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Abstract

In this paper we present a method for the multi-resolution comparison of biomolecular electrostatic
potentials without the need for global structural alignment of the biomolecules. The underlying
computational geometry algorithm uses multi-resolution attributed contour trees (MACTS) to
compare the topological features of volumetric scalar fields. We apply the MACTS to compute
electrostatic similarity metrics for a large set of protein chains with varying degrees of sequence,
structure, and function similarity. For calibration, we also compute similarity metrics for these chains
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by a more traditional approach based upon 3D structural alignment and analysis of Carbo similarity
indices. Moreover, because the MACT approach does not rely upon pairwise structural alignment,
its accuracy and efficiency promises to perform well on future large-scale classification efforts across
groups of structurally-diverse proteins. The MACT method discriminates between protein chains at
a level comparable to the Carbo similarity index method; i.e., it is able to accurately cluster proteins
into functionally-relevant groups which demonstrate strong dependence on ligand binding sites. The
results of the analyses are available from the linked web databases
http://ccvweb.cres.utexas.edu/MolSignature/ and http://agave.wustl.edu/similarity/. The MACT
analysis tools are available as part of the public domain library of the Topological Analysis and
Quantitative Tools (TAQT) from the Center of Computational Visualization, at the University of
Texas at Austin (http://ccvweb.csres.utexas.edu/software). The Carbo software is available for
download with the open-source APBS software package at http://apbs.sf.net/.

Keywords
electrostatic; contour tree; similarity; clustering; Poisson-Boltzmann

Introduction

Structural genomics has led to a dramatically increased rate of biomolecular 3D structure
determination, but relatively few methods have been developed for analyzing and interpreting
all these structural data in terms of potential physiological functions and biochemical
properties. Effective biomolecular comparison and classification methods are important for
the understanding of their structural and functional properties. Typical protein comparison
methods are usually based on the similarities of sequences [17] or the three-dimensional
structures of biomolecular chains [11]. While such methods have proven to be very powerful
for geometric comparison of protein structures, they lack a description of the chemical features
in atomistic detail because some functions may arise from chemical heterogeneity that gives
(in part) a particular protein structure its unique molecular function. An alternative method of
comparing biomolecules is to quantitatively calculate volumetric functions of their important
properties and match those 3D functions. The two most commonly used functions are molecular
shape and electrostatic potential although other properties have also been used [20].

The electrostatic potential is an important characteristic of biomolecules and plays a critical
role for interactions within and among biological structures. The electrostatic potential of a
biomolecule is generally computed from the atomic charges, radii, and dielectric characteristics
of the biomolecule and solvent via numerical solutions of partial differential equations such as
the Poisson-Boltzmann (PB) equation [4]. Electrostatic properties, especially those obtained
by solution of the PB equation, have found a wide range of uses in the interpretation of
biomolecular structure and functions [4].

Some effort has also been made to pursue more “informatics”-based approaches to the
interpretation of electrostatic properties. Much of this work includes identification of
functionally-relevant residues in biomolecules by looking at electrostatic destabilization of
conserved residues [18], highly shifted pKj, values [44], clusters of charged residues [59],
protein-membrane interactions [40], and other structural characteristics [55]. Other research
has focused on comparisons of electrostatic potentials including global analyses of the
biomolecular structure [38,9,40,51,37,30,36,47,43,8,53,34,46,35,52] both in three-
dimensional space over the entire biomolecular structure and at localized regions such as active
sites [52,6,22]. While the past characterization of electrostatic properties of biomolecules has
provided insight into a variety of biomolecular properties, previous applications focused only
on a few quantitative measures of electrostatic properties and, with a few exceptions [8,57],
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limited their studies to relatively small numbers of biomolecules. However, with the
proliferation of protein structures elucidated by structural genomics efforts and the burgeoning
interest in understanding biomolecular interactions in a proteomics context, tools to facilitate
the analysis of electrostatic properties across thousands of biomolecular structures will become
increasingly important.

In this paper, we present a new “MACT” method to align local regions of similar electrostatic
potential and molecular structure through local matching of topological features instead of
global structural alignment. While electrostatics and molecular shape are not the sole
determinants of chemical specificity, we believe the current methods show promise for
identifying regions of similar electrostatic potential between structurally-distinct
biomolecules. Before presenting this new method, we will review some of the existing
techniques for electrostatic comparison.

Similarity index methods

A standard method for comparing functions in numerical analysis is the application of various
norms and inner products. Many methods use the fact that solutions to the PB equation away
from the location of point charges are square-integrable [26] implying finite inner products:
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Similarity indices have been popular in QSAR studies [12,13,24] and the study of biomolecular
electrostatics [53,8]. The most popular metrics were introduced by Hodgkin et al [24,12]
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As can be seen from their definitions, these indices only differ by their choice of normalization;
the Hodgkin index offers the advantage of distinguishing between functions which differ by a
constant multiple, while the Carbo index provides a natural measure of the extent of
orthogonality between two functions. In both cases, these indices are essentially modified
L2() inner products which return 1 for identical functions, -1 for functions which are different
only by a constant multiple of 1, and 0 for orthogonal (i.e., unrelated) functions. To prevent
numerical instability due to the singular nature of the electrostatic potential near atomic point
charges, the domain of integration () is often chosen to be some space outside the union of
biomolecular volumes [8,53,54].

Topology-based methods

The Carbo/Hodgkin metrics are not invariant under transformations such as rigid body rotation
or translation, and are therefore dependent on an initial accurate structural alignment. While
there are a number of tools available for structural alignment [11], including some based on
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electrostatics [52], the task of structural alignment is still computationally demanding.
Furthermore, the reliance of similarity index methods on structural alignment severely limits
their applicability to the comparison of electrostatic properties for structurally-similar
biomolecules.

