
NONNEGATIVE MATRIX INEQUALITIES AND THEIR
APPLICATION TO NONCONVEX POWER

CONTROL OPTIMIZATION*

CHEE WEI TAN†, SHMUEL FRIEDLAND‡, AND STEVEN LOW§

Abstract. Maximizing the sum rates in a multiuser Gaussian channel by power control is a nonconvex
NP-hard problem that finds engineering application in code division multiple access (CDMA) wireless com-
munication network. In this paper, we extend and apply several fundamental nonnegative matrix inequalities
initiated by Friedland and Karlin in a 1975 paper to solve this nonconvex power control optimization problem.
Leveraging tools such as the Perron–Frobenius theorem in nonnegative matrix theory, we (1) show that this
problem in the power domain can be reformulated as an equivalent convex maximization problem over a closed
unbounded convex set in the logarithmic signal-to-interference-noise ratio domain, (2) propose two relaxation
techniques that utilize the reformulation problem structure and convexification by Lagrange dual relaxation to
compute progressively tight bounds, and (3) propose a global optimization algorithm with ϵ-suboptimality to
compute the optimal power control allocation. A byproduct of our analysis is the application of Friedland–
Karlin inequalities to inverse problems in nonnegative matrix theory.
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1. Introduction. We study the problem of total data throughput maximization
using power control in a code division multiple access (CDMA) wireless communication
network, where interference is a major source of performance impairment. Due to the
broadcast nature of the wireless medium, the data rates in a wireless network are af-
fected by interference when all the users transmit simultaneously over the same fre-
quency band using CDMA. Power control is used to mitigate the effect of multiuser
interference on performance and maximize the total data rates of all the users [4].
The CDMA wireless network can be modeled by an information-theoretic interference
channel that treats multiuser interference as additive Gaussian noise [4]. A widely stu-
died problem is to find the optimal power allocation that maximizes the sum rates over
this multiuser Gaussian channel, and this requires solving a nonconvex problem [22], [5],
[4], [7], [15]. This nonconvex problem also finds applications in the throughput maxi-
mization for digital subscriber line (DSL) wireline systems [24], [16], [17].1

The complexity of an exhaustive search is prohibitively expensive, since this opti-
mization problem is NP-hard, and may even be hard to approximate [16]. The authors in
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1The sum rate maximization problem that we study in this paper is a special case of the problem formula-

tion in the DSL setting, whereby each user allocates power only in a single frequency. On the other hand, each
user in a DSL system allocates their power over more than one frequency.
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[5], [22] formulated the problem as a signomial program, and used a successive convex
approximation method based on geometric programming. In [7], the solution to a two-
user special case was analyzed. The authors in [16] showed the NP-hardness of the
problem, and used the Lyapunov theorem in functional analysis to deduce a zero duality
gap result between a related primal of a continuous problem formulation in the DSL
setting and its dual. The authors in [17] estimated the size of this duality gap for
the finite problem in the DSL setting using Lagrangian dual relaxation combined with
a linear program. The authors in [20] proposed approximation algorithms to solve the
problem with individual power constraints (applicable to a CDMA uplink system). The
authors in [21] solved the problem with a single total power constraint (applicable to a
CDMA downlink system) under low to medium interference conditions.

We now state briefly the sum rate maximization problem with individual power
constraints. We refer the readers to section 2 for all definitions, notations, and motiva-
tions. Let F ¼ ½f ij�Li¼j¼1 and v ¼ ðv1; : : : ; vLÞ⊤ be an L× L matrix with zero diagonal
and positive off-diagonal elements and a positive vector, respectively. Let p̄ ¼
ðp̄1; : : : ; p̄LÞ⊤ and w ¼ ðw1; : : : ; wLÞ⊤ be a given positive vector and a given probability
vector, respectively. The sum rate maximization problem is given by

max
0≤pl≤p̄l∀l

XL
l¼1

wl log

�
1þ plP

j≠l
f ljpj þ vl

�
:ð1:1Þ

This is a nonconvex optimization problem that has a nonlinear-fractional objective
function of positive variables over a simple box constraint set. The exact solution to this
problem is also known to be (strongly) NP-hard [16]. An often used technique to tackle
nonconvexity is the standard Lagrange dual relaxation of (1.1) in the power domain. How-
ever, the shortcoming of this approach is that there can exist a positive duality gap be-
tween the global optimal primal and optimal dual value of (1.1) [16]. Also, finding an
optimal primal solution given an optimal dual solution, or vice versa, is in general difficult.

We adopt a reformulation-relaxation approach to tackle (1.1). Our reformulation
possesses certain desirable properties, which enable the application of nonnegative ma-
trix theory, especially the Friedland–Karlin inequalities stated in [10], to find the global
optimal solution and motivate efficient relaxation techniques. In particular, we utilize
the problem structure to develop suitable fast computational procedures for solving and
computing useful bounds to the sum rate maximization problem. Furthermore, analy-
tical solution to both the sum rate maximization problem and its relaxed problem can
also be characterized by the spectra of specially crafted nonnegative matrices. A bypro-
duct of our analysis is a refinement of the Friedland–Karlin inequalities in [10] and its
application to an inverse problem in nonnegative matrix theory. From an engineering
perspective, our algorithms operate in the logarithmic signal-to-interference-noise ratio
domain or, equivalently, the dB domain that is lingua franca in existing wireless
technology.

Overall, the contributions of the paper are as follows:
1. We study a reformulation of the sum rate maximization problem showing that

it is equivalent to a convex maximization problem on a closed unbounded con-
vex set.

2. Exploiting the structure of the reformulated problem, we propose two relaxa-
tion techniques that find progressively tighter bounds on the global optimal
value. The first one is a convex relaxation technique that uses Lagrange duality
(and its connection to convex envelope relaxation) and the Friedland–Karlin
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inequalities (basic inequalities that characterize the spectral radius of a nonne-
gative matrix) to solve a sequence of linear programs. The second method
exploits the spectra of specially crafted nonnegative matrices in a successive
convex approximation method.

3. Utilizing the relaxation techniques, we propose a global optimization algorithm
(with ϵ-suboptimality) to solve the sum rate maximization problem.

4. We give new applications of the Friedland–Karlin inequalities to inverse pro-
blems in nonnegative matrix theory.

5. Numerical examples illustrate the performance of our techniques, and include a
comparison between our relaxation techniques and the standard Lagrange dual
relaxation.

This paper is organized as follows. In section 2, we state definitions, notations, and a
short motivation. We give a characterization of the image of the multidimensional box
½0; p̄� ⊂ RLþ by a mapping in terms of the spectral radii of a set of nonnegative matrices.
In section 3, we study the problem of sum rate maximization by power control in a wire-
less network. We give necessary and sufficient conditions for an extremal point p ∈ ½0; p̄�
to be a local optimal value. In section 4, we exploit the structure of the reformulated
problem to study two relaxation techniques to find useful upper bounds to the global
optimal value. In section 5, we propose a global optimization algorithm to solve the sum
rate maximization problem. In section 6, we evaluate the performance of our algorithms.
In section 7, we conclude our paper. In Appendix A, we restate some useful results from
[10], and give their extensions and applications to inverse problems in nonnegative
matrix theory, which are needed in this paper.

2. Notations and preliminary results. Throughout the paper, we use the fol-
lowing notations. Let Rm×n ⊃ Rm×nþ denote the set of m× n matrices and its subset of
nonnegative matrices. For A, B ∈ Rm×n, we denote A ⪇ B if B − A ∈ Rm×nþ . We denote
A ⪇ B, A < B if B − A is a nonzero nonnegative and positive matrix, respectively. We
denote the entries of a matrix A ∈ Rm×n by the small letters; i.e., A ¼ ½aij�m;n

i;j¼1. Identify
Rm ¼ Rm×1, Rmþ ¼ Rm×1þ .

A column vector is denoted by the bold letter x ¼ ðx1; : : : ; xLÞ⊤ ∈ RL. We denote
ex ≔ ðex1 ; : : : ; exmÞ⊤. For x > 0, we let x−1 ≔ ð 1x1 ; : : : ; 1

xm
Þ⊤ and log x ¼ ðlog x1; : : : ;

log xLÞ⊤. Let x ∘ y denote the Schur product of the vectors x and y; i.e.,
x ∘ y ¼ ½x1y1; : : : ; xLyL�T . Let 1 ¼ ð1; : : : ; 1Þ⊤ ∈ RL. For p̱̱≤ p̄ ∈ RL, denote by ½p̱̱; p̄�
the set of all x ∈ RL satisfying p̱̱≤ x ≤ p̄. For a vector y ¼ ðy1; : : : ; yLÞ⊤, denote by
diagðyÞ the diagonal matrix diagðy1; : : : ; yLÞ. We let ðgðyÞÞl denote the lth element
of a function vector gðyÞ∶RL → RL. For example, when B ∈ RL×Lþ and y ∈ RLþ, ðByÞl
denotes the lth element of the vector By. The Perron–Frobenius eigenvalue of a non-
negative matrix F is denoted as ρðFÞ, and the Perron (right) and left eigenvector of F
associated with ρðFÞ are denoted by xðFÞ and yðFÞ (or simply x and y when the context
is clear), respectively. Assume that F is an irreducible nonnegative matrix. Then, ρðFÞ is
simple and positive, and both xðFÞ and yðFÞ are positive [2]. We will assume the normal-
ization xðFÞ ∘ yðFÞ is a probability vector. The superscript ð·Þ⊤ denotes transpose. For a
positive integer n, denote by hni the set f1; : : : ; ng. Let P∶X → Y be a mapping from
the space X to the space Y . For a subset Z ⊂ X , we denote by PðZÞ the image of the
set Z .

Consider an interference channel with L transmitter-receiver pairs (each transmitter-
receiver pair is also called a user). The data transmission in this systemwith L users can be
modeled as a Gaussian interference channel given by the following baseband signal model:
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yl ¼ hllxl þ
X
j≠l

hljxj þ zl;ð2:1Þ

where yl ∈ C1×1 is the received signal of the lth user, hlj ∈ C1×1 is the channel coefficient
between the transmitter of the jth user and the receiver of the lth user, ðx1; : : : ; xLÞ⊤ ∈
CL×1 is the transmitted (information carrying) signal vector, and zl’s are the independent
and identically distributed (i.i.d.) additive white Gaussian noise (AWGN) coefficient with
variance nl ∕ 2 on each of its real and imaginary components. The first term on the right-
hand side of (2.1) represents the desired signal, whereas the second term represents the
interference signals from the other users. At each transmitter, the signal is constrained by
an average power constraint, i.e., E½jxlj2� ¼ pl, which we assume to be upper bounded by
p̄l for all l.

