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Abstract

Quantum algorithms for graph problems are considered, both in the adjacency matrix model and
in an adjacency list-like array model. We give almost tight lower and upper bounds for the bounded
error quantum query complexity of Connectivity, Strong Connectivity, Minimum Spanning Tree,
and Single Source Shortest Paths. For example we show that the query complexity of Minimum

Spanning Tree is in Θ(n3/2) in the matrix model and in Θ(
√

nm) in the array model, while the
complexity of Connectivity is also in Θ(n3/2) in the matrix model, but in Θ(n) in the array model.
The upper bounds utilize search procedures for finding minima of functions under various conditions.

Keywords: graph theory, quantum algorithm, lower bound, connectivity, minimum spanning tree, single
source shortest paths

1 Introduction

A primary goal of the theory of quantum complexity is to determine when quantum computers may offer a
computational speed-up over classical computers. Today there are only a few results which give a polynomial
time quantum algorithm for some problem for which no classical polynomial time solution is known. We
are interested in studying the potentialities for speed-up for problems for which there already are efficient
classical algorithms. Basic graphs problems are interesting candidates.

We study the query complexity of these problems; meaning the minimal number of queries to the graph
required for solving the problem. Throughout this paper, the symbol [n] denotes the set [0..n − 1]. We
consider two query models for directed graphs:

The adjacency matrix model, where the graph is given as the adjacency matrix M ∈ {0, 1}n×n, with
Mij = 1 if and only if (vi, vj) ∈ E.

The adjacency array model, where we are given the out-degrees of the vertices d+
1 , . . . , d+

n and for every
vertex u an array with its neighbors fi : [d+

i ] → [n]. So fi(j) returns the jth neighbor of vertex i,
according to some arbitrary but fixed numbering of the outgoing edges of i. In this paper the upper
bounds for this model are all at least n, so we assume henceforth that the degrees are given as part of
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the input and we account only queries to the arrays fi. In addition the arrays satisfy the simple graph

promise

∀i ∈ [n], j, j′ ∈ [k], j 6= j′ : fi(j) 6= fi(j
′)

ensuring the graph is not a multigraph, i.e. does not have multiple edges between any two vertices.

For undirected graphs we require an additional promise on the input, namely that M is symmetric in the
matrix model, and for the array model that ∀i, i′ ∈ [n] if ∃j ∈ [k] : fi(j) = i′ then ∃j′ ∈ [k] : fi′(j

′) = i. Note
that in the matrix model this symmetry assumption does not make undirected graph problems, promise
problems since we may assume that the input is upper triangular.

Weighted graphs are encoded by a weight matrix, where for convenience we set Mij = ∞ if (vi, vj) 6∈ E.
In the adjacency array model, the graph is encoded by a sequence of functions fi : [d+

i ] → [n]×N, such that
if fi(j) = (i′, w) then there is an edge (vi, vi′) and it has weight w.

We emphasize that the array model is different from the standard list model. In the latter, we have
access to the neighbors of a given vertex only as a list, and thus querying the ith neighbor requires i accesses
to the list. This is also true on a quantum computer, so its speedup is quite restricted.

Many other query models are of course possible, for example we could be given an array of edges f :
[m] → [n] × [n], or an ordered array (which is up to O(n) preprocessing the same as the adjacency array
model). For simplicity, we use the array model as presented above.

For the quantum query complexity of general monotone graph properties, a lower bound of Ω(
√

n) is
known in the matrix model, as shown by Buhrman, Cleve, de Wolf and Zalka [9].1 We are not aware of any
quantum nor classical lower bounds in the array model.

In this paper we show that the quantum query complexity of Connectivity is Θ(n3/2) in the matrix
model and Θ(n) in the array model. The classical randomized query complexity of Connectivity in the
matrix model is Ω(n2) by a sensitivity argument: Distinguishing the graph consisting of two length n/2
paths from the graph consisting of those two paths, plus an additional edge connecting them, Ω(n2) queries
are required.

We study the complexity of three other problems. In Strong Connectivity we are given a directed
graph and have to decide if there is a directed path between any pair of vertices. In Minimum Spanning

Tree we are given a weighted graph and have to compute a spanning tree with minimal total edge weight. In
Single Source Shortest Paths we have to compute the shortest paths according to the total edge weight
from a given source vertex to every other vertex. The quantum query complexity of these three problems is
Ω(n3/2) in the matrix model and Ω(

√
nm) in the array model. We give almost tight upper bounds.

problem matrix model array model

minimum spanning tree Θ(n3/2) Θ(
√

nm)

connectivity Θ(n3/2) Θ(n)

strong connectivity Θ(n3/2) Ω(
√

nm), O(
√

nm logn)

single src. short. paths Ω(n3/2), O(n3/2 log2 n) Ω(
√

nm), O(
√

nm log2 n)

Table 1: Quantum query complexity of some graph problems

We note that for graphs with a large number of edges (m = Θ(n2)), the complexities are (almost) the
same in the matrix and array model for all problems but Connectivity. However, the models still differ in

that case. For example the test (u, v) ∈ E costs a single query in the matrix model and O(
√

min{d+
u , d+

v })
queries in the array model since we do not assume any order on the arrays fu and fv.

The time complexities of the algorithms are the same as the query complexities up to log-factors. The
algorithms given for connectivity and strong connectivity can be altered to also output the (strongly) con-
nected components without increasing the asymptotic complexity. The space requirement is O(log n) qubits

1In a previous version of this paper, we said that Buhrman et al. conjectured Ω(n) for Connectivity, and since their
conjecture concerns arbitrary monotone graph properties in general, we gave a false impression of improving their result. We
apologize.
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and O(n log n) classical bits. If we constraint the space (both classical and quantum) to O(log n) qubits,
the problems may be solved by random walks. Quantum random walks has been the subject of several
papers [1, 10, 15], in particular for the st-Connectivity problem [22].

Other work on the query complexity of graphs problems has been done independently of us. For example
[4] shows that testing whether a given graph is bi-partite needs Ω(n3/2) queries in the matrix model. Note
that a graph is bi-partite iff it does not contain an odd cycle. For the array model a lower bound can
be constructed from our lower bound for connectivity, showing that Ω(

√
nm) queries are necessary for any

bounded error quantum algorithm which distinguishes a single even cycle from two disjoint odd cycles.
Matching upper bounds follow from our connectivity algorithms: simply construct a spanning forest of the
graph. Then color alternating black-white the nodes of each tree. And finally use the quantum search
procedure to find an edge with endpoints of the same color. Such an edge creates an odd cycle, and exists
iff the graph contains an odd cycle.

