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Abstract. We propose a model to describe the optimal distributions of residents and services in a prescribed urban area. The
cost functional takes into account the transportation costs (according to a Monge–Kantorovich-type criterion) and two additional
terms which penalize concentration of residents and dispersion of services. The tools we use are the Monge–Kantorovich mass
transportation theory and the theory of nonconvex functionals defined on measures.
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1. Introduction. The efficient planning of a city is a tremendously complicated problem, both for the
high number of parameters which are involved as well as for the several relations which intervene among
them (price of the land, kind of industries working in the area, quality of the life, prices of transportations,
geographical obstacles, etc.). Perhaps a careful description of the real situations could be only obtained
through evolution models which take into account the dynamical behavior of the different parameters involved.

Among the several ingredients in the description of a city which are considered by urban planners, two of
the most important are the distribution of residents and the distribution of services (working places, stores,
offices, etc.). These two densities have to be treated in a different way due to their features (see facts ii) and
iii) below). Several interesting mathematical models for the description of the equilibrium structure of these
two elements of a city have been studied in the spatial economical literature (see for instance the classical
text by Fujita [11] and the more recent paper by Lucas and Rossi-Hansberg [12])). The first time where the
Monge–Kantorovich theory of optimal transportation appears and plays an important role, is, to the best of
our knowledge, in Carlier and Ekeland [6, 7].

All these papers are mostly equilibrium-oriented and this is the main difference with the present work,
which wants to be focused on the following aspects: distribution of residents and services, optimization of a
global criterion, optimal transport theory.

We consider a geographical area as given, and we represent it through a subset Ω of Rn (n = 2 in the
applications to concrete urban planning problems). We want to study the optimal location in Ω of a mass of
inhabitants, which we denote by µ, as well as of a mass of services, which we denote by ν. We assume that µ
and ν are probability measures on Ω. This means that the total amounts of population and production are
fixed as problem data, and this is a difference from the model in [6]. The measures µ and ν represent the
unknowns of our problem that have to be found in such a way that a suitable total cost functional F(µ, ν)
is minimized. The definition of this total cost functional takes into account some criteria we want the two
densities µ and ν to satisfy:

(i) there is a transportation cost for moving from the residential areas to the services areas;
(ii) people do not want to live in areas where the density of population is too high;
(iii) services need to be concentrated as much as possible in order to increase efficiency and decrease

management costs.

Fact (i) will be described through a Monge–Kantorovich mass transportation model; the transportation
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cost will indeed be given by using a p-Wasserstein distance (p ≥ 1). We set

(1.1) Tp(µ, ν) = W p
p (µ, ν) = inf

γ

(∫
Ω×Ω

|x− y|pγ(dx, dy)

)
,

where the infimum is taken over all possible transport plans γ between µ and ν (i.e., probabilities on the
product space having µ, ν as marginal measures). We refer to [16] for the whole theory on mass transportation.
When p = 1 we are in the classical Monge case, and for this particular case we refer to [1] and [10].

Fact (ii) will be described by a penalization functional, a kind of total unhappiness of citizens due to high
density of population, obtained by integrating with respect to the citizens’ density their personal unhappiness.

Fact (iii) is modeled by a third term representing costs for managing services once they are located accord-
ing to the distribution ν, taking into account that efficiency depends strongly on how much ν is concentrated.

The cost functional we will consider is then

(1.2) Fp(µ, ν) = Tp(µ, ν) + F (µ) +G(ν),

and thus the optimal location of µ and ν will be determined by the minimization problem

(1.3) min
{
Fp(µ, ν) : µ, ν probabilities on Ω

}
.

In this way, our model takes into consideration only the optimization of a total welfare parameter of the
city, disregarding the effects on each single citizen. In particular, no equilibrium condition is considered. This
may appear as a fault in the model, since the personal welfare of the citizens (depending on the population
density of their zone and on the cost of moving from home to services) could be nonconstant. As a consequence,
nonstable optimal solutions may occur, where some citizens would prefer to move elsewhere in the city in
order to get better conditions. However, this is not the case, since our model also disregards prices of land
and houses in the city, since they do not affect the total wealth of the area. It turns out that by a proper,
market-determined choice of prices, welfare differences could be compensated and equilibrium recovered. This
fact turns out to be a major difference between our model and the model in [6], both for the importance given
in [6] to the variable represented by the price of land and for the fact that Carlier and Ekeland specifically
look for an equilibrium solution instead of an optimal one.

The present paper, after this introduction, contains three sections. Section 2 is devoted to presenting
precise choices for the functionals F and G and justifying them as reasonable choices. In the same section we
also give a simple existence result for an optimal solution (µ, ν) as a starting point for the rest of the paper.
In section 3 we consider the functional on µ obtained by keeping the measure ν as fixed: in this case the
functional G does not play any role, and we obtain a convex minimization problem, which is interesting in
itself. We also obtain some necessary optimality conditions in the very general case where no assumption is
taken on the fixed measure ν. In section 4 we apply these results to the case where G is of the particular form
presented in section 2, which forces ν to be atomic (i.e., services are concentrated in countably many points
of the city area Ω). In the case where Ω is bounded, we give a quite precise description of the solution (µ, ν),
and then we give an existence result also for the case Ω = Rn.

Both in the case Ω = Rn and Ω bounded, optimal choices for µ and ν are given by the formation of a
certain number of subcities, which are circular areas with a pole of services in the center (an atom for the
measure ν) around which the population is distributed with a decreasing radial density.

Since we have considered only a very simplified model, our goal is neither to suggest a realistic way to
design the ideal city nor to describe in a variational way the formation of existing cities. Nevertheless, from
the analysis of our optimality results (and in particular from the subcities phenomena we referred to), we can
infer some conclusions.

• Our model is not a proper choice to describe the shape of a single existing city, since the delocalization
of services we find in an optimal solution does not reflect what reality suggests (in fact, we find finitely
many disjoint, independent subcities with services only in the center).