The vector p ¼ ðp1; : : : ; pLÞ⊤ is the transmit power vector and is the optimization
variable of interest in this paper. Let G ¼ ½glj�Ll;j¼1 > 0L×L be an L× L channel gain ma-
trix, where glj ¼ jhljj2 is the channel gain from the jth transmitter to the lth receiver,
and n ¼ ðn1; : : : ; nLÞ⊤ > 0, where nl is the noise power at the lth receiver. Assuming a
linear matched-filter receiver at each user (treating multiuser interference as additive
Gaussian noise), the signal-to-interference–noise ratio (SINR) for the lth receiver is
defined as the ratio of the received signal power gllpl to the sum of interference signal
power and additive Gaussian noise power

P
j≠lgljpj þ nl. We denote the SINR of the lth

receiver by γl, and consider it as a scalar nonnegative function of p as follows. Let us first
define

F ¼ ½f ij�Li;j¼1; where f ij ¼
�
0 if i ¼ j;
gij
gii

if i ≠ j;ð2:2Þ

and

g ¼ ðg11; : : : ; gLLÞ⊤; n ¼ ðn1; : : : ; nLÞ⊤; v ¼
�
n1

g11
;
n2

g22
; : : : ;

nL

gLL

�
⊤
:ð2:3Þ

For p ¼ ðp1; : : : ; pLÞ⊤ ≥ 0, we define the following transformation: p ↦ γðpÞ, where

γlðpÞ ≔
gllplP

j≠l
gljpj þ nl

; l ¼ 1; : : : ; L;ð2:4Þ

and we denote the vector γðpÞ ¼ ðγ1ðpÞ; : : : ; γLðpÞÞ⊤ ¼ p ∘ ðFpþ vÞ−1.
We state the following result that characterizes the mapping in (2.4), which was first

established in [9]. We include a new proof on this result for completeness.
LEMMA 2.1. Let p be a nonnegative vector. Assume that γðpÞ is defined by (2.4).

Then, ρðdiagðγðpÞÞFÞ < 1, where F is defined by (2.2). Hence, for γ ¼ γðpÞ,
p ¼ PðγÞ ≔ ðI − diagðγÞFÞ−1diagðγÞv:ð2:5Þ

Vice versa, if γ is in the set

Γ ≔ fγ ≥ 0; ρðdiagðγÞFÞ < 1g;ð2:6Þ

then the vector p defined by (2.5) is nonnegative. Furthermore, γðPðpÞÞ ¼ γ. That is,
γ∶RLþ → Γ and P∶Γ → RLþ are inverse mappings.

Proof. Observe that (2.4) is equivalent to the equality
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p ¼ diagðγÞFpþ diagðγÞv:ð2:7Þ

First, let us assume that p is a positive vector; i.e., p > 0. Hence, γðpÞ > 0. Since all off-
diagonal entries of F are positive, it follows that the matrix diagðγÞF is irreducible. As
v > 0, we deduce that maxl∈½1;n�

ðdiagðγÞFpÞl
pl

< 1. The min-max characterization of
Wielandt of ρðdiagðγÞFÞ (for example, see [2] and [11, equation (38), p. 64]) implies that
ρðdiagðγÞFÞ < 1. Hence, γðpÞ ∈ Γ. Assume that p ≥ 0. Note that pl > 0 ⇔ γlðpÞ > 0. So
p ¼ 0 ⇔ γðpÞ ¼ 0. Clearly, ρðdiagðγð0ÞÞFÞ ¼ ρð0L×LÞ ¼ 0 < 1. Assume that p ⪈ 0. Let
A ¼ fl∶pl > 0g. Denote by γðpÞðAÞ the vector composed of positive entries of γðpÞ. Let
FðAÞ be the principal submatrix of F with rows and columns inA. It is straightforward to
see that ρðdiagðγðpÞÞFÞ ¼ ρðdiagðγðpÞðAÞFðAÞÞ. The arguments above imply that

ρðdiagðγðpÞÞFÞ ¼ ρðdiagðγðpÞðAÞFðAÞÞ < 1:

Assume that γ ∈ Γ. Then,

ðI − diagðγÞFÞ−1 ¼
X∞
k¼0

ðdiagðγÞFÞk ≥ 0L×L:ð2:8Þ

Hence, PðγÞ ≥ 0. The definition of PðγÞ implies that γðPðγÞÞ ¼ γ. ▯
LEMMA 2.2. The set Γ ⊂ RLþ is monotonic with respect to the order ≥. That is, if γ ∈

Γ and γ ≥ β ≥ 0, then β ∈ Γ. Furthermore, the function PðγÞ is monotone on Γ.

PðγÞ ≥ PðβÞ if γ ∈ Γ and γ ≥ β ≥ 0:ð2:9Þ

Equality holds if and only if γ ¼ β.
Proof. Clearly, if γ≥ β≥ 0, then diagðγÞF ≥ diagðβÞF , which implies ρðdiagðγÞFÞ ≥

ρðdiagðβÞFÞ. Hence, Γ is monotonic. Next, we use the Neumann expansion (2.8) to de-
duce the monotonicity of P. The equality case is straightforward. ▯

Note that γðpÞ is not monotonic in p. Indeed, if one increases only the lth coordinate
of p, then one increases the lth coordinate of γðpÞ and decreases all other coordinates of
γðpÞ. As usual, let el ¼ ðδl1; : : : ;δlLÞ⊤, l ¼ 1; : : : ; L, be the standard basis in RL. We
have the following result.

THEOREM 2.1. Let l ∈ ½1; L� be an integer and a > 0. Denote by ½0; a�l × RL−1þ the set
of all p ¼ ðp1; : : : ; pLÞ⊤ ∈ RLþ satisfying pl ≤ a. Then, the image of the set ½0; a�l × RL−1þ
by the map γ in (2.4) is given by

ρðdiagðγÞðF þ ð1 ∕ aÞve⊤l ÞÞ ≤ 1; γ ≥ 0:ð2:10Þ

Furthermore, p ¼ ðp1; : : : ; pLÞ ∈ RLþ satisfies the condition pl ¼ a if and only if γ ¼ γðpÞ
satisfies

ρðdiagðγÞðF þ ð1 ∕ aÞve⊤l ÞÞ ¼ 1:ð2:11Þ

Proof. Suppose that γ satisfies (2.10). We claim that γ ∈ Γ. Suppose first that
γ > 0. Then, diagðγÞðF þ t1ve

⊤
l Þ ⪇ diagðγÞðF þ t2ve

⊤
l Þ for any t1 < t2. [11, Lemma 2,

section 2, Chapter XIII] yields

ρðdiagðγÞFÞ < ρðdiagðγÞðF þ t1ve
⊤
l ÞÞ < ρðdiagðγÞðF þ t2ve

⊤
l ÞÞ

< ρðdiagðγÞðF þ ð1 ∕ aÞve⊤l ÞÞ ≤ 1 for 0 < t1 < t2 < 1 ∕ a:ð2:12Þ
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Thus, γ ∈ Γ. Combine the above argument with the arguments of the proof of Lemma 2.1
to deduce that γ ∈ Γ for γ ≥ 0.

We now show that ðPðγÞÞl ≤ a. The continuity of P implies that it suffices to con-
sider the case γ > 0. Combine the Perron–Frobenius theorem (see, e.g., [2]) with (2.12)
to deduce

0 < detðI − diagðγÞðF þ tve⊤l ÞÞ for t ∈ ½0; a−1Þ:ð2:13Þ

We now expand the right-hand side of the above inequality. Let B ¼ xy⊤ ∈ RL×L be a
rank one matrix. Then, B has L− 1 zero eigenvalues and one eigenvalue equal to y⊤x.
Hence, I − xy⊤ has L− 1 eigenvalues equal to 1 and one eigenvalue is ð1− y⊤xÞ. There-
fore, detðI − xy⊤Þ ¼ 1− y⊤x. Since γ ∈ Γ, ðI − diagðγÞFÞ is invertible. Thus, for any
t ∈ R,

detðI − diagðγÞðF þ tve⊤l ÞÞ
¼ detðI − diagðγÞFÞ detðI − tððI − diagðγÞFÞ−1 diagðγÞvÞe⊤l Þ

detðI − diagðγÞFÞð1− te⊤l ðI − diagðγÞFÞ−1 diagðγÞvÞ:ð2:14Þ

Combine (2.13) with the above identity to deduce that

1 > te⊤l ðI − diagðγÞFÞ−1 diagðγÞv ¼ tPðγÞl for t ∈ ½0; a−1Þ:ð2:15Þ

Letting t↗a−1, we deduce that ðPðγÞÞl ≤ a. Hence, the set of γ defined by (2.10) is a
subset of γð½0; a�l × RL−1þ Þ.

Let p ∈ ½0; a�l × RL−1þ and denote γ ¼ γðpÞ. We show that γ satisfies (2.10).
Lemma 2.1 implies that ρðdiagðγÞFÞ < 1. Since p ¼ PðγÞ and pl ≤ a, we deduce
(2.15). Use (2.14) to deduce (2.13). As ρðdiagðγÞFÞ < 1, the inequality (2.13) implies
that ρðdiagðγÞðF þ tve⊤l ÞÞ < 1 for t ∈ ð0; a−1Þ. Hence, (2.10) holds.

It remains to show that the condition (2.11) holds if and only if ðPðγÞÞl ¼ a. Assume
that p ¼ ðp1; : : : ; pLÞ⊤ ∈ RLþ, pl ¼ a and let γ ¼ γðpÞ. We claim that equality holds in
(2.10). Assume to the contrary that ρðdiagðγÞðF þ ð1 ∕ aÞve⊤l ÞÞ < 1. Then, there exists
β > γ such that ρðdiagðβÞðF þ ð1 ∕ aÞve⊤l ÞÞ < 1. Since P is monotonic, ðPðβÞÞl > pl ¼ a.
On the other hand, since β satisfies (2.10), we deduce that ðPðβÞÞl ≤ a. This contradic-
tion yields (2.11). Similarly, if γ ≥ 0 and (2.11) holds, then ðPðγÞÞl ¼ a. ▯

COROLLARY 2.2. Let p̄ ¼ ðp̄1; : : : ; p̄LÞ⊤ be a given positive vector. Then, γð½0; p̄�Þ, the
image of the set ½0; p̄� by the map γ (2.4), is given by

ρðdiagðγÞðF þ ð1 ∕ p̄lÞve⊤l ÞÞ ≤ 1 for l ¼ 1; : : : ; L; and γ ∈ RLþ:ð2:16Þ

In particular, any γ ∈ RLþ satisfying the conditions (2.16) satisfies the inequalities

γ ≤ γ̄ ¼ ðγ̄1; : : : ; γ̄LÞ⊤; where γ̄l ¼
p̄l
vl
; i ¼ 1; : : : ; L:ð2:17Þ

Proof. Theorem 2.1 yields that γð½0; p̄�Þ is given by (2.16). Using (2.4), we have

γlðpÞ ¼
pl

ðFpÞl þ vl
≤

pl
vl

≤
p̄l
vl

for p ∈ ½0; p̄�:

It is easy to see that equality holds for p ¼ p̄lel. ▯
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Remark 1. Corollary 2.2 shows that the (nonconvex) set (2.16) is contained in a
rectangular set (2.17). This fact is later used in our relaxation techniques.

