
A LIMITED-MEMORY ALGORITHM FOR 
BOUND-CONSTRAINED OPTTMIZATION 

by 

Richard H.  Byrd,’ Peihuang L U , ~  and Joqe  Nmedal f t  

ABSTRACT 

SECEIVED 
F€B 2 8 19% 

An algorithm for solving large nonlinear optimization problems with simple bounds is de- 
scribed. It is baaed on the gradient projection method and uses a limikd-memory BFGS 
matrix to appraximak the Hessian of the objective function. We show how to take advantage 
of the form of the limited-memory approximation ta implement the algorithm efficiently. The 
remits of numerical tests on a set of large problems are reported. 
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1 Introduction 
In this paper we describe a limited-memory quasi-Newton algorithm for solving large nonlinear 
optimization problems with simple bounds on the variables. We write this problem as 

subject to 15 x 5 u, (1.2) 

where f : 8‘‘ --c 92 is a nonlinear function whose gradient g is available, the vectors I and u 
represent lower and upper bounds on the variables, respectively, and the number of variables 
n is assumed to be large. The algorithm does not require second derivatives or knowledge of 
the structure of the objective function and can therefore be applied when the Hessian matrix is 
not practical to compute. A limited-memory quasi-Newton update is used to approximate the 
Hessian matrix in such a way that the storage required is linear in n. 
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The algorithm described in this paper is similar to the algorithms proposed by Conn, Gould, 
and Toint [9] and Mor4 and Toraldo [20], in that the gradient projection method is used to 
determine a set of active constraints at  each iteration. Our algorithm is distinguished from these 
methods by our use of line searches (as opposed to  trust regions) but mainly by our use of limited- 
memory BFGS matrices to approximate the Hessian of the objective function. The properties 
of these limited-memory matrices have far-reaching consequences in the implementation of the 
method, as will be discussed later on. We find that by making use of the compact representations 
of limited-memory matrices described by Byrd, Nocedal, and Schnabel [SI, the computational 
cost of one iteration of the algorithm can be kept to be of order It. 

We used the gradient projection approach [IS], [18], [3] to determine the active set, because 
recent studies [7], [5] indicate that it possesses good theoretical properties, and because it also 
appears to be efficient on many large problems [8], [20]. However, some of the main components 
of our algorithm could be useful in other frameworks, as long as limited-memory matrices are 
used to approximate the Hessian of the objective function. 

2 Outline of the Algorithm 
At the beginning of each iteration, the current iterate zk, the function value f k ,  the gradient gk, 
and a positive definite limited-memory approximation Bk are given. This allows us to form a 
quadratic model o f f  at  xk, 

(2-1) 
1 

mk(2) = f ( z k )  + gf(x - zk) + 2(z - zk)TBk(z - Xk). 

Just as in the method studied by Conn, Gould, and Toint [9], the algorithm approximately 
minimizes mk(2) subject to the bounds given by (1.2). This is done by first using the gradient 
projection method to find a set of active bounds, followed by a minimization of mk treating those 
bounds as equality constraints. 

To do this, we first consider the piecewise linear path 

z(t> = P(5k - tgk,z,+ 
obtained by projecting the steepest descent direction onto the feasible region, where 

I ;  if X; < li 
2; 

u; if xi > u;. 
if 2; E [Zi, u;] 

We then compute the generalized Cauchy point xc, which is defined as the first local minimizer 
of the univariate, piecewise quadratic 

Qk(t) = m&(t)). 

The variables whose value at zc is at lower or upper bound, comprising the active set A(x"), are 
held fixed. We then consider the following quadratic problem over the subspace of free variables, 
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subject to I; 5 2; 5 u; V i  f d(zc). (2.4) 
We first solve or approximately solve (2.3), ignoring the bounds on the free variables, which can 
be accomplished either by direct or iterative methods on the subspace of free variables or by a 
dual approach, handling the active bounds in (2.3) by Lagrange multipliers. We then truncate 
the path toward the solution so as to satisfy the bounds (2.4). 

After an approximate solution Z k + l  of this problem has been obtained, we compute the new 
iterate Xk+1 by a backtracking h e  search dong d k  = Zk+, - x k  that ensures that 

where X k  is the steplength and cy is a parameter that has the value in our code. We then 
evaluate the gradient at z k + l ,  compute a new limited-memory Hessian approximation B k + l  and 
begin a new iteration. 