Contour trees

Methods

Another approach to developing comparison metrics is to exploit the topological signatures of
volumetric functions in the form of the contour spectrum [3] and dual contour trees (DCTS)
[58]. DCTs are assembled by partitioning function domains into connected subdomains called
interval volumes. These interval volumes represent regions of the domain where the function
values lie between two specific isovalues. The distribution of the connected interval volumes
can represented by a dual contour tree (DCT) in which every connected interval volume
becomes a node and two nodes are connected by an edge if the corresponding interval-volumes
are adjacent (sharing the same contour at their boundaries). The construction of a simple DCT
is depicted in Figure 1 and described in more detail in Reference [58] and the Appendix of this
manuscript.

The DCT structure can be simplified by restricting it to a smaller functional range associated
with a particular region of interest. Often, only certain feature regions of the 3D volume are
important for comparing molecular structures, e.g. solvent-accessible regions near the surfaces
of biomolecules which might influence the binding properties of other molecules. As with the
similarity indices, using a sub-range outside of the molecular surface removes instabilities due
to divergence of the electrostatic potential near atomic charge positions. DCTs can be further
simplified by representation in a hierarchical multi-resolution form. This multi-resolution form
is constructed from a DCT by merging adjacent functional intervals (collapsing tree edges)
such that each node corresponds to a larger range of the functional value. Details are again
available from a previous paper [58].

In order to quantitatively measure the similarities of multi-resolution DCTs, numerical
attributes need to be defined for the DCT nodes. In a previous paper [58], Zhang et al describe
several affine-invariant geometrical, topological, and functional attributes which can be
computed and saved in the DCT nodes. When combined with the multi-resolution approach
described above, these attributed DCTs form the Multi-resolution Attributed Contour Tree
(MACT) data structure. For the current application, MACTSs are assembled from DCTs
constructed on solvent accessibility functions representing biomolecular shape. In the present
work, the numerical attributes for the nodes of the MACT include information about the size
and shape of the functional interval as well as local electrostatic potential multipole moments.
More information about these attributes is given the Appendix.

The MACTSs are used to compute a similarity measure (score) for various biomolecules in an
efficient manner described in Ref. [58] and summarized in the Appendix. The MACTSs facilitate
the finding of matched node pairs in a hierarchical fashion based on their multi-resolution
structures [58]. The similarity between two MACTS is evaluated as the average of the similarity
scores of DCTs at all levels, except for the coarsest one. This score is then used to measure the
similarity between molecular structures with properties.

Biomolecular test set selection

The Carbo and MACT similarity scores described above were calculated for a total of 494
protein chains (full list are available from the linked web databases
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http://ccvweb.csres.utexas.edu/MolSignature/ and http://agave.wustl.edu/similarity/ based on
the sequence-, structure-, and function-based subsets described below.

Group I: Structure-based subset: The ASTRAL database [15] was the starting point for this
dataset. In particular, we obtained a non-redundant set of approximately 5,400 chains from the
ASTRAL database indexed based on SCOP [25] assignments and containing less than 40%
sequence identity between all pairs. Three SCOP superfamilies were chosen from this set of
5,400 chains for the present analysis: P-loop containing nucleotide triphosphate hydrolases
(SCOP ¢.37.1; 112 members used), NAD(P)-binding Rossmann-fold domains (SCOP c.2.1,
108 members used), and immunoglobins (SCOP b.1.1, 75 members used). Together, these
superfamilies formed a structure-based subset of 295 proteins used in the current analysis.

Group Il. Sequence- and function-based subset: The second group of calculations was
performed on a set of 199 protein chains assembled from several protein families. First, sets
of cholinesterase-like proteins (acetylcholinesterases, lipases, cholesterol esterases, haloalkane
dehalogenases) and kinases (including titin, twitchin, mitogen-activated, tyrosine, cyclin-
dependent, casein, phosphorylase, and cAMP-dependent) were taken from the CE database
[49,10,48]. Additionally, we assembled sets of structures corresponding to the enolase, ferritin,
and superoxide dismutase families studied by Livesay et al [35].

Structure preparation and potential calculations

Structures were compared at the chain level, thus allowing individual subunits of multi-subunit
proteins to be analyzed. The PDB2PQR service (http://agave.wustl.edu/pdb2pqr/) [16] was
used to prepare each structure for electrostatics calculations by repairing missing atoms,
optimizing H-bonding networks [41], and assigning protonation states. Charges and radii were
assigned to each atom using the AMBER force field [50]. Of the 1557 original structures, 1415
(91%) were parameterized into formats acceptable for subsequent electrostatics calculations;
the remaining 142 encountered various problems, including 19 entries with errors in the PDB
format or unknown/unspecified residue types, 33 entries with unknown post-translational
modifications or covalently bound ligands, 31 entries with identical atom positions, and 59
entries with errors in residue composition (missing atoms) or numbering/labeling.

Successfully parameterized structures were then processed by an input generation script to set-
up the APBS electrostatics calculations. The electrostatic potentials of the sample protein
chains were computed using the freely-available APBS software package (http://apbs.sf.net/)
[5] version 0.3.2 with a protein dielectric of 2, solvent dielectric of 80, ionic strength of 150
mM (NaCl), and grid spacing chosen for each protein system such that the grid was always
finer than 0.5 A.

