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UNCERTAINTY QUANTIFICATION FOR ATOMISTIC REACTION

MODELS: AN EQUATION-FREE STOCHASTIC SIMULATION

ALGORITHM EXAMPLE

YU ZOU AND IOANNIS G. KEVREKIDIS ∗

Abstract.

We describe a computational framework linking Uncertainty Quantification (UQ) methods for
continuum problems depending on random parameters with Equation-Free (EF) methods for per-
forming continuum deterministic numerics by acting directly on atomistic/stochastic simulators.
Our illustrative example is a heterogeneous catalytic reaction mechanism with an uncertain atom-
istic kinetic parameter; the “inner” dynamic simulator of choice is a Gillespie Stochastic Simulation
Algorithm (SSA). We demonstrate UQ computations at the coarse-grained level in a nonintrusive
way, through the design of brief, appropriately initialized computational experiments with the SSA
code. The system is thus observed at three levels: (a) a fine scale for each stochastic simulation
at each value of the uncertain parameter; (b) an intermediate coarse-grained state for the expected
behavior of the SSA at each value of the uncertain parameter; and (c) the desired fully coarse-grained
level: distributions of the coarse-grained behavior over the range of uncertain parameter values. The
latter are computed in the form of generalized Polynomial Chaos (gPC) coefficients in terms of the
random parameter. Coarse projective integration and coarse fixed point computation are employed
to accelerate the computational evolution of these desired observables, to converge on random sta-
ble/unstable steady states, and to perform parametric studies with respect to other (nonrandom)
system parameters.

Key words. Uncertainty quantification, Equation-Free, generalized Polynomial Chaos, stochas-
tic Gillespie algorithm, multiscale

1. Introduction. The temporal evolution of many engineering systems can be
described through continuum models (typically Ordinary or Partial Differential Equa-
tions, ODEs or PDEs) depending on random parameters and/or initial/boundary
conditions. A number of methods have been proposed to study the evolution of the
probability distribution of the solutions of such random problems (the so-called un-
certainty quantification or UQ). Among early exploration approaches in this area are
Monte-Carlo based methods [1, 2, 3, 4], which normally require a large number of
ensemble realizations to achieve convergence. For slightly perturbed systems, whose
random parameters can be described as small fluctuations around average values,
perturbation methods may be utilized [5, 6, 7]. Such methods cannot, however, be
used to treat more generic random systems, exhibiting large parametric uncertain-
ties, and even if used they can only obtain information on low-order statistics. To
overcome this difficulty, moment-closure techniques (e.g., [8]) were tried to study dy-
namics of statistical moments of solutions for which the small-uncertainty assumption
in the perturbation method may be relaxed. A significant difficulty with this aprroach
lies in deriving an accurate closure for high-order statistical moments of the solution
distributions; this is extremely difficult, especially for nonlinear systems.

In recent years an alternative approach for UQ, the stochastic Galerkin method,
has received considerable attention as an approach to solving ODEs or PDEs with
random parameters. This approach originated from the work of Wiener [9] in con-
structing multiple stochastic integrals (also known as Homogeneous Chaos) to repre-
sent functionals of Wiener processes. This idea was then utilized in [10] to express
solutions of random systems in terms of Hermite polynomials of Gaussian random
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variables (i.e., Wiener-Hermite Polynomial Chaos). Projections of these solutions on
the Hermite polynomial basis are deterministic, and can be readily numerically solved
after truncation through a Galerkin method. Early works in applying the method in
engineering systems include [10], where random static and dynamical problems in
structural analysis were investigated. The method was subsequently applied in uncer-
tainty quantification of various physical systems including (but certainly not restricted
to) porous media [11], fluid dynamics [12] and chemical reactions [13]. The applica-
tion of the Wiener-Hermite Polynomial Chaos was recently extended in [14, 15, 16]
to a general situation, where the Askey scheme was used to construct generalized
Polynomial Chaos (gPC) with respect to other continuous and discrete probability
measures. Other developments in the application of the method include piecewise
function representation [17], non-orthogonal expansions [18] and Wiener-Haar wavelet
expansions [19]. One advantage of the stochastic Galerkin method relative to Monte
Carlo simulation is that it can reduce a random system to a deterministic one, often
with considerably fewer degrees of freedom. Moreover, this method – along with its
extensions and ramifications – can handle more general uncertainty problems such as
large fluctuations, multimodal and discontinuous probability distributions, etc.