Because in our algorithm every Hessian approximation B k  is positive definite, the approximate 
solution Z k + l  of the quadratic problem (2.3)-(2.4) defines a descent direction dk = Z k + l  - z k  for 
the objective function f. To see this, first note that the generalized Cauchy point zc, which is a 
minimizer of mk(Z) on the projected steepest descent direction, satisfies m k ( 5 k )  > T n k ( Z c )  if the 
projected gradient is nonzero. Since the point Z k + l  is on a path from xc to the minimizer of (2.3), 
dong which m k  decreases, the value of m k  at Z k + l  is no larger than its value at xc. Therefore we 
have 

f ( z k )  = m k ( 5 k )  > mk(zc) 2 m k ( f k + l )  = f ( z k )  + $4 + 3 d ; B k d k -  

This inequality implies that  gTdk < 0 if B k  is positive definite and d k  is not zero. 
The Hessian approximations Bk used in our algorithm are limited-memory BFGS matrices 

(Nocedal [21] and Byrd, Nocedd, and Schnabel [SI). Even though these matrices do not take 
advantage of the structure of the problem, they require only a small amount of storage and, as we 
will show, allow the computation of the generalized Cauchy point and the subspace minimization 
to be performed in O ( n )  operations. The new algorithm therefore has computational demands 
similar to those of the limited-memory algorithm (L-BFGS) for unconstrained problems described 
by Liu and Nocedal [19] and Gilbert and LemarCchal [14]. 

In the next three sections we describe in detail the limited-memory matrices, the computation 
of the Cauchy point. and the minimization of the quadratic problem on a subspace. 

3 Limited-Memory BFGS Matrices 

In our algorithm, the limited-memory BFGS matrices are represented in the compact form de- 
scribed by Byrd, Wocedal, and Schnabel [SI. At every iterate X k  the algorithm stores a s m d  
number, say m, of correction pairs {s;, y;}, i = k - 1,. . ., k - m, where 
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These correction pairs contain information about the curvature of the function and, in conjunction 
with the BFGS formula, define the limited-memory iteration matrix B k .  The question is how to 
best represent these matrices without explicitly forming them. 

In [6] it is proposed to use a compact (or outer product) form to define the limited-memory 
matrix B k  in terms of the n x m correction matrices 

More specifically, it is shown in [6] that if 9 is a positive scaling parameter and if the m correction 
pairs {si, y j } ~ ~ ~ 1 7  satisfy s'y; > 0, then the matrix obtained by updating 61 m-times, using the 
BFGS formula and the pairs { S j , y i } i k , ~ ~ 7  can be written as 

B k  = 61 - W k M k W f ,  ( 3 4  

and where L k  and D k  are the m x m matrices 

T ( S k - m - l + i )  ( Y k - m - l + j )  
( L k ) i j  = { 0 otherwise, 

if i > j 
(3.5) 

(3.6) D k  = diag [ S k - m Y k - m ,  T * * - 9 S k - 1 y k - I ]  T - 
(We should point out that  (3 .2)  is a slight rearrangement of Equation (3.5) in [6].) Note that 
since h f k  is a 2 m  x 2m matrix, and since m is chosen to be a small integer, the cost of computing 
the inverse in (3.4) is negligible. It is shown in [6] that by using the compact representation (3.2) 
various computations involving B k  become inexpensive. In particular, the product of B k  times a 
vector, which occurs often in the algorithm of this paper, can be performed efficiently. 

There is a similar representation of the inverse limited-memory BFGS matrix H k  that ap- 
proximates the inverse of the Hessian matrix: 
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and 
T (~k-m-l+i )  ( Y k - m - l + j )  

( R k ) i , j  = { otherwise. 
if i 5 j 

(We note that (3.7) is a slight rearrangement of equation (3.1) in [6].) 
Since the algorithm performs a backtracking line search, we cannot guarantee that the con- 

dition szyk > 0 always holds (cf. Dennis and Schnabel [12]). Therefore, to maintain the positive 
definiteness of the Limited-memory BFGS matrix, we discard a correction pair (s]~,yk} if the 
curvature condition 

STYk > eps llv112 (3.9) 
is not satisfied for a s m d  positive constant eps. If this happens, we do not delete the oldest cor- 
rection pair, as is normally done in Limited-memory updating. This means that the m directions 
in S]F and Yk may actually include some with indices less than IC - rn. 

4 The Generalized Cauchy Point 
The objective of the procedure described in this section is to find the first local minimizer of the 
quadratic model along the piecewise linear path obtained by projecting points dong the steepest 
descent direction, Z k  - t g k ,  onto the feasible region. We define xo = 2 k  and, throughout this 
section, drop the index k of the outer iteration, so that g, z and B stand for gk, z k  and Bk. We 
use subscripts to denote the components of a vector; for example, g; denotes the i-th component 
of g. Superscripts will be used to represent iterates during the piecewise search for the Cauchy 
point. 