Similarity score calculations

Carbo index calculations—We used the implementation of the Carbo similarity index
provided with APBS 0.3.2 [5]. Carbo similarity index calculations were preceded by structural
alignment of all chains using CE [49]. The resulting alignment translation and rotation
information was used to superimpose the potentials and calculate the Carbo similarity index
(see above) [13] using all potential values on the PB calculation grid outside the molecular
surface. A total of 243,911 non-unique pairs of chains were generated from this analysis. Since
the Carbo analysis provides symmetric similarity scores (e.g., comparing chain A to chain B
gives the same result as comparing B to A), only the 122,266 unique similarity pairs (including
self-comparisons) were used in the analyses described below. A subset of the biomolecules
was analyzed with the Hodgkin similarity index; the results were indistinguishable from the
Carbo metric (data not shown).

Multiscale Model Simul. Author manuscript; available in PMC 2008 October 6.


http://ccvweb.csres.utexas.edu/MolSignature/
http://agave.wustl.edu/similarity/
http://agave.wustl.edu/pdb2pqr/
http://apbs.sf.net/

1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Zhang et al.

Results

Page 6

MACT calculations—The implementation of the above MACT scoring and matching
algorithms as described by Zhang et al [58] are available as part of the public domain library
of the Topological Analysis and Quantitative Tools (TAQT) from the Center of Computational
Visualization, at the University of Texas at Austin (http://ccvweb.csres.utexas.edu/software).
Unlike the Carbo indices, no alignment of the chains was necessary for this analysis. For these
calculations, the solvent accessibility was represented by a cubic spline function [27] with a
window of 0.3 A around the standard van der Waals surface. The van der Waals surface was
defined by the union of atomic radii. Unlike the electrostatic calculations, we used AMBER
radii [50] inflated by 1.4 A (roughly a water molecule radius) to focus comparison of
electrostatic potentials on the region immediately outside the molecular surface, which is
selected as the volume spanned by spline-based solvent accessibility values between 0.3 (more
internal) to 0.7 (more external). A total of 250,722 pairs were generated from the MACT
analysis. The MACT scores are not necessarily symmetric; therefore, the results were
symmetrized by averaging (A,B) and (B,A) pair results. This averaging provided a total of
126,254 unique pairs; the average deviation between (A,B) and (B,A) pairs was 0.01 + 0.02.

The results of these electrostatic comparison analyses are summarized here. All of the
calculation data, analysis, and classification results, including visualization of structures, are
available on-line as cross-linked web-accessible databases at
http://ccvweb.csres.utexas.edu/MolSignature/ and http://agave.wustl.edu/similarity/.

Classification

Several databases were used to provide classification of the chains during analysis of the results.
Enzyme Commission (EC) classes [42] were assigned to all chains using annotation from
PDBsum [33] and UniProt [2]. These EC classes were also used to infer ligands for each chain
using the KEGG database [28]. Ligands were identified for all biomolecules using annotation
in the PDBsum database [33] and classified via their ChEBI ID [19] using the ChEBI chemical
ontology. To provide a more flexible mechanism for comparison, ChEBI 1Ds were clustered
at the fifth level of the chemical ontology; e.g., at levels such as “nucleosides”,
“monocarboxylic acids”, “lactones”, etc. Gene Ontology (GO) “molecular function” classes
[21] were assigned using entries from the InterPro database [39]. Like the ChEBI IDs, these
GO classes were clustered based on the fifth level of the molecular function ontology to provide
a more general level of comparison; e.g. at descriptive levels such as “purine nucleotide

binding”, “oxidoreductase activity, acting on...”, “transferase activity, transferring...”, etc.

Score normalization

Different numbers of score pairs were available for the Carbo and MACT similarity analyses
due to the inability to align some protein chains with CE. Therefore, the following analyses
are limited to the 122,265 unique pairs of chains for which both MACT and Carbo results are
available. Scores from the Carbo and MACT similarity analyses had very different
distributions; the Carbo scores had a mean value of 1.69 x 102 and a standard deviation of 3
x 10-4. The MACT scores had a mean value of 3.076 x 101 and a standard deviation of 9 x
1074 To facilitate comparison of the results, raw scores were transformed into the following
quantities:

P(S): the observed probability of choosing a score that is greater than the given
similarity score S

E(S)=—log(1 — P(S)): the expectation value of the given score
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Z(S)= rrs’l (S — S): the number of standard deviations o5 a given score S deviates from
the mean score S

Overall comparison

Clustering

There was very little correlation between the Carbo and MACT scores, even after
transformation to the above scoring schemes; Pearson correlation coefficients were 0.47 for
Sand Z, 0.53 for P, and 0.36 for E. However, strong correlation between the scores should not
be expected, as these two methods represent and compare global and local features of the
electrostatic potentials in fundamentally different ways. With a few exceptions [52], the Carbo
method is used to provide a global comparison of potentials and therefore relies on the structural
alignment of two chains. As such, the Carbo-based analysis is expected to correlate strongly
with CE scores (see Figure 2). On the other hand, MACT performs a more local analysis of
the surface shape and potential and does not rely on external alignment methods and therefore
does not necessarily correlate with CE score (see Figure 2).

The protein chains were clustered using the CLUTO software package [29] using direct k-way
clustering to divide the Carbo- and MACT-scored datasets into 5, 10, 20, 30, and 40 clusters.
The detailed clustering results are provided on the website
(http://agave.wustl.edu/similarity/). As expected, increasing k gave clusters of better internal
similarity and external dissimilarity; this behavior is demonstrated in Table 1.