2 Tools used in this paper

We use two fundamental tools. The first is amplitude amplification [7, 8], which we use when proving the
upper bounds, the second is Ambainis’ lower bound technique [2].

Amplitude amplification is a generalization of Lov Grover’s search algorithm [13]. Since it is the most
important tool used in our algorithms, we restate the exact results we require. We are given a boolean
function F defined on a domain of size n. The function is given as a black box so that the only way we can
obtain information about F is via evaluating F on elements in the domain. The search problem considered
by Grover is to find an element x for which F (x) = 1, provided one exists. We say that x is a solution to
the search problem, and that x is good. We use three generalizations of the search algorithm—all of which
we refer to as “the search algorithm”.

• If there are t elements mapped to 1 under F , with t > 0, the search algorithm returns a solution after
an expected number of at most 9

10

√

n/t queries to F . The output of the algorithm is chosen uniformly
at random among the t solutions. The algorithm does not require prior knowledge of t [6].

• A second version uses O(
√

n) queries to F in the worst case and outputs a solution with probability
at least a constant, provided there is one [6].

• A third version uses O(
√

n log 1/ǫ) queries to F and finds a solution with probability at least 1 − ǫ,
provided there is one [9].

We note that for very sparse graphs given in the adjacency matrix model, it may for some applications
be efficient to initially learn all entries of the matrix by reiterating the first version of the search algorithm,
for instance as formalized in Fact 1.

Fact 1 Let k be given. There is a quantum algorithm that takes as input an n × n boolean matrix M , uses

O(n
√

k) queries to M , and outputs a set S of 1-entries of M so that with probability at least 1
2 , S is of

cardinality at least k or contains all 1-entries of M in case M has less than k 1-entries.

Our lower bounds uses a technique introduced by Andris Ambainis.

Theorem 2 ([2, theorem 6]) Let L ⊆ {0, 1}∗ be a decision problem. Let X ⊆ L be a set of positive

instances and Y ⊆ L a set of negative instances. Let R ⊆ X × Y be a relation between instances of same

size. Let values m, m′, ℓx,i and ℓ′y,i for x, y ∈ {0, 1}n and x ∈ X, y ∈ Y , i ∈ [n] be so that

• for every x ∈ X there are at least m different y ∈ Y in relation with x,

• for every y ∈ Y there are at least m′ different x ∈ X in relation with y,

• for every x ∈ X and i ∈ [n] there are at most ℓx,i different y ∈ Y in relation with x which differ from

x at entry i,
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• for every y ∈ Y and i ∈ [n] there are at most ℓ′y,i different x ∈ X in relation with y which differ from

y at entry i.

Then the quantum query complexity of L is Ω(
√

mm′/ℓmax) where ℓmax is the maximum of ℓx,iℓ
′
y,i subject

to xRy and xi 6= yi.

3 Minima finding

Many graph problems are optimization problems, as are finding a minimum spanning tree, single source
shortest paths, and largest connected components. Most quantum algorithms for such optimization problems
utilize the search algorithm discussed above. A very basic and abstract optimization problem is as follows.
Suppose we are given a function f defined on a domain of size n, and we want to find an index i so that f(i)
is a minimum in the image of f . This minimization problem was considered in [11] which gives an optimal
quantum algorithm that uses O(

√
n) queries to f and finds such an i with constant probability. It is very

simple to analyze, and we present it now, since it will make the rest of the section easier to understand.

1. Initially let j ∈ [N ] be an index chosen uniformly at random.

2. Repeat forever

(a) Find an index i ∈ [N ] such that f(i) < f(j).

(b) Set j := i.

Theorem 3 ([11]) The expected number of queries to f , until j contains the index of a minimum in the

image of f is O(
√

N).

Proof: Without loss of generality assume that f is injective. Now every index j ∈ [N ] has a rank, which we
define as the number of indexes i such that f(i) ≤ f(j).

Let pr be the probability that at some moment of the algorithm, the index j will have rank r. We
claim that pr = 1/r. Consider the first moment when j will have rank less or equal r. This moment will
happen with probability 1. At that moment, because of the uniform choice in step 1 and since step 2(a) uses
the quantum search procedure, j will be uniformly chosen among all indexes with rank less or equal r, so
pr = 1/r.

If j has rank r, the search procedure of step 2(a) will require c
√

N/(r − 1) expected number of queries,
for some constant c. Therefore the total number of queries until j contains the solution is

N∑

r=2

prc
√

N/(r − 1) < c
√

N
N−1∑

r=1

r−3/2 < c
√

N

(

1 +

∫ N−1

r=1

r−3/2dr

)

= O(
√

N)

✷

Let c′
√

N be the expected number of queries to f until j contains the index of a minima. Stopping the
algorithm after 2c′ queries gives a quantum algorithm with error probability upper bounded by 1/2.

For the purposes of this paper, we require the following generalizations of the minimum finding problem,
illustrated in Figure 1.

Problem 1 (Find d smallest values of a function) Let N
∗ denote N ∪ {∞}. Given function f : [N ] →

N
∗ and an integer d ∈ [N ], we wish to find d distinct indexes mapping to smallest values, i.e. a subset I ⊆ [N ]

of cardinality d such that for any j ∈ [N ] \ I we have that f(i) ≤ f(j) for all i ∈ I.

In the rest of this section, we assume d ≤ N/2. In the following problem we are given a different function
g : [N ] → N, such that g(j) defines the type of j. Let e = |{g(j) : j ∈ [N ]}| be the number of different types.

Problem 2 (Find d elements of different type) Given function g and an integer d′ we wish to find

integer d = min{d′, e} and a subset I ⊆ [N ] of cardinality d such that g(i) 6= g(i′) for all distinct i, i′ ∈ I.

4



Now we present a generalization of both previous problems.

Problem 3 (Find d smallest values of different type) Given two functions f, g and an integer d′ we

wish to find integer d = min{d′, e} and a subset I ⊆ [N ] of cardinality d such that g(i) 6= g(i′) for all distinct

i, i′ ∈ I and such that for all j ∈ [N ] \ I and i ∈ I, if f(j) < f(i) then f(i′) ≤ f(j) for some i′ ∈ I with

g(i′) = g(j).