To define the breakpoints in each coordinate direction, we compute 

and sort {t;, i = 1 , .  . . , n} in increasing order to obtain the ordered set { t j  : t j  5 t j + l  , j  = 1, ..., n}. 
We then search along P ( s o  - t g ,  I, u), a piecewise linear path that can be expressed as 

x4 - tg; 
xQ - t ;g;  otherwise. 

if t 5 t ;  
x i ( t >  = { 

Suppose that we are examining the interval [ t j - l , t j ] .  Let ns define the ( j  - 1)-th breakpoint as 

z j - l  = z.tj-f) 

so that on [ t j - l ,  t j ]  

where 

x ( t )  = z j - l  + AtdJ-', 

At = t - tJ-' 
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and 

Using this notation, we write the quadratic (2.1), on the line segment [z(tj- '),z(tj)], 

m(z)  = f + g T ( z  - zO) + +(z - zO)TB(z - S O )  

= f + gT($-l + At&') + $(.'-' + At&')TB(#' + 
where 

0 - x .  
Therefore on the line segment [x(tj-'),z(tJ)], m(z)  can be written as a quadratic in At? 

(4-3) 

Differentiating 7jl(At) and equating to zero, we obtain At* = - f!- /fT-l. Since B positive 
definite, this defines a minimizer provided tj-l + At* lies on [ti-', tf]. Otherwise the generalized 
Cauchy point lies at z(tj-') if f&l > 0 ,  and beyond or at z(t j)  if f'-l < 0. 

If the generalized Cauchy point has not been found after exploring the interval [ t j - ' ,  t j ] ,  we 
set 

3.1 

(4-6) zi = + &1&-1 ~ j - 1  = tj - ti-1, 

and update the directional derivatives fj' and ff as the search moves to the next interval. Let us 
assume for the moment that only one variable becomes active at t j ,  and let us denote its index 
by b. Then tb = 4, and we zero out the corresponding component of the search direction, 

d j  = d j - l  + g beb 7 

where eb is the b-th unit vector. From the definitions (4.3) and (4.6) we have 

Therefore, using (4.4), (4.5), (4.7), and (4.5), we obtain 

(4.7) 
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and 

(4.10) 

which can require O ( n )  operations since B is a dense limited-memory matrix. Therefore it would 
appear that the computation of the generalized Cauchy point could require O(n2)  operations, 
since in the worst case n segments of the piecewise linear path can be examined. This cost would 
be prohibitive for large problems. However, using the limited memory BFGS formula (3.2) and 
the definition (4.2), the updating formulae (4.9)-(4.10) become 

f' = fj-1 + ff-1 + g z  + t?gb4 - gbwfMWT>, (4.11) 

(4.12) 

where w r  stands for the b-th row of the matrix W .  The only O ( n )  operations remaining in 
(4.11) and (4.12) are WTrj and W T d j e l .  We note, however, from (4.7) and (4.8) that d and 
d j  are updated at every iteration by a simple computation. Therefore, if we maintain the two 
2m-vectors 

p' E W T d j  = W T ( d j e l  + gbeb) = $-' + gbWb, 

f!' 3 = f!' - 209, 2 - 2gbwrMWTdj-' + 0s; - gzWrMWb, 

2 wT> = wT(Zj-1 + Atj-ldj-1) = 2-1 + Atj-19-1, 

then updating f j  and fy using the expressions 

f j  = fj-1 + Atj-lfY-1 -k g z  4- - gbWrM2, 

f; = fy-1 - 6gz - 2gbwrM$-' - gzWFhfWb,  

will require only O( m2) operations. If more than one variable becomes active at  t j  - an atypical 
situation - we repeat the updating process just described, before examining the new interval 
[ t j ,  t j+ '] .  We have thus been able to achieve a significant reduction in the cost of computing the 
generalized Cauchy point. 

Remark. The examination of the first segment of the projected steepest descent path, during the 
computation of the generalized Cauchy point, requires O ( n )  opemtions. However, all subsequent 
segments require only O ( m 2 )  operations, where m is the number of correction vectors stored in 
the limited-memory matrix. 

Since m is usually small, say less than 10, the cost of examining all segments after the first 
one is negligible. The following algorithm describes in more detail how to achieve these savings 
in computation. Note that it is not necessary to keep track of the n-vector 9 since only the 
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component 4 corresponding to the bound that has become active is needed to update f,' and 
fj". 

Algorithm CP: Computation of the generalized Cauchy point 
Given x, 1, u,g, and B = BI - W M W T  

For i = 1,. . . , n compute 

0 if ti = 0 
-g; otherwise 

d; := 

3 
P 

0 Initialize 

C 

f' 
f" 

Atmin 

told 
t 
b 

At 

:= {i : tj > 0 } 
:= WTd (2mn operations ) 
:= 0 
:= gTd = -dTd 
: = OdTd - d r W M W T d  = -6 f' - p T M p  

:= 0 

:= i such that tj = t 
. - t - 0  

(n operations) 
(O(m2) operations) 

:= -6 
.- .- min{ti : i E F} (using the heapsort algorithm) 

(remove b from 3). .- 
0 Examination of subsequent segments 

While At,,,;,, > A t  do 

27 := 

z b  := 
c := 
f' := 
f" := 

p := 
d b  := 

Atm;* := 
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t := min{t; : i E F} (using the heapsort algorithm) 
b := i such that t;  = t (Remove b from 9) 

At := t - t o ld  

end while 

e Atmi, := max(Atm;,,O} 

told := told + Atmin 

e x? := x; + toldd;, v i  such that t; 2 t 
e For a.ll i E 3 with t; = t ,  remove i from F. 

e c := c + At,;,p 

The last step of this algorithm updates the 2m-vector c so that upon termination 

c = W*(ZC - Zk). (4.13) 

This vector will be used to initialize the subspace minimization when the primal direct method 
or the conjugate gradient method is used, as will be discussed in the next section. 