The purpose of clustering based on electrostatic similarity is to attempt to derive classes of
similar proteins without prior knowledge of their functional role. As such, we analyzed the
clustering results in terms of the ChEBI, GO, and EC classes described above by calculating
p-values for the appearance of each class in a cluster; these p-values represent the probability
of randomly finding a cluster of the same size with the same or greater occurrences of the class.
In particular, the hypergeometric distribution [56] was used to describe the probability of
sampling a certain number of class instances in a cluster without replacement. The results of
this analysis are also provided on the website (http://agave.wustl.edu/similarity/) and
summarized in Table 2. As this table demonstrates, each cluster has a substantial number of
classes with significant representation (p < 0.05). Additionally, each cluster has a somewhat
smaller number of unique classes — those which were not found in any other electrostatic
cluster. Although there is significant variation in the number of assignments, most clusters
were uniquely associated 2-3 EC categories, 1-2 GO IDs, and 1-2 ChEBI IDs.

Subset comparison

In addition to performing analysis on the entire set of results, we also analyzed subsets of
protein chains based on sequence and structure similarity.

High sequence and structure similarity—As an initial positive control, we compared
Carbo and MACT scores for a subset of protein chains with greater than 60% sequence identity
and less than 5 A RMSD upon structural alignment. Ignoring chain identities, this resulted in
a subset of 100 pairs of 55 unique protein chains. Using these sequence and structural criteria,
each chain was paired with an average of 3 + 3 other chains. The results of this analysis are
shown in Table 3 (“SeqStr” group). Carbo scores were large and significant while MACT
scores were largely non-discriminating. This conclusion is supported by the global analysis
above; Carbo scores were much more strongly correlated with RMSD and sequence identity
than the MACT results.

T Defined for the purposes of this work as pairs with greater than 98% sequence identity or less than 1 A RMSD
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High structural similarity—As a second control, the sequence-similarity constraint was
removed to generate a larger subset of 494 (all) non-identical protein chains (36,983 unique
pairs) with less than 5 A structural RMSD. Using this structural criterion, each chain was paired
with an average of 150 + 70 others. The results of this analysis are shown in Table 3 (“Str”
group). When the constraint of high sequence identity was removed, both Carbo and MACT
scores were relatively non-discriminating.

Significant similarity scores — all chains—Subsets of “significant” similarity scores
were generated from pairs of non-identical chains with p-values less than or equal to 0.05.

For Carbo scores, this criterion resulted in a set of 452 unique protein chains with 5,117
significant pairs. The average structural RMSD was (3.50+0.02) and sequence identity (%)
was (1.99+0.02)x101. MACT scores for this group are presented in Table 3 (group “Carbo
Sig™). Each of the chains in the subset was assigned GO, EC, and ChEBI classes based on its
partners' low p-value values. The unions of these assignments were taken as “predictions” of
the true GO, EC, and ChEBI classes of the chain. Each predicted class was also assigned a
probability p based on the frequency of the class assignment in the database; classes with larger
frequencies have greater chances of spurious association. The results of predictions with p <
0.05 are given in Table 4 (“Carbo Sig”). The accuracy of each prediction was assessed by the
size of the intersection between the predicted classes and the actual assignments. The false
positive rate was defined as o = 1-m/N and the coverage rate was defined as g = n/N, where
m is the number of predictions, n the size of the intersection, and N the number of actual classes.
False positive and coverage rates are shown in Table 4 (“Carbo Sig”). Carbo-based predictions
resulted in a fairly high false positive rate for all assignments; however, the predictions also
had a high coverage, indicating the answer was usually in the predicted results.

For MACT scores, the significant similarity scores criterion resulted in a set of 474 unique
protein chains with 5,352 significant pairs. Average pair-wise values for these significant pairs
included: structural RMSD (5.18+0.03) and sequence identity (%) (1.252+0.002)x10%. Carbo
scores for this group are presented in Table 3 (group “MACT Sig”). As described above, each
of the chains in the subset of significant MACT scores were assigned GO, EC, and ChEBI
classes. The predictions, true assignments, false positive rates, and coverage values are given
in Table 4 (group “MACT Sig”). As with the Carbo-based predictions, this method generally
obtained the correct result; albeit with a high false positive rate.

Note that the information in Table 4 cannot be directly compared with scatter plots of Z-scores
in Figure 2. In particular, Table 4 compares Carbo and MACT classification for subsets of
protein pairs with known E.C., GO, or ChEBI classifications while Figure 2 compares Carbo
and MACT scores for all possible pairs of proteins. In particular, Figure 2 demonstrates the
strong correlation of Carbo scores with RMSD and sequence identity but does not indicate the
fidelity of matching by either algorithm.

Significant similarity scores —low sequence and structure identity—The previous
analysis demonstrated that low p-value Carbo and MACT scores could accurately reproduce
E.C., GO, and ChEBI classification. However, it should be noted that such classification could
have probably been determined without electrostatic analysis through sequence analysis via
Pfam [7], PSI-BLAST [1], etc. or structural analysis via services such as CE [49], SCOP
[25], or CATH [45]. Therefore, it is important to assess the ability of the Carbo and MACT
electrostatic analyses to classify the properties of the protein chains in the absence of significant
sequence or structure identity. As such, we defined subsets of “significant” similarity scores
with p-values less than or equal to 0.05 and further filtered these subsets to include only chains
with structural RMSD greater than 4.0 A and sequence identity less than 60%.
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For Carbo scores, this criterion resulted in a set of 298 protein chains with 974 unique pairs.
Average pair-wise values for these significant pairs included: structural RMSD (6.25+0.02)
and sequence identity (%) (7.42+0.02). MACT scores for this group are presented in Table 3
(group “Carbo SigLow”). As described above, each of the chains in the subset of significant
MACT scores were assigned “predicted” functional classes. These predictions, true
assignments, false positive rates, and coverage values are given in Table 4 (group “Carbo
SigLow”). This group showed a high false positive rate while only capturing 40-50% of the
true assignments in the predictions.