In order to implement the stochastic Galerkin method, we must be able to derive
differential equations for the projection of solution distributions onto gPC bases (i.e.,
ODEs for the evolution of gPC coefficients). When explicit equations for these gPC
coefficients are not available in closed form, a unified approach, combining equation-
free techniques [20, 21, 22] and the stochastic Galerkin method in a nonintrusive
way has been proposed. This is equation-free uncertainty quantification [23], which
can evolve gPC coefficients in time, and has been used to perform steady state and
limit cycle bifurcation analysis of the gPC coefficient equations without needing these
equations in closed form. This approach is based on short bursts of direct simula-
tion (ensembles of such simulations distributed over the random parameter(s)) as an
inner, “fine scale” simulator; these bursts are used to numerically estimate the neces-
sary information at the “coarser” gPC coefficient level (e.g., temporal derivatives of
gPC coefficients) on demand. The main assumption underlying this approach is that
the long-term dynamics in gPC coefficient space lie on a low-dimensional, attracting
manifold, which can be parametrized by only a few leading-order gPC coeffiicents
in the appropriate orthogonal polynomial chaos basis (see [14]). In this way, model
reduction can be achieved by using gPC expansions.

When we study continuum models of chemically reacting systems (e.g. ODEs
for the evolution of reactant concentrations in a stirred tank reactor, or for the evo-
lution of coverages on catalytic surfaces), UQ techniques can be used to study the
effect of uncertainty in kinetic or operating parameters on the overall reactor be-
havior (e.g. steady state concentrations, reaction rates etc.). In many problems of
contemporary interest, however, such continuum differential equations are not avail-
able in closed form; instead, we are given a description of the chemical kinetics at
an atomistic/stochastic level and the uncertainty enters now in the parameters of
the atomistic/stochastic simulation itself (e.g. in certain transition probabilities).
The normal steps for uncertainty quantification modeling would involve (a) deriva-
tion of closed continuum kinetic equations for the coarse-grained observables of the
atomistic simulation (averaged concentrations, averaged coverages)– these equations
need to explicitly express coarse-grained parameter uncertainty in terms of the fine
scale, atomistic level parameter uncertainty; and (b) the application of traditional,
continuum UQ techniques on these continuum kinetic equations. Here we will show
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how to circumvent this “intermediate” derivation of coarse-grained, continuum kinetic
equations.

We will implement a computational framework that performs UQ computations
for these unavailable, random continuum kinetic equations by acting on the fine scale,
atomistic/stochastic simulator directly. This uncertainty quantification procedure for
stochastic chemical reaction models with uncertain parameters involves three distinct
system levels: a fine scale, microscopic simulator for fixed values of the uncertain
parameter(s); an intermediate coarse-grained scale, where continuum kinetic ODEs
exist in principle for certain system observables, still for fixed values of the uncer-
tain parameter(s); and, a final, fully coarse-grained scale of gPC coefficients for the
distributions of the solutions of these (unavailable) closed form continuum equations.
The equation-free machinery is thus used at two successive levels: first to circumvent
the derivation of closed form continuum kinetic equations; and then to circumvent
the derivation of explicit equations for the evolution of the gPC coefficients for the
solutions of these equations with uncertain parameters through a Galerkin procedure.