Our operation counts take into account only multiplications and divisions. Note that there 
are no O ( n )  computations inside the loop. If nint denotes the total number of segments explored, 
then the total cost of Algorithm CP is (2m+2)n+O(m2) xnint operations plus nlogn operations 
which is the approximate cost of the heapsort algorithm [l]. 

5 Methods for Subspace Minimization 
Once the Cauchy point zc has been found, we proceed to approximately minimize the quadratic 
model mk over the space of free variables and impose the bounds on the problem. We consider 
three approaches to  minimize the model: a direct primal method based on the Sherman-Morrison- 
Woodbury formula, a primal iterative method using the conjugate gradient method, and a direct 
dual method using Lagrange multipiers. Which of these is most appropriate seems problem 
dependent, and we have experimented numerically with all three. In all these approaches we first 
work on minimizing mk ignoring the bounds, and at an appropriate point truncate the move SO 

The following notation will be used throughout this section. The integer t denotes the number 
of free variables at the Cauchy point zc; in other words there are n - t variables a t  bound at  zC. 
As in the preceding section, 3 denotes the set of indices corresponding to the free variables, and 
we note that this set is defined upon completion of the Cauchy point computation. We define 
Zk to be the n x t matrix whose columns are unit vectors (i.e., columns of the identity matrix) 
that span the subspace of the free variables at  zc. Similarly Ak denotes the n x ( n  - t )  matrix of 
active constraint gradients at  zc, which consists of n - t unit vectors. Note that A l Z k  = 0 and 
that 

I 
I as to satisfy the bound constraints. 

AkAT + ZkZ,T = I .  (5.1) 
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5.1 A Direct Primal Method 
In a primal approach, we fix the n - t variables at  bound at the generalized Cauchy point zc, and 
solve the quadratic problem (2.3) over the subspace of the remaining t free variables, starting 
from zc and imposing the free variable bounds (2.4). Thus we consider only the points z E Sn of 
the form 

where d is a vector of dimension t .  Using this notation, for points of the form (5.2) we can write 
the quadratic (2.1) as 

(5-2) z = xc + Zkd, 

1 
mk(x) = fk + gf(z - zc + xc - Zk) + s(z - xc + xc - t k ) T B k ( Z  - zc + xc - 51) 

1 
= (gk Bk(zC - ~ / c ) ) ~ ( z  - z') + ~ ( 3  - ~ " ) ~ B k ( z  - 2') + y 

G dTic + Zd 1-T B k d +  y, 

where y is a constant, 

is the reduced Hessian of mk, and 

(5-3) 

is the reduced gradient of mk a t  zc. Using (3.2) and (4.13), we can express this reduced gradient 
as 

i;= = z ,T(gk  + 8(ZC - 2 k )  - WkMkC), (5.4) 
which, given that the vector c was saved from the Cauchy point computation, costs (2m + 1)t + 
O(m2) extra operations. Then the subspace problem (2.3) can be formulated as 

min f i k ( d )  3 CiTF + p B & +  y 
subject to l;  - xf 5 di 5 ui - xf i E 7, 

where the subscript i denotes the i-th component of a vector. The minimization (5 .5)  can be 
solved either by a direct method, as we discuss here, or by a n  iterative method as discussed in 
the next subsection, and the constraints (5.6) can be imposed by backtracking. 

Since the reduced limited-memory matrix l?k is a small-rank correction of a diagonal matrix, 
we can formally compute its inverse by means of the Sherman-Morrison-Woodbury formula and 
obtain the unconstrained solution of the subspace problem (5 .5 ) ,  

We can then backtrack towards the feasible region, if necessary, to obtain 

d̂ " = a f d u ,  
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where the positive scalar a* is defined by 

Therefore the approximate solution 5 of the subproblem (2.3)-(2.4) is given by 

i f i 4 3  2; = (5.9) 

It remains only to consider how to perform the computation in (5.7). Since Bk is given by 
(3.2) and ZrZk = I, the reduced matrix B is given by 

B = 61  - ( Z T W ) ( M W T Z ) ,  

where we have dropped the subscripts for simplicity. Applying the Sherman-Morrison-Woodbury 
formula (see, for example, [17]), we obtain 

1 -1 1 1  1 B-' = j1+ f T W ( I  - -MWTZZTW)  8 MWTZ8,  

so that the unconstrained subspace Newton direction 8. is given by 
-1 1 1 1 

e 62 6 2 = -ec + -ZTW(I - -MWTZZTW) MWTZiC. 