3. The sum rate maximization problem. We assume the use of single-user de-
coder at each receiver, i.e., treating interference as additive Gaussian noise, and all users
have perfect channel state information at the receiver. We also assume that the coher-
ence time of the channel is less than the duration of the whole transmission by any user.
This assumption is valid, for example, when fading occurs sufficiently slowly in the
channel, i.e., flat-fading, so that the channel can be considered essentially fixed during
transmission. We further assume that all users employ random Gaussian codes for
transmission. In practice, Gaussian codes can be replaced by finite-order signal constel-
lations such as the use of quadrature-amplitude modulation (QAM) or other practical
(suboptimal) coding schemes. Assuming a fixed bit error rate (BER) at the receiver, the
Shannon capacity formula can be used to deduce the achievable data rate (maximum
information rate) of the lth user as [6]

rl ¼ log

�
1þ γlðpÞ

Γ

�
nats ∕ symbol;ð3:1Þ

where Γ is the SINR gap to capacity, which is always greater than 1. In this paper, we
absorb ð1 ∕ ΓÞ into gll for all l, and instead write the achievable data rate as
rl ¼ logð1þ γlðpÞÞ.

Let w ¼ ðw1; : : : ; wLÞ⊤ be a given probability vector, where wl is a positive weight
assigned to the lth link to reflect priority (a larger weight reflects a higher priority). The
problem of maximizing the sum rate can be stated as the following optimization
problem:

maximize ΦwðγðpÞÞ ¼
XL
l¼1

wl logð1þ γlðpÞÞ

subject to 0 ≤ p ≤ p̄;

variables: p ¼ ðp1; : : : ; pLÞ⊤ ∈ RLþ:ð3:2Þ

Let p⋆ ¼ ðp⋆1 ; : : : ; p⋆LÞ⊤ be a global optimal solution to (3.2). We first derive necessary
conditions obtained by straightforward differentiation for an optimal solution p⋆

of (3.2).
LEMMA 3.1. Denote the gradient of ΦwðγÞ by

∇ΦwðγÞ ¼
�

w1

1þ γ1
; : : : ;

wL

1þ γL

�
⊤
¼ w ∘ ð1þ γÞ−1:

Let γðpÞ be defined as in (2.4). Then, HðpÞ ¼ ½∂γl∂pj
�L
l¼j¼1

, the Hessian matrix of γðpÞ, is
given by

HðpÞ ¼ diagððFpþ vÞ−1Þð−diagðγðpÞÞF þ I Þ:

In particular,

∇pΦwðγðpÞÞ ¼ HðpÞ⊤∇ΦwðγðpÞÞ:
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COROLLARY 3.1. Divide the set hLi ¼ f1; : : : ; Lg into the following three disjoint sets
Smax, Sin, and S0:

Smax ¼ fl ∈ hLi; p⋆l ¼ p̄lg; Sin ¼ fl ∈ hLi; p⋆l ∈ ð0; p̄lÞg; S0 ¼ fl ∈ hLi; p⋆l ¼ 0g:

Then, the following conditions hold:

ðHðp⋆Þ⊤∇Φwðγðp⋆ÞÞÞl ≥ 0 for l ∈ Smax;

ðHðp⋆Þ⊤∇Φwðγðp⋆ÞÞÞl ¼ 0 for l ∈ Sin;

ðHðp⋆Þ⊤∇Φwðγðp⋆ÞÞÞl ≤ 0 for l ∈ S0:ð3:3Þ

Proof. Assume that p⋆l ¼ p̄l. Then, ∂
∂pl

ΦwðγðpÞÞðp⋆Þ ≥ 0. Assume that 0 < p⋆l <
p̄l. Then, ∂

∂pl
ΦwðγðpÞÞðp⋆Þ ¼ 0. Assume that p⋆l ¼ 0. Then, ∂

∂pl
ΦwðγðpÞÞðp⋆Þ ≤ 0. ▯

Instead of solving (3.2) by dealing with the powers directly, we now turn to a re-
formulation-relaxation approach that solves and provides useful bounds to (3.2) indir-
ectly. We first need the following lemma.

LEMMA 3.2. Let w be a probability vector, and assume that p⋆ ¼ ðp⋆1 ; : : : ; p⋆LÞ⊤ is an
optimal solution to (3.2). Then, p⋆l ¼ p̄l for some l. Furthermore if wj ¼ 0, then
p⋆j ¼ 0.

Proof. Assume to the contrary that p⋆ < p̄. Let γ⋆ ¼ γðp⋆Þ. Since P is continuous
on Γ, there exists γ ∈ Γ such that γ > γ⋆ such that PðγÞ < p̄. Clearly, Φwðγðp⋆ÞÞ <
ΦwðγÞ. As γ ¼ γðPðγÞÞ, we deduce that p⋆ is not an optimal solution to (3.2), contrary
to our assumptions.

Suppose that wj ¼ 0. For p ¼ ðp1; : : : ; pLÞ⊤, let pj be obtained from p by replacing
the jth coordinate in p by 0. Assume that pj > 0. Then, γlðpÞ < γlðpjÞ for l ≠ j. Since
wj ¼ 0, it follows that ΦwðγðpÞÞ < ΦwðγðpjÞÞ. ▯

We combine the above lemma with Theorem 2.1 and Corollary 2.2 to deduce an
alternative formulation of (3.2).

THEOREM 3.2. Problem (3.2) is equivalent to the following optimization problem:

maximize ΦwðγÞ
subject to ρðdiagðγÞðF þ ð1 ∕ p̄lÞve⊤l ÞÞ ≤ 1 ∀ l;

variables: γ ¼ ðγ1; : : : ; γLÞ⊤ ∈ RLþ;ð3:4Þ

where γ⋆ is an optimal solution of the above problem if and only if Pðγ⋆Þ is an optimal
solution p⋆ of the problem (3.2). In particular, any optimal solution γ⋆ satisfies the equal-
ity (2.16) for some integer l ∈ ½1; L�.

Remark 2. Note that (3.4) is a nonconvex problem having a strictly concave objec-
tive function and a set of nonconvex spectral radius constraints.

We now show that the optimization problem (3.4) can be restated as an optimiza-
tion problem with a convex objective function on a closed unbounded convex domain.
For γ ¼ ðγ1; : : : ; γLÞ⊤ > 0, we define the logarithmic mapping

~γ ¼ log γ;ð3:5Þ

i.e., γ ¼ e ~γ. Recall that for an irreducible nonnegative matrix B ∈ RL×Lþ ,
log ρðdiagðexÞBÞ is a convex function [14]. This is the log-convexity property of the
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Perron–Frobenius eigenvalue [3]. Furthermore, logð1þ etÞ is a strictly convex
function in t ∈ R. Hence, the optimization problem in (3.4) is equivalent to the
problem

maximizeΦwðe ~γÞ
subject to log ρðdiagðe ~γÞðF þ ð1 ∕ p̄lÞve⊤l ÞÞ ≤ 0 ∀ l;

variables: ~γ ¼ ð ~γ1; : : : ; ~γLÞ⊤ ∈ RL:ð3:6Þ

The unboundedness of the convex set in (3.6) is due to the identity 0 ¼ e−∞. In view of
Lemma 3.2, it suffices to consider the optimization problem (3.2) in the case where
w > 0. Using the reformulation in (3.6), we deduce the following result that any solution
satisfying (3.3) in (3.1) is also locally optimal to (3.2).

THEOREM 3.3. Consider the optimization problem (3.2). Then, any point p⋆ satisfy-
ing 0 ≤ p⋆ ≤ p̄ and the conditions (3.3) is a local optimal solution.

Proof. Since w > 0, Φwðe ~γÞ is a strictly convex function in γ̄ ∈ RL. Hence, the op-
timal value of (3.6) is achieved exactly on the extreme points of the closed unbounded set
specified in (3.6). It may happen that some but not all the coordinates of the extreme
point are −∞. Translating this observation to the optimization problem (3.2), we de-
duce the theorem. ▯

Although the reformulation in (3.6) is a convex maximization problem over a closed
unbounded convex set, we choose not to rehash standard global optimization methods
for solving a standard convex maximization problem (cf. [23], [13]). Rather, we choose to
exploit the problem structure of (3.6) to first compute good bounds to (3.6) (cf. section 4)
and then to propose a global optimization algorithm (with ϵ-suboptimality) to solve
(3.6) (cf. section 5). The global optimization algorithm is motivated by the relaxation
techniques and the problem structure (namely the log-convexity of the Perron–Frobe-
nius eigenvalue; see, e.g., [14], [3], and the separability in the objective function), and it
differs from the standard global optimization technique found in the literature, e.g., [23],
[13]. In comparison to our recent work in [19], a cutting plane method (which is an outer
approximation method [23], [13]) was proposed in [19] to solve (3.6) asymptotically. This
cutting plane method, however, requires vertex enumeration (a time-consuming proce-
dure for large problem size) at each iteration of the method and does not yield an
ϵ-suboptimal solution.

We now give simple lower and upper bounds on the value of (3.2).
LEMMA 3.3. Consider the optimization problem (3.2). Denote R ¼ maxl∈hLi ρðFþ

ð1 ∕ p̄lÞve⊤l Þ. Let γ̄ be defined by (2.17). Then,

Φwðð1 ∕ RÞ1Þ ≤ max
p∈½0;p̄�

ΦwðγðpÞÞ ≤ Φwðγ̄Þ:

Proof. By Corollary 2.2, γðpÞ ≤ γ̄ for p ∈ ½0; p̄�. Hence, the upper bounds holds.
Clearly, for γ ¼ ð1 ∕ RÞ1, we have that ρðdiagðγÞðF þ ð1 ∕ p̄lÞve⊤l ÞÞ ≤ 1 for l ∈ hLi. Then,
from Theorem 3.2,Φwðð1 ∕ RÞ1Þ yields the lower bound. Equality is achieved in the lower
bound when p⋆ ¼ txðF þ ð1 ∕ p̄iÞve⊤i Þ, where i ¼ arg maxl∈hLi ρðF þ ð1 ∕ p̄lÞve⊤l Þ for
some t > 0. ▯

The upper bound in Lemma 3.3 is trivial and can be too loose to be useful (as it
disregards the interference power and the number of interferers at each receiver).
The lower bound is obtained when all the users have a common SINR value. Necessary
conditions under which this lower bound is tight are given later (cf. Corollary 5.2). We
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will examine how to exploit the problem structure of (3.6) to obtain progressively tighter
bounds in section 4.

4. Relaxations and convex approximations. In this section, we use two
different approaches that exploit the problem structure of (3.4) or equivalently (3.6)
to construct several relaxed versions of (3.4), which can compute useful upper bounds
to (3.4). The first relaxation approach leverages the Friedland–Karlin inequalities,
the separability of the objective function, and its convex envelope over box constraints
(a sum of readily computed functions) to construct a linear program whose optimal
value upper bounds that of (3.4). Progressively tighter bounds are then obtained by
successive partitioning of the box constraints. The second relaxation approach replaces
the L spectral constraints in (3.4) by a single one, which has three different versions
depending on the choice of a nonnegative matrix. Each relaxed version is still
nonconvex, but necessary conditions under which the relaxations are tight are given.
Further, simpler algorithms derived from this approach are shown numerically to
solve optimally these relaxations, thus providing useful upper bounds to (3.2). Figure 4.1
gives an overview of the development of these two relaxation approaches as well as a
global optimization approach based on these relaxation techniques (see section 5
later).