The paper is organized as follows: We start in Section 2 briefly recalling the
formulation of the stochastic Galerkin method. Equation-free techniques are com-
bined with this stochastic Galerkin method in Section 3 to study random systems
without explicitly available governing equations. The approach is illustrated through
the standard model for the A + 1/2B2 → AB reaction, which has been used as a
simplified description for the catalytic oxidation of CO [24]. The fine-scale simulator
is chosen to be the Gillespie Stochastic Simulation Algorithm (SSA). Computational
results are presented in Section 4 where we also demonstrate the efficiency of using the
Gauss-Legendre quadrature for computing gPC projections. Random stable/unstable
steady-state solutions are also computed in Section 4, and continuation algorithms are
implemented to explore the effect of variation of a system (nonrandom) parameter on
the statistics of the random steady state. We conclude with a brief summary and
discussion in Section 5.

2. The Stochastic Galerkin Method. Consider a system whose evolution in
time is governed by the differential equation

dxc

dt
= f(x, ωc), xc(ωc, 0) = xc,0(ωc);(2.1)

the system state is xc(ωc, t), where ωc is an element in the sampling space Ωc. The
subscript c stands for “coarse”, since we consider this to be the coarse-grained descrip-
tion of an atomistic simulator (an SSA simulator in our illustrative example below).
The solution of the above equation can be described by an expansion in an L2 space
with a generalized polynomial chaos basis Ψi(ξ(ωc)), i.e.,

xc(ωc, t) =
P∑
i=0

xi
cc(t)Ψi(ξ(ωc)).(2.2)

The projections xi
cc(t) are determined by

xi
cc(t) =

< xc(ωc, t),Ψi(ξ(ωc)) >

< Ψi(ξ(ωc)),Ψi(ξ(ωc)) >
,(2.3)

where the inner product < ·, · > is defined as

< q(x(ξ)), g(x(ξ)) >=

∫
q(x(ξ))g(x(ξ))p(ξ)dξ,(2.4)
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(where p(ξ) is a probability measure of ξ) for any functions q(x(ξ)) and g(x(ξ)) in
the L2 space. The subscript “cc” is indicative of a second level of coarse-graining:
these coefficients describe the statistics of the distribution of solutions for the already
coarse-grained state xc(ωc, t) over the sampling space.

Through a Galerkin projection, equations governing gPC coefficients xi
cc(t) are

obtained as

dxi
cc

dt
=

< f(
∑P

i=0 x
i
cc(t)Ψi(ξ)),Ψi(ξ) >

< Ψi(ξ),Ψi(ξ) >
,

i = 0, 2, · · · , P,(2.5)

with xi
cc(0) =

<xc(0),Ψi(ξ)>
<Ψi(ξ),Ψi(ξ)>

. The above equation can be formally compactly rewritten
as

dXcc

dt
= H(Xcc),(2.6)

where

Xcc = (x0
cc,x

1
cc, · · · ,x

P
cc)

T(2.7)

and

H = (h0,h1, · · · ,hP )
T .(2.8)

Here

hi(Xcc) =
< f(

∑P
i=0 x

i
cc(t)Ψi(ξ)),Ψi(ξ) >

< Ψi(ξ),Ψi(ξ) >
,

i = 0, 2, · · · , P.(2.9)

If dXcc

dt
= 0 in the long-time limit, then Equ.(2.6) has a steady state, which can

be used to obtain the probability distribution of the random steady state of (2.1).
The explicit derivation of Equation (2.6) is a challenging problem if (2.1) is a set
of strongly nonlinear equations; pseudospectral approaches (see e.g. [13]) provide a
possible alternative.

3. Equation-Free Computation for Random Dynamical Systems with-

out Explicit Governing Equations. Equation-free methods have been applied in
recent years to investigate solutions of non-random macroscopic systems whose evo-
lution equations are not explicitly available [20, 24, 21, 22, 25]. The approach can,
in principle, provide clear scenarios of the coarse-level evolution and its parametric
dependence while requiring only short-time bursts of evolution with the micro-level
simulators; in effect, it is a framework of accelerating the extraction of information
from the microscale simulation through judicious design of computational experiments
and processing of their results.