(5.10) 

(5.11) 

Given a set of free variables at zc  that determines the matrix 2, and a limited-memory BFGS 
matrix B defined in terms of 0,W and M, the following procedure implements the approach 
just described. Note that since the columns of Z are unit vectors, the operation Zv, amounts 
to  selecting appropriate elements from v. Here and throughout the paper our operation counts 
include only multiplications and divisions. Recall that t denotes the number of free variables and 
that m is the number of corrections stored in the limited memory matrix. 

Direct Primal Method 

1. Compute Zi"  by (5.4) 

2. v := wTziC 
3. v := M u  (O(m2) operations) 

4. Form N = (I - $ M W T Z Z T W )  

((2772 + 1)t + O(m2) operations) 

(2mt operations) 

0 N := QwVTZZTW 
0 N := I - M N  

5 .  v := N-'v 

6. d' := $+' + & Z T W v  

(2m2t + mt operations) 
(0(m3) operations) 

(O(m3) operations) 

(2mt + t operations) 
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7. Find a' satisfying (5.8) 

8. Compute Z i  as in (5.9) 

( t  operations) 

( t  operations) 

The total cost of this subspace minimization step based on the Sherman-Morrison-Woodbury 
formula is 

2m2t + 6mt + 4t + O(m3) (5.12) 
operations. This is quite acceptable when t is small (i.e., when there are few free variables). 
However, in many problems the opposite is true: few constraints are active and t is large. In this 
case the cost of the direct primal method can be quite large, but the following mechanism can 
provide significant savings. 

Note that when t is large, it is the computation of the matrix 

in Step 4 ,  which requires 2m2t operations, that drives up the cost. Fortunately we can reduce 
the cost when only a few variables enter or leave the active set from one iteration to the next 
by saving the matrices Y T Z Z T Y ,  STZZTY and S T Z Z T S .  These matrices can be updated to 
account for the parts of the inner products corresponding to  variables that have changed status, 
and to add rows and columns corresponding to the new step. In addition, when t is much larger 
then n - t ,  it seems more efficient to use the relationship Y T Z Z T Y  = YTY - Y T A A T Y ,  which 
follows from (5.1), to compute YTZZTY.  Similar relationships can be used for the matrices 
S T Z Z T Y  and S T Z Z T S .  These devices can potentially result in significant savings, but they 
have not been implemented in the code experimented with in Section 6. 

5.2 A Primal Conjugate Gradient Method 
Another approach for approximately solving the subspace problem (5.5) is to apply the conjugate 
gradient method to the positive definite linear system 

(5.13) 

and stop the iteration when a boundary is encountered or when the residual is small enough. 
Note that the accuracy of the solution controls the rate of convergence of the algorithm, once the 
correct active set is identified, and should therefore be chosen with care. We follow Conn, Gould, 
and Toint [8] and stop the conjugate gradient iteration when the residual i: of (5.13) satisfies 

We also stop the iteration at a bound when a conjugate gradient step is about to violate a bound, 
thus guaranteeing that (5.6) is satisfied. The conjugate gradient method is appropriate here since 
almost all of the eigenvalues of are identical. 
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We now describe the conjugate gradient method and give its operation counts. Note that the 
effective number of variables is t ,  the number of free variables. Given Bk, the following procedure 
computes an approximate solution of (5.5). 

The Conjugate  Gradient Method  

1. i := ic computed by (5.4) 

2. p := -i, d^ := 0, and p2 := i*i: 

3.  Stop if 11i11 < min(O.1, m)IIicII 

4. cyl := max(a : i 5 
5. q := B k p  

6. a2 := pz /pTq  

7 .  If cy2 > cy1 set d  ̂ := 2 + a l p  and stop; 

((2m + 1)t + O(m2) operations) 

( t  operations) 

+ d^ + a p  5 C> ( t  operations) 

(4mt operations) 

(t operations) 

other wise corn pu t e: 

0 d ^ : = d + a 2 p  ( t  operations) 
i; := i; + a2q ( t  operations) 
p 1  := p2; p2 = iTi; p := p2 jp1  

0 p := -i +- p p  
0 go to 3 

( t  operations) 
( t  operations) 

The matrix-vector multiplication of Step 5 should be performed as described in [6]. The total 
operation count of this conjugate gradient procedure is approximately 

(2m + 2)t  + (4m + 6 ) t  x citer + O ( m 2 ) ,  (5.14) 

where citer is the number of conjugate gradient iterations. If we compare this with the cost 
of the primal direct method (5.12), for t >> m, the direct method seems more efficient unless 
citer 5 m/2. Note that the costs of both methods increase as the number of free variables t 
becomes larger. Since the limited-memory matrix Bk is a rank 2m correction of the identity 
matrix, the termination properties of the conjugate gradient method guarantee that the subspace 
problem will be solved in at  most 2m conjugate gradient iterations. 