For MACT scores, this criterion resulted in a set of 462 protein chains in 2,875 unique pairs.
The large increase over the Carbo set is due to the lack of structural alignment as a step in the
MACT analysis. Average pair-wise values for these significant pairs included: structural
RMSD (6.853+0.006) and sequence identity (%) (6.73+0.08). Carbo scores for this group are
presented in Table 3 (group “MACT SigLow™). As described above, each of the chains in the
subset of significant MACT scores were assigned “predicted” functional classes. These
predictions, true assignments, false positive rates, and coverage values are given in Table 4
(group “MACT SigLow™). Like the Carbo method, this group showed a high false positive rate
while only capturing 40-60% of the true assignments in the predictions.

Discussion and Conclusions

The above results demonstrate that MACT similarity metrics provide a complement to Carbo
similarity methods and show potential for future work comparing biomolecules with very
different structures where existing structural alignment methods may be insufficient. While
both methods have very different overall dependences on structural RMSD and sequence
identity, they were both sufficient to cluster protein chains into functionally-relevant groups.
Furthermore, analysis of chains with statistically-significant similarity scores revealed pairings
which had a number of functional attributes (GO, E.C., and ChEBI IDs) in common.

However, MACT methods provide two very important benefits which are not available with
the Carbo methods. First, the MACT method is affine-invariant — it does not require the
structural alignment of biomolecules before electrostatic comparison. Second, as a related
benefit, MACT methods can potentially match electrostatic potentials at a local level — as such,
they can detect locally-similar electrostatic motifs in the absence of global similarity. These
aspects of the MACT method suggest future work detecting electrostatic motifs across
structurally-diverse protein families; e.g. resolving ligand binding sites and other electrostatic
features shared by proteins with different global structural characteristics.

We have described the initial application of MACT methods to demonstrate the ability of these
new methods to correctly cluster protein chains based on electrostatic and biomolecular surface
properties without the need for prior structural alignment. The goal of this initial work was to
demonstrate that these methods could provide a level of robustness equivalent to traditional
Carbo or Hodgkin measures for comparison of electrostatic properties for biomolecules with
very different structures. While the current results of MACT methods were obtained in regions
near the biomolecular surface defined by solvent accessibility functions, we are also
implementing new algorithms to automatically construct volumetric functions representing
potential binding sites (e.g., pockets). We shall continue to explore ways to further improve
the results by using these pocket functions to specifically compare the electrostatic potential
and other features at binding sites. Furthermore, there are numerous possibilities for other
applications of this pattern recognition methodology, including automated identification of
ligand binding sites and incorporation of this information into docking algorithms.
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This appendix describes the MACT matching algorithm used in this paper. Interested readers
may refer to [58] for more details. The major steps of the algorithm are outlined below.

1. Compute a contour tree (CT) for volumetric functions representing
molecular shapes, e.g. solvent accessibility functions

The contour tree (CT) [32,14] was introduced to find the connected contours of level sets of
volumetric functions. The topology of a level set changes only at the critical points of the
function. The CT captures these topological changes of the level sets for the entire range of
the function of interest. Each node of the CT corresponds to a critical point of the function and
each arc corresponds to a contour class connecting two critical points. A cut on an arc (vq,v7)
of the tree by an isovalue v; <w < v, corresponds to a connected contour of the level set L
(w). Due to the large number of critical points in biomolecular solvent accessibility and
electrostatic potential functions, CTs are usually too complex to be compared directly.

2. Construct the finest level dual contour tree (DCT) from the CT in Step 1

A dual contour tree (DCT) can be constructed by partitioning arcs of a CT into sets of connected
segments, each of which corresponds to a connected interval volume of the function domain.
These interval volumes represent regions of the domain where the function values lie between
two specific isovalues. The distribution of the connected interval volumes contains important
topological information about the original function. Each connected interval volume becomes
anode ina DCT and two nodes are connected by an edge if the corresponding interval volumes
are adjacent (sharing the same contour at their boundaries). A DCT can be constructed from a
given CT as following:

i.  Divide the functional range [fmin, fmax] Of a scalar function f into N intervals, which
cut the CT arcs into segments in N ranges.

ii. Forallcutarcsegmentsof CTinrangei(1<i<N), we use aUnion Find data structure
to assign them into disconnected sets. Each set of connected arc segments becomes a
node of DCT at level i.

iii. Ifthere existsinanode nat level i, one arc segment that is connected to that of another
DCT node m at level i — 1, a DCT edge is insert between n and m.

The DCT provides a simpler representation of the original function than the CT by eliminating
small undulations in the function while preserving potentially-significant features like high
mounds and deep pits are preserved in the DCT. Additionally, analysis can be focused on the
important regions of molecular structures by restricting the DCT to a smaller functional range
of particular interest, e.g. solvent-accessible regions near the surfaces of biomolecules.
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3. Compute the geometrical, topological, and functional attributes for the
nodes in the DCT

In order to quantitatively measure the similarities of DCTs, we define some geometrical,
topological, and functional attributes for the DCT nodes. The function (e.g., solvent
accessibility) used to represent the molecule shapes and construct the DCT is called shape
function. Additional volumetric functions, such as electrostatic potentials, can be treated as
properties defined on the shapes and used for computing functional attributes of the DCT nodes.
Each node m of the DCT is assigned a set of attributes based on the geometry and topology of
its corresponding connected interval volume: the normalized size of the interval volume, V
(m); the principal values of the moments of inertia of the interval volume, I(m); and the Betti
numbers [23] of the interval volume boundaries, B(m). Additionally, the interval volume is
then used to compute additional electrostatic potential attributes for the DCT, namely the local

potential monopole P(m); dipole 73 (m); and quadrupole moments Q(m).