• Our model is likely to be more realistic on a larger scale, when Ω represents a large urban area
composed of several cities: in this case every atom of the optimal ν stands for the center of one of
them and includes a complex system of services, located downtown, whose complexity cannot be seen
in this scale.

• In our model the concentrated measure ν gives a good representation of the areas where services are
offered to citizens and not of areas where commodities are produced (factories), due to the assumption
that no land is actually occupied by the service poles (since ν is atomic).
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• We do not believe that our model may actually be used to plan a future city or to improve the
efficiency of an existing one, as a consequence of its oversimplified nature. However, we do not
exclude the possibility of using it in the planning of less complex agglomerations, such as tourist
villages, university campuses, etc.

• We conclude by stressing that the same model may be applied as a first simplified approach to other
kinds of problems, where we have to choose in some efficient way the distributions of two different
parameters, the first spread and the second concentrated, keeping them as close as possible to each
other in some mass transportation sense.

This last issue, the investigation of optimization problems concerning concentration and transport costs
of probability measures, has been the main subject of [15], which also refers to the first version of this paper.
Two subsequent works included in the same manuscript have explicitly dealt with urban planning problem,
with different transport costs ([8]) and with a different service performance evaluation ([14], see Section 2). For
other issues in urban planning, more related to the presence of a transportation system, we cite two different
books. The first one, [5], summarizes several works by the italian optimal transport community concerning
the location of transport networks in a urban area once µ and ν are given. The second we want to mention, on
the contrary, is a reference book by Beckmann and Puu, [2], dealing with several spatial economics problem
and approached trough the “continuous transportation model”, which is much linked to Monge-Kantorovich
theory. One of the problem which is addressed is the repartition of land between the residents on the one
hand and the road system on the other. For simplicity the distribution of services is identified with that
of residents and another interesting variable, affecting transportation costs, is introduced, standing for road
width.

2. The model. We now define the three terms appearing in our functional Fp. We must go through the
definition of F and G, since the first term will be a Monge–Kantorovich transport cost, as explained in the
previous section. For the functional F we take

(2.1) F (µ) =

{∫
Ω
f(u(x)) dx if µ = u · Ln, u ∈ L1(Ω),

+∞ otherwise,

where the integrand f : [0,+∞]→ [0,+∞] is assumed to be lower semicontinuous and convex, with f(0) = 0
and superlinear at infinity, that is,

(2.2) lim
t→+∞

f(t)

t
= +∞.

In this form we have a local semicontinuous functional on measures. Without loss of generality, by subtracting
constants to the functional F , we can suppose f ′(0) = 0. Due to the assumption f(0) = 0, the ratio f(t)/t is
an incremental ratio of the convex function f and thus it is increasing in t. Then, if we write the functional
F as ∫

Ω

f(u(x))

u(x)
u(x) dx,

we can see the quantity f(u)/u, which is increasing in u, as the unhappiness of a single citizen when he lives
in a place where the population density is u. Integrating it with respect to µ = u · Ln gives a quantity to be
seen as the total unhappiness of the population.

As far as the concentration term G(ν) is concerned, we set

(2.3) G(ν) =

{∑∞
i=0 g(ai) if ν =

∑∞
i=0 aiδxi

,

+∞ if ν is not atomic.

We require the function g to be subadditive, lower semicontinuous, and such that g(0) = 0 and

(2.4) lim
t→0

g(t)

t
= +∞.

Every single term g(ai) in the sum in (2.3) represents the cost of building and managing a service pole of size
ai, located at the point xi ∈ Ω.
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In our model, as already pointed out, we fix as a datum the total production of services; moreover, in each
service pole the production is required as a quantity proportionally depending on its size (or on the number
of inhabitants making use of such a pole). We may define the productivity P of a pole of mass (size) a as the
ratio between the production and the cost to get such a production. Then we have P (a) = a/g(a) and

∞∑
i=0

g(ai) =

∞∑
i=0

ai
P (ai)

.

As a consequence of assumption (2.4) we have that the productivity in very small service poles is near 0.
Notice that in the functional G we do not take into account distances between service poles. Nonlocal

functionals involving such distances, taking into account possible cooperation and the consequent gain in
efficiency, have been considered in subsequent investigations (see [14, 15]). The results shown in the next
section (since they do not depend on the choice of G) turned out to be useful in such a setting.

For the problem introduced in (1.3), existence results are straightforward, especially when we use as an
environment a compact set Ω. In fact, functionals of the form of both F and G have been studied in a general
setting by Bouchitté and Buttazzo in [3], and lower semicontinuity results were proven.

Theorem 2.1. Suppose Ω is compact, p ≥ 1, and f and g satisfy the conditions listed above. Then the
minimization problem (1.3) has at least one solution.

Proof. By the direct method of calculus of variations, this result is an easy consequence of the weak-
* compactness of the space P(Ω), the space of probability measures on Ω when Ω itself is compact, and
of the weak-* semicontinuity of the functional Fp. The second and third terms in (1.2) are, in fact, local
semicontinuous functionals (due to results in [3]), while the first term is nothing but a Wasserstein distance
raised to a certain power. Since it is known that in compact spaces this distance metrizes the weak-* topology,
Tp is actually continuous.

In [13], where we first presented the model, other existence results were shown. For instance, the case of
a noncompact bounded convex set Ω ⊂ Rn was considered. We will not go through this proof here and will
discuss just one existence result in a noncompact setting, obtained as a consequence of a proper use of the
optimality conditions presented in the next section.

3. A necessary condition of optimality. In this section we find optimality conditions for probability
measures on Ω minimizing the functional

Fpν(µ) = Tp(µ, ν) + F (µ).