4 points of min. value 4 points of diff. type 4 points of min. value
and diff. type

Figure 1: Illustration of the three problems. Each index i is illustrated by a point with horizontal coordinate
g(i) and vertical coordinate f(i).

It is clear that Problems 1 and 2 are special cases of Problem 3. In this section, we give an upper bound
of O(

√
dN) for Problem 3. In Section 8, we then show a lower bound of Ω(

√
dN) for Problems 1 and 2,

implying that all three problems are of complexity Θ(
√

dN). We prove the upper bound by a simple greedy
algorithm. Consider a subset I ⊆ [N ] of d indices of different types. We say an index j ∈ [N ] is good for I if

1. either g(j) = g(i) and f(j) < f(i) for some i ∈ I,

2. or g(j) 6∈ g(I) and f(j) < f(i) for some i ∈ I.

In the former case we say j is a good index of known type, in the latter that j is a good index of unknown

type. In each iteration of the greedy algorithm, we find a good index j by the search algorithm and then
improve I by replacing some index in I by j.

1. Initially, let I = {N + 1, . . . , N + d′} be a set of artificial indices of unique different types and unique
maximal value.

2. Repeat forever

(a) Let t denote the number of good elements for I. (Note: This step is not required, but only
included for the purpose of simplifying the analysis of the algorithm.)

(b) Use the first version of the search algorithm to find a good element j ∈ [N ] for I.

(c) Set I = improve(I, j) where we improve I by replacing with j the element in I that has the same
type as j if j is of known type, and by replacing with j some element in I with largest f -value if
j is of unknown type.

The next lemma shows we only need an expected number of O(d) iterations of the main loop to eliminate
a constant fraction of the remaining good elements.

Lemma 4 Let I ⊆ [N ] be any subset of d′ indices of different types with t > 0 good elements of e types.

After an expected number of O(d) iterations of the main loop there are at most 3
4 t good elements for I. Here

d = min{d′, e}.
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Proof: For notational simplicity assume f is injective. Set I0 = I and let T0 = T be the set of good
elements for I. Let Tj denote the set of good elements after j iterations of the main loop, for j > 0. Similarly,
let Ij denote the selected index-set after j iterations, for j > 0. Set tk = |Tk|. In particular I0 = I and

t0 = t. Let ymid denote the ⌊t/2⌋th smallest of the t elements according to f . For any subset S ⊆ [N + d′],
let low(S) denote the number of elements in S that are no bigger than ymid according to f .

Note that initially

• low(T0) = ⌊t/2⌋ and

• low(I0) < d.

By the nature of the greedy algorithm, low(Tk+1) ≤ low(Tk) and low(Ik+1) ≥ low(Ik) for any k ≥ 0. Note
that

• if low(Tk) < t
4 , then we have eliminated at least a fraction of 1

4 of the initially t good elements for I,
and similarly,

• if low(Ik) = d, then we have eliminated at least a fraction of 1
2 of the initially t good elements for I.

We claim that in each iteration of the main loop, as long as low(Tk) ≥ t
4 , with probability at least 1

32 , at
least one of the following two events happens

• low(Tk+1) ≤ low(Tk)
(
1 − 1

32d

)
,

• low(Ik+1) = low(Ik) + 1.

Assume low(Tk) ≥ t
4 , since otherwise we are done. Consider the element j picked in Step 2b. First

suppose the majority of the low(Tk) indices are of unknown type with respect to Ik. Then, with probability
at least 1

8 , index j is among these, in which case low(Ik+1) = low(Ik) + 1.
Now suppose the majority of the low(Tk) indices are of known type with respect to Ik. Then, with

probability at least 1
8 , index j is among these. Conditioned on this happens, with probability at least 1

2 ,

there are at least low(Tk)
4d good elements for Ik of the same type as j. With probability at least 1

2 , at least
half of these are not good for Ik+1. Thus, with probability at least 1

32 , we have eliminated at least t
32d of

the remaining elements in Tj.
This proves the claim. It follows that after an expected number of O(d) iterations of the main loop, we

have eliminated at least a fraction of 1
4 of the initially t good elements. ✷

The above lemma implies that, for t > 2d, after an expected number of O(d
√

N/t ) applications of
function f , the number of good elements is at most t

2 . Hence, for any t > 2d, the expected number
applications of function f required till we have that t ≤ 2d for the first time is in the order of

d
(
√

N

d
+

√

N

2d
+

√

N

4d
+

√

N

8d
+ · · ·

)

∈ O(
√

dN).

Once t ≤ 2d for the first time, the expected number of applications of f required before t = 0 for the first
time is in the order of

∑2d
j=1

√

N/j which is in O(
√

dN ).

Corollary 5 In the greedy algorithm given above, after an expected number of O(
√

dN) applications of

function f , there are no good elements for I, that is, t = 0.

The next theorem follows immediately.

Theorem 6 The problem Find d Smallest Values of Different Type has bounded error quantum

query complexity O(
√

dN).

Nayak and Wu give in [19] a bounded error quantum algorithm that given a function f : [N ] → N and
two integers d and ∆, outputs an index i such that the rank of f(i) is between d−∆ and d + ∆. The query
complexity of their algorithm is O(M log M log log M) where M =

√

N/∆ +
√

d(N − d)/∆. Setting ∆ = 1
2

it would find the dth smallest element with O(
√

dN log N log log N) queries. Nayak [18] later improved this
algorithm to O(

√
dN), matching the lower bound given in [19]. His method is different from ours.
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Remark 1 The algorithm above uses c
√

dN queries for some constant c and outputs the solution with

probability at least 1/2. In order to reduce the error probability to 1/2k one could run the algorithm k times

and among the dk resulting indices, output the d smallest values of different type. However starting each run

with randomly chosen points of different type regardless of the previous outcome, is a waste of information.

So it is much more clever to run the algorithm only once and stop it after kc
√

dN queries.

4 Minimum Spanning Tree

In this section we consider undirected graphs with weighted edges. In Minimum Spanning Tree we wish
to compute a cycle-free edge set of maximal cardinality that has minimum total weight. To be precise if the
graph is not connected this is actually a spanning forest.

Classically, there are a number of different approaches to finding minimum spanning trees efficiently,
including the algorithms of Bor̊uvka [5, 20], Kruskal [17], and Prim [21]. To construct an efficient quantum
algorithm, we use Bor̊uvka’s algorithm since it is of a highly parallel nature. This allows us to use the minima
finding algorithms given in Section 3.

