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Abstract

We consider gradient descent like algorithms for Support Vector Machine (SVM) training
when the data is in relational form. The gradient of the SVM objective can not be efficiently
computed by known techniques as it suffers from the “subtraction problem”. We first show
that the subtraction problem can not be surmounted by showing that computing any constant
approximation of the gradient of the SVM objective function is #P -hard, even for acyclic joins.
We however circumvent the subtraction problem by restricting our attention to stable instances,
which intuitively are instances where a nearly optimal solution remains nearly optimal if the
points are perturbed slightly. We give an efficient algorithm that computes a “pseudo-gradient”
that guarantees convergence for stable instances at a rate comparable to that achieved by using
the actual gradient. We believe that our results suggest that this sort of stability analysis would
likely yield useful insight in context of designing algorithms on relational data for other learning
problems in which the subtraction problem arises.

1 Introduction

Kaggle surveys [1] show that the majority of learning tasks faced by data scientists involve relational
data. Most commonly the relational data is stored in tables in a relational database. So these data
scientists want to compute something like

Data Science Query = Standard Learning Task(Relational Tables T1, . . . Tm)

However, almost all standard algorithms for standard learning problems assume that the input
consists of points in Euclidean space [18], and thus are not designed to operate directly on rela-
tional data. The current standard practice for a data scientist, confronted with a learning task on
relational data, is:

1. Firstly, convert any nonnumeric categorical data to numeric data. As there are standard
methods to accomplish this [18], and as we do not innovate with respect to this process, we
will assume that all data is a priori numerical, so we need not consider this step.
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2. Secondly, issue a feature extraction query to extract the data from the relational database
by joining together the tables to materialize a design matrix J = T1 ⋊⋉ · · · ⋊⋉ Tm with say N
rows and (d + 1) columns. Each row of this design matrix is then interpreted as a point in
d-dimensional Euclidean space with an associated label.

3. Finally this design matrix J is important into a standard learning algorithm to train the
model.

Thus conceptually, standard practice transforms a data science query to a query of the following
form:

Data Science Query = Standard Learning Algorithm(Design Matrix J = T1 ⋊⋉ · · · ⋊⋉
Tm)

where the joins are evaluated first, and the learning algorithm is then applied to the result. Note that
if each table has n rows, the design matrix J can have as many as nm entries. Thus, independent
of the learning task, this standard practice necessarily has exponential worst-case time and space
complexity as the design matrix can be exponentially larger than the underlying relational tables.
Thus a natural research question is what we call the relational learning question:

The Relational Learning Question:

A. Which standard learning algorithms can be implemented as relational algorithms, which
informally are algorithms that are efficient when the input is in relational form?

B. And for those standard algorithms that are not implementable by a relational algorithms,
is there an alternative relational algorithm that has the same performance guarantee as
the standard algorithm?

C. And if we can’t find an alternative relational algorithm that has the same performance
guarantees to the standard algorithm, is there an alternative relational algorithm that
has some reasonable performance guarantee (ideally similar to the performance guarantee
for the standard algorithm)?

Note that a relational algorithm can not afford to explicitly join the relational tables.
One immediate difficulty that we run into is that if the tables have a sufficiently complicated

structure, almost all natural problems/questions about the design matrix are NP-hard if the data is
in relational form. For example, it is NP-hard to even determine whether or not the design matrix
is empty or not (see for example [22, 33]). Thus, as we want to focus on the complexity of the
learning problems, we conceptually want to abstract out the complexity of the tables. The simplest
way to accomplish this is to primarily focus on instances where the structure of the tables is simple,
with the most natural candidate for “simplicity” being that the join is acyclic. Acyclic joins are
the norm in practice, and are a commonly considered special case in the database literature. For
example, there are efficient algorithms to compute the size of the design matrix for acyclic joins.