It is clear that if (µ, ν) is an optimal pair for the whole functional Fp, µ is a minimizer for Fpν . The goal of
this section is to derive optimality conditions for Fpν , for any ν, without any link to the minimization of Fp.
The main part of the section will be devoted to presenting an approach obtained by starting with the easier
case p > 1 and ν “regular” in some sense and then recovering the general case by an approximation argument.
The reason for doing so relies on some conditions ensuring uniqueness properties of the Kantorovich potential.
Similar approximation arguments were also used in [13]: purely atomic probability measures (i.e., finite sums
of Dirac masses) were considered first, and then, by approximation, the result was extended to any measure
ν. At the end of the section we also provide a sketch of a different proof, suggested to us by an anonymous
referee, which is based on some convex analysis tools and strongly uses the convex structure of the problem.

For simplicity, let us call domains those sets which are the closure of a nonempty connected open subset
of Rn with negligible boundary. From now on Ω will be a bounded domain and its diameter will be denoted
by D. The function f in (2.1) will be assumed to be strictly convex and C1, and we will denote by k the
continuous, strictly increasing function (f ′)−1. Strict convexity of f will ensure uniqueness for the minimizer
of Fpν .

Lemma 3.1. If µ is optimal for Fpν , then for any other probability measure µ1 with density u1 such that
Fpν(µ1) < +∞, the following inequality holds:

Tp(µ1, ν)− Tp(µ, ν) +

∫
Ω

f ′(u(x))[u1(x)− u(x)]dx ≥ 0.

Proof. For any ε > 0, due to the convexity of the transport term, it holds that

Tp(µ, ν) + F (µ) ≤ Tp(µ+ ε(µ1 − µ)) + F (µ+ ε(µ1 − µ), ν)

≤ Tp(µ, ν) + ε(Tp(µ1, ν)− Tp(µ, ν)) + F (µ+ ε(µ1 − µ)).
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Therefore the quantity Tp(µ1, ν) − Tp(µ, ν) + ε−1 [F (µ+ ε(µ1 − µ))− F (µ)] is nonnegative. If we let ε → 0,
we obtain the thesis if we prove

lim sup
ε→0

∫
f(u+ ε(u1 − u))− f(u)

ε
dLn ≤

∫
f ′(u)(u1 − u) dLn.

By using the monotonicity of the incremental ratios of convex functions we can see that, for ε < 1,

f(u+ ε(u1 − u))− f(u)

ε
≤ f(u1)− f(u).

This is sufficient in order to apply Fatou’s Lemma, since the quantities F (µ) and F (µ1) are finite.
Lemma 3.2. Let us suppose ν = νs + v · Ln, with v ∈ L∞(Ω), νs⊥Ln, v > 0 a.e. in Ω. If µ is optimal

for Fpν , then u > 0 a.e. in Ω.
Proof. The lemma will be proven by contradiction. We will find, if the set A = {u = 0} is not negligible, a

measure µ1 for which Lemma 3.1 is not verified. Let N be a Lebesgue-negligible set where νs is concentrated
and t is an optimal transport map between µ and ν. Such an optimal transport exists, since µ� Ln. A proof
of this fact can be found in [16] as long as we deal with the case p > 1, while for p = 1 we refer to [1].

Let B = t−1(A). Up to modifying t on the µ-negligible set A, we may suppose B ∩ A = ∅. Set
µ1 = 1Bc ·µ+ 1A\N · ν; it is a probability measure with density u1 given by 1Bcu+ 1Av = 1Bc\Au+ 1Av (this
equality comes from u = 0 on A). We have

F (µ1) =

∫
Bc\A

f(u) dLn +

∫
A

f(v) dLn ≤ F (µ) + ||f(v)||∞|Ω| < +∞.

Setting

t∗(x) =

{
t(x) if x ∈ (A ∪B)c,

x if x ∈ (A ∪B),

we can see that t∗ is a transport map between µ1 and ν. In fact, for any Borel set E ⊂ Ω, we may express
(t∗)−1(E) as the disjoint union of E ∩A, E ∩B, and t−1(E) ∩Bc ∩Ac. Thus,

µ1((t∗)−1(E)) = ν(E ∩A) + ν(E ∩B ∩A) + µ(t−1(E) ∩Bc ∩Ac)
= ν(E ∩A) + µ(t−1(E ∩Ac)) = ν(E),

where we used the fact that A ∩B = ∅ and that Ac is a set of full measure for µ. Consequently,

(3.1) Tp(µ1, ν) ≤
∫

(A∪B)c
|x− t(x)|pu(x)dx <

∫
Ω

|x− t(x)|pu(x)dx = Tp(µ, ν).

From this it follows that for µ1 Lemma 3.1 is not satisfied, since the integral term
∫

Ω
f ′(u)(u1 − u)dLn is

nonpositive, because u1 > u only on A, where f ′(u) vanishes. The strict inequality in (3.1) follows from the
fact that if

∫
A∪B |x− t(x)|pu(x)dx = 0, then for a.e. x ∈ B it holds u(x) = 0 or x = t(x), which, by definition

of B, implies x ∈ A; in both cases we are led to u(x) = 0. This would give ν(A) = µ(B) = 0, contradicting
the assumptions |A| > 0 and v > 0 a.e. in Ω.

We need some results from duality theory in mass transportation that can be found in [16]. In particular,
we point out the notation of c-transform (a kind of generalization of the well-known Legendre transform):
given a function χ on Ω we define its c-transform (or c-conjugate function) by

χc(y) = inf
x∈Ω

c(x, y)− χ(x).

We will generally use c(x, y) = |x− y|p.
Theorem 3.3. Under the same hypotheses of Lemma 3.2, assuming also that p > 1, if µ is optimal for

Fpν and we denote by ψ the unique, up to additive constants, Kantorovich potential for the transport between
µ and ν, there exists a constant l such that the following relation holds:

(3.2) u = k(l − ψ) a.e. in Ω.
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Proof. Let us choose an arbitrary measure µ1 such that F (µ1) < +∞ (for instance a probability with
bounded density u1) and define µε = µ+ ε(µ1 − µ). Let us denote by ψε a Kantorovich potential between µε
and ν, chosen so that all the functions ψε vanish at a same point. We can use the optimality of µ to write

Tp(µε, ν) + F (µε)− Tp(µ, ν)− F (µ) ≥ 0.