We point out that the conjugate gradient iteration could stop at  a boundary even when the 
unconstrained solution of the subspace problem is inside the box. Consider, for example, the 
case when the unconstrained solution lies near a corner and the starting point of the conjugate 
gradient iteration lies near another corner along the same edge of the box. Then the iterates 
could soon fall outside of the feasible region. This example also illustrates the difficulties that 
the conjugate gradient approach can have on nearly degenerate problems ill]. 
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5.3 

Since it often happens that the number of active bounds is small relative to the size of the 
problem, it should be efficient to handle these bounds explicitly with Lagrange multipliers. Such 
an approach is often referred to as a dual or a range space method (see [15]). 

A Dual Method for Subspace Minimization 

We will write 
x z x k $ d  

and restrict X k  + d to  lie on the subspace of free variables at xc  by imposing the condition 

(Recall that A k  is the matrix of constraint gradients.) Using this notation, we formulate the 
subspace problem as 

(5.15) 
(5.16) 
(5.17) 

We first solve this problem without the bound constraint (5.17). The optimatity conditions for 
(5.15)-(5.16) are 

(5.18) 
(5.19) 

Premultiplying (5.18) by A z H k ,  where f l k  is the inverse of Bk, we obtain 

and using (5.19), we obtain 
( A z H k & ) X *  = - A T a k g k  - b k .  (5.20) 

Since the columns of A k  are unit vectors and A k  has full column rank, we see A E H k A k  is a 
principal submatrix of H k .  Thus, (5.20) determines A', and hence d" is given by 

(5.21) 

(In the special case where there are no active constraints, we simply obtain B k d "  = - g k . )  If the 
vector x k  +d* violates the bounds (5.17), we backtrack to the feasible region dong the line joining 
this infeasible point and the generalized Cauchy point xc. 

The linear system (5.20) can be solved by the Sherman-Morrison-Woodbury formula. Using 
the inverse limited-memory BFGS matrix (3.7), and recalling the identity A z A k  = I ,  we obtain 
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(We have again omitted the subscripts of M , W  and 8 for simplicity.) Applying the Sherman- 
Morrison-Woodbury formula, we obtain 

(AzHkAk)-l  = 8I - OA$W(I+ 8&IWTAkArW)-'&WTAk0. (5.22) 

Given Q k ,  a set of active variables at zc that determines the matrix of constraint gradients 
Ak, and an inverse limited-memory BFGS matrix Hk, the following procedure implements the 
dual approach just described. Let us recall that t denotes the number of free variables, and 
let us define t ,  = n - t ,  so that t ,  denotes the number of active constraints at zc. As before, 
the operation counts given below include only multiplications and divisions, and rn denotes the 
number of corrections stored in the limited memory matrix. 
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w := ii;iw + v 

e d* := - Q ( A ~ X *  + gk) + FVW 
(2m operations) 

((2m + 1)n operations) 

Backtrack if necessary: 

Compute a* = m a  {a : 1; 5 2, + a ( 2 k  + d' - 2') 5 U i ,  i E F} 

0 Set Z = 2, + a*(zk + d* - 2'). 

Since the vectors S T g k  and Y T g k  have been computed while updating Elk [6], they can be 

The total number of operations of this procedure, when no bounds are active ( t ,  = 0), is 

( t  operations) 

( t  operations) 

saved so that the product W T g k  requires no further computation. 

(2m + 1). + O(m2). If t ,  bounds are active, 

(2m + 3). + gmt,  + 2m2t, + 0 ( ~ 3 )  

operations are required to compute the unconstrained subspace solution. By comparison, if 
implemented as described above, the direct primal method requires 2m2t + 6mt + 4t + O(m3) 
operations for the subspace minimization. These figures indicate that the dual method would be 
less expensive when the number of bound variables is much less than the number of free variables. 

However, this comparison does not take into account the devices for saving costs in the 
computation of inner products discussed at the end of Section 5.1. Similarly, in the dual case, the 
cost of computing r?lTAkAzw could be reduced by updating this matrix from one iteration to the 
next and, if t ,  > n - t,, by computing the matrix mTZ~ZrT?I  first, and subtracting from wTm. 
Such devices would require a more complex implementation, but might reduce the difference in 
cost between the primal and dual approaches. In fact, the primal and dual approaches have more 
in common than appears here, in that the matrix ( I  - ~ M W T Z Z T W ) - ' M  appearing in (5.10) 
can be shown to be identical to the matrix ( I  + 6@wTAkA%r;i/)-'@ in (5.22). 