Formally defining what an “relational” algorithm is problematic, as for each natural candidate
definition there are plausible scenarios in which that candidate definition is not the “right” defini-
tion. But for the purposes of this paper it is sufficient to think of a “relational” algorithm as one
whose runtime is polynomially bounded in n, m and d if the join is acyclic.
Our Research Question: In this paper we address the relational learning question within the
context of gradient descent algorithms for the classic (soft-margin linear) Support Vector Machine
(SVM) training problem. SVM is identified as one of the five most important learning problems
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in [18], and is covered in almost all introductory machine learning textbooks. Gradient descent is
probably the most commonly used computational technique for solving convex learning optimization
problems [39]. So plan A is to find a relational implementation of gradient descent for the SVM
objective. And if plan A fails, plan B is to find a relational descent algorithm that has the same
performance guarantee as gradient descent. And finally, if both plan A fail and plan B fail, plan C
is to find a relational algorithm that has some other reasonable performance guarantee.

1.1 Background

We now give the minimal background on gradient descent and SVM required to understand our
results.
Gradient Descent: Gradient descent is a first-order iterative optimization method for finding
an approximate minimum of a convex function F : Rd → R, perhaps subject to a constraint the
solution lies in some convex body K. In the G descent algorithm, at each descent step t the current
candidate solution β(t) is updated according to the following rule:

β(t) ← β(t−1) − ηtG(β(t−1)) (1)

where ηt is the step size. In projected G descent, the current candidate solution β(t) is updated
according to the following rule:

β(t) ← ΠK
(
β(t−1) − ηtG(β(t−1))

)
(2)

where ΠK(α) = argminβ∈K ‖α− β‖2 is the projection of the point α to the closest point to α in

K. In (projected) gradient descent, G is ∇F (β(t)), the gradient of F at β(t). There are lots of
variations of gradient descent, including variations on the step size, and variations, like stochastic
gradient descent [39], in which the gradient is only approximated.
SVM training: Conceptually the input to SVM training consists of a collection X = {x1, x2, . . . , xN}
of points in R

d, and a collection Y = {y1, y2, . . . , yN} of associated labels from {−1, 1}. For con-
venience let us rescale the points so that each point in X lies within the hypercube [−1, 1]d. A
feasible solution is a d-dimensional vector β, sometimes called a hypothesis. The objective is
to minimize a linear combination F (β,X, Y ) of the average “hinge” loss function of the points
L(β,X, Y ) = 1

N

∑
xi∈X max(0, 1−yiβxi) plus a regularizer R(β). We will take the regularizer to be

the 2-norm squared of β, as that is a standard choice [18], although this choice is not so important
for our purposes. Thus the objective is to minimize:

F (β,X, Y ) =
1

N

∑

xi∈X
max(0, 1 − yiβxi) + λ||β||22 (3)

Here the loss function measures how well the hypothesis β explains the labels, and one of the
regularizer’s purposes is to prevent overfitting. The λ factor intuitively specifies the amount that
the loss has to decrease to justify an increase in the norm of β. When either X and Y is understood,
for notational convenience, we may drop them from the objective.
Gradient Descent for SMV: In Section A we show that by a straightforward specicialization
of a standard convergence analysis for projected gradient descent to SVM one obtains Theorem 1,
which bounds the number of descent steps needed to reach a solution with a specified relative error.

Theorem 1. Let F (β) be the SVM objective function. Let β∗ = argminβ F (β) be the optimal

solution. Let β̂s = 1
s

∑s−1
t=0 β

(t). Let ηt =
1

8λ
√
dt
. Then if T ≥

(
4d3/2

ǫλF (β̂T )

)2
then projected gradient
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descent guarantees that

F (β̂T ) ≤ (1 + ǫ)F (β∗)

Thus if the algorithm returns β̂ at the first time t where t ≥
(

4d3/2

ǫλF (β̂t)

)2
, then it achieves relative

error at most ǫ.

1.2 Our Results

We start by making some observations about the gradient

∇F = 2λβ − 1

N

∑

i∈L
yixi (4)

of the SVM objective function F . First note the term 2λβ is trivial to compute, so let us focus
on the term G = 1

N

∑
i∈L yixi. Firstly only those points xi that satisfy the additive constraint L

contribute to the gradient. Now let us focus on a particular dimension, and use xik to refer to the
value of point xi in dimension k. Let L−

k = {i | i ∈ L and yixik < 0} denote those points that
satisfy L and whose the gradient in the kth coordinate has negative sign. Conceptually each point
in L−

k pushes the gradient in dimension k up with “force” proportional to its value in dimension
k. Let L+

k = {i | xi ∈ L and yixik > 0} denote those points that satisfy L and whose the gradient
in the kth coordinate has positive sign. And conceptually each point in L+

k pushes the gradient in
dimension k down with “force” proportional to its value in dimension k.