4. Build a multi-resolution hierarchy of the attributed dual contour tree
(MACT) by merging adjacent functional intervals

In order to facilitate the comparison of attributed DCTS, they can be further organized in a
hierarchical multi-resolution form. This Multi-resolution Attributed Contour Tree (MACT) is
constructed from a fine DCT by merging its adjacent functional intervals. Without loss of
generality, we assume that the finest DCT D has N = 2X intervals. The DCT at the next coarser
resolution would have N / 2 intervals, each of which is merged from two of the finer DCT. A
set S of connected DCT nodes in the two combined intervals are merged into a single node n
in the coarser DCT. This can be achieved again by using a “Union Find” data structure [31].
The node n is called the parent of nodes in the set S, which are the children of n. The merging
process can be recursively applied to the coarser DCTs until there is only a single interval
spanning the entire functional range under consideration. If a DCT is constructed using a
restricted functional range, there may be multiple nodes even in the coarsest DCT because the
regions of interest may have many disconnected components. However, most of those nodes
are very small in size and can often be pruned as noise. The attributes of a node in the coarser
level of the hierarchy can be easily evaluated from the attributes of its children.

5. Match two MACTs and compute their similarity score

The MACT matching algorithm isapplied from the coarsest to the finest level of the hierarchies,
where we assume that the MACTS to be compared have the same number of levels. The
matching algorithm attempts to find the maximal set of matched MACT node pairs between
two MACTs M and M’. The MACT nodes m € M and n € M’ of a matched pair must satisfy
following conditions:

The nodes m and n don't belong to any other pairs.

m and n must belong to the DCTSs of the same resolution, i.e.m € D C Mandn €
D’ C M', where Dj and D’; have the same number of functional intervals.

m and n must belong to the same functional interval of D; and D’;.

The parents p(m) of m and p(n) of n are also a matched pair (p(m), p(n)) in the coarser
DCTs. The only exception is level 0, at which nodes have no parents.

We use a greedy algorithm to find the maximal set of matched node pairs, starting from level

0 of the hierarchies. The steps to match the DCT D; { M and D} { M'at resolution level i (i =
0,...,k) are as follows:
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i. Add all nodes of the DCT D; into a priority queue Q, in which the nodes are ranked
by their volumes.

ii. Remove the node m with the highest priority from Q. Search for the best matched

node n from possible candidates in the other DCT D;, constrained by the conditions
mentioned above. The best match should have the highest score similarity {m,n)
(defined below) weighted by their average volumes.

iii. Ifanode n is found, the pair (m,n) is added to the set of matched pairs at resolution
level i and n is also removed from future consideration.

iv. Repeat step 2 and 3 until the queue Q is empty or no more candidates in D';.

V. Calculate the similarity score {D;, D,’.) by using the pairs of matched nodes in level
i

vi. Repeat the steps 1 to 5 from level i = 0 to k. Calculate the similarity score {(M,M") as
the similarity score of two biomolecules.

For two nodes m and n in a matched pair, the similarity score is the weighted average of the
similarities of individual attributes defined before:

{m,ny =wi{V(m),V(n))+wr(B(m),B(n))
+w3(I(m),I(n))+w4{P(m),P(n))
+ws(D(m),D(n))+we(Q(m),0(n)),

where the weights satisfying 0 <w; < 1 and w;j = 1 control the relative importance of different
attributes for comparison. As expected, the maximum similarity score between two nodes is
1, which is achieved when they have exactly the same attributes. Additionally, the similarity
score can also become negative when opposite electrostatic potential moments are encountered.
In this work, the weights were estimated by maximizing MACT scores for pairs of similar
proteins (members of the same family and/or different X-ray structures) in a small subset of
20 proteins. Specifically, the weights were chosen to maximize the ratio of the total similarity
scores of sample pairs within the same families to that of different families. The results
presented in this paper were calculated with weights wq = 0.03, wo = 0.08, w3 = 0.21, wy =
0.44,ws=0.1, and wg = 0.14, where the electrostatic weights (w4, ws, we) dominate the overall
metric.

The individual terms in the equation above are computed as follows:

' Vm) - V()
(V(m),V(m)=1 - max(V(m).V(n)): the similarity score of the volumes.

1, min(B;(m),Bi(n))
(B(m),B(m)== i max(B,(m)B;(n))- the similarity of the Betti numbers of lower and

upper boundaries.

o max =1 23(7(m) — Ii(n)))
{om 1= = —— T Iy - the similarity of the moment of inertia.

|P(m) — P(n)
(P(m) = Pm)=1 - max([Pn)[|P(n))): the similarity of the integrals of properties.

|D(m)| — |D(n)|
(D(m),D(n)=1 — max (DG D(m)): the similarity of the dipole moments.
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o max;-123]0;0m) - Q(n)] S
(Q(m),0(n))=1 ~ max(10;(m) |10 (m)) - the similarity of the quadrupole
moments.