FIG. 4.1. Overview of the two relaxation techniques and a global optimization technique used on the sum
rate maximization problem: The relaxation techniques are (1) a convex relaxation with branch-and-boundmeth-
od, and (2) a relaxation by three different versions of a matrix ~F with successive convex approximation method
and its connection to the inverse problem given in the appendix (see Theorems 4.2 and 4.3). The global
optimization technique relies on the first relaxation technique to find a good initial point (within
ϵ-suboptimality) that is then combined with the successive convex approximation method to solve the sum rate
maximization problem. The key optimization problems (whether convex or nonconvex) and their relationships
are also highlighted. Key steps that lead to the algorithms developed will be highlighted in the main text by the
blocks with different line boundary patterns in the figure.
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4.1. Convex relaxation. We replace the (convex) spectral radius constraint set in
(3.6) with a larger set by exploiting the Friedland–Karlin inequalities. We thus consider
the following optimization problem:

maximizeΦwðe ~γÞ

subject to
XL
j¼1

ðxðF þ ð1 ∕ p̄lÞve⊤l Þ ∘ yðF þ ð1 ∕ p̄lÞve⊤l ÞÞj ~γj

≤ − log ρðF þ ð1 ∕ p̄lÞve⊤l Þ ∀ l;

−K ≤ ~γl ≤ log γ̄l ∀ l;

variables: ~γ ¼ ð ~γ1; : : : ; ~γLÞ⊤ ∈ RL:ð4:1Þ

Note that (4.1) is a convex maximization problem with a polyhedron constraint set
(still a nonconvex and NP-hard problem). Observe that the constraint set of (4.1) con-
sists of a polyhedron and a box constraint set. In particular, this constraint structure
allows us to compute useful upper bounds to (4.1) by exploiting several results in [8] that
connect the relationship between relaxation via convexification and the Lagrange dual
relaxation. More precisely, the optimal Lagrange dual of (4.1) (which upper bounds
(4.1)) can be computed by considering the convex envelope of (4.1).

To compute the convex envelope of a separable function over a box constraint set, it
is sufficient to compute the convex envelope of the individual summand of the function
over their respective domains (cf. Theorem 2.3 in [8]). For any l, the convex envelope of
wl logð1þ e ~γlÞ over a constraint set ˋ̃γl ≤ ~γl ≤ ˊ̃γl is a linear function in ~γl given by

wl

�
logð1þ e

ˊ̃γlÞ− logð1þ e
ˋ̃γlÞ

ˊ̃γl − ˋ̃γl

ð ~γl − ˋ̃γlÞ þ logð1þ e
ˋ̃γlÞ
�
:ð4:2Þ

Now, using (4.2) and letting ˋ̃γl ¼ −K; ˊ̃γl ¼ log γ̄l for all l, we replace the objective
function of (4.1) by its convex envelope over the box constraint set f−K ≤
~γl ≤ log γ̄l; ∀lg to obtain the following linear program:2

maximize Φc
wðe ~γÞ ≔

XL
l¼1

wl

�
logð1þ γ̄lÞ− logð1þ e−K Þ

log γ̄l þK
ð ~γl þKÞ þ logð1þ e−K Þ

�

subject to
XL
j¼1

ðxðF þ ð1 ∕ p̄lÞve⊤l Þ ∘ yðF þ ð1 ∕ p̄lÞve⊤l ÞÞj ~γj

≤ − log ρðF þ ð1 ∕ p̄lÞve⊤l Þ ∀ l;

−K ≤ ~γl ≤ log γ̄l ∀ l;

variables: ~γ ¼ ð ~γ1; : : : ; ~γLÞ⊤ ∈ RL:ð4:3Þ

Interestingly, the optimal Lagrange dual of (4.3) (equivalent to the optimal value of
(4.3) and also obtained by a dual linear program) is equal to the optimal Lagrange dual
of (4.1) [8]. In other words, (4.3) is the “dual of the dual” of (4.1). For a large enough K
(to approximate K → ∞), the optimal Lagrange dual of (4.3) upper bounds the optimal

2Due to separability, the convex envelope of Φwðe ~γÞ, denoted by Φc
wðe ~γÞ, is the sum of the convex envelope

of its constituents.
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Lagrange dual of (3.6). Thus, the optimal value of (4.3) gives an upper bound
to (3.6).

Although the upper bound obtained by solving (4.3) may be loose, tighter bounds to
(3.6) can be obtained iteratively by combining this convex relaxation approach with a
branch-and-bound method in [1], [8], [13] that subdivides the set f−K ≤ ~γl ≤ log γ̄l ∀lg
into successively smaller subsets (the rectangular method in [1]; also see, e.g., Chapter 7
in [13]). The search for the global optimal solution is performed over the subdivided sets
organized in a binary tree data structure. More precisely, using the branch-and-bound
method, (4.3) is solved in the first iteration (at the root of the binary tree). In subsequent
iterations (lower levels of the binary tree), the set of lower and upper bounds on ~γ in (4.3)
is replaced by a subdivided set, and the objective function of (4.3) is then replaced with a
reweighted function using (4.2), i.e., the convex envelope of Φwðe ~γÞ over the subdivided
set. In particular, at the kth iteration of the branch-and-bound algorithm, we consider a
subdivided box f ~γlj ˋ̃γlðkÞ ≤ ~γl ≤ ˊ̃γðkÞ ∀lg and solve

maximize
XL
l¼1

wl

�
logð1þ e

ˊ̃γðkÞÞ− logð1þ e
ˋ̃γlðkÞÞ

ˊ̃γlðkÞ− ˋ̃γlðkÞ
ð ~γl − ˋ̃γlðkÞÞ þ logð1þ e

ˋ̃γlðkÞÞ
�

subject to
XL
j¼1

ðxðF þ ð1 ∕ p̄lÞve⊤l Þ ∘ yðF þ ð1 ∕ p̄lÞve⊤l ÞÞj ~γj

≤ − log ρðF þ ð1 ∕ p̄lÞve⊤l Þ ∀ l;

ˋ̃γlðkÞ ≤ ~γl ≤ ˊ̃γðkÞ ∀ l;

variables: ~γ ¼ ð ~γ1; : : : ; ~γLÞ⊤ ∈ RLð4:4Þ

at one of the two nodes at the kth iteration of the branch-and-bound algorithm.
We denote ~γLPk as the optimal solution to (4.4). A feasible power vector can be obtained
from pLPk ¼ minfPðeγ̄LPk Þ; p̄g, and a lower bound to (3.2) is then given by ΦwðγðpLPkÞÞ.
Rules to subdivide a rectangular box constraint and branch into a selected subdivided
set as well as the convergence of this branch-and-bound method can be found in [1].

In this method, at the kth iteration of the branch-and-bound algorithm, taking the
maximum over all the lower bound at each child node across all the levels in the binary
tree (denote this maximum value as Lk

bb and its corresponding solution as ~γBBk) gives a
global lower bound on the optimal value of (3.2). Likewise, taking the maximum over all
the upper bound at each child node across all the levels in the binary tree (denote this
maximum value as Uk

bb) gives a global upper bound on the optimal value of (3.2). The
difference between these two bounds is nonincreasing with k. Suppose Uk

bb − Lk
bb ≤ ϵ for

some positive ϵ; then we have Φwðγ⋆Þ ≤ Φwðe ~γBBk Þ þ ϵ. Intuitively speaking, this relaxa-
tion method systematically narrows down the SINR region that contains the global op-
timal solution of (3.6); i.e., locate an ϵ-suboptimal neighborhood of ~γ⋆. This first
relaxation method is denoted by the two blocks with thick boundary lines in Figure 4.1.

4.2. Relaxation by nonnegative matrices. In this section, we study the second
relaxation method that uses specially constructed nonnegative matrices to find useful
upper bounds to (3.2). Conditions under which the relaxations are tight are stated, and
simpler (lower complexity and faster) algorithms are proposed to compute the upper
bounds.

Now, we consider a general matrix ~F that is used to denote one of the following three
matrices:
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1Þ F þ diagðγ̄Þ−1;

2Þ F þ ð1 ∕ 1⊤p̄Þv1⊤;
3Þ F þ ð1 ∕ p̄iÞve⊤i ; i ¼ arg max

l
ρðF þ ð1 ∕ p̄lÞve⊤l Þ:ð4:5Þ

Observe that the entries of ~F are functions of all the problem parameters of (3.2). In
the following, we consider a relaxation to (3.4) that has only a single spectral radius
constraint in ~F . We then utilize the spectra of ~F to find useful upper bounds to
(3.4), which in turn upper bounds (3.2).

LEMMA 4.1. Let 0 ≤ p ≤ p̄. Assume that γðpÞ is given by (2.4) and ~F is given by any
of the three matrices in (4.5). Then,

p ≥ diagðγðpÞÞ ~Fp;ð4:6Þ

and

ρðdiagðγðpÞÞ ~FÞ ≤ 1:ð4:7Þ

Proof. The assumption that 0 ≤ pl ≤ p̄l implies that nl

gll
≥ ~f llpl. From the definition

of γðpÞ, we deduce that pl ¼ γlðpÞð
P

j≠lf ljpj þ vlÞ, which together with the definition of
~F and the above observation implies (4.6). The inequality (4.7) is a consequence of
Wielandt’s characterization of the spectral radius of an irreducible nonnegative matrix
[11]. Indeed, if p > 0—i.e., all the coordinates of p are positive—then γðpÞ > 0. Hence,
diagðγðpÞÞ ~F is a positive matrix. Then, using Wielandt’s characterization, we have

ρðdiagðγðpÞÞ ~FÞ ≤ max
l¼1; : : : ;L

ðdiagðγðpÞÞ ~FpÞl
pl

≤ 1:

Observe next that if pl ¼ 0, then ðγðpÞÞl ¼ 0. So if some of pl ¼ 0, then ρðdiagðγðpÞÞ ~FÞ is
the spectral radius of the maximal positive submatrix of diagðγðpÞÞ ~F . By applying
Wielandt’s characterization to this positive submatrix, we deduce (4.7). ▯

Lemma 4.1 shows that any feasible p satisfies (4.7). This leads to the following
relaxation of (3.4) that has only a single constraint involving ~F in (4.5).

LEMMA 4.2. The optimal value of

maximize ΦwðγÞ
subject to ρðdiagðγÞ ~FÞ ≤ 1;

γ ≤ γ̄;

variables: γ ¼ ðγ1; : : : ; γLÞ⊤ ∈ RLþð4:8Þ

is not less than the optimal value of (3.2). Further, using PðγÞ, the optimal solution of
(4.8) expressed in the power domain is given by xðdiagðγ  0Þ ~FÞ, where γ  0 solves (4.8). In
particular, PðγÞ ¼ p⋆ if Pðγ  0Þ satisfies (3.3) in Corollary 3.1.