Bor̊uvka’s algorithm consists of at most log n iterations. In brief, initially it starts with a collection of n
spanning trees, each tree containing a single vertex. In each iteration, it finds a minimum weight edge out of
each tree in the collection, adds the edges to the trees, and merges them into larger and fewer trees. After
at most log n iterations, there is only one tree left, which is a minimum spanning tree. The correctness of
Bor̊uvka’s algorithm rests on the following simple fact about spanning trees.

Fact 7 Let U ⊂ V be a set of vertices of a connected graph G = (V, E) and let e be a minimum weight edge

of (U × U) ∩ E. Then there is a minimum spanning tree containing e.

In our quantum version of Bor̊uvka’s algorithm, we make a few adjustments to keep the overall error
probability small without sacrificing in the number of queries. We adjust it slightly so that the ℓth iteration
errs with probability at most 1

2ℓ+2 , ensuring that the overall error is at most 1
4 . This increases the cost of the

ℓth iteration by a factor of ℓ, but since the cost of the first few iterations dominates, this is asymptotically
negligible. The details follow.

1. Let T1, T2, . . . , Tk be a spanning forest. Initially, k = n and each tree Tj contains a single vertex.

2. Set ℓ = 0.

3. Repeat until there is only a single spanning tree (i.e., k = 1).

(a) Increment ℓ.

(b) Find edges e1, e2, . . . , ek satisfying that ej is a minimum weight edge leaving Tj. Interrupt when

the total number of queries is (ℓ + 2)c
√

km for some appropriate constant c.

(c) Add the edges e′j to the trees, merging them into larger trees.

4. Return the spanning tree T1.

To find the minimum edges e1, . . . , ek in Step 3b, we use the following functions. In the array model,
any edge (u, v) is coded twice, u appears as neighbor of v, but v also appears as neighbor of u. Enumerate
the directed edges from 0 to 2m − 1. Let f : [2m] → N

∗ denote the function that maps every directed edge
(u, v) to its weight if u and v belong to different trees of the current spanning forest and to ∞ otherwise.
Let g : [2m] → [k] denote the function that maps every directed edge (u, v) to the index j of the tree
Tj containing u. We then apply the algorithm for Finding k smallest values of different type,

interrupting it after (ℓ + 2)c
√

km queries to obtain an error probability at most 1/2ℓ+2, see Remark 1.

Theorem 8 Given an undirected graph with weighted edges, the algorithm above outputs a spanning tree

that is minimum with probability at least 1
4 . The algorithm uses O(

√
nm) queries in the array model and

O(n3/2) queries in the matrix model.

7



Proof: To simplify the proof, consider the matrix model an instance of the array model with m = n(n−1)
edges.

At the beginning of the ℓth iteration of the main loop, the number of trees k is at most n/2ℓ−1, and thus
it uses at most (ℓ + 2)c

√

nm/2ℓ−1 queries. Summing over all iterations, the total number of queries is at

most
∑

ℓ≥1(ℓ + 2)c
√

nm/2ℓ−1, which is in O(
√

nm).

The ℓth iteration introduces an error with probability at most 1
2ℓ+2 . The overall error probability is thus

upper bounded by
∑

ℓ≥1
1

2ℓ+2 ≤ 1
4 . ✷

For our algorithms, a O(log n) factor applies when considering the bit computational model, rather
than the algebraic computational model. Apart from that, the time complexity is the same as the query
complexity by using an appropriate data structure. Each vertex holds a pointer to another vertex in the
same component, except for a unique vertex per component that holds a null pointer. This vertex is called
the canonical representative of the component. To decide if two vertices are in the same component, we need
only to determine the canonical representative of each vertex by pointer chasing. To merge two components,
we change the pointer of one of the canonical representative to point to the other.

Using pointer chasing, the time complexity of the ℓth iteration is a factor of ℓ larger than its query
complexity. However, as in the case of the error reduction, this is insignificant:

∑

ℓ≥1 ℓ(ℓ + 2)c
√

nm/2ℓ−1 is

also in O(
√

nm). Thus, the time complexity is asymptotically the same as the query complexity.

5 Connectivity

A special case of Minimum Spanning Tree when all edge weights are equal, is Graph Connectivity.
The input is an undirected graph and the output is a spanning tree, provided the graph is connected.

For the matrix model, the algorithm for minimum spanning tree given in the previous section implies
an O(n3/2) upper bound for graph connectivity as well. Below, we give a somewhat simpler and arguably
more natural quantum algorithm of query complexity O(n3/2), which is optimal by the lower bound given
in Section 8 below.

For the array model, we give a quantum algorithm that uses only O(n) queries. Both algorithms start
with a collection of n connected components, one for each vertex, and greedily construct a spanning tree by
repeatedly picking an edge that connects two of the components.

Theorem 9 Given the adjacency matrix M of an undirected graph G, the algorithm below outputs a spanning

tree for G after an expected number of O(n3/2) queries to M , provided G is connected, and otherwise runs

forever.

Proof: Consider the following algorithm.

1. Initially the edge set A is empty.

2. Repeat until A connects the graph.

(a) Search for a good edge, i.e., an edge that connects two different components in A, and add it
to A. Use the version of the search algorithm that returns a solution in expected O(n2/t) queries
if there are t > 0 good edges and otherwise runs forever.

3. Return the edge set A.

Suppose the graph is connected and consider the expected total number of queries used by the algorithm.
There are exactly n − 1 iterations of the main loop. The number of good edges is at least k − 1 when A
consists of k components, and thus the expected total number of queries is in the order of

∑n
k=2

√

n2/(k − 1),
which is in O(n3/2). ✷

When implementing the above algorithm, we maintain an appropriate data structure containing informa-
tion about the connected components in the graph induced by A. This introduces an additional O(n log n)
term in the running time of the algorithm which is negligible compared to O(n3/2). We may choose to stop
the algorithm after twice the expected total number of queries, giving an O(n3/2) query algorithm with
bounded one-sided error.
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5.1 The array model

Lemma 10 Given an undirected graph G in the array model, we can in O(n) classical queries construct a

set of connected components {C1, . . . , Ck} for some integer k, so that for each component C, its total degree

mC =
∑

i∈C di is no more than |C|2.