By means of the duality formula, as Tp(µε, ν) =
∫
ψεdµε +

∫
ψcεdν and Tp(µ, ν) ≥

∫
ψεdµ +

∫
ψcεdν, we can

write ∫
ψεd(µε − µ) + F (µε)− F (µ) ≥ 0.

Recalling that µε − µ = ε(µ1 − µ) and that

F (µε)− F (µ) =

∫
(f(u+ ε(u1 − u))− f(u)) dLn,

we can divide by ε and pass to the limit. We know from Lemma 3.4 that ψε converge towards the unique
Kantorovich potential ψ for the transport between µ and ν. For the limit of the F part we use Fatou’s Lemma,
as in Lemma 3.1. We then obtain at the limit∫

Ω

(ψ(x) + f ′(u(x)))(u1(x)− u(x)) dx ≥ 0.

Notice that, since u1 is arbitrary, one can infer that both f ′(u) and uf ′(u) are L1 functions (to do so, take
u1 equal to max{u/2,m} for a suitable constant m so that

∫
u1 dx = 1: this gives

∫
uf(u) dx < +∞).

If we now restrict ourselves to probabilities µ1 with bounded density u1 we have∫
(ψ(x) + f ′(u(x)))u1(x) dx ≥

∫
(ψ(x) + f ′(u(x)))u(x) dx.

Define first l = ess infx∈Ω ψ(x) + f ′(u(x)). The left-hand side, by properly choosing u1, can be made as close
to l as we want. Then we get that the function ψ + f ′(u), which is Ln-a.e., and so also µ-a.e., greater than l,
integrated with respect to the probability µ gives a result less than or equal to l. It follows that

ψ(x) + f ′(u(x)) = l, µ-a.e.x ∈ Ω.

Together with the fact that, by Lemma 3.2, u > 0 a.e., we get an equality valid Ln-a.e., and so it holds that

f ′(u) = l − ψ.

We can then compose with k and get the thesis.

To establish Lemma 3.4, which we used in the proof of Theorem 3.3, we have first to point out the
following fact. In the transport between two probabilities, if we look at the cost c(x, y) = |x− y|p with p > 1,
there exists just one Kantorovich potential, up to additive constants, provided the absolutely continuous part
of one of the measures has strictly positive density a.e. in the domain Ω.

Lemma 3.4. Let ψε be Kantorovich potentials for the transport between µε = µ + ε(µ1 − µ) and ν, all
vanishing at a same point x0 ∈ Ω. Suppose that µ = u · Ln and u > 0 a.e. in Ω, and let ψ be the unique
Kantorovich potential between µ and ν vanishing at the same point; then ψε converge uniformly to ψ.

Proof. First, notice that the family (ψε)ε is equicontinuous since any c-concave function with respect to
the cost c(x, y) = |x − y|p is pDp−1-Lipschitz continuous (and Kantorovich potentials are optimal c-concave
functions in the duality formula). Moreover, thanks to ψε(x0) = 0, we also get equiboundedness and thus, by
the Ascoli–Arzelà theorem, the existence of uniform limits up to subsequences. Let ψ be one of these limits,
arising from a certain subsequence. From the optimality of ψε in the duality formula for µε and ν we have,
for any c-concave function ϕ, ∫

ψε dµε +

∫
ψcε dν ≥

∫
ϕdµε +

∫
ϕc dν.
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We want to pass to the limit as ε→ 0: we have uniform convergence of ψε but we need uniform convergence
of ψcε as well. To get it, note that

ψcε(x) = inf
y
|x− y|p − ψε(y), ψ

c
(x) = inf

y
|x− y|p − ψ(y),

|ψcε(x)− ψc(x)| ≤ ||ψε − ψ||∞.

Passing to the limit as ε→ 0 along the considered subsequence we get, for any ϕ,∫
ψ dµ+

∫
ψ
c
dν ≥

∫
ϕdµ+

∫
ϕc dν.

This means that ψ is a Kantorovich potential for the transport between µ and ν. Then, taking into account
that ψ(x0) = 0, we get the equality ψ = ψ. Then we derive that the whole sequence converges to ψ.

We now highlight that the relation we have proved in Theorem 3.3 enables us to choose a density u which
is continuous. Moreover, it is also continuous in a quantified way, since it coincides with k composed with a
Lipschitz function with a fixed Lipschitz constant. As a next step we will try to extend such results to the
case of general ν and then to the case p = 1. The uniform continuity property we proved will be essential for
an approximation process.

In order to go through our approximation approach, we need the following lemma, requiring the well-
known theory of Γ-convergence. For all details about this theory, we refer to [9].

Lemma 3.5. Given a sequence (νh)h of probability measures on Ω, supposing νh ⇀ ν and p > 1, it follows
that the sequence of functionals (Fpνh)h Γ-converges to the functional Fpν with respect to weak-∗ topology on
P(Ω). Moreover, if ν is fixed and we let p vary, we have Γ-convergence, according to the same topology, of
the functionals Fpν to the functional (F1

ν) as p→ 1.
Proof. For the first part of the statement, just notice that the Wasserstein distance is a metrization of

weak-∗ topology: consequently, since Tp(µ, ν) = W p
p (µ, ν), as νh ⇀ ν we have uniform convergence of the

continuous functionals Tp(·, νh). This implies Γ-convergence and pointwise convergence. In view of Proposition
6.25 in [9], concerning Γ-convergence of sums, we achieve the proof. The second assertion follows the same
scheme once we notice that, for each p > 1 and every pair (µ, ν) of probability measures, it holds that

W1(µ, ν) ≤Wp(µ, ν) ≤ D1− 1
pW

1
p

1 (µ, ν).