Proof. In view of (4.7), we see that the optimal value in (4.8) is achieved on a bigger
set than the optimal value in (3.2). In view of (4.6), the optimal solution to (4.8) satisfies
p ¼ diagðγ  0Þ ~Fp. Together with (4.7), this implies that p ¼ xðdiagðγ  0Þ ~FÞ. ▯

Remark 3. Note that the constraint γ ≤ γ̄ has been included explicitly in (4.8),
because the spectral radius constraint ρðdiagðγÞ ~FÞ ≤ 1 does not imply γ ≤ γ̄ (cf.
Corollary 2.2 and the reformulation in (3.4)).
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The second relaxation method is to solve (4.8) by considering all the three choices of
~F in (4.5), and to find the tightest relaxation to (3.2) among the three choices of ~F . Note
that, in (4.5), the first two nonnegative matrices have positive diagonals, whereas the
third nonnegative matrix has only a single positive diagonal element. This fact will be
important in characterizing the optimal solution of the relaxed problems based on the
inverse problem given in the appendix (see Theorems 4.2 and 4.3 later). From a com-
putational viewpoint, solving (4.8) is also useful when L is large (as the computational
time to solve (3.4) increases with L).

COROLLARY 4.1. We have ρðdiagðγ  0Þ ~FÞ ¼ 1 in (4.8), where γ  0 solves (4.8) optimally.
Proof. Corollary 4.1 is easily proved by noting that both the objective function and

the spectral radius function in (4.8) increase with γ. ▯
Using the logarithmic mapping in (3.5), solving (4.8) is thus equivalent to solving

maximize Φwðe ~γÞ
subject to log ρðdiagðe ~γÞ ~FÞ ≤ 0;

~γ ≤ log γ̄;

variables: ~γ ¼ ð ~γ1; : : : ; ~γLÞ⊤ ∈ RL:ð4:9Þ

Still, (4.9), or equivalently (4.8), is nonconvex and hard to solve. In the following, we
give conditions that relate the optimal power p⋆ and the solution of (4.9) for different ~F .
These conditions are also necessary when the solution of (4.9) solves (3.6); i.e., (4.9) is a
tight relaxation of (3.6).

Corollary 4.1 implies that if the optimizer of (4.8) γ  0 satisfies Pðγ  0Þ ≤ p̄, then Pðγ  0Þ is
also the global optimizer of (3.2). Hence, Pðγ  0Þ ≤ p̄ is a necessary and sufficient condi-
tion for the relaxation to be tight. Weaker necessary conditions can, however, be
obtained by checking that the following holds:

diagðe ~γ  0 Þ ~Fp⋆ ¼ p⋆ð4:10Þ

for some p⋆. A summary of the necessary conditions on p⋆ satisfying (4.10) for the three
different versions of ~F is given in Table 4.1, whereby the relaxed problem (4.9)
solves (3.6).

This second relaxation method is denoted by the two blocks with dotted boundary
lines in Figure 4.1. Now, we consider using a successive convex approximation method to
solve (4.9) directly. This method is motivated by the inverse problem given in the ap-
pendix. This is given in the following algorithm to solve (4.9) and also yield a feasible
solution to (3.2).

TABLE 4.1
A comparison of the different versions of ~F in the second relaxation method, wherein the optimal solution

in (4.8) is given by γ  0. Necessary conditions under which the relaxed problem (4.9) solves (3.6), equivalently
(3.2), are given.

~F Necessary condition for Pðγ  0Þ ¼ p⋆

F þ diagðγ̄Þ−1 p⋆l ¼ f0; p̄lg; ∀l

F þ ð1∕ 1⊤p̄Þv1⊤ p⋆ ¼ p̄

F þ ð1∕ p̄iÞve⊤i , p⋆ ¼ x with p⋆i ¼ p̄i,
i ¼ arg maxl ρðF þ ð1∕ p̄lÞve⊤l Þ w ¼ x ∘ y (cf. Corollary 5.2)
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ALGORITHM 1 (ITERATIVELY REWEIGHTED RELAXATION ALGORITHM).
1. Compute the weight mðkþ 1Þ:

mðkþ 1Þ ¼ ∇Φwðe ~γðkÞÞ ∘ e ~γðkÞ

1⊤ð∇Φwðe ~γðkÞÞ ∘ e ~γðkÞÞ :ð4:11Þ

2. Obtain ~γðkþ 1Þ as the optimal solution to

maximize
XL
l¼1

mlðkþ 1Þ ~γl

subject to log ρðdiagðe ~γÞ ~FÞ ≤ 0; ~γl ≤ log γ̄l ∀ l;

variables: ~γ ¼ ð ~γ1; : : : ; ~γLÞ⊤ ∈ RL:ð4:12Þ

3. Compute the power

pðkþ 1Þ ¼ min fPðe ~γðkþ1ÞÞ; p̄g:ð4:13Þ

LEMMA 4.3. For any ~γð0Þ in a sufficiently close neighborhood of ~γ  0, ~γðkÞ in Algo-
rithm 1 converges to the optimal solution of (4.8).

Proof. We use the fact that in a sufficiently close neighborhood of ~γ  0, the domain set
is convex, and the objective function Φwðe ~γÞ is twice continuously differentiable. We
then use a successive convex approximation technique to compute ~γ  0 assuming that
the initial point is sufficiently close to ~γ  0. The convergence conditions for such a tech-
nique are given in [18], [5]. Instead of solving (4.8) directly, we replace the objective
function of (4.8) in a neighborhood of a feasible point ~γð0Þ by its Taylor series (up
to the first order terms): Φwðe ~γð0ÞÞ þ ð∇Φwðe ~γð0ÞÞ ∘ e ~γð0ÞÞ⊤ð ~γ − ~γð0ÞÞ. Assume a feasible
~γð0Þ that is close to ~γ  0. We then compute a feasible ~γðkþ 1Þ by solving the ðkþ 1Þth
approximation problem:

maximize ð∇Φwðe ~γðkÞÞ ∘ e ~γðkÞ ∕ 1⊤ð∇Φwðe ~γðkÞÞ ∘ e ~γðkÞÞÞ⊤ð ~γ − ~γðkÞÞ
subject to log ρðdiagðe ~γÞ ~FÞ ≤ 0; ~γl ≤ log γ̄l ∀ l;

variables: ~γ ¼ ð ~γ1; : : : ; ~γnÞ⊤ ∈ RL;

ð4:14Þ

where ~γðkÞ is the optimal solution of the kth approximation problem. This inner approx-
imation technique converges to a local optimal solution [18], [5]. In addition, if ~γð0Þ is
sufficiently close to ~γ  0, then limk→∞ ~γðkÞ ¼ ~γ  0.

Next, we leverage Corollary A.6 in the appendix to solve (4.14). At the global
optimality of (4.8), we have the necessary condition of (4.8): xðdiagðe ~γ  0 Þ ~FÞ ∘
yðdiagðe ~γ  0 Þ ~FÞ ¼ ∇Φwðe ~γ  0 Þ ∘ e ~γ  0 ∕ 1⊤ð∇Φwðe ~γ  0 Þ ∘ e ~γ  0 Þ. ▯

Remark 4. Now, (4.12) can be reformulated as an equivalent geometric program by
utilizing a basic result in nonnegative matrix theory, which states that the Perron–
Frobenius eigenvalue is given by ρðAÞ ¼ inffλjAv ≤ λv for some positive vg and that
the infimum is achieved; e.g., see Chapter 4 of [3]. This fact can be used to transform
the spectral radius constraint in (4.12) so that (4.12) can be readily solved using stan-
dard convex optimization solvers (e.g., those in [12]).
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Interestingly, Algorithm 1 can be viewed as an iteratively reweighted method that
produces better estimates with each iteration. The weights in (4.12) are determined by
the previous solution. Now, suppose the positive weight vector ∇Φwðe ~γ  0 Þ ∘ e ~γ  0 ∕
1⊤ð∇Φwðe ~γ  0 Þ ∘ e ~γ  0 Þ is used as the weight input to (4.12). Then, (4.12) yields ~γ  0. Intuitively
speaking, if the weight vector is approximately proportional to ∇Φwðe ~γ  0 Þ ∘
e ~γ  0 ∕ 1⊤ð∇Φwðe ~γ  0 Þ ∘ e ~γ  0 Þ, then Algorithm 1 should converge to a unique ~γ  0. Based on
the inverse problem given in the appendix (see Theorems 4.2 and 4.3), we quantify this
in the following for the different choices of ~F (and the diagonals of ~F matter in a unique ~γ  0).

THEOREM 4.2. Suppose that ~F is given by (1) F þ diagðγ̄Þ−1 or (2) F þ ð1 ∕ 1⊤p̄Þv1⊤
in (4.5). Let m ¼ ðm1; : : : ;mLÞ⊤ be a positive probability vector. Then,

max
γ¼ðγ1; : : : ;γLÞ⊤>0;ρðdiagðγÞ ~FÞ≤1

XL
l¼1

ml log γl ¼
XL
l¼1

ml log γ  0
l;ð4:15Þ

where γ  0 ¼ ðγ  01; : : : ; γ  0
LÞ⊤ > 0 is the unique vector satisfying the following conditions:

ρðdiagðγ  0Þ ~FÞ ¼ 1 and xðdiagðγ  0Þ ~FÞ ∘ yðdiagðγ  0Þ ~FÞ ¼ m.
Proof. We use Theorem A.3 and Corollary A.6 in the appendix to prove

Theorem 4.2. ▯
Combining Theorem A.3 and Corollary A.10 in the appendix, we deduce the follow-

ing result.
THEOREM 4.3. Suppose that ~F is given by (3) F þ ð1 ∕ p̄iÞve⊤i , i ¼ arg maxl ρðFþ

ð1 ∕ p̄lÞve⊤l Þ in (4.5). Let m ¼ ðm1; : : : ;mLÞ⊤ be a positive probability vector satisfying
the condition X

∀ j≠l
mj > ml ∀ l ∈ hLi:ð4:16Þ

Then,

max
γ¼ðγ1; : : : ;γLÞ⊤>0;ρðdiagðγÞ ~FÞ≤1

XL
l¼1

ml log γl ¼
XL
l¼1

ml log γ  0
l;ð4:17Þ

where γ  0 ¼ ðγ  0
1; : : : ; γ

 0
LÞ⊤ > 0 is a vector satisfying the following conditions:

ρðdiagðγ  0ÞF̂Þ ¼ 1 and xðdiagðγ  0ÞF̂Þ ∘ yðdiagðγ  0ÞF̂Þ ¼ m.
The above last two theorems enable us to choose m for which we know the solution

to the optimization problems (4.15) and (4.17). Namely, choose β1, β2 > 0 such that
A1 ¼ diagðβ1Þ ~F , A2 ¼ diagðβ2ÞF̂ have spectral radius one. Let mi ¼ xðAiÞ ∘ yðAiÞ for
i ¼ 1, 2. Then, for m1, (4.15) has the unique optimal solution γ⋆ ¼ β1. For m2,
(4.17) has an optimal solution γ⋆ ¼ β2. In view of Theorem A.3, m2 does not have
to satisfy the condition

P
∀j≠lmj > ml for all l ∈ hLi.