Proof: The algorithm is classical and is as follows.

1. Initially the edge set A is empty.

2. Let S = V be the set of vertices not yet placed in some component.

3. Let k = 0 be the number of components constructed thus far.

4. While S is non-empty

(a) Take the vertex v of highest degree in S and set D = {v}.
(b) Go through v’s list of neighbors one by one, each time adding the neighbor w to D and the edge

(v, w) to A, until one of two events happens: (1) We reach the end of the list, or (2) we reach a
neighbor w already assigned to some component Cj with j ≤ k.

(c) In case (1), set k = k + 1, Ck = D, and remove D from S. In case (2), add D to Cj , and remove
D from S.

5. Output k, A, and C1, C2, . . . , Ck.

The algorithm uses n−k queries in total, one query for each vertex but the first added to each component.
Edge set A contains the union of spanning trees of the components C1 through Ck.

To show correctness, let v be the vertex chosen in Step 4a and d its degree. Then d ≤ |Cj | for each
components constructed so far, since the size of a freshly created component is the degree of one of its
vertices, which by choice in Step 4a must be no less than d, and components can only grow. To show that
the total degree of every component Cj is no more than |Cj |2, consider the two cases in Step 4b.

In case (1), D is the set of v and its neighbors, each neighbor having degree no larger than d, implying
the total degree is at most d(d + 1) which is strictly less than (d + 1)2 = |D|2. In case (2), let a be the size
of the component Cj to which D is merged, and b the size of D. Then b ≤ d ≤ a. The total degree is no
more than a2 + bd which is strictly less than (a + b)2. ✷

Theorem 11 Given an undirected graph G in the array model, the algorithm below outputs a spanning tree

for G using an expected number of O(n) queries, provided G is connected, and otherwise runs forever.

Proof: Consider the following algorithm.

1. Construct the edge set A using the above lemma.

2. Repeat until A connects the graph.

(a) Pick a connected component C in A with smallest total degree, i.e, a component minimizing
mC =

∑

i∈C di.

(b) Search for an edge out of C, i.e., an edge that connects C to some other component in A, and
add it to A. Use the version of the search algorithm that returns a solution in expected O(

√
mC)

queries if there is at least one such edge and otherwise runs forever.

3. Return the edge set A.

Suppose the graph is connected and consider the expected total number of queries used by the algorithm.
We first construct k components, each component C having total degree mC at most |C|2. In each

iteration of the main loop, we pick the component with smallest total degree and search for an edge out
of C. The expected cost of finding such an edge is at most α

√
mC for some constant α. We distribute this

cost evenly among each of the mC edge endpoints in C, each endpoint paying α/
√

mC .

9



Fix an arbitrary edge endpoint. Enumerate from 0 up to at most log m the successive components that
were chosen by the algorithm for a search and that contain this fixed edge endpoint. Let mi be the number of
edge endpoint in the ith component. Then mi+1 ≥ 2mi. The total cost assigned to our fixed edge endpoint
is upper bounded by

log m
∑

i=0

α√
mi

≤
log m
∑

i=0

α√
2im0

≤ 4α√
m0

.

Let C be any of the k components constructed in the first step. The total cost assigned over all edge
endpoints in C is thus upper bounded by 4α

√
mC , which is at most 4α|C|. Summing over all k components,

the total cost assigned in the main loop is at most 4αn, which is linear in n. ✷

6 Strong Connectivity

We give two quantum algorithms for strong connectivity, first one for the matrix model and then one for the
array model. The input is a directed graph and the output is a set of at most 2(n− 1) edges that proves the
graph is strongly connected, provided it is. It follows from the discussions below that such sets always exist.

Theorem 12 Given the adjacency matrix M of a directed graph G and a vertex v0, the algorithm below

uses O(
√

nm log n) queries to M and outputs a directed tree A ⊆ E rooted at v0. With probability at least
9
10 , A spans all of G, provided such a spanning tree exists.

Proof: Consider the following simple algorithm.

1. Initially the edge set A is empty.

2. Let S = {v0} be a set of reachable vertices, and T = {v0} a stack of vertices to be processed.

3. While T 6= {} do

(a) Let u be the top most vertex of stack T .

(b) Search for a neighbor v of u not in S. Use the version of the search algorithm that uses

O(
√

d+
u log n) queries and outputs a solution with probability at least 1 − 1

20n , provided one
exists.

(c) If succeed, add (u, v) to A, add v to S, and push v onto T .

(d) Otherwise, remove u from T .

4. Return edge set A.

For any vertex u let b+
u the out-degree in the tree A produced by the algorithm. Then the total num-

ber of queries spent in finding the b+
u neighbors of u is in the order of

∑b+
u

t=1

√

d+
u /t

√
log n which is in

O(
√

b+
u d+

u log n). Summing over all vertices u this gives

∑

u∈V

√

b+
u d+

u log n ≤
√
∑

u

b+
u

√
∑

u

d+
u

√

log n = O(
√

nm log n).

The first inequality follows from the general statement that the inner product of two vectors is upper bounded
by the product of their ℓ2-norms. The second inequality uses the fact that a tree has only O(n) edges. The

algorithm spends in addition O(
∑

u

√

d+
u log n) queries for the unsuccessful neighbor searches, but this is

dominated by the previous cost.
The overall error probability is upper bounded by 1

10 since each of the at most 2n− 1 searches has error
at most 1

20n . ✷
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Theorem 12 implies that Strong Connectivity, too, can be solved using an expected number of queries
in O(n3/2

√
log n) in the adjacency matrix model. In fact the previous algorithm can be used for the matrix

model with m = n(n− 1). We first check that some fixed vertex v0 can reach any other vertex u, producing
some spanning tree rooted at v0. We then check that all vertices can reach v0 by repeating the previous step
on the transposed adjacency matrix. The two stages produces a set at most 2(n − 1) edges that proves the
graph is strongly connected.

This is not possible in array model, since we store for any vertex u only the neighbors at which edges
are pointing, and there is no easy access to vertices which are connected with a directed edge to u. The
following theorem circumvents this obstacle.

Theorem 13 Given a directed graph G in the array model and a vertex v0, the algorithm below uses

O(
√

nm log n) queries and outputs an edge set E′ ⊆ E covering v0. If G is strongly connected, then with

probability at least 1
4 E′ is strongly connected.