This gives uniform convergence of the transport term, as

Tp(µ, ν)− T1(µ, ν) ≤ (Dp−1 − 1)T1(µ, ν)

≤ D(Dp−1 − 1)→ 0.

Tp(µ, ν)− T1(µ, ν) ≥ T p1 (µ, ν)− T1(µ, ν)

≥ (p− 1)c(T1(µ, ν)) ≥ c̄ (p− 1)→ 0,

where c(t) = t log t, c̄ = inf c, and we used the fact T1(µ, ν) ≤ D.
We now state in the form of lemmas two extensions of Theorem 3.3
Lemma 3.6. Suppose p > 1 and fix an arbitrary ν ∈ P(Ω). If µ is optimal for Fpν , then there exists a

Kantorovich potential ψ for the transport between µ and ν such that (3.2) holds.
Proof. We choose a sequence (νh)h approximating ν in such a way that each νh satisfies the assumptions

of Theorem 3.3. By Lemma 3.5 and the properties of Γ-convergence, the space P(Ω) being compact and the
functional Fpν having an unique minimizer (see, for instance, Chapter 7 in [9]), we get that µh ⇀ µ, where each
µh is the unique minimizer of Fpνh . Each measure µh is absolutely continuous with density uh. We use (3.2)
to express uh in terms of Kantorovich potentials ψh and get uniform continuity estimates on uh. We would
like to extract converging subsequences by the Ascoli–Arzelà theorem, but we also need equiboundedness. We
may obtain this by using together the integral bound

∫
uhdLn =

∫
k(−ψh)dLn = 1 and the equicontinuity.

So, up to subsequences, we have the following situation:

µh = uh · Ln, uh = k(−ψh),

uh → u, ψh → ψ uniformly,

µh ⇀ µ, µ = u · Ln, νh ⇀ ν,
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where we have absorbed the constants l into the Kantorovich potentials. Clearly it is sufficient to prove that
ψ is a Kantorovich potential between µ and ν to reach our goal.

To see this, we consider that for any c-concave function ϕ, it holds that∫
ψh dµh +

∫
ψch dνh ≥

∫
ϕdµh +

∫
ϕc dνh.

The thesis follows passing to the limit with respect to h, as in Lemma 3.4.
The next step is proving the same relation when ν is generic and p = 1. We are in the same situation

as before, and we simply need approximation results on Kantorovich potentials in the more difficult situation
when the cost functions cp(x, y) = |x− y|p vary with p.

Lemma 3.7. Suppose p = 1 and fix an arbitrary ν ∈ P(Ω). If µ is optimal for F1
ν , then there exists a

Kantorovich potential ψ for the transport between µ and ν with cost c(x, y) = |x− y| such that (3.2) holds.
Proof. For any p > 1 we consider the functional Fpν and its unique minimizer µp. Thanks to Lemma 3.6

we get the existence of densities up and Kantorovich potential ψp between µp and ν with respect to the cost
cp, such that

µp = up · Ln, up = k(−ψp).

By the Ascoli–Arzelà compactness result, as usual, we may suppose, up to subsequences,

up → u, ψp → ψ uniformly,

and due to the Γ-convergence result in Lemma 3.5, since F1
ν has an unique minimizer denoted by µ we also

get

µp ⇀ µ, µ = u · Ln.

As in Lemma 3.6, we simply need to prove that ψ is a Kantorovich potential between µ and ν for the cost c1.
The limit function ψ is Lipschitz continuous with Lipschitz constant less than or equal to lim infp→1 pD

p−1 = 1,
since it is approximated by ψp. Consequently ψ is c-concave for c = c1. We need to show that it is optimal
in the duality formula.

Let us recall that, for any real function ϕ and any cost function c, it holds that ϕcc ≥ ϕ and ϕcc is a
c-concave function whose c-transform is ϕccc = ϕc. Consequently, by the optimality of ψp, we get

(3.3)

∫
ψpdµp +

∫
ψcpp dν ≥

∫
ϕcpcpdµp +

∫
ϕcpdν ≥

∫
ϕdµp +

∫
ϕcpdν.

We want to pass to the limit in the inequality between the first and the last term. We start by proving that,
for an arbitrary sequence (ϕp)p, if ϕp → ϕ1, we have the uniform convergence ϕ

cp
p → ϕc11 . Let us take into

account that we have uniform convergence on bounded sets of cp(x, y) = |x− y|p to c1(x, y) = |x− y|. Then
we have

ϕcpp (x) = inf
y
|x− y|p − ϕp(y), ϕc11 (x) = inf

y
|x− y| − ϕ1(y),

|ϕc,pp (x)− ϕc,11 (x)| ≤ ||cp − c1||∞ + ||ϕp − ϕ1||∞,

which gives us the convergence we needed. We then obtain, passing to the limit as p→ 1 in (3.3),∫
ψ dµ+

∫
ψc1 dν ≥

∫
ϕdµ+

∫
ϕc1 dν.

By restricting this inequality to all ϕ which are c1-concave, we get that ψ is a Kantorovich potential for the
transport between µ and ν and the cost c1.

We can now state the main theorem of this section, whose proof consists only of putting together all the
results we have obtained above.

Theorem 3.8. Let Ω be a bounded domain in Rn, f be a C1 strictly convex function, p ≥ 1, and ν be a
probability measure on Ω. Then there exists a unique measure µ ∈ P(Ω) minimizing Fpν and it is absolutely
continuous with density u. Moreover, there exists a Kantorovich potential ψ for the transport between µ and
ν and the cost c(x, y) = |x− y|p such that u = k(−ψ) holds, where k = (f ′)−1.
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Consequences on the regularity of u come from this expression, which gives Lipschitz-type continuity, and
from the relationship between Kantorovich potentials and optimal transport, which can be expressed through
some PDEs. It is not difficult, for instance, in the case p = 2, to obtain a Monge–Ampère equation for the
density u.