4.3. Relaxation with improved initialization. Observe that it is viable to ap-
ply the first relaxation technique, i.e., the convex relaxation and branch-and-bound
method, to (4.9), and obtain upper bounds to (4.9). The bounds obtained will be looser
than that employed on (3.6). On the other hand, Algorithm 1 requires an initial point
that is sufficiently close to the optimal solution. We now propose a natural procedure of
finding such a good initial point. The basic idea is to employ the first relaxation
technique, i.e., solve (4.4) iteratively by a branch-and-bound method to locate a point
log γðminfPðeγ̄LPk Þ; p̄gÞ close enough to the optimal solution ~γ⋆—i.e., a point in an
ϵ-suboptimal region—and then input it as the initial point in Algorithm 1.
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5. Global optimization algorithm. We now state a global optimization algo-
rithm that combines the relaxation techniques and the improved initialization in sec-
tion 4 to solve (3.6) and equivalently to yield an optimal solution of (3.2) to within a
prescribed accuracy on the suboptimality. This approach is denoted by the extreme left-
hand-side block with round corners in Figure 4.1.

ALGORITHM 2 (ITERATIVELY REWEIGHTED OPTIMAL ALGORITHM).
Initial phase: Set a prescribed accuracy ϵ. Find an ϵ-suboptimal region of (3.6) using
the branch-and-bound technique in section 4 and return as output the solution that
yields the tightest lowest bound Lbb: ~γ

BB. Set ~γð0Þ ¼ ~γBB .
1. Compute the weight mðkþ 1Þ:

mðkþ 1Þ ¼ ∇Φwðe ~γðkÞÞ ∘ e ~γðkÞ

1⊤ð∇Φwðe ~γðkÞÞ ∘ e ~γðkÞÞ :ð5:1Þ

2. Obtain ~γðkþ 1Þ as the optimal solution to

maximize
XL
l¼1

mlðkþ 1Þ ~γl

subject to log ρðdiagðe ~γÞðF þ ð1 ∕ p̄lÞve⊤l ÞÞ ≤ 0 ∀ l;

variables: ~γ ¼ ð ~γ1; : : : ; ~γLÞ⊤ ∈ RL:ð5:2Þ

3. Compute the power

pðkþ 1Þ ¼ min fPðe ~γðkþ1ÞÞ; p̄g:ð5:3Þ

THEOREM 5.1. Suppose we have Ubb − Lbb ≤ ϵ at the completion of the initial phase
in Algorithm 2, and the initial phase yields an output ~γBB that is a feasible solution to
(3.6). If ~γð0Þ ¼ ~γBB, then ~γðkÞ in Algorithm 2 converges to a point ~γϵ in an ϵ-suboptimal
neighborhood of the optimal solution of (3.6); i.e., Φwðe ~γ⋆Þ−Φwðe ~γϵÞ ≤ ϵ.

Furthermore, ~γðkÞ in Algorithm 2 converges to ~γ⋆ for a sufficiently small ϵ.
Proof. Theorem 5.1 can be proved by combining the previous proofs in

section 4. ▯
The following result demonstrates a special case in which the optimal solution of

(3.2) is given analytically and can be computed by Algorithm 2 using a simpler initial
point and in only one iteration.

COROLLARY 5.2. If ~γ⋆
l is equal for all l, then w ¼ xðF þ ð1 ∕ p̄iÞve⊤i Þ ∘

yðF þ ð1 ∕ p̄iÞve⊤i Þ, where i ¼ arg maxl ρðF þ ð1 ∕ p̄lÞve⊤l Þ. In this special case, ~γðkÞ in
Algorithm 2 converges to − log ρðF þ ð1 ∕ p̄iÞve⊤i Þ in only one iteration from any initial
point ~γð0Þ such that ~γlð0Þ are equal for all l. Moreover, pðkÞ in Algorithm 2 converges to
the optimal solution of (3.2) given by xðF þ ð1 ∕ p̄iÞve⊤i Þ (up to a scaling factor).

Proof. Suppose that ~γ⋆
l is equal (to a value ~γ⋆) for all l. At optimality, the con-

straint set of (3.6) reduces to ~γ⋆ þ log ρðF þ ð1 ∕ p̄lÞve⊤l Þ ≤ 0 for all l, and since at least
one of the spectral radius constraints in (3.6) is tight, ~γ⋆ ¼ − log ρðF þ ð1 ∕ p̄iÞve⊤i Þ,
where i ¼ arg maxl ρðF þ ð1 ∕ p̄lÞve⊤l Þ (cf. the third matrix in (4.5)). Now, from Corol-
lary A.6, we also have the optimality condition
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xðdiagðe ~γ⋆ÞðF þ ð1 ∕ p̄iÞve⊤i ÞÞ ∘ yðdiagðe ~γ⋆ÞðF þ ð1 ∕ p̄iÞve⊤i ÞÞ ¼ ∇Φwðe ~γ⋆Þ
∘ e ~γ⋆ ∕ 1⊤ð∇Φwðe ~γ⋆Þ ∘ e ~γ⋆Þ:ð5:4Þ

Using the fact that ~γ⋆
l is equal for all l, (5.4) reduces to

xðF þ ð1 ∕ p̄iÞve⊤i Þ ∘ yðF þ ð1 ∕ p̄iÞve⊤i Þ ¼ w:

Hence, w ¼ xðF þ ð1 ∕ p̄iÞve⊤i Þ ∘ yðF þ ð1 ∕ p̄iÞve⊤i Þ only if ~γ⋆
l is equal for all l.

To prove the convergence of ~γðkÞ, any initial point ~γð0Þ such that ~γlð0Þ are equal for
all l yields mðkÞ ¼ w for all k. Hence, the solution of (5.2) is always − log ρðFþ
ð1 ∕ p̄iÞve⊤i Þ. Since the optimality of (3.2) and (3.6) implies

diagðe ~γ⋆ÞðF þ ð1 ∕ p̄iÞve⊤i Þp⋆ ¼ p⋆ ¼ ρðdiagðe ~γ⋆ÞðF þ ð1 ∕ p̄iÞve⊤i ÞÞp⋆;ð5:5Þ

p⋆ can be interpreted as the right eigenvector of diagðe ~γ⋆ÞðF þ ð1 ∕ p̄iÞve⊤i Þ. Together
with the assumption that ~γ⋆

l is equal for all l, this implies that p⋆ ¼ xðFþ
ð1 ∕ p̄iÞve⊤i Þ (up to a scaling factor). This proves Corollary 5.2. ▯

An example with a geometrical illustration of Corollary 5.2 is given in the
following.

Example 5.1. We give a simple illustrative example for the two-user case. The chan-
nel gains are given by G11 ¼ 0.73, G12 ¼ 0.04, G21 ¼ 0.03, and G22 ¼ 0.89. The AWGN
for the first and second user are 0.1 and 0.3, respectively. The individual maximum
power vector p̄ is ð1; 50Þ⊤. We then set w ¼ xðF þ ð1 ∕ p̄iÞve⊤i Þ ∘ yðF þ ð1 ∕ p̄iÞve⊤i Þ,
where i ¼ 1 in (3.2). The rate of the two users evaluated at the solution of (3.2) given
by p⋆ ¼ xðF þ ð1 ∕ p̄iÞve⊤i Þ (up to a scaling factor) is then plotted on the achievable rate
region (showing that maximizing the minimum rate coincides with the weighted sum

FIG. 5.1. Achievable rate region for a 2-user interference channel. From a geometrical perspective, the
weighted sum rate point (with the weight vector w ¼ xðF þ ð1∕ p̄iÞve⊤i Þ ∘ yðF þ ð1∕ p̄iÞve⊤i Þ, where i ¼ 1,
superimposed on the rate region) evaluated at the optimal solution γ⋆ ¼ − log ρðF þ ð1∕ p̄iÞve⊤i Þð1; 1Þ⊤ finds
the largest hypercube that is contained inside the achievable rate region.
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rate). Algorithm 2 converges to this point in one iteration starting from any positive
initial point such that ~γðkÞ ¼ 1 (up to a scaling factor). Figure 5.1 illustrates this
example that gives the geometrical perspective: the weighted sum rate point (with
the weight vector w ¼ xðF þ ð1 ∕ p̄iÞve⊤i Þ ∘ yðF þ ð1 ∕ p̄iÞve⊤i Þ, where i ¼ 1, superim-
posed on the rate region) evaluated at the optimal solution γ⋆ ¼ − log ρðFþ
ð1 ∕ p̄iÞve⊤i Þð1; 1Þ⊤ finds the largest hypercube that is contained inside the achievable
rate region.

6. Numerical examples. In this section, we evaluate the performance of our glo-
bal optimization algorithm, the relaxation techniques, Algorithm 1 and Algorithm 2. In
the branch-and-bound technique, we choose the rectangular set with the largest upper
bound and use the rule that splits the rectangular set with the longest edge [1]. We use
nats per symbol for the sum rate unit.

6.1. Experiment 1 (comparison with Lagrange dual relaxation). We com-
pare the upper bounds obtained by our relaxation techniques and the Lagrange dual
relaxation. We consider the two-user example in [16]:

max
0≤pl≤2; l¼1;2

1

2
log

�
1þ p1

p2 þ 1

�
þ 1

2
log

�
1þ p2

p1 þ 1

�
:ð6:1Þ

In [16], the optimal value of (6.1) and its optimal Lagrange dual value are computed
explicitly as ðlog 3Þ ∕ 2 and ðlog 5Þ ∕ 2, respectively, i.e., a positive duality gap value
of logð5 ∕ 3Þ ∕ 2. The optimal solution p⋆ is either ð2; 0Þ⊤ or ð0; 2Þ⊤ (respectively, γ⋆ is
either ð2; e−K Þ⊤ or ðe−K ; 2Þ⊤ in (3.4)) because, for the two-user case with w1 ¼ w2,
it suffices to check the extreme points of the feasible set of (6.1) to solve (6.1) [7].