Next we note that G = 1
N

∑
i∈L yixi is what is called a FAQ-AI(1) query in [25, 2]. [25] gives a

relational approximation scheme (RAS) for certain FAQ-AI(1) queries. A RAS is a collection {Aǫ}
of relational algorithms where Aǫ achieve (1+ ǫ)-approximation. The results in [25] can be applied
to obtain a RAS to compute a (1 + ǫ) approximation Ĝ+

k to G+
k = 1

N

∑
i∈L+

k
yixik, and a RAS to

compute a (1 + ǫ) approximation Ĝ−
k to G−

k = 1
N

∑
i∈L−

k
yixik. However, the results in [25] can

not be applied to get a RAS for computing a (1 + ǫ)-approximation to G = G−
k +G+

k , as it suffers
from what [25] calls the subtraction problem. Conceptually the subtraction problem is the fact that
good approximations of scalars a and b are generally insufficient to deduce a good approximation
of a− b. This subtraction problem commonly arises in natural problems, and several examples are
given in [25]. Thus an additional reason for our interest in relational algorithms to compute the
(perhaps approximate) gradient of the SVM objective function is that we want to use it as test case
to see if there is some way that we can surmount/circumvent the subtraction problem, and obtain
a relational algorithm with a reasonable performance guarantee, ideally using techniques that are
applicable to other problems in which this subtraction problem arises.

We start with a rather discouraging negative result that shows that we can not surmount the
subtraction problem in the context of computing the gradient of the SVM objective problem. In
particular, we show in Section 2 that computing an O(1) approximation to the partial derivative in
a specified specified dimension is #P -hard, even for acyclic joins. This kills plan A as a relational
algorithm to compute the gradient would imply P = #P . This also makes it hard to imagine plan
B working out since, assuming P 6= #P , a relational algorithm can’t even be sure that it is even
approximately headed in the direction of the optimal solution, and thus its not reasonable to expect
that we could find a relational algorithm to compute some sort of “pseudo-gradient” that would
guarantee convergence on all instances.

Thus it seems we have no choice but to fall back to plan C. That is, we have to try to circumvent
(not surmount) the subtraction problem. After some reflection, one reasonable interpretation of
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our #P -hardness proof is that it shows that computing the gradient is hard on unstable instances.
In this context, intuitively an instance is stable if a nearly optimal solution remains nearly optimal
if the points are perturbed slightly. Intuitively one would expect real world instances, where there
is a hypothesis β that explains the labels reasonably well, to be relatively stable (some discussion
of the stability of SVM instances can be found in [16]). And for instances where there isn’t a
hypothesis that explains the labels reasonably well, it probably doesn’t matter what hypothesis the
algorithm returns, as it will likely be discarded by the data scientist anyways. Thus, our plan C
will be to seek a gradient descent algorithm that has a similar convergence guarantee to gradient
descent on stable instances.

Long story short, the main result of this paper is that this plan C works out. That is we give
a relational algorithm that computes a “pseudo-gradient” that guarantees convergence for stable
instances at a rate comparable to that achieved by using the actual gradient. The algorithm design
can be found in Section 3, and the algorithm analysis can be found in Section 4. Postponing for
the moment our formal definition of stability, we state our main result in Theorem 2. The reader
should compare Theorem 2 to the analysis of gradient descent in Theorem 1.

Theorem 2. Let X be an (α, δ, γ)-stable SVM instance formed by an acyclic join. Let β∗ =
argminβ F (β) be the optimal solution. Then there is a relational algorithm that can compute

a pseudo-gradient in time O(mǫ2 (m
3 log2(n))2(d2mn log(n))), where ǫ = min( δ8 , α). After T =(

256d3/2

λδF (βa,Xa)

)2
iterations of projected descent using this pseudo-gradient there is a relational al-

gorithm that can compute in time O( 1
ǫ2
(m3 log2(n))2(d2mn log(n))) a hypothesis β̂ such that:

F (β̂,X) ≤ (1 + γ)F (β∗,X)

Main Takeaway Point: In a broader context, we believe that our results suggest that this
sort of stability analysis would likely yield useful insight in context of designing relational
algorithms for other learning problems in which the subtraction problem arises.