Proof: In a first stage we use the previous algorithm to construct a directed depth first spanning tree
A ⊆ E rooted in v0. Assume vertexes to be named according to the order they are added to T .

Then in a second stage we search for every vertex vi ∈ V , the neighbor vj with smallest index. The result
is a set of backward edges B ⊆ E. We claim that the graph G(V, E) is strongly connected iff its subgraph
G′(V, A ∪ B) is strongly connected.

Clearly if G′ is strongly connected then so is G since A∪B ⊆ E. Therefore to show the converse assume
G strongly connected. For a proof by contradiction let vi be the vertex with smallest index, which is not
connected to v0 in G′. However by assumption there is a path in G from vi to v0. Let (vl, vl′) be its first
edge with l ≥ i and l′ < i. We use the following property of depth first search.

Lemma 14 Let vl and vl′ be two vertexes in the graph G with l < l′. If there is a path from vl

to vl′ in G(V, E) then vl′ is in the subtree of G′′(V, A) with root vl.

Therefore we can replace in the original path the portion from vi to vl by a path only using edges from
A. Let vl′′ be the neighbor of vl with smallest index. Clearly l′′ ≤ l′ < i. By the choice of vi, there exists a
path from vl′′ to v0 in G′. Together this gives a path from vi to v0 in G′ contradicting the assumption and
therefore concluding the correctness of the algorithm.

Now we analyze the complexity. During the first stage, set A is computed in time O(
√

n3/2 log n). The
second stage can be done with O(

√
nm) queries using the minima finding for the mapping from an edge

number in [1, m] to the source-target vertex pair. Both stages can be made succeed with probability at least
7/8. ✷

6.1 The matrix model

Here all we need is to construct an oriented tree, rooted in some vertex v0, and it not need to be depth-first.
We want this tree to cover all vertices reachable by v0. There is a tricky method for constructing such a tree
with bounded error, without a log-factor in the running time as the previous algorithm.

The idea is to classify vertices covered by the current tree, into sets T0, . . . , Tq such that the confidence

that vertices from Ti have no new neighbors is increasing with i. Whenever a search of an edge (u, v) with
u ∈ R and v 6∈ T0 ∪ . . . ∪ Tq is successful, for some subset R ⊆ Ti, the vertices R and u will be moved into
T0, otherwise, R will be moved into Ti+1. We make it formal now.

1. Let S be the tree consisting of the single vertex v0.
Let be the partitioning of the vertex set covered by S into T0 = {v0} and T1 = . . . = Tq = {}, for
q = ⌊log2(n)⌋ + 1.

2. While there is a set Ti with |Ti| ≥ 2i do

(a) Let i be the smallest index such that |Ti| ≥ 2i.

(b) If |Ti| < 2i+1, R = Ti otherwise R is an arbitrary subset of Ti with |R| = 2i.

(c) Remove R from Ti.

11



(d) Search for an edge (u, v) with u ∈ R and v 6∈ S in search space of size O(2in) with the version of
the quantum search procedure which uses O(23i/4

√
n) queries and find a solution with probability

1 − 1/2
√

2i+2

provided such an edge exists.

(e) If the search was successful, add (u, v) to S and R ∪ {v0} to T0, otherwise add R to Ti+1.

3. Output S.

Now we show some properties of the algorithm. For convenience we define tj = |T0| + |T1| + . . . + |Tj|.

Lemma 15 At the beginning and the end of an iteration we have the following invariant. Let k be the

smallest index and ℓ be the largest index of a non-empty set Tj. Then

|Tℓ| ≥ 2ℓ−1 (1)

∀k ≤ j < ℓ : tj ≥ 2j (2)

Proof: by induction on the iterations of the algorithm. Initially, when T0 is the unique non-empty set, the
claim holds.

Assume the claim holds before an iteration.
First observe that by the induction assumption (2) if k < ℓ then |Tk| ≥ 2k, and so the index chosen by

the algorithm is always i = k. Now if the search was successful, we have already t0 ≥ 2k, and therefore
tj ≥ 2k for all 0 ≤ j ≤ k and for all j > k, tj increased by one, preserving condition (2). If the search was
not successful, then by the choice of R, after the iteration either tk = 0 or tk ≥ 2k. For all values j > k, tj
is not modified, preserving condition (2).

Condition (1) is preserved because after decreasing every set Tj satisfies either |Tj | = 0 or |Tj| ≥ 2j, and
because whenever a set Tj becomes non-empty, it contains at least 2j−1 elements. ✷

As a consequence, when the algorithm stops, there is a unique non-empty set Ti and moreover 2i−1 ≤
|Ti| < 2i. Also since at most n− 1 searches can be successful, the algorithm stops after O(n log n) iterations.

Lemma 16 When the algorithm stops, S covers all vertices reachable by v0 with probability at least 2/3.

Proof: Suppose the algorithm failed so there is an edge (u, v) with u ∈ S and v 6∈ S which was not found
for each call to the search procedure with a set Tj containing u. The probability of this event is the product
of the failure probability over all calls. It is roughly upper bounded by the failure probability of the last

call, which is at most pi := 2i/2
√

2i+2

, where i = |S|. Let qi be the probability that the algorithm outputs a
vertex set S with |S| = i. Then the failure probability is upper bounded by

n∑

i=0

qipi ≤
n

max
i=0

pi = p1 ≤ 1/3.

✷

Now we analyze the complexity of the algorithm.

Lemma 17 The expected number of queries done by the algorithm is O(|S|√n).

Proof: To analyze the total number of queries done by the search procedures, we group the calls of the
search procedures into sequences of unsuccessful searches ending with a success, plus the last sequence of
unsuccessful searches.

For the first case, let (u, v) be an arbitrary edge found by the algorithm. Then the probability that it
was found when u ∈ Ti is upper bounded by the probability that it was not found when u ∈ Ti−1, which is

1/2
√

2i

. The cost of this search and the i − 1 unsuccessful searches over sets R containing u is order of

i∑

j=0

23i/4√n = O(23i/4√n).
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Therefore the expected cost of finding (u, v) is at most

q
∑

i=0

23i/4

2
√

2i

√
n = O(

√
n).

To complete the analysis we upper bound the total work of all the O(log n) unsuccessful searches which
were made after the last successful search. Let i be such that 2i−1 ≤ |S| < 2i. There where at most 2i/2j

searches for sets R with |R| = 2j . Therefore the total work is order of

i∑

i=0

2i−j23j/4
√

n = O(|S|
√

n).