Figure 6.1 illustrates how the first method by convex relaxation computes an upper
bound to (6.1). In this example, an upper bound very close to the optimal value of
ðlog 3Þ ∕ 2 within an acceptable accuracy can be obtained after solving two linear pro-
grams. An upper bound better than the optimal Lagrange dual value ðlog 5Þ ∕ 2 is ob-
tained after solving ten linear programs, and it takes another twelve linear programs to
certify that ðlog 3Þ ∕ 2 is the global optimal value. The binary tree in Figure 6.1 has a

FIG. 6.1. Solving (6.1) using the first relaxation technique: Successive linear program with a branch-and-
bound algorithm (the rectangular method in [1]; also see, e.g., Chapter 7 in [13]). We use a rectangular set
½−K; logð2Þ�2 with K ¼ 100. The lower and upper bounds are depicted in brackets next to the subdivided set. At
the root of the tree, (4.3) is solved (original rectangle). We then have Lbb ¼ 0.5108 and Ubb ¼ 1.0866. In the
second iteration, the rectangular set is partitioned into two: A and B (A is the set f ~γ1 ∈ ½−K; logð2Þ∕ 2�; ~γ2 ∈
½−K; log 2�g and B is the set f ~γ1 ∈ ½logð2Þ∕ 2; log 2�; ~γ2 ∈ ½−K; log 2�g). We then have Lbb ¼ 0.5493 and
Ubb ¼ 1.0836. At the third iteration, we partition the set B to obtain the bottom leaf children C and D (C
is the set f ~γ1 ∈ ½logð2Þ∕ 2; log 2�; ~γ2 ∈ ½logð2Þ∕ 2; log 2�g and D is the set f ~γ1 ∈ ½logð2Þ∕ 2; log 2�;
~γ2 ∈ ½−K; logð2Þ∕ 2�g). We then have Lbb ¼ 0.5493 and Ubb ¼ 1.0746. Observe that a lower and upper bound
of 0.5493 within acceptable accuracy to the optimal primal value ðlog 3Þ∕ 2 is obtained after solving two linear
programs (at the node with set A containing the global optimal solution ð−K; log 2Þ⊤). Note that set F contain-
ing the other global optimal solution ðlog 2;−KÞ⊤ also yields the same lower and upper bound of 0.5493 within
acceptable accuracy after solving three linear programs.
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total of fourteen levels (only the root and the first two levels are shown in Figure 6.1).
Figure 6.2 shows the upper and lower bounds computed by the branch-and-bound
method, and the branch-and-bound method converges after twenty-two iterations
(ϵ ¼ 1.5× 10−3).

Next, we apply the second relaxation method that uses Algorithm 1 on (6.1), and we
use an initial vector ð−0.172;−1.061Þ⊤ (not too close to ~γ⋆). The optimal value com-
puted by Algorithm 1 when we use: (1) ~F ¼ F þ diagðγ̄Þ, (2) ~F ¼ F þ ð1 ∕ 1⊤p̄Þv1⊤, and
(3) ~F ¼ F þ ð1 ∕ p̄iÞve⊤i is given by ðlog 3Þ ∕ 2, ðlog 5Þ ∕ 2, and ðlog 3Þ ∕ 2, respectively.
The first and third versions of ~F yield the global optimal primal value (as well as a
feasible power vector ð2; 0Þ⊤), whereas the second version yields the optimal dual value
(with an infeasible power vector ð4; 0Þ⊤). This shows that Algorithm 1 can find the
global optimal power solution of (3.2) (cf. the necessary condition in the second row
of Table 4.1).

Lastly, using the feasible ~γ obtained by the first relaxation method ðlogð2 ∕ 3Þ;
logð2 ∕ 3ÞÞ⊤ and ðlog 2;−KÞ⊤ that yields Lbb at the root and first level of the binary tree
in Figure 6.1, respectively, as initial points, Algorithm 2 converges to the global optimal
solution ðlog 2;−KÞ⊤.

6.2. Experiment 2 (convergence of Algorithm 2). The channel gains are gi-
ven byG11 ¼ 0.73,G12 ¼ 0.04,G21 ¼ 0.03,G22 ¼ 0.89, and the AWGN for the first and
second user are 0.1 and 0.1, respectively. The individual maximum power vector p̄ is
ð1.8; 20:5Þ⊤. We then set w ¼ xðF þ ð1 ∕ p̄iÞve⊤i Þ ∘ yðF þ ð1 ∕ p̄iÞve⊤i Þ, where i ¼ 1 in
(3.2), and the optimal power is p⋆ ¼ xðF þ ð1 ∕ p̄iÞve⊤i Þ in (3.2) (hence the optimal solu-
tion to (3.4) is 8.334ð1; 1Þ⊤). Using the two different outputs obtained from the branch-
and-bound algorithm (at the root level and at the 10th iteration) shown in Figure 6.3(a)
as initial points, the convergence of Algorithm 2 is shown in Figure 6.3(b). As observed
in Figure 6.3(b), Algorithm 2 converges to the optimal solution with the two different
initial points as input after four iterations.

6.3. Experiment 3 (larger examples of branch-and-bound relaxation).
Figure 6.4 illustrates the convergence of the branch-and-bound relaxation method
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FIG. 6.2. Upper and lower bounds on the sum rate computed by the first relaxation technique that uses
successive linear programs and branch-and-bound in Experiment 1.
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for randomly generated problems with a larger number of users. As observed from
Figure 6.4, when L ¼ 100, the optimal solution can be computed after solving 190 linear
programs, but it takes another 310 linear programs to certify that the optimal solution is
within a ð1× 10−3Þ-suboptimal region. When L ¼ 200, the optimal solution can be com-
puted after solving 4 linear programs, but it takes approximately another 1400 linear
programs to certify that the optimal solution is within a ð1× 10−3Þ-suboptimal
region.

7. Conclusion. We studied the nonconvex sum rate maximization problem that
finds applications in power control of CDMA wireless networks. Using tools from non-
negative matrix theory, in particular the Perron–Frobenius theorem and the Friedland–
Karlin inequalities, we showed that this problem can be reformulated as an equivalent
convex maximization problem on a closed unbounded convex set. Utilizing the reformu-
lation problem structure, we studied two relaxation techniques to compute progressively
tight bounds to the nonconvex problem. One was based on convex relaxation by convex
envelope and the other was based on successive convex approximation. We showed that
the optimal solution to the sum rate maximization and its relaxed problem can be
analytically characterized by the spectra of specially crafted nonnegative matrices.
By exploiting the relaxation and approximation techniques, we proposed a global opti-
mization algorithm with ϵ-suboptimality to solve the sum rate maximization problem.
We also gave new applications of the Friedland–Karlin inequalities to inverse problems
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FIG. 6.3. (a) Illustration of the convergence of the branch-and-bound relaxation with the feasible point of
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initial point obtained at the root level and the 10th iteration of the branch-and-bound method.
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users in Experiment 3.
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in nonnegative matrix theory. As future work, we plan to extend our results in this paper
to a multiple-frequency channel that has applications in a DSL multiuser system.

Appendix A. Results related to Friedland–Karlin inequalities. In this sec-
tion, we recall some results from [10] and state the extensions of these results, and then
illustrate their applications in this paper. We first state the following extension of
[10, Theorem 3.1].

THEOREM A.1. Let A ∈ RL×Lþ be an irreducible nonnegative matrix. Assume that
xðAÞ ¼ ðx1ðAÞ; : : : ; xLðAÞÞ⊤, yðAÞ ¼ ðy1ðAÞ; : : : ; yLðAÞÞ⊤ > 0 are left and right
Perron–Frobenius eigenvectors of A, normalized such that xðAÞ ∘ yðAÞ is a probability
vector. Suppose γ is a nonnegative vector. Then,

ρðAÞ
YL
l¼1

γ
ðxðAÞ∘yðAÞÞl
l ≤ ρðdiagðγÞAÞ:ðA:1Þ

If γ is a positive vector, then equality holds if and only if all γl are equal. Furthermore, for
any positive vector z ¼ ðz1; : : : ; zLÞ⊤, the following inequality holds:

ρðAÞ ≤
YL
l¼1

�ðAzÞl
zl

�ðxðAÞ∘yðAÞÞl
:ðA:2Þ

If A is an irreducible nonnegative matrix with positive diagonal elements, then equality
holds in (A.2) if and only if z ¼ txðAÞ for some positive t.

Proof. Theorem 3.1 in [10] makes the following assumptions. First, in (A.1), it as-
sumes that γ > 0. Second, in (A.2), it assumes that ρðAÞ ¼ 1. Third, the equality case in
(A.2) for z > 0 is stated for a positive matrix A. We now show how to deduce the stron-
ger version of Theorem 3.1 claimed here.

First, by using the continuity argument, we deduce the validity of (A.1) for any
γ ≥ 0. Second, by replacing A by tA, where t > 0, we deduce that it suffices to show
(A.2) in the case ρðAÞ ¼ 1.

Third, to deduce the equality case in (A.2) for z > 0, we need to examine the proof of
Lemma 3.2 in [10]. The proof of the Lemma 3.2 applies if the following condition holds.
For any sequence of probability vectors zi ¼ ðz1;i; : : : ; zL;iÞ⊤, i ¼ 1; : : : , which converges
to a probability vector ζ ¼ ðζ1; : : : ; ζLÞ⊤, where ζ has at least one zero coordinate, the
function

Q
L
l¼1 ððAzÞlzl

ÞðxðAÞ∘yðAÞÞl tends to ∞ on the sequence zi, i ¼ 1; : : : . Assume that
A ¼ fl ∈ hLi; ζl ¼ 0g. Note that the complement of A in hLi, denoted by Ac, is
nonempty.

Since A ¼ ½aij� has positive diagonal entries, it follows that ðAzÞl
zl

≥ all > 0 for each
l ∈ hLi. Since A is irreducible, there exist l ∈ A and m ∈ Ac such that alm > 0. Hence,
limi→∞

ðAziÞl
zl;i

¼ ∞. This shows that the unboundedness condition holds. ▯
The following result gives an interpretation of (A.1) in terms of the supporting hy-

perplane of the convex function log ρðdiagðeξÞBÞ, where B ∈ RL×Lþ is irreducible
and ξ ∈ RL.

THEOREM A.2. Let B ∈ RL×Lþ be an irreducible nonnegative matrix. Let η ¼
ðη1; : : : ;ηLÞ⊤ ∈ RL satisfy the condition ρðdiagðeηÞBÞ ¼ 1. Denote A ¼ diagðeηÞB and
assume that xðAÞ ¼ ðx1ðAÞ; : : : ; xLðAÞÞ⊤, yðAÞ ¼ ðy1ðAÞ; : : : ; yLðAÞÞ⊤ > 0 are left and
right Perron–Frobenius eigenvectors of A, normalized such that xðAÞ ∘ yðAÞ is a prob-
ability vector. Let
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HðξÞ ¼
XL
l¼1

xlðAÞylðAÞðξl − ηlÞ:ðA:3Þ

Then,HðξÞ ≤ 0 is the unique supporting hyperplane to the convex set log ρðdiagðeξÞBÞ ≤
0 at ξ ¼ η.