1.3 Related Results

Relational algorithms are known for certain types of Sum of Sums (SumSum) and Sum of Products
(SumProd) queries. In particular the Inside-Out algorithm [6] can evaluate a SumProd query in
time O(md2nh log n), where m is the number of tables, d is the number of columns, and h is
the fractional hypertree width [23] of the query. Note that h = 1 for the acyclic joins, and thus
Inside-Out is a polynomial time algorithm for acyclic joins. One can reduce SumSum queries to m
SumProd queries [2], and thus they be solved in time O(m2d2nh log n). The Inside-Out algorithm
builds on several earlier papers, including [9, 21, 27, 23].

SumSum and SumProd queries with additive inequalites was fist studied in [2]. [2] gave an
algorithm with worst-case time complexity O(md2nm/2 log n). So this is better than the standard
practice of forming the design matrix, which has worst-case time complexity Ω(dnm). Different
flavors of queries with inequalities were also studied [26, 28, 5]. [25] showed that computing even
very simple types of SumSum and SumProd queries with a single inequality is NP-hard. But
an RAS for special types queries is introduced in [25]. The algorithm in [25] can obtain (1 + ǫ)
approximation for problems such as counting the number of rows on one side of a hyperplane in
time O( 1

ǫ2
(m3 log2(n))2(d2mnh log(n))).

Algorithms for linear/polynomial regression on relational data are given in [38, 3, 4, 30, 31] and
an algorithm for k-means clustering on relational data is given in [19].
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Stability analysis, similar in spirit to our results, has been consider before in clustering prob-
lems [37, 17, 32, 7, 13, 20, 29, 36, 10, 12, 14]. For example, the NP -hard k-means, k-medians
and k-centers clustering problems are polynomially solvable for instances in which changing the
distances of the points by a multiplicative factor of at most 2 does not change the optimal solu-
tion [10, 12, 14]

SVM is discuss in covered in almost every introductory machine learning textbook, for example
[18]. Optimization methods for learning problems, including variations of gradient descent, are
discussed in [39]. A overview of online convex optimization, which we use in our results, can be
found in [15, 24].

2 Hardness of Gradient Approximation

Lemma 3. It #P hard to O(1)-approximate the partial derivative of the SVM objective function
in a specified dimension.

Proof. We reduce the decision version of the counting knapsack problem to the problem of ap-
proximating the gradient of SVM. The input to the decision counting knapsack problem is a set of
weights W = {w1, w2, . . . , wm}, a knapsack size L, and an integer k. The output of the problem is
whether there are k different combinations of the items that fit into the knapsack.

We create m+1 tables, each with two columns. The columns of the first m table are (Key, Ei)
for Ti and the rows are

Ti = {(1, 0), (1, wi/L), (0, 0)}.
The last table has two columns (Key,Value), and it has two rows (1, 1), (0,−k). Note that if we
take the join of these tables, there will be m+ 2 columns: (Key,Value, E1, E2, . . . , Em).

Let β = (0, 0, 1, 1, . . . , 1) and λ = 0, so β is 0 on the columns Key and Value and 1 everywhere
else. Then we claim, if the gradient of F on the second dimension (Value) is non-negative, then
the answer to the original counting knapsack is true, otherwise, it is false.

To see the reason, consider the rows in J : there are 2m rows in the design matrix that have
(1, 1) in the first two dimensions and all possible combinations of the knapsack items in the other
dimensions. More precisely, the concatenation of (1, 1) and wS for every S ∈ [m] where wS is the
vector that has wi/L in the i-th entry if item i is in S or 0 otherwise. Further, J has a single special
row with values (0,−k, 0, 0, . . . , 0). Letting G2 be the gradient of SVM on the second dimension
(column Value), we have,

G2 =
∑

x∈J :1−βx≥0

x2

For the row with Key = 1 for each S ∈ [m], we have 1 − βx = 1 −∑i∈S wi/L ≥ 0 if and only
if the items in S fits into the knapsack and x2 = 1. For the single row with Key = 0, we have
1− βx = 1, and its value on the second dimension is x2 = k. Therefore,

G2 = CL(w1, . . . , wm)− k

where CL is the number of subsets of items fitting into the knapsack of size L. This means if we
could approximate the gradient up to any constant factor, we would be able to determine if G2 is
positive or negative, and as a result we would be able to answer the (decision version of) counting
knapsack problem, which is #P -hard.
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3 Algorithm Design

3.1 Review of Row Counting with a Single Additive Constraint

We now summarize algorithmic results from [25] for two different problems, that we will use as a
black box.