6 Numerical Experiments 
We have tested our limited-memory algorithm using the three options for subspace minimiza- 
tion (the direct primal, primal conjugate gradient, and dual methods) and compared the results 
with those obtained with the subroutine SUBMIN of LANCELOT [lo] using partitioned BFGS 
updating. Both our code and LANCELOT were terminated when 

IIP(.k - gk, I, u )  - x k l l w  < lo-'. (6.1) 

(Note from (2.2) that P(sk  - gk, I ,  u )  - X k  is the projected gradient.) The algorithm we tested is 
given as follows. 

Bound L-BFGS Algorithm 
Choose a starting point 20, and an integer rn that determines the number of limited-memory 
corrections stored. Define the initial limited-memory matrix to be the identity, and set k := 0. 
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1. Xf the convergence test (6.1) is satisfied, stop. 

2. Compute the Cauchy point by Algorithm CP. 

3. Compute a search direction d k  by the direct primal method, the conjugate gradient method, 
or the dual method. 

4. Using a backtracking line search, starting from the unit steplength, compute a steplength 
x k  such that 2k+l = 2k + X k d k  Satisfies (2.5) with a = ioq4. 

5. Compute Vf(Zk+l) .  

6. If Y k  satisfies (3.9) with eps= lo-', add Sk and yk to s k  and Yk. If more than m updates 
are stored, delete the oldest column from Sk and Y k .  

Our code is written in double-precision Fortran 77. For the heapsort, during the generalized 
Cauchy point computation, we use the Harwell routine KB12AD written by Gould [13]. The 
backtracking line search was performed by the routine LNSRCH of Dennis and Schnabel [12]. 
For more details on how to update the limited-memory matrices in Step 7, see [SI. When testing 
the routine SUBMIN of LANCELOT [lo] we used the default options and BFGS updating. 

We selected seven problems, two bound-constrained quadratic optimization problems from 
the MINPACK-2 collection [2], and five nonlinear problems from the CUTE collection [4], to 
test the algorithms. To study a variety of cases, we tightened the bounds on several problems, 
resulting in more active bounds at the solutions of these problems. Table 1 lists the test problems 
and the bounds added to those already given in the specification of the problem. The number 
of variables is denoted by n, and the number of bounds active at the solution by n,. We note 
that in those problems without active bounds at  the solution (n, = 0), some bounds may become 
active during the iteration. 
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Table 1: Test Problems 

Problem 
EDENSCH 
EDENSCH 
EDENSCH 
EDENSCH 
EDENSCH 
LMINSURF 
LMINSURF 
LMINSURF 
LMINSURF 
PENALTY 1 
PENALTY 1 
PENALTY 1 
PENALTY 1 
RAYBENDL 
RAYBENDL 
ORTHREG 
TORSION 
JOURNAL 

Variant 
1 
2 
3 
4 
5 
1 
2 
3 
4 
1 
2 
3 
4 
1 
2 
1 
1 
1 

- 
n 

2000 
2000 
2000 
2000 
2000 
1024 
1024 
1024 
1024 
1000 
1000 
1000 
1000 
44 
44 
133 
1024 
1024 - 

na 

0 
1 

667 
999 
100 
124 
147 
172 
227 

0 
0 

334 
500 
4 
6 
0 

320 
330 

- - 

- 

Reference 
CUTE [4] 

n 

n 

n 

n 

n 

n 

n 

n 

n 

n 

n 

n 

n 

n 

n 

MINPACK-2 [2] 
MINPACK-2 [2] 

Additional Bounds 
none 
[0, 1.51'4 odd i 

[0,0.99] V odd i 
[0,0.5lV odd i 
none 
[2, lo] V odd i 
[5,10] V odd i 
[5.5,6] V i  
none 
[0,1] V odd i 

[ O . l , l ] V  odd i 
none 

none 
none 
none 

[-1, 0.51 i = 4,7,10, ... 

[0.1,1] i = 4,7,10, ... 

[2,95] v i 

The results of our numerical tests are given in Table 2. All computations were performed 
on a Sun SPARCstation 2 with a 40-MHz CPU and 32-MB memory. In every run a3l methods 
converged to the same solution point; in fact, this was one requirement in the selection of the 
test problems. The number of corrections stored in the limited-memory method was m = 4. We 
record the number of iterations (iter), the number of inner conjugate gradient iterations (cg) for 
those methods that use them, and the total CPU time (time). A * indicates that  the convergence 
tolerance (6.1) was not met. 
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Table 2: Test Results of 3 Version of the New Limited-Memory Method with rn = 4 and 
LANCELOT’S Subroutine SUBMIN using BFGS Updating 

Problem Variant Primal Dual CG LANCELOTIBFGS 
iter/ time iter/ time iter/cg/ time iterlcgltime 

EDENSCH 2 17115.4 17110.9 201 64120.7 62/105/241.8 
EDENSCH 3 16111.2 16111.5 15/40/10.2 531 19/33.8* 
EDENSCH 4 1519.21 15112.4 16/42/10.2 32116116.9 
EDENSCH 5 1217.18 1219.6 1212416.22 15/3/7.5 
LMINSURF 1 166176.4 166162.3 168/1219/149 29516171 177.2 
LMINSURF 2 4201213 403/ 141 430/2312/309 1121499185.6 