As we have already mentioned, we provide a sketch of an alternative proof to Theorem 3.8 (a “convex
analysis proof”) The idea of such a proof consists of looking at the subdifferential of the functional Fpν in order
to get optimality conditions on the unique minimizer measure µ and its density u (here we will identify any
absolutely continuous probability measure with its density).

Sketch of Proof. Step 1. Consider the minimizing probability µ with density u ∈ L1(Ω) and define the
vector space X = span (L∞(Ω), {u}), with dual

X ′ =

{
ξ ∈ L1(Ω) :

∫
Ω

|ξ|u dLn < +∞
}
.

Then we consider the minimization problem for the functional H defined on X by

H(v) =

{
Fpν(v) if v ∈ P(Ω),

+∞ otherwise.

It is clear that u minimizes H. We will prove

(3.4) ∂H(u) =

{
f ′(u) + ψ : ψ maximizes

∫
Ω

φdµ+

∫
Ω

φcdν for φ ∈ X ′
}

and then consider as an optimality condition 0 ∈ ∂H(u). Notice that this works easily if one adds the
assumption that f has a polynomial growth, so that f ′(u) ∈ X ′. For the general case, as one may notice from
the proof of Theorem 3.3, we can prove f ′(u) ∈ X ′ at least for the minimizer u. The subdifferential ∂H of the
convex functional H is to be considered in the sense of the duality between X and X ′. Notice that, in this
setting, the c-transform φc of a function φ ∈ X ′ has to be defined replacing the inf with an ess inf. Finally,
in order to achieve the proof, it is sufficient to recognize that for a function ψ attaining the maximum in the
duality formula, it necessarily holds that ψ = ψcc a.e. on {u > 0} and that this, together with 0 = f ′(u) +ψ,
implies ψ = ψcc ∧ 0. This means that ψ is an optimal c-concave function (since it is expressed as an infimum
of two c-concave functions) in the duality formula between µ and ν, and so it is a Kantorovich potential. In
this way the thesis of Theorem 3.8 is achieved, provided (3.4) is proved.

Step 2. By using the same computations as in Lemma 3.1, for any u1 ∈ X ∩ P(Ω), if we set uε =
u+ ε(u1 − u), we may prove that

lim
ε→0

F (µε)− F (µ)

ε
=

∫
Ω

f ′(u)(u1 − u) dLn.

Notice that, since
∫

Ω
f ′(u)|u1 − u| dLn < +∞, by choosing u1 = 1/|Ω| it follows that f ′(u) and f ′(u)u are L1

functions; i.e., f ′(u) ∈ X ′. Then it is possible to prove that this implies ∂H(u) = f ′(u) + ∂T (u), where T is
the convex functional Tp(·, ν).

Step 3. It remains to prove that

(3.5) ∂T (u) =

{
ψ : ψ maximizes

∫
Ω

φdµ+

∫
Ω

φcdν for φ ∈ X ′
}
.

In fact, if we define K(φ) =
∫

Ω
φcdν, the key point is to prove that K is concave and upper semicontinuous in

φ. Then, by standard convex analysis tools, (3.5) is a consequence of the equality T (v) = supφ v · φ+K(φ),
where v · φ stands for the duality product between X and X ′ and equals

∫
Ω
vφ dLn.

4. Applications to urban planning problems (with atomic services). In this section we go
through the consequences that Theorem 3.8 has in the problem of minimizing Fp, when this functional is
built by using a term G as in (2.3), which forces the measure ν, representing services, to be purely atomic.
We have two goals: trying to have an explicit expression for u in the case of a bounded domain Ω and proving
an existence result in the case Ω = Rn.

Theorem 4.1. Suppose (µ, ν) is optimal for problem (1.3). Suppose also that the function g is locally
Lipschitz in ]0, 1]: then ν has finitely many atoms and is of the form ν =

∑m
i=1 aiδxi

.
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Proof. It is clear that ν is purely atomic, i.e., a countable sum of Dirac masses. We want to show their
finiteness. Consider a = max ai (such a maximum exists since limi ai = 0 and ai > 0) and let L be the
Lipschitz constant of g on [a, 1]. Now consider an atom with mass ai and modify ν by moving its mass onto
the atom xj whose mass aj equals a, obtaining a new measure ν′. The G-part of the functional decreases,
while it may happen that the transport part increases. Since we do not change µ, the F -part remains the
same. By optimality of ν we get Tp(µ, ν) +G(ν) ≤ Tp(µ, ν′) +G(ν′) and thus

g(ai)− Lai ≤ g(ai) + g(a)− g(a+ ai) ≤ Tp(µ, ν′)− Tp(µ, ν) ≤ aiD.

This implies

g(ai)

ai
≤ D + L,

and by the assumption on the behavior of g at 0, this gives a lower bound δ on ai. Since we have proved that
every atom of ν has a mass greater than δ, we may conclude that ν has finitely many atoms.

Now we can use the results from last section.
Theorem 4.2. For any ν ∈ P(Ω) such that ν is purely atomic and composed by finitely many atoms at

the points x1, . . . , xm, if µ minimizes Fpν , there exist constants ci such that

(4.1) u(x) = k ((c1 − |x− x1|p) ∨ · · · ∨ (cm − |x− xm|p) ∨ 0) .

In particular the support of u is the intersection with Ω of a finite union of balls centered around the atoms
of ν.

Proof. On the Kantorovich potential ψ appearing in Theorem 3.8, we know that

ψ(x) + ψc(y) = |x− y|p ∀(x, y) ∈ spt(γ),

ψ(x) + ψc(y) ≤ |x− y|p ∀(x, y) ∈ Ω× Ω,

where γ is an optimal transport plan between µ and ν. Taking into account that ν is purely atomic we obtain,
defining ci = ψc(xi),

−ψ(x) = ci − |x− xi|p µ-a.e.x ∈ Ωi,

−ψ(x) ≥ ci − |x− xi|p ∀x ∈ Ω, ∀i,

where Ωi = t−1(xi), where t is an optimal transport map between µ and ν. Since µ−a.e. point in Ω is
transported to a point xi, we know that u = 0 a.e. in the complement of

⋃
i Ωi. Since, by f ′(u) = −ψ, it holds

that −ψ(x) ≥ 0, one gets that everywhere in Ω the function −ψ is greater than each of the terms ci−|x−xi|p
and 0, while a.e. it holds equality with at least one of them. By changing u on a negligible set, one obtains
(4.1). The support of µ, consequently, turns out to be composed of the union of the intersection with Ω of

the balls Bi = B(xi, c
1/p
i ).