In the first problem the input is a collection T1, . . . , Tm of tables, a label ℓ ∈ {−1,+1}, and an
additive inequality L of the form

∑
j∈[d] gj(xj) ≥ R, where each function gj can be computed in

constant time. The output consists of, for each j ∈ [d] and e ∈ D(j), where D(j) is the domain
of column/feature j, the number Cℓ

j,v of rows in the design matrix J = T1 ⋊⋉ . . . ⋊⋉ Tm that satisfy
constraint L, that have label ℓ, and that have value v in column j. [25] gives a relational algorithm,
which we will call the Row Counting Algorithm, that computes a (1 + ǫ)-approximation for each
such Ĉℓ

j,v to each Cℓ
j,v, and that runs in time O(m

ǫ2
(m3 log2(n))2(d2mnh log(n)))

In the second problem the input is a collection T1, . . . , Tm of tables, a label ℓ ∈ {−1,+1}, and
an expression in the form of

∑
j∈[d] gj(xj), where the gj functions can be computed in constant

time. The output consists of, for each k ∈ [0, log1+ǫN ], maximum value of Hk such that the
number of points in the design matrix J = T1 ⋊⋉ . . . ⋊⋉ Tm with label ℓ ∈ {−1, 1} satisfying
the additive inequality

∑
j∈[d] gj(xj) ≥ Hk is at least ⌊(1 + ǫ)k⌋. [25] gives an algorithm for

this problem, which we will call the Generalized Row Counting Algorithm, that runs in time
O( 1

ǫ2
(m3 log2(n))2(d2mnh log(n))). Using the result of the algorithm, for any scalar distance H, it

is possible to obtain a row count N̂(H) such that N(H)/(1 + ǫ) ≤ N̂(H) ≤ N(H), where N(H) is
the number of points in the design matrix with label ℓ satisfying the inequality

∑
j∈[d] gj(xj) ≥ Hk.

3.2 Overview of Our Approach

Recall from the introduction that the difficulty arises when a Ĝ+
k is approximately equal to −Ĝ−

k .
In this case, it would seem that by appropriately perturbing one of L−

1 or L+
1 by a relatively

small amount one could force G = Ĝ− + Ĝ+ for this perturbed instance. In which case, if we
used 2λβ(t) + (Ĝ− + Ĝ+) as the pseudo-gradient, then it would be the true gradient for a slightly
perturbed instance. However, this isn’t quite right, as there is an additional issue. If we perturb
a point xi, then the sign of 1 − yiβxi may change, which means this point’s contribution to the
gradient may discontinuously switch between 0 and −yixi. To address this issue, when computing
the pseudo-gradient, we use a new instanceX ′ that excludes points that are “close” to the separating
hyperplane 1− yiβxi = 0. That is, X ′ excludes every point that can change sides of the hyperplane
in an ǫ-perturbation of each coordinate. This will allow us to formally conclude that if we used
2λβ(t)+(Ĝ−+ Ĝ+), where Ĝ− and Ĝ+ are defined on X ′, as the pseudo-gradient, then it would be
the true gradient for a slightly perturbed instance. After the last descent step, we choose the final
hypothesis to be the ǫ-perturbation of any computed hypothesis β(t), t ∈ [0, T ] that minimizes the
SVM objective.

In the analysis we interpret the sequence β(0), β(1), . . . , β(T ) as solving an online convex opti-
mization problem, and apply known techniques from this area.