This concludes the proof. ✷

7 Single source shortest paths

Let G be a directed graph with non-negative edge weights and a fixed vertex v0. We want to compute for
every vertex v a shortest path from v0 to v. It may happen that it is not unique. Using for example the
lexicographical ordering on vertex sequences, we choose to compute a single canonical shortest path. From
now on assume that different paths have different lengths. As a result, the union over all vertices v of the
shortest paths from v0 to v is a shortest path tree. Let ν(u, v) be the weight of edge (u, v) and δ(v0, v) the
shortest path length from v0 to v.

Classically Single Source Shortest Path may be solved by Dijkstra’s algorithm. It maintains a
subtree T with the “shortest path subtree” invariant: for any vertex v ∈ T , the shortest path from v0 to v
uses only vertices from T . An edge (u, v) is called a border edge (of T ) if u ∈ T and v 6∈ T , and u is called
the source vertex, v the target vertex. The cost of (u, v) is δ(v0, u) + ν(u, v). Dijkstra’s algorithm starts
with T = {v0} and iteratively adds the cheapest border edge to it.

Our improvement lays in the selection of the cheapest border edge. We give the algorithm for the array
model. Setting m = n2 implies the required bound for the matrix model.

Theorem 18 The bounded error query complexity of single source shortest path in the array model is

O(
√

nm log3/2 n).

Proof: As in Dijkstra’s algorithm we construct iteratively a tree T , such that for every vertex v ∈ T , the
shortest path from v0 to v is in T . We also maintain a partition of the vertices covered by T , into a set
sequence. Its length is denoted by l.

1. T = {v0}, l = 1, P1 = {v0}

2. Repeat until T covers the graph

(a) For Pl compute up to |Pl| cheapest border edges with disjoint target vertices. For this purpose
set N =

∑

v∈Pl
d(v), and number all edges with source in Pl from 1 to N . Define the functions

f : [N ] → N
∗ and g : [N ] → V , where g(i) is target vertex of the ith edge and f(i) is its weight if

g(i) 6∈ T and ∞ otherwise. Apply the algorithm of section 3 on f and g with d = |Pl| to find the
d lowest cost edges with distinct target vertices. Let Al be the resulting edge set.

(b) Let (u, v) be the minimal weighted edge of A1∪ . . .∪Al with v 6∈ P1∪ . . . Pl. Set T = T ∪{(u, v)},
Pl+1 = {v} and l = l + 1.

(c) As long as l ≥ 2 and |Pl−1| = |Pl|, merge Pl into Pl−1, and set l = l − 1.

All steps but 2(b) constructed a vertex set sequence P1, . . . , Pl, the cardinality of each being a power of
2, and of strictly decreasing sizes. Figure 2 shows an example of this partitioning of the vertices in T .

Therefore each set Pi is strictly larger than the union of all the following sets, since
∑k−1

i=0 2i = 2k − 1.
If Ai contained |Pi| edges, than at least one of them has its target vertex outside of P1 . . . , Pl. Let (u, v) be
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v0 v1 v2 v3 v4 v6v5 v0 v1 v2 v3 v4 v6v5

A2

A1
A3

P3P1 P2 P1 P2 P3

Figure 2: Left: example of the set decomposition for |T | = 7 into powers of 2. Right: example of corre-
sponding edge sets. The closest border edge of T belongs to one of A1, A2, A3.

the cheapest border edge of T . Let Pi be the vertex set containing u. Then Ai must contain this edge, and
step 2(b) selects it.

Only step 2(a) generates queries to the graph. What is the total number of queries related to sets Pi of

some size s? There are at most n/s sets of this size s. Therefore total work is order of
∑n/s

j=1
√

smj, where

mj is the number of edges with source in the jth vertex set. We have
∑n/s

j=1 mj = m. This worst case is

when mi = sm/n. In that case the total work is O(
√

nm) for the fixed size s. There are log n different set
sizes in the algorithm. Each of the O(n log n) queries to the minimum finding procedures should succeed
with probability 1 − 1/2n logn at least This introduces a O(log n) factor, see Remark 1, and we obtain the
claimed complexity. ✷

8 The lower bounds

Theorem 19 The problems Find d smallest values of a function, Find d elements of different

type and Find d smallest values of different type require Ω(
√

dN) queries.

Proof: For even k and odd d we consider d × k boolean matrices with a single 0 in every row. It is encoded
by a function f : [N ] → {0, 1} with N = kd, such that for every i ∈ [d], j ∈ [k], f(id + j) is the entry in row
i and column j. Let function g : [N ] → [d + 1] be such that g(id + j) maps to i if f(id + j) = 0 and to d
otherwise.

So the problems of Finding d+1 smallest values of a function or d+1 elements of different

type or d + 1 smallest values of different type are all equivalent to finding the positions of the d
zeroes in the matrix.

Let X be the set of matrices such that exactly ⌊d/2⌋ rows have their 0 in the first k/2 columns. And let
Y be the set of matrices such that this number is exactly ⌈d/2⌉. We show a lower bound for distinguishing
X and Y . We say that matrix A ∈ X is in relation with B ∈ Y iff both matrices differ at exactly two entries.
It follows that there are indices i ∈ [d], 0 ≤ j < k/2 ≤ j′ < k with Aij = Bij′ = 1 and Aij′ = Bij = 0. The
following example illustrates this definition.

A =







k/2
︷︸︸︷

011
111
111

k/2
︷︸︸︷

111
011
101







B =







k/2
︷︸︸︷

011
110
111

k/2
︷︸︸︷

111
111
101







Then the number of matrices which are in relation with a fixed matrix is at least m = m′ = ⌈d/2⌉k/2.
For fixed i, j the number of matrices in relation with M and differing at i, j is k/2 if Mij = 0 and 1 if

Mij = 1. So lmax = k/2 and Ω(
√

mm′/lmax) gives the required lower bound. ✷

Now, we give a simple lower bound for Connectivity (and Strong Connectivity) in the list model,
by a reduction from Parity. As we recently found out, this reduction has first been used by Henzinger and
Fredman for the on-line connectivity problem [14]. We show later how to improve this construction.
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Lemma 20 Strong Connectivity requires Ω(n) queries in the array model.

Proof: We use a straightforward reduction from Parity.

