure 7
(right) where, after an initial transient phase, the grid lines are essentially constant in the
rescaled variables.

To demonstrate the stability of various solutions on the (k = 1)- and (k = 2)-solution
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Figure 7. The complicated dynamics of nonmonotone initial data can be seen both in the solution and
the motion of the grid on which it was computed. Left: Convergence of a nonmonotone initial condition to
a multibump similarity solution in the rescaled dynamical coordinates. Right: The grid lines of the moving
mesh method plotted in the rescaled dynamical coordinates. After an initial transient phase, they are essentially
constant in the region of the peak.

branches, we now consider four cases with fixed d = 3. With both monotone and nonmonotone
initial data we take ε = 0.1 < ε∗1 < ε∗2 and ε∗1 < ε = 0.22 < ε∗2 (recall that at ε∗1,2 the fold
bifurcation takes place and the (k = 1, 2)-solutions cease to exist). The data from each case
is presented in Figure 8. For monotone initial data no blow-up is observed when ε = 0.22
(Figure 8b); the evolution of the profile is presented in physical coordinates. All the other
cases are presented in the rescaled coordinates (2.2). For comparison, the ODE solutions
found for the same value of ε on both the upper and lower parts of the solution branches are
also indicated. We see that the ODE solution found on the lower part of the (k = 2)-solution
branch and the final profile at t = T− coincide, and, hence, in agreement with the ODE
numerics in [19], the lower part of the (k = 2)-solution branch is stable.

Additional computations lead us to speculate the following.

Conjecture 1. (i) For 0 < ε < ε∗1 there exists a wide class of initial data such that the
solutions on the upper part of the k = 1 (monotone) solution branch are stable. For ε > ε∗1
there are no stable monotone blow-up solutions.

(ii) For 0 < ε < ε∗2 there exists a wide class of initial data such that the lower part of the
(k = 2)-solution branch is stable. For ε > ε∗2 there are no stable 2-bump solutions.

To summarize, we have not only found stable nonmonotone profiles, but we have also
found them to exist in a broader region of parameter space than the monotone ones. This
is in complete contrast to other blow-up problems; for most blow-up problems the pattern of
minimal shape is the only stable one.

It would be very interesting indeed to extend to the k-bump solutions for k > 2. We
have not included our numerics on these solutions here because they indicate, in agreement
with results in [19], that these are unstable. However, in principle they could be constructed
asymptotically as we described in the previous sections. It would, however, be most intrigu-
ingly to try and answer the question of what supn ε

∗
n is, if it exists at all. This is still an open

problem.
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Figure 8. Numerical simulations of the full CGL for monotone and nonmonotone initial conditions. The
initial solution, t = t0, and some intermediate time-steps, where ti < ti+1, are given, as well as the final-time
profile at T−. Furthermore, the ODE solutions that were observed for the same ε on both the upper and lower
parts of the (k = 1)-, respectively, (k = 2)-solution branch are given. In all but one case, the profiles are
presented in rescaled coordinates. (a) Monotone initial data where ε = 0.1 < ε∗1 < ε∗2 converge to a monotone
final profile found on the upper part of the (k = 1)-solution branch. (b) Monotone initial data, plotted in the
physical coordinates, decay to the zero-solution for ε∗1 < ε = 0.22 < ε∗2. (c) Nonmonotone initial data, where
ε = 0.1 < ε∗1 < ε∗2, converge to a nonmonotone final-time profile found on the lower part of the k = 2 branch.
(d) Nonmonotone initial data, where ε∗1 < ε = 0.22 < ε∗2, also converge to a nonmonotone final-time profile
found on the lower part of the k = 2 branch.
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[19] P. Plecháč and V. Šverák, On self-similar singular solutions of the complex Ginzburg-Landau equation,
Comm. Pure Appl. Math., 54 (2001), pp. 1215–1242.

[20] M. J. D. Powell, A hybrid method for nonlinear equations, in Numerical Methods for Nonlinear Alge-
braic Equations, P. Rabinowitz, ed., Gordon and Breach, New York, 1988, pp. 87–114.
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