Proof. Let ξ ∈ RL. Then, diagðeξÞB ¼ diagðeξ−ηÞA. Theorem A.1 implies that
HðξÞ ≤ log ρðdiagðeξÞBÞ. Thus, HðξÞ ≤ 0 if log ρðdiagðeξÞBÞ ≤ 0. Clearly, HðηÞ ¼ 0.
Hence, HðξÞ ≤ 0 is a supporting hyperplane of the convex set log ρðdiagðeξÞBÞ ≤ 0.
Since the function log ρðdiagðeξÞBÞ is a smooth function of ξ, it follows that
HðξÞ ≤ 0 is unique. ▯

We now give an application of (A.2) in Theorem A.1.
THEOREM A.3. Let B ∈ RL×Lþ be an irreducible nonnegative matrix. Let η ¼

ðη1; : : : ;ηLÞ⊤ ∈ RL. Let m ¼ xðdiagðeηÞBÞ ∘ yðdiagðeηÞBÞ ¼ ðm1; : : : ;mLÞ⊤ be a prob-
ability vector. Then, for any positive vector z ¼ ðz1; : : : ; zLÞ⊤,

XL
l¼1

ml log
zl

ðBzÞl
≤ − log ρðdiagðeηÞBÞ þ

XL
l¼1

mlηl:ðA:4Þ

If B has a positive diagonal, then equality holds if and only if z ¼ txðdiagðeηÞBÞ for some
t > 0.

Proof. Let A ¼ diagðeηÞB. Then,
XL
l¼1

ml log
ðBzÞl
zl

¼
XL
l¼1

ml log
ðAzÞl
zl

−
XL
l¼1

mlηl:

Use (A.2) to deduce (A.4). The equality case follows from the equality case in
(A.2). ▯

We now turn to applying Theorem A.1 to solve the following inverse problem.
ProblemA.4. Let B ∈ RL×Lþ ,m ∈ RLþ be a given irreducible nonnegative matrix and

a positive probability vector, respectively. When does there exist η ∈ RL such that
xðdiagðeηÞBÞ ∘ yðdiagðeηÞBÞ ¼ m? If such η exists, when is it unique up to an addition
t1?

To solve the inverse problem, we recall Theorem 3.2 in [10] (a consequence of
Theorem A.1, i.e., Theorem 3.1 in [10]) that is reproduced in the following.

THEOREM A.5. Let A ∈ RL×Lþ , u, v ∈ RLþ be given, where A is irreducible with posi-
tive diagonal elements and u, v are positive. Then, there exists D1, D2 ∈ RL×Lþ such that

D1AD2u ¼ u; v⊤D1AD2 ¼ v⊤; D1 ¼ diagðfÞ; D2 ¼ diagðgÞ; and f;g > 0:

ðA:5Þ

The pair ðD1; D2Þ is unique to the change ðtD1; t
−1D2Þ for any t > 0. There exist η ∈ RL

such that xðdiagðeηBÞÞ ∘ yðdiagðeηBÞÞ ¼ m. Furthermore, η is unique up to an addition
t1.

COROLLARY A.6. Let B ∈ RL×Lþ , m ∈ RLþ be a given irreducible nonnegative matrix
with positive diagonal elements and a positive probability vector, respectively. Then,
there exists η ∈ RL such that xðdiagðeηÞBÞ ∘ yðdiagðeηÞBÞ ¼ m. Furthermore, η is unique
up to an addition of t1. In particular, this η can be computed by solving the following
convex optimization problem:

1052 CHEE WEI TAN, SHMUEL FRIEDLAND, AND STEVEN LOW

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



maximize m⊤η

subject to log ρðdiagðeηÞBÞ ≤ 0;

variables: η ¼ ðη1; : : : ;ηLÞ⊤ ∈ RL:ðA:6Þ

Proof. Let u ¼ 1, v ¼ m. Then, from Theorem A.5, there exists D1, D2 two diag-
onal matrices with positive diagonal entries such that D1BD21 ¼ 1, m⊤D1BD2 ¼ m⊤.
Consider the matrix D2D1B ¼ D2ðD1BD2ÞD−1

2 . It is straightforward to see that
xðD2D1BÞ ∘ yðD2D1BÞ ¼ m. Hence, η is the unique solution of diagðeηÞ ¼ D2D1.

Assume that ζ ∈ RL satisfies xðdiagðeζÞBÞ ∘ yðdiagðeζÞBÞ ¼ m. By considering
~ζ ¼ ζþ t1, we may assume that ρðdiagðeζÞBÞ ¼ 1. Let D4 ¼ diagðxðdiagðeζÞBÞ. Then,
ðD−1

4 diagðeζÞBD4Þ1 ¼ 1. Let D3 ¼ D−1
4 diagðeζÞ. Hence, yðD3BD4Þ ¼ m. In view of

Theorem A.5, diagðeζÞ ¼ D4D3 ¼ D2D1 ¼ diagðeηÞ.
Next, we show that (A.6) computes the required η. Since (A.6) is convex, we apply

the Karush–Kuhn–Tucker conditions to (A.6). The stationarity of the Lagrangian yields
xðdiagðeηÞBÞ ∘ yðdiagðeηÞBÞ ¼ m, thus proving the corollary. ▯

Remark 5. The convex optimization problem in (A.6) can be reformulated as an
equivalent geometric program by utilizing a basic result in nonnegative matrix
theory, which states that the Perron–Frobenius eigenvalue is given by ρðAÞ ¼
inffλjAv ≤ λv for some positive vg and that the infimum is achieved; e.g., see Chapter 4
of [3]. The geometric program can then be solved numerically using an interior-point
solver (see, for example, the cvx software package [12]), whose solution can be trans-
formed back to that of (A.6).

We illustrate the necessity of the irreducible nonnegative matrix having positive
diagonal elements in Corollary A.6 by the following example.

Example A.7. Let us look at the matrix F defined in (2.2) having zero diagonal
entries and positive off-diagonal entries. For L ¼ 2, it is easy to show that
xðFÞ ∘ yðFÞ ¼ ð12 ; 12Þ⊤. In particular, for L ¼ 2, Problem A.4 is not solvable for
m ≠ ð12 ; 12Þ⊤. Similarly, given positive u, v ∈ R2 such that u ∘ v ≠ tð1; 1Þ for any positive
t, (A.5) does not hold forA ¼ F . For L ≥ 3, the situation is different, and is illustrated in
the following result.

THEOREM A.8. Let L ≥ 3, A ∈ RL×Lþ , u ¼ ðu1; : : : ; uLÞ⊤, v ¼ ðv1; : : : ; vLÞ⊤ ∈ RLþ be
given, where A is a matrix with zero diagonal entries and positive off-diagonal elements,
and u, v are positive. Assume thatm ¼ u ∘ v is a probability vector satisfying the condition

X
∀ j≠l

mj > ml ∀ l ∈ hLi:ðA:7Þ

Then, there exists D1, D2 ∈ RL×Lþ such that (A.5) holds.
Proof. Let Ai ¼ Aþ ð1 ∕ iÞI , i ¼ 1; : : : , where I is the L× L identity matrix.

Theorem A.5 implies

Bi ¼ D1;iAiD2;i; D1;i ¼ diagðfiÞ; D2;i ¼ diagðgiÞ; Biu ¼ u; v⊤Bi ¼ v⊤;

fi ¼ ðf 1;i; : : : ; f L;iÞ⊤; wi ¼ ðg1;i; : : : ; gL;iÞ⊤; si ¼ max
j∈hLi

f j;i ¼ max
j∈hLi

gj;i; i ¼ 1; : : : :

Note that each entry of Bi is bounded by maxj uj

minj uj
. By passing to the subsequence Bik , fik ,

gik , 1 ≤ i1 < i2 < · · · , we can assume that the first subsequence converges to B, and the
last two subsequences converge in a generalized sense:
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limk→∞ Bik ¼ B ¼ ½bjl� ∈ RL×Lþ ; limk→∞ fik ¼ f ¼ ðf 1; : : : ; f LÞ⊤;
limk→∞ gij ¼ g ¼ ðg1; : : : ; gLÞ⊤;

f j; gj ∈ ½0;∞�; j ¼ 1; : : : ; L;

limk→∞ sik ¼ s ¼ max
j∈hLi

f j ¼ max
j∈hLi

gj ∈ ½0;∞�:

Note that

Bu ¼ u; v⊤B ¼ v⊤:ðA:8Þ

Assume first that s < ∞. Then, B ¼ diagðfÞA diagðgÞ. In view of (A.8), f ∘ g > 0.
This proves the theorem in this case.

Assume now that s ¼ ∞. Let

F∞ ¼ fj ∈ hLi; f j ¼ ∞g; Fþ ¼ fj ∈ hLi; f j ∈ ð0;∞Þg; F 0 ¼ fj ∈ hLi; f j ¼ 0g;
G∞ ¼ fj ∈ hLi; gj ¼ ∞g; Gþ ¼ fj ∈ hLi; gj ∈ ð0;∞Þg; G0 ¼ fj ∈ hLi; gj ¼ 0g:

Since the off-diagonal entries of A are positive, and B ∈ RL×Lþ , it follows that F∞ ¼
G∞ ¼ flg for some l ∈ hLi. Furthermore,Fþ ¼ Gþ ¼ ∅. SoF 0 ¼ G0 ¼ hLi \ flg. Assume
first that l ¼ 1. Then, the principal submatrix ½bjl�Lj¼l¼2 is zero, and (A.8) yields that

bj1 ¼
uj

u1

; b1j ¼
vj
v1

for j ¼ 2; : : : ; L; b11u1v1 þ
XL
j¼2

ujvj ¼ u1v1:

Since b11 ≥ 0, the above last equality contradicts the condition (A.7) for l ¼ 1. Similar
argument implies the impossibility of F∞ ¼ G∞ ¼ flg for any l ≥ 2. Hence, s < ∞ and
we conclude the theorem. ▯

We do not know whether, under the conditions of Theorem A.8, the diagonal
matrices ðD1; D2Þ are unique up to the transformation ðtD1; t

−1D2Þ. We now generalize
the above theorem.

THEOREM A.9. Let

L ≥ 2; A ¼ ½ajl�Lj¼l¼1 ∈ RL×Lþ ; 0 < u ¼ ðu1; : : : ; uLÞ⊤; v ¼ ðv1; : : : ; vLÞ⊤ ∈ RLþ

be given. Assume that A has positive off-diagonal elements, and m ¼ u ∘ v is a probabil-
ity vector satisfying the condition

X
∀j≠l

mj > mlðA:9Þ

for each l such that all ¼ 0. Then, there exists D1, D2 ∈ RL×Lþ such that (A.5) holds.
Proof. Assume first that L ≥ 3. In view of Theorems A.5 and A.8, it suffices to

assume that A has positive and zero diagonal entries. We then apply the proof of
Theorem A.8 and the following observation: If F∞ ¼ G∞ ¼ flg, then all ¼ 0.

Assume now that L ¼ 2. Note that ifA has a zero diagonal, then the condition (A.7)
cannot hold. Assume now that A has at least one positive diagonal element. Then, the
above arguments for L ≥ 3 apply. ▯

Using Theorem A.9, we obtain the following corollary that is used to prove
Theorem 4.3 in section 4.
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COROLLARY A.10. Let B ¼ ½bjl�Lj¼l¼1 ∈ RL×Lþ ,m ∈ RLþ be a given matrix with positive
off-diagonal elements and a positive probability vector, respectively. Assume that L ≥ 2
andm satisfies the conditions (A.9) for each l such that bll ¼ 0. Then, there exists η ∈ RL

such that xðdiagðeηÞBÞ ∘ yðdiagðeηÞBÞ ¼ m.
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