The maximum similarity score between two nodes is 1, which is achieved when they have
exactly the same attributes. Additionally, the similarity score may also become negative when
opposite electrostatic potential moments are encountered. The similarity score between the
DCTs D and D’ is computed as weighted average of scores of matched node pairs:

(D.Dy=i 2(V(m)+V(n)Xm;ny),

where (m;,n;j), m; € D and n; € D’ is a matched pair and the weights are the sum of their
normalized volumes. As a result of this weighting, larger interval volumes have bigger
contributions to the score. The similarity between MACTs M and M'is evaluated as the average
of the similarity scores of DCTs from resolution level 1 to k:

k
. (Di. D).

2

1
M.M’)=—
M.M)=+

The similarity score (M,M"), which clearly satisfies (M,M") < 1, is used to measure the similarity
between the molecular structures with properties and compute the results presented in this

paper.
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(b)

Figure 1.
A simple example of a potential-based DCT. (a) A fictitious 2D electrostatic potential a model

amino acid; colors correspond to potential value from deep red (very negative) to deep blue
(very positive). (b) The DCT constructed from connected sub-domains of the potential; DCT
nodes are color-coded to correspond with the appropriate potential sub-domains in (a).

Multiscale Model Simul. Author manuscript; available in PMC 2008 October 6.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Zhang et al.

Carbo Z-score

Page 18

MACT Z-score

5 10
CE RMSD

10 T T | T | T T

o[ 4

6 . I :‘_

L {E:L. 'r‘_“'l
MACT Z-score

i 3
0 20 40 60 80 100 0 20
CE % sequence identity

Figure 2.

40 60

80

CE % sequence identity

100

Dependence of Carbo and MACT Z-scores on CE alignment RMSD and alignment sequence

identity; please see text for more details on these comparisons.

Multiscale Model Simul. Author manuscript; available in PMC 2008 October 6.



Page 19

Zhang et al.

900 + SE°¢CT [4 e ¢0'0+98°0 T00+86°0 4
€0+G99T [4 [44 TO0+980 T00¥ .60 0¢

¢+ 9¢ 14 S €00+3S80 T00+96°0 0¢ [ ovin
G0¥6¢E [4 [ 200+ ¥8°0 T00¥960 ST
9F6Y ST 90T €00+3S80 ¢00+S6°0 0T
¥ 66 474 60¢ 700 ¥ ¥8°0 ¢00F¥6°0 E
L0+ vCT [4 [44 200+ %90 T00+S6°0 4
G0+G99T [4 I 200¥€90 TO0+¥6°0 0¢

O ENN74 [4 8 €00+090 T00+¢6°0 0¢ oquen
V¥ EE < 6 €0'0¥ 950 ¢0'0¥ 060 ST
V¥ 6V 14 98 €00+950 €00+ 680 0T
¥ 66 Ly SY1 900+ 090 900 ¥ ¥8°0 E
DAY TN XS SO EVENE] RITIe TS [euta1u] ]

3ZIS 131SN1D

*J31SN|2 © JO BPISINO pUR 8pISUl BIRP UsaMIa] A1Le|iis abeane aui sI ALie[ILUIS [euIaIXa,, -181SN|d & UIYIM
e1ep Jo sired usamiag Aliejiwis abelane sy si , A1LIejIWIS [BUIBIUL,, *S8109S AlLIR|IWIS 1 DV/IAl PUe 0gJeD Jo Buliaisn|d Aem-y 1o) sonsnels

Ta|qeL
NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Multiscale Model Simul. Author manuscript; available in PMC 2008 October 6.



Page 20

Zhang et al.

Mgdet-Stnd|. Author manuscript; available in PMC 2008 October 6.
O
<
=

1 T+T 14 C+¢C L L C+T S C+¢ 9 14 T+1 € T+T € EH C+ ¢ 8 S+ 0T 04
V1 T+T 14 €+ ¢ 8 S c+1 ] c+ ¢ 9 v T+1 € I € €C € +¢ 8 9+ 0T 0€
L C+T 14 C+C 8 € C+T S ¢+ ¢ 9 € T+1 [4 T+T 4 €T 7 + € 6 9+G 0T 0
8 c+1 14 €+ ¢ 8 [4 c+1 € €+ ¢ S € T+1 4 c+1 4 €1 7+ € A 9+ 0T ST
8 C+T € 7 + € 8 [4 T+T 4 ¢+ ¢ 14 [4 T+1 [4 T+T 4 [43 C+ ¢ 9 9+9 0T 0T
[4 c+ ¢ 14 €+ ¢ 9 [4 c+1 4 €+ ¢ 14 [4 ¢+1 € c+ ¢ € 9 S+ 9 8 B+ /. 17 S
43 T+T 14 C+¢C S 8 C+T L ¢+ ¢ L 8 3'0+S0 [4 T+T € 8¢ C+ ¢ 0T S+ 0T 04
€T T+1 14 €+ ¢ S L C+1 L ¢+ ¢ L S B0+10 4 I 4 SC €+ ¢ 6 S+G 0T 0€
8 ¢+ ¢ € C+C L L T+T € ¢+ ¢ 14 S T+1 [4 C+T € 0¢ C+ ¢ L 9+G [43 0
9 c+ ¢ € €+ ¢ L S 1+1 € c+ ¢ 14 v B0+v0 4 c+1 € ST € +¢ S 9+ 4} ST
€ C+ ¢ 9 7 + € 8 E C+T 14 ¢+ ¢ 14 [4 L'0+90 T T+T 4 0T 7 + € L 9+9 17 0T
[4 €+ ¢ 9 v+ € 8 [4 c+ ¢ 14 €+ ¢ 14 T ¢+l 4 c+ ¢ € S S+ v 8 B+ /. €l S
DAY XeIN DAY XeIN DAY XeIN DAY XeIN DAY XeIN DAY XeIN DAY XeIN DAY XeIN 5
Sy SESIIE) SESITE SIy SESIIE] SR SIy PESIE PEISITR] SHy PEISIE] PEISITE]
paJeys Liad sy “Bis ‘biun BET ESTIVRGIIS paJeys Liad sy “B1s "biun Jad suy bis paJeys Jad suy Bis ‘biun Jad suy bis paJeys Liad suy “B1s "biun Jad suy bis
19340 09 [OE| T1VH3IA0