The equation-free approach utilizes the so-called coarse time-stepper as its basic
element; this time-stepper consists essentially of three components: lifting, micro-
simulation, and restriction. Lifting is a protocol that transforms a coarse-level state
to consistent fine-level states; restriction is the converse of lifting. Note that the lifting
will, in general, not be a one-to-one transformation, since fine-scale states have far
more degrees of freedom than their corresponding coarse-grained descriptions; this is
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a vital step in EF computations, and a good code should test, on line, that different
realizations of the lifting protocol do not affect the coarse-grained computational
results.

This approach was applied recently in conjunction with the stochastic Galerkin
method to study random dynamical systems [23]. The fine scale state, in this case, is
a (large enough) ensemble of system realizations; at each time snapshot, this ensemble
can be represented by its projection onto a generalized polynomial basis; if a low order
gPC truncation provides an accurate representation, these first few gPC coefficients
constitute the coarse-grained description. In principle, there exist differential equa-
tions for these projections, which can be derived, implemented in a computer code,
and then solved using numerical methods. However, it may be difficult or even impos-
sible to derive these equations; equation-free methods were utilized as an alternative
way of solving them without deriving them first.

Assuming that the coarse-grained evolution is smooth, one can use techniques like
projective integration [26, 27] to accelerate the time-evolution of the gPC coefficients
using fine scale (ensemble realization) simulations over only relatively short time seg-
ments. This is accomplished by observing the evolution of the ensemble MC runs on
their gPC coefficients (through restriction), and use of these data to locally estimate
the time-derivative of the coarse-grained description (the local time derivative of the
gPC coefficients). This information is then “passed” to traditional continuum nu-
merical initial value problem solvers (ranging from the simple explicit forward Euler
to Runge-Kutta type or even implicit integrators) that “project” the coarse-grained
state forward in time [21, 22]. One thus solves the initial value problem for the coarse-
grained description with the necessary quantities (the gPC local time derivatives)
obtained not through a function evaluation from a closed-form model, but through
processing the results of “judicious” numerical experiments with the fine scale code.
Beyond coarse projective integration, when Equation (2.5) has a stationary state, one
can turn the coarse time-stepper into a fixed-point operator and use matrix-free meth-
ods such as Newton-GMRES [28] to compute stable/unstable coarse-grained steady
states. These correspond to random steady states of the original random equations.

The equation-free technique in [23], however, requires the evolution equations
for the random dynamical systems to be explicitly available. In the case that these
equations are not explicitly available, we now show how to exploit fine-scale mod-
els underlying these differential equations. We now have two successive lifting (and,
correspondingly, two successive restriction) levels. To obtain a numerical represen-
tation for evolution of the desired, “doubly” coarse-grained representation (the gPC
coefficients), the fine-scale states of these fine-scale models are first restricted to an
intermediate coarse level: we obtain individual states in the ensemble of random ODE
solutions. At a second level of restriction, the entire ensemble of these states is used
to compute their gPC coeffcients. We view the level of random differential equation
as the “intermediate coarse” scale and the level where the gPC projections reside as
a desired “fully coarse” scale.

The interaction between intermediate coarse and the fully coarse scale states is
embodied in equations (2.2) and (2.3), which correspond to lifting and restriction,
respectively, between these two scales. The interaction between fine and “intermedi-
ately coarse” states at fixed values of the random parameters ξ is described by two
new lifting and restriction mappings: µ (lifting) and M (restriction),

Xf(ξ, t) = µ(xc(ξ, t)),(3.1)
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Fig. 3.1. Schematic of coarse projective integration for multiscale systems with uncertainty.

xc(ξ, t) = M(Xf(ξ, t)).(3.2)

Recall that the fine-scale statesXf are characterized by many more degrees of freedom
than their intermediate-scale xc counterparts. As the fine-scale states are restricted
to the intermediate-scale level, these additional degrees of freedom are eliminated.