Theorem 4.2 allows us to have an almost explicit formula for the density of µ. Formula (4.1) becomes
more explicit when the balls Bi are disjoint. We now give a sufficient condition on ν under which this fact
occurs.

Lemma 4.3. There exists a positive number R, depending on the function k, such that any of the balls
Bi has a radius not exceeding R. In particular, for any atomic probability ν such that the distance between
any two of its atoms is larger than 2R, the balls Bi are disjoint.

Proof. Set Ri = c
1/p
i and notice that

1 =

∫
Ω

u ≥
∫
Bi

k(ci − |x− xi|p) dx =

∫ Ri

0

k(Rpi − r
p)nωnr

n−1 dr,

where the number ωn stands for the volume of the unit ball in Rn. This inequality gives the required upper
bound on Ri, since ∫ Ri

0

k(Rpi − r
p)nωnr

n−1 dr ≥ C
∫ Ri−1

0

nrn−1 dr = C(Ri − 1)n.
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When the balls Bi are disjoint, we have Bi = Ωi for every i and we get a simple relation between radii and

masses corresponding to each atom. The constants ci can then be found by using Ri = c
1/p
i . In fact, by

imposing the equality of the mass of µ in the ball and of ν in the atom, the radius R(m) corresponding to a
mass m satisfies

(4.2) m =

∫ R(m)

0

k(R(m)p − rp)nωnrn−1dr.

For instance, if f(s) = s2/2, we have

R(m) =

(
m(n+ p)

ωnp

) 1
n+p

.

The second aim of this section is to obtain an existence result for the problem (1.3) when Ω = Rn. A difference
from the bounded case is the fact that we must look for minimization among all pairs of measures inWp(Rn),
the p-th Wasserstein metric space (i.e., the space of measures λ ∈ P(Rn) such that

∫
|x|pλ(dx) < +∞,

endowed with the distance Wp), rather than in P(Rn).
We start with some simple results about the minimization problem for Fpν .
Lemma 4.4. For every fixed ν ∈ P(Rn) there exists a (unique if f is strictly convex) minimizer µ for Fpν :

it belongs to Wp(Rn) if and only if ν ∈ Wp(Rn), and if ν does not belong to this space, the functional Fpν is
infinite on the whole Wp(Rn). Moreover, if ν is compactly supported, the same happens for µ.

Proof. The existence of µ comes from the direct method of the calculus of variations and the fact that if
(Tp(µh, ν))h is bounded, then (µh)h is tight. The behavior of the functional with respect to the spaceWp(Rn)
is trivial. Finally, the last assertion can be proved by contradiction, supposing µ(B(0, R)c) > 0 for every
R < +∞ and replacing µ with

µR = 1BR
· µ+

µ(BcR)

|Br|
1Br
· Ln,

where B(0, r) is a ball containing the support of ν. By optimality, we should have

(4.3) Tp(µR, ν) + F (µR) ≥ Tp(µ, ν) + F (µ),

but we have

Tp(µR, ν)− Tp(µ, ν) ≤ −((R− r)p − (2r)p)µ(BcR),(4.4)

F (µR)− F (µ) ≤
∫
Br

[
f

(
u+

µ(BcR)

|Br|

)
− f(u)

]
dLn.(4.5)

By summing up (4.4) and (4.5), dividing by µ(BcR), and taking into account (4.3), we get

(4.6) − ((R− r)p − (2r)p) +
1

µ(BcR)

∫
Br

[
f

(
u+

µ(BcR)

|Br|

)
− f(u)

]
dLn ≥ 0.

Yet, by passing to the limit as R → +∞ and µ(BcR) → 0, the first term in (4.6) tends to −∞, while the
second is decreasing as R→ +∞. This last one tends to

∫
Br
f ′(u)dLn, provided it is finite for at least a value

of R (which ensures the finiteness of the limit as well). To conclude, it is sufficient to prove that∫
Br

[
f

(
u+

µ(BcR)

|Br|

)
− f(u)

]
dLn < +∞.

This is quite easy in the case f(z) = Azq with q > 1, while for general f the assertion comes from the fact that
u is continuous on Br and hence bounded. If u = 0 a.e. in Br, this is trivial; otherwise take the probability
measures µ′ = 1Br/µ(Br) · µ and ν′ = t]µ

′ for an optimal transport map t between µ and ν. It is clear that
µ′ minimizes Fpν′ in the new domain Ω′ = Br. Then we may apply Theorem 3.8 and get the continuity of its
density, which ensures the continuity of u on Br.

To go through our proof we need to manage minimizing sequences, in the sense of the following lemma.
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Lemma 4.5. It is possible to choose a minimizing sequence ((µh, νh))h in Wp(Rn) ×Wp(Rn) such that
for every h the measure νh is finitely supported, and the density of µh is given by (4.1), with disjoint balls
centered at the atoms of νh.