...

v1

v0
v2

v3

to v1

to v0

1 0 10 10x =

Figure 3: A standard reduction from parity

Let x ∈ {0, 1}p be an instance of the parity problem. We construct a permutation f on V = {v0, . . . , v2p−1}
which has exactly 1 or 2 cycles depending the parity of x. For any i ∈ [p] and the bit b = xi, we define
f(v2i) = v2i+2+b and f(v2i+1) = v2i+3−b, where addition is modulo 2p. See figure 3. The graph defined by
f has 2 levels and p columns, each corresponding to a bit of x. A directed walk starting at vertex v0 will
go from left to right, changing level whenever the corresponding bit in x is 1. So when x is even the walk
returns to v0 while having explored only half of the graph, otherwise it returns to v1 connecting from there
again to v0 by p more steps. Since the query complexity of Parity is Ω(n) — see for example [12] — this
concludes the proof. ✷

The same technique can be extended to the undirected case.

Corollary 21 Connectivity requires Ω(n) queries in the array model.

We improve the lower bound in Lemma 20 by changing the construction slightly.

Theorem 22 Strong Connectivity requires Ω(
√

nm) queries in the array model.

Proof: Let m be such that m = kn for some integer k. We construct the lower bound for graph with regular
out-degree k.

We use a similar construction as for Lemma 20, but now for every vertex the k − 1 additional edges
are redirected back to an origin. We would like to connect them back to a fixed vertex u0, but this would
generate multiple edges and we want the proof work for simple graphs. Therefore we connect them back to
a k-clique which then is connected to u0. See figure 4. Let vertex set V = {v0, . . . , v2p−1, u0, . . . , uk−1} for
some integer p. In the list model, the edges are defined by a function f : V × [k] → V . We consider only
functions with the following restrictions:

For every i ∈ [k] we have f(ui, 0) = v0 and for j ∈ {1, . . . , k − 1} f(ui, j) = ui+j , where addition is
modulo k.

For every i ∈ [p] there exist j0, j1 ∈ [k] and a bit b such that f(v2i, j0) = v2i+2+b and f(v2i+1, j1) =
v2i+3−b, where addition is modulo 2p this time. We call these edges the forward edges. The backward edges

are for all j ∈ [k] f(v2i, j) = uj whenever j 6= j0 and f(v2i+1, j) = uj whenever j 6= j1.
Now all the vertices are connected to the k-clique, the clique is connected to v0, and the graph is strongly

connected if and only if there is a path from v0 to v1.
Let X be the set of functions which define a strongly connected graph, and Y the set of functions which

do not. Function f ∈ X is in relation with g ∈ Y if there are numbers i ∈ [p], j0, j1, h0, h1 ∈ [k] with j0 6= h0,
j1 6= h1 such that the only places where f and g differ are

g(v2i, h0) = f(v2i+1, j1) g(v2i+1, h1) = f(v2i, j0)

g(v2i, j0) = uj0 g(v2i+1, j1) = uj1

f(v2i, h0) = uh0
f(v2i+1, h1) = uh1

Informally f and g are in relation if there is a level, where the forward edges are exchanged between a parallel

and crossing configuration and in addition the edge labels are changed.
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v1

v0

to v1

to v0

u0

u3 u2

u1

Figure 4: A strongly connected graph

Then m = m′ = O(nk2), p ∈ O(n) for the number of levels and (k−1)2 for the number of possible forward
edge labels. We also have lf,(v,j) = k − 1 if f(v, j) ∈ {u0, . . . , uk−1} and lf,(v,j) = (k − 1)2 otherwise. The
value l′g,(v,j) is the same. Since only one of f(v, j), g(v, j) can be in {u0, . . . , uk−1} we have lmax = O(k3)
and the lower bound follows. ✷

For the matrix model, there is a much simpler lower bound which works even for undirected graphs.

Theorem 23 Connectivity requires Ω(n3/2) queries in the matrix model.

Proof: We use Ambainis’ method for the following special problem. You are given a symmetric matrix
M ∈ {0, 1}n×n with the promise that it is the adjacency matrix of a graph with exactly one or two cycles,
and have to find out which is the case.

Let X be the set of all adjacency matrices of a unique cycle, and Y the set of all adjacency matrices with
exactly two cycles each of length between n/3 and 2n/3. We define the relation R ⊆ X × Y as M R M ′ if
there exist a, b, c, d ∈ [n] such that the only difference between M and M ′ is that (a, b), (c, d) are edges in M
but not in M ′ and (a, c), (b, d) are edges on M ′ but not in M . See figure 5. The definition of Y implies that
in M the distance from a to c is between n/3 and 2n/3.

a b

c
d

a b

c
d

1 0

0 1

0
10

1

a b c d

a
b
c
d

a b c d

a
b
c
d

0 1

01
1
0 1

0

Figure 5: Illustration of the relation

Then m = O(n2) since there are n−1 choices for the first edge and n/3 choices for the second edge. Also
m′ = O(n2) since from each cycle one edge must be picked, and cycle length is at least n/3.

We have lM,(i,j) = 4 if Mi,j = 0 since in M ′ we have the additional edge (i, j) and the endpoints of the
second edge must be neighbors of i and j respectively. Moreover lM,(i,j) = O(n) if Mi,j = 1 since then (i, j)
is one of the edges to be removed and there remains n/3 choices for the second edge.

The values l′M ′,(i,j) are similar, so in the product one factor will always be constant while the other is

linear giving lM,(i,j)l
′
M ′,(i,j) = O(n) and the theorem follows. ✷

We give a lower bound for both minimum spanning tree and single-source shortest paths.

Theorem 24 Finding minimum spanning tree and single source shortest paths require Ω(
√

nm) queries.

Proof: The proof is a reduction from minima finding. Let m = k(n+1) for some integer k. Let M be a matrix
with n rows and k columns and positive entries. The lower bound on minima finding, with d = n, N = kn,
shows that Ω(

√
kn2) queries are required to find the minimum value in every row.
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Figure 6: Reduction from finding minima to minimal spanning tree

We construct a weighted graph G from M , like this: The vertices are V (G) = {s, v1, . . . , vk, u1, . . . , un}.
The edges are all (s, vi) with weight 0 and all (vi, uj) with weight Mji. (See figure 6.) Then clearly a
minimum spanning tree contains the 0-weight edges connecting s to all vertices vi. And every vertex uj will
be connected to the rest of the graph only with the minimal weighted edge. ✷
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