NIH-PA Author Manuscript

"Ureyd auo 1Se3| 1e 0} SIUBWUDISSe YIIM Sasse[d 193D +S pue ‘09 8% ‘D3 TE 2JaM aJay) |e101 U] "J81sn|d auo Uey) alow Aq pateys ate YdIym GO0 Uey ssa| sanjeA-d Yl Sasse|d aJe
SNy paJeys "J1a1sn|o Jay1o Aue ul Juasaid 10U aJe 1eyl GO'0 Uey SSa| sanjeA-d Yim sasse|d aue siy uediyiubis anbiun "(1xa1 88s) GO'0 UeYl s8] sanfeA-d Ylim sasse[o ale siy Juediiubis suy Jo
Jaquinu ay 1asaldal sa1UB ||V "S840 A1LR[IWIS | DA PUe 0gJeD o) S181Sn|d UIyIM (1X8) 8U) Ul PagLIosap Sawayds UoNBIILISSe|d |93y pue ‘09 ‘OF 8yl Uo paseq) soNsiels UoNedlIsse|d

NIH-PA Author Manuscript

¢ dlqelL

NIH-PA Author Manuscript




Page 21

Zhang et al.

(M 61 1655 ¢ Q207 o105 IOV

(O OITe W01 7S O DIS 00180

(M3 )L EC T9)8T 9 GVEL0 BIS LOVIN

29 (05 (8)06 6 QVES BIS 0G1e0)

798 @57y [@)6L10 T8V E Q8 EL )08 [W120 ©)9¢ S

v )92 Q01 TS LT T6)89°T )9¢ 2)9¢ LSS
0TI 3 [G01x)d Z [ med 01X [Goix) d 7 |Gotx) mey

$9.403S | DVIN S9103S 0gJe) 191SN|D

"sasayjuased ul umoys si 161D 1se| Ul 018 pIepURIS 9409 Uey) ss3] Aluspl 80usnbas pue \ 0’y Uey Jaleald dSIAY [ednionais yim1es bIS

0gJed ayp ui sutslold ‘Mo16IS 1DVIN ‘909 eyl ssaf A1nuapl sousnbas pue \y 0"y Ueyl Jeest QSINY eamonls yiim1es BIS ogued sy ul

suisyodd ‘mo161S ogue) (Go'0 01 [enba Jo uey) $s8) sanjeA-d 8109s | DWIN Yim sated ‘BIS 1 DWIA ‘GO0 01 [enba Jo uey) ssa| sanjea-d 8109s

0gJed yum sired ‘BIS 0gJed ‘ASINY [4Nons \y G Uyl SS8] Yaim sureyo uislold [eanuspi-uou ‘ns uswubife einonns uodn AsNY

Y G uey) ssa| pue Ainuspi 8ousnbas 9409 Uey) Ja1eall yim sureyd uislold '11Shas :uosLedwWOd 18sgns 10} S)NSal 8100 | DVIN pPue ogred
€ 9lgqel

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

Multiscale Model Simul. Author manuscript; available in PMC 2008 October 6.



Page 22

Zhang et al.

NIH-PA Author Manuscript

90 Al T T EISIENG]e)

80 80 80 80 PAINISO 9S[e 09
T+1 T+1 T+7 T+7 anil
€+§ v+ €+9 v+9 paloIpald

S0 S0 T T EISIENG]e)

6°0 60 60 80 PAINISO 9S[e 33

S0¥90 S0¥90 S0+50 S0+50 anil

E+v v+ E+V v+ paloIpald

S0 S0 S0 T 90BIIN0D

80 80 80 L0 PAINISO 9S[e f
T+¢ T+¢ T+¢ C+E anil 83w
S+6 8+6 9+ 1T 6+TT paloIpald

0710IS 1OVIN MOTT0IS oged IS 1OVIN IS 0qJed

v alqel

NIH-PA Author Manuscript

"0509 UeL ssa] A1nuapl aouanbas pue
0t ey} JeyealB QSINY [eananis yim 18s BiS ogued aup ul sutsjold ‘moB1S 1OVIN (9609 eyl ssa| Auapi aauanbas pue y 0'y Uey)
J191ea1B SINY [eanonas yum 18s BiS ogued ay) ul sutslold ‘Mmo61S ogueD ‘G0°0 01 [enba Jo ueyl ssa] sanjeA-d 8109s | DVIAl YIm sired
‘B1IS LOVIN :S0°0 01 [enba Jo uel sss| senfeA-d 8109s 0gued ynm sired ‘BIS oqueD ‘ASINY [eANANAS \ § UBY) SS8] YIIM sureyd uiajoud
[eanuspl-uou ‘NS uswubife [einonis uodn ASINY Y G UBY SS9 pue A1uapl 8dusnbas 9609 uey) Jatealb ynm sureyd uiaoid ‘nshas
:suosLIedwo2 18sgns 1oy aouewloyad (1xal 8y Ul PagiIosap SaWaYds UoIeIlISSe|O |93YD pue ‘09 ‘O3 8yl Uo paseq) uondipald jeuonoun4

NIH-PA Author Manuscript

Multiscale Model Simul. Author manuscript; available in PMC 2008 October 6.