Proof. First we start from an arbitrary minimizing sequence ((µ′h, ν
′
h))h. Then we approximate each ν′h

in Wp by a finite support measure ν′′h . To do this we truncate the sequence of its atoms and move the mass
in excess to the origin. In this way, we have G(ν′′h) ≤ G(ν′h), by the subadditivity of g, while the value of
the transport term increases by an arbitrary small quantity. Consequently, ((µ′h, ν

′′
h))h is still a minimizing

sequence. Then we replace µ′h by µ′′h, chosen in such a way that it minimizes Fpν′′h
. By Lemma 4.4, each µ′′h

has a compact support. Then we translate every atom of each ν′′h , together with its own set Ωi, to some
disjoint sets Ω∗i . In this way we get new measures µ′′′h and ν′′′h . The value of the functional in this step has not
changed. We may choose to place the atoms of each ν′′′h so far from each other that each distance between
atoms is at least 2R. Then we minimize again in µ, getting a new sequence of pairs ((µ′′′′h , ν′′′h ))h, and we set
νh = ν′′′h and µh = µ′′′′h . Thanks to Theorem 4.2 and Lemma 4.3 the requirements of the thesis are fulfilled.
The subsequent improvements of the minimizing sequence are shown in Figure 1.

Fig. 1. Getting a well-behaved minimizing sequence.

It is clear now that if one can obtain a uniform estimate on the number of atoms of the measures νh, the
existence problem is easily solved. In fact we already know that each ball belonging to the support of µh is
centered at an atom of νh and has a radius not larger than R. Provided we are able to prove an estimate like
] {atoms of νh} ≤ N , it would be sufficient to act by translation on the atoms and their corresponding balls,
obtaining a new minimizing sequence (the value of Fp does not change) with supports all contained in a same
bounded set (for instance, the ball BNR).

We now try to give sufficient conditions in order to find minimizing sequences where the number of atoms
stays bounded. Notice that on sequences of the form given by Lemma 4.5, the functional Fp has the expression

(4.7) Fp(µh, νh) =

k(h)∑
i=1

E(mi,h), if νh =

k(h)∑
i=1

mi,hδxi,h
,

where the quantity E(m) is the total contribute given by an atom with mass m to the functional. We may
compute

(4.8) E(m) = g(m) +

∫ R(m)

0

[f(k(R(m)p − rp)) + k(R(m)p − rp)rp]nωnrn−1dr,

taking into account the particular form of the density in the ball.
Theorem 4.6. Let us suppose f ∈ C2((0,+∞)), and g ∈ C2((0, 1])∩C0([0, 1]), in addition to all previous

assumptions. Then the minimization problem for Fp in Wp(Rn)×Wp(Rn) has a solution, provided

lim sup
R→0+

g′′

(∫ R

0

k(Rp − rp)nωnrn−1dr

)∫ R

0

k′(Rp − rp)nωnrn−1dr < −1.



526 GIUSEPPE BUTTAZZO AND FILIPPO SANTAMBROGIO

Proof. According to what has been previously proven, it is sufficient to produce a minimizing sequence
of the form of Lemma 4.5 with a bounded number of atoms. We claim that it is enough to prove that the
function E is subadditive on an interval [0,m0]. In fact, having proven it, we start from a sequence ((µh, νh))h
built as in Lemma 4.5 and use the characterization of Fp given in (4.7). Then we modify our sequence by
replacing in each νh any pair of atoms of mass less than m0/2 with a single atom with the sum of the masses.
We keep atoms far away from each other in order to use (4.7). We may perform such a replacement as far
as we find more than one atom whose mass is less than or equal to m0/2. At the end we get a new pair
((µ′h, ν

′
h))h, where the number of atoms of ν′h is less than N = 1 + b2/m0c. The value of the functional Fp

has not increased, thanks to the subadditivity of E on [0,m0].

Taking into account that E(0) = 0 and that concave functions vanishing at 0 are subadditive, we look at
concavity properties of the function E in an interval [0,m0]. It is sufficient to compute the second derivative
of E and find it negative in a neighborhood of the origin.

By means of the explicit formula (4.8) and also taking into account (4.2), setting E(m) = g(m)+K(R(m)),
we start by computing dK/dr. Using the facts that f ′ ◦ k = id and that k(0) = 0, we can obtain the formula

dK(R(m))

dm
(m) = R(m)p.

From another derivation and some standard computation we finally obtain

E′′(m) = g′′(m) +
1∫ R(m)

0
k′(R(m)p − rp)nωnrn−1dr

.

The assumption of this theorem ensures that such a quantity is negative for small m, and so the proof is
achieved.

Remark 4.7. Notice that when the functions f and g are of the form f(t) = atq, q > 1, g(t) = btr, r < 1,
with a and b positive constants, it holds that

g′′

(∫ R

0

k(Rp − rp)nωnrn−1dr

)
≤ −CR(n+ p

q−1 )(r−2),

∫ R

0

k′(Rp − rp)nωnrn−1dr ≤ CRn+p 2−q
q−1 ,

and so the lim sup in Theorem 4.6 may be estimated from above by

lim
R→0+

−CR
p

q−1 (r−q)+n(r−1) = −∞.

Consequently the assumption in Theorem 4.6 is always verified when f and g are power functions.

Remark 4.8. From the proof of the existence theorem it is clear that there exists a minimizing pair
(µ, ν) ∈ Wp(Rn)×Wp(Rn) where ν has finitely many atoms and µ is supported in a finite, disjoint union of
balls centered at the atoms of ν and contained in a bounded domain Ω0, with a density given by Theorem
4.2. The same happens if we look for the minimizers in a bounded domain Ω, provided Ω is large enough to
contain Ω0, and hence a solution to the problem in Rn. For example, all the open sets containing N balls of
radius R admit a minimizing solution supported in disjoint balls.

We conclude by stressing the fact that in order to solve the problem in Rn, we have only to look at the
function E and find out the number of atoms and their respective masses (mi)i=1...k. The problem to solve
is then

(4.9) min

{
k∑
i=1

E(mi) : k ∈ N,
k∑
i=1

mi = 1

}
.

Typically, for instance when f and g are power functions, the function E involved in (4.9) is a concave-convex
function, as sketched in Figure 2. Due to such a concave-convex behavior, in general it is not clear whether
the values of the numbers mi solving (4.9) and representing subcities’ sizes are all equal or may be different
(see also Figure 3).
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Fig. 3. Sketch of the solution in Rn.
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