EDENSCH 1 31137.1 26112.1 30/115/35.2 41141128.9 

LMINSURF 3 4741239 4621165 542/2908/381 921444175.5 
LMINSURF 4 107152.8 107145.4 126/577/75.2 431297134.9 

PENALTY 1 2 66130.4 61/15 591 158p5.8 551513197.1 
PENALTY 1 1 96141.1 97121.5 981295145.8 471554173.2 

PENALTY 1 3 30111.3 30/10.1 3015719.2 33/0/41.5 
PENALTY 1 4 30110.9 30112 30/58/8.9 32/0/30.3 
RAY B EN D L 1 1179140.9 976121.1 1733113755192.8 895122645165 
RAY BEND L 2 1425153.1 998124.5 1737113137193.2 894120468157 
ORTHREG 1 266119.3 442114.5 26211504127.8 1 141 16418.4 

JOURNAL 1 132175.5 120154.9 155/660/91.7 81116116.54 
TORSION 1 57127.7 55127.1 591329139.9 11/94/15.1 

The test results indicate that the dual method was the fastest of the three subspace mini- 
mization approaches in most cases. This is to  be expected for this implementation, given that 
the number of active bounds at the solution was always less than n/2. The differences in the 
number of iterations required by the direct primal and dual methods are due to rounding errors. 
We note also that the direct primal method usually had a running time either close to  or faster 
than that for the conjugate gradient method. In view of the discussion in Section 5.2 and the 
fact that there were usually more than rn/2 = 2 conjugate gradient iterations per outer iteration 
on the average, this is not surprising. 

The tests described here are not intended to establish the superiority of LANCELOT or of 
the new limited-memory algorithm, since these methods are designed for solving different types of 
problems. LANCELOT is tailored for sparse or partially separable problems, whereas the limited 
memory method is well suited for unstructured or dense problems. We use L-ANCELOT simply 
as a benchmark and, for this reason, ran it only with its default settings and did not experiments 
with its various options to  find the one that would give the best results on these problems. Also, 
we used BFGS updating in LANCELOT (as opposed to SR1 updating) to minimize the differences 
with our limited-memory code. However, a few observations on the two methods can be made. 
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The limited-memory method tends to spend less time per iteration than LANCELOT, but in 
many cases requires more iterations. We also observed that LANCELOT is able to identify the 
correct active set sooner. This is likely to be because LANCELOT tends to form a more accurate 
Hessian approximation than the limited-memory matrix. It should be noted that the objective 
function in all these problems has a significant degree of the kind of partial separability that 
LANCELOT is designed to  exploit. However, problem PENALTY 1 was coded so as to prevent 
LANCELOT from exploiting partial separability, which may explain its poor performance on this 
problem. 

For comparison, we also tried the option in LANCELOT using exact Hessians. The results, 
shown in Table 3, indicate that in most cases the number of iterations and the computational 
time decreased significantly. 

Table 3: Results of LANCELOT's subroutine SUBMIN using exact Hessian 

Problem I variant 11 LANCELOT/Exact Hessian 1 
iterlcgltime 

EDENSCH 1 131131 11.8 
EDENSCH 2 1113641 109.4 
EDENSCH 3 13/14/9.1 
EDENSCH 4 12/1R/R 17.2 
EDENSCH 5 9/0/5.0 
LMINSURF 1 2721 53 1 1 138.2 

LMINSURF 4 25/30 1127.7 

PENALTY 1 2 541524192.4 
PENALTY 1 3 33/0/40.9 
PENALTY 1 4 3210 j30.3 

RAYBENDL 2 801951 1.5 

LMINSURF 2 1231512186.7 
LMINSURF 3 991660198.1 

PENALTY 1 1 621 776 1 99.1 

RAYBENDL 1 1081 10912.1 

ORTHREG 1 27/67/2.2 
TORSION 1 11/80/12 
JOURNAL 1 7/177/14.8 

Taking everything together, the new algorithm has most of the efficiency of the unconstrained 
limited-memory algorithm (L-BFGS) [19] together with the capability of handling bounds, at  the 
cost of a significantly more complex code. Like the unconstrained method, the bound limited- 
memory algorithm's main advantages are its low computational cost per iteration, its modest 
storage requirements, and its ability to solve problems in which the Hessian matrices are large, 
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unstructured, dense, nd una railable. It is less likely to  be competitive when an exact Hessian 
is available, or when significant advantage can be taken of sparsity. A well-documented and 
carefully coded implementation of the algorithm described in this paper will soon be available 
and can be obtained by contacting the authors at nocedalQeecs.nwu.edu. 
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mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those. of the 
United States Government or any agency thereof. 
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