Coarse projective integration for random systems whose coarse-scale equations
are not explicitly available can be summarized in the following steps: (see Fig. 3.1)

1. Generate an ensemble of (intermediate) coarse-scale states based on initial
values of gPC coefficients by (2.2).

2. Generate an ensemble of corresponding fine-scale states consistent with each
element of the ensemble of (intermediate) coarse-scale states by (3.1). In the
case that (intermediate) coarse-scale states are mean fields, the average of
these fine-scale states should be equal to the prescribed (intermediate) coarse
state.

3. Evolve fine-scale states via fine-scale (in the example below, SSA) simulators.
4. Restrict the fine-scale states to the (intermediate) coarse level and obtain an

ensemble of these coarse-scale states by (3.2).
5. Further restrict (intermediate) coarse-scale states to the desired fully coarse

level, to obtain gPC coefficients by (2.3).
6. Perform the above two steps successively, and use the results to estimate the

temporal derivative of the fully coarse observables (gPC coefficients). The
data collection time is dictated by the separation of fast/slow time scales
we assume prevails at the coarse grained level; also by the noise of gPC
coefficients brought in by the SSA at the fine level and the approach used to
compute these coefficients at the coarse level.

7. Project forward in time –using a continuum numerical integrator, such as
forward Euler- to obtain the fully coarse observables at a later time. Go back
to Step 1. The selection of the projective time step so as to retain overall
stability of the projective method is discussed in [26].

In equation-free computations of random coarse-scale steady states, we use the
time-stepper for the fully coarse scale states Xcc (the gPC coefficients), ΦT , to con-
struct a fixed point equation

Xcc = ΦT (Xcc)(3.3)

The operator ΦT involves repeated lifting and repeated restriction procedures across
two scale gaps, as illustrated in Fig. 3.2. The solution of Equation (3.3) can be
attemped either by direction iteration, by Newton’s method with numerically esti-
mated Jacobians (for a small number of gPC coefficients) or, more systematically, by
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matrix-free fixed point algorithms such as Newton-Krylov GMRES (for large num-
bers of gPC coefficients) [28]. Once the fully coarse-scale steady states are available,
ensemble realizations and thus probability distributions of coarse-scale steady states
can be immediately obtained by (2.2).

4. Numerical Results. Our illustrative example involves the A+1/2B2 → AB
reaction, which can be used as a caricature description of the CO oxidation on a
Pt catalyst surface [24]. Our (intermediate) coarse-scale observables are the mean
coverages of reactants and the vacant catalyst sites. The fine scale states in each
detailed simulation consist of the numbers of sites occupied by each reactant and the
vacant sites. In the limit of very large systems, the (intermediate) coarse scale ODEs
for mean coverage based on the particular kinetic mechanism would be

dθA/dt = αθ∗ − γθA − krθAθB
dθB/dt = βθ2

∗
− krθAθB(4.1)

(where θA, θB and θ∗ are mean coverages of reactants A, B and vacant sites, respec-
tively). We will not use these equations in our computations that follow (which are
performed for finite size systems).

At the fine scale description level, there are four elementary reaction steps:

A(g) + ∗i
α

−→ A∗,i

B2(g) + ∗i + ∗j
β

−→ B∗,i +B∗,j

A∗,i
γ

−→ A(g) + ∗i

A∗,i +B∗,j
kr

−→ AB(g) + ∗i + ∗j;(4.2)

here (g) refers to gas phase reactants, ∗i(j) a vacant site, and A(B)
∗,i(j) are the ab-

sorbed reactants on the surface. At the continuum limit, the rates of four reactions are
given respectively by r1 = αθ∗Ntot, r2 = βθ2

∗
Ntot, r3 = γθANtot and r4 = krθAθBNtot,

where Ntot is the number of sites on the reacting surface. For our finite-size system,
the four reaction rates at a given time t (based on which the reaction probabilities are
computed) would be r1 = αN∗, r2 = 1

2
β

Ntot

N∗(N∗−1), r3 = γNA and r4 = kr

Ntot

NANB,
where NA, NB and N∗ are numbers of sites taken respectively by A, B and vacant
slots at time t.
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Our implementations of this chemical reaction scheme follows the Gillespie al-
gorithm [29, 30]. The index of reaction that will take place next depends on the
random variable p1, uniformly distributed over the domain [0, 1]: reaction j will oc-

cur if
∑j−1

i=1 ri/
∑4

i=1 ri ≤ p1 ≤
∑j

i=1 ri/
∑4

i=1 ri. The time at which this reaction

takes place is −ln(p2)/
∑4

i=1 ri, where p2 is also a uniformly distributed random vari-
able over [0, 1]. For each realization in the fine-level SSA, a stoichiometric matrix is
then used to keep track of the changes in the numbers of the reactants and vacant
sites over time.

In the simulations that follow, the parameters α, γ, and kr are considered known,
and set respectively to 1.6, 0.04 and 4; the uncertain parameter is β: β = 6.0+0.25ξ,
where ξ is a random variable uniformly distributed over [−1, 1]. Legendre polynomial
chaos is chosen as the basis for the random, fully coarse-scale states. The highest
truncation order for these fully coarse observables is chosen as 3 (P = 3). A total
ensemble of 40,000 realizations are used in lifting and restriction between the inter-
mediate coarse (mean coverages) to the fully coarse (gPC coefficients) level. Consis-
tent with each of these 40,000 ensemble realizations, 1000 fine-scale realizations were
simulated; each of them uses 2002(Ntot = 2002) sites on the catalyst surface. The
fine-(intermediate) coarse restriction M consists in taking the average coverage over
these 1000 fine-scale realizations corresponding to each (intermediate) coarse observ-
able (i.e., mean coverage of each reactant). We perform successive fine-intermediate
coarse and then intermediate-fully coarse restrictions at 40 successive coarse-scale time
steps (∆tc = 0.01s). We then use least-squares fitting to estimate temporal deriva-
tives of the gPC coefficients based on values at the last 5 time steps. These numerical
derivatives are then used (in a simple, forward Euler projective scheme) to calculate
gPC states after a relatively large time step (∆tcc = 0.8s). Figure 4.1 shows evolution
of the mean coverage of reactant A as a function of the random variable ξ in the
time domain; the “empty” time intervals in the plot are the projective forward Euler
“jumps”, over which we do not simulate. Figures 4.2 and 4.3 contrast the evolution of
the fully coarse-scale observables (gPC coefficients), computed by ensemble average
from direct Monte Carlo simulation of the coarse-scale ODEs (4.1), and also com-
puted through projective integration of the two-scale-gap system; Fig. 4.4 compares
the standard deviations of mean coverages computed from the gPC coefficients in the
two approaches. The results indicate good agreement between projective integration
computations and true evolutions at the fully coarse gPC level.

In an attempt to further accelerate the computation, the Gauss-Legendre quadra-
ture was used to approximate the inner product in the intermediate coarse to fully
coarse restriction (2.3). In the corresponding fully-to-intermediate coarse lifting, only
coarse states corresponding to values of ξ at the Gauss-Legendre points were gener-
ated. Figures 4.5-4.7 show coarse projective integration results using this method,
which utilizes only 200 coarse-scale realizations (rather than 40,000 ones). To display
the effectiveness of this technique, we implemented the original Monte-Carlo simu-
lations in the intermediate level by using a total of 200 realizations; the results are
shown in figures 4.8 and 4.9. With such a small number of realizations in a Monte
Carlo simulation, while the zeroth-order gPC coefficients of mean coverages of reac-
tants are well captured, other, higher order coefficients deviate significantly from their
true trajectories even at the beginning of the projective integration. This is clearly
due to the lack of sufficient realizations of mean coverage when ensemble averaging
is used to compute the corresponding gPC coefficients. Lifting only around Gauss-
Legendre quadrature points can enhance the effectiveness of our approach to simulate
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the evolution of gPC coefficients by using a much smaller number of intermediate
coarse-level realizations than that required by the standard Monte-Carlo simulation.
Computing the gPC coefficient evolution by sampling only close to qudarature points
has been proposed (for Gauss-Hermite quadrature, in a problem of approximating PC
coefficients for random temperature distribution) in [31].

We also use a matrix-free Newton-Krylov GMRES method to converge on the
(deterministic) stable/unstable fully coarse steady states of the gPC coefficient de-
scription, out of which random (intermediate) coarse steady state distributions can
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be obtained by (2.2). In this computation, β =< β > (1.0 + 0.05ξ), where ξ is
again a uniform random variable in [−1, 1]. In Fig. 4.10, dashed lines are true en-
velopes of random coarse-scale steady states (computed by setting β = 1.05 < β >
and β = 0.95 < β >), and solid lines are the derterministic steady states when
β =< β >. Error bars and stars represent respectively ranges and means of ran-
dom steady states of mean coverages computed using the matrix-free, time-stepper
based Newton-Krylov-GMRES method. Clearly, this equation-free fixed-point com-
putation can correctly reproduce the random steady states. Again, values of ξ at
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Fig. 4.6. Evolution of additional (higher-order) gPC coefficients of the mean coverages com-
puted by coarse projective integration with Ne=200 ξ values at Gauss-Legendre points; symbols: CPI
results; lines: gPC coefficients obtained via Monte Carlo simulation of the coarse ODEs.

Gauss-Legendre points are used to generate realizations of intermediately-coarse-scale
observables (mean coverages) and implement fixed-point computations (Fig. 4.11).
The random steady states can be accurately captured by this technique as well, while
the computational load decreases significantly. The approach has been linked with a
continuation algorithm to trace the bifurcation diagrams of the random steady states
as a function of < β >; observe that unstable random steady states can thus be
computed, and bifurcation points (such as turning points of random steady states) in
parameter space can be approximated (see Figures 4.10 and 4.11).
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Fig. 4.8. Evolution of the zeroth-order gPC coefficients of the mean coverages computed by
coarse projective integration for Ne=200 randomly selected ξ values; symbols: CPI results; lines:
gPC coefficients obtained via Monte Carlo simulation of coarse ODEs with Ne=40,000.

5. Summary. Equation-free methods were used at two successive layers, in this
paper, to enable uncertainty quantification computations on models of reacting sys-
tems for which no coarse-grained, continuum description is available in closed form.
Coarse projective integration was used to accelerate the computation of transient
dynamics of the problem solution distributions (at gPC coefficients level). Random
stable/unstable steady state computation, and their parametric/bifurcation analysis
at this gPC coefficient level was also demonstrated. Gauss quadrature rules were used
to effectively reduce the computational load while preserving the accuracy of results
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respectively. Lines represent gPC coefficients obtained via Monte Carlo simulation of the coarse
ODEs with Ne=40,000. Red, green and blue solid lines stand for respectively the 1st-order gPC
coefficients of θA, θB and θ∗. Red, green and blue dot-dashed lines stand for respectively the 2nd-
order gPC coefficients of θA, θB and θ∗. Red, green and blue dotted lines stand for respectively the
3rd-order gPC coefficients of θA, θB and θ∗.

2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

<β>

S
te

ad
y 

st
at

es
 o

f m
ea

n 
co

ve
ra

ge
s

5.5 6 6.5

0.8

0.82

0.84

0.86

θ
A

θ
B
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< β > of the uncertain parameter distribution. Coarse fixed point computation and continuation
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magenta objects: unstable steady states. See text for the inset.
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of the equation-free results. The method should be applicable in UQ for a wider class
of reacting problems, beyond those described through a fine-scale SSA simulator, for
which no closed-form kinetic equations are available. We believe that the approach
can still serve in cases where we know how to describe uncertainty in the microscopic
simulation parameters, but we cannot easily translate that in uncertainty descriptions
for parameters at the coarse-grained level.
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