3.3 Pseudo-gradient Descent Algorithm

Firstly, in linear time it is straight-forward to determine if the points in X lie in [−1, 1], and if not,
to rescale so that they do; This can be accomplished by, for each feature, dividing all the values
of that feature in all of the input tables by maximum absolute value of that feature. The initial
hypothesis β(0) is the origin. For any vector v, let u = |v| be a vector such that its entries are the
absolute values of v, meaning for all j uj = |vj |.
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Algorithm to Compute the Pseudo-gradient:

1. Run the Row Counting Algorithm to compute, for each j ∈ [d] and v ∈ D(j), a (1 + ǫ)
approximation Ĉ−

j,v to C
−
j,v, which is the number of rows in x ∈ J with negative label, satisfying

1 + β(t) · x ≥ ǫ
∣∣β(t)

∣∣ · |x|.

2. Run the Row Counting Algorithm to compute, for each j ∈ [d] and v ∈ D(j), a (1 + ǫ)
approximation Ĉ+

j,v to C+
j,v, which is the number of rows in x ∈ J with positive label, satisfying

1− β(t) · x ≥ ǫ
∣∣β(t)

∣∣ · |x|.

3. For all k ∈ [d], compute Ĝ−
k =

∑
v∈D(k):v<0 v Ĉ−

k,v −
∑

v∈D(k):v≥0 v Ĉ+
k,v .

4. For all k ∈ [d], compute Ĝ+
k =

∑
v∈D(k):v≥0 v Ĉ−

k,v −
∑

v∈D(k):v<0 v Ĉ+
k,v.

5. The pseudo-gradient is then

Ĝ =
Ĝ− + Ĝ+

N
+ λβ(t)

Algorithm for a Single Descent Step: The next hypothesis β(t+1) is

β(t+1) = ΠK(β
(t) − ηt+1Ĝ)

Here ηt =
1

λ
√
dt

and ΠK(β) is the projection of β onto a hypersphere K centered at the origin with

radius
√
d

2λ . Note that ΠK(β) is β if ‖β‖2 ≤
√
d

2λ and
√
d

2λ‖β‖2
β otherwise.

Algorithm to Compute the Final Hypothesis: After T − 1 descent steps, the algorithm calls
the Generalized Row Counting twice for each t ∈ [0, T − 1], with the following inputs:

• ℓ = 1 and additive expression 1− β(t) · xi − ǫ|β(t)| · |xi|

• ℓ = −1 and additive expression 1 + β(t) · xi − ǫ|β(t)| · |xi|

Note that both of these expressions are equivalent to 1− yiβ
(t) · xi− ǫ|β(t)| · |xi|. Let the array H+

be the output for the first call and H− be the output for the second call. Note that H+ and H−

are monotonically decreasing by the the definition of the Generalized Row Counting algorithm. Let
L+ be the largest k such that H+

k ≥ 0 and L− be the largest k such that H−
k ≥ 0. The algorithm

then returns as its final hypothesis β̂, the hypothesis β(t̂) where t̂ is defined by:

t̂ = argmin
t∈[T ]

F̂ (β(t),X) (5)

where

F̂ (β(t),X) =
1

N




L+−1∑

k=0

(1 + ǫ)k(H+
k −H+

k+1) + (1 + ǫ)L
+
H+

L+




+
1

N




L−−1∑

k=0

(1 + ǫ)k(H−
k −H−

k+1) + (1 + ǫ)L
−

H−
L−


+ λ

∥∥∥β(t)
∥∥∥
2

2

(6)

Note that the values L−, L+, H+ and H− in the definition of F̂ , in equation (6), all depend upon
t, which we suppressed to make the notation somewhat less ugly.
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4 Algorithm Analysis

In subsection 4.1 we prove Theorem 5 which bounds the convergence of our project pseudo-gradient
descent algorithm in a rather nonstandard way by applying known results on online convex opti-
mization [15, 24]. In subsection 4.2 we introduce our definition of stability and then prove Theorem
2.

4.1 Perturbation Analysis

Before stating Theorem 5 we need some definitions.

Definition 4.

• A point p is an ǫ-perturbation of point q if every component of p is within (1+ ǫ) factor of the
corresponding component of q. Meaning in each dimension j we have (1− ǫ)q ≤ p ≤ (1 + ǫ)q

• A point set Xa is an ǫ-perturbation of a point set Xb if there is a bijection between Xa and
Xb such that every point in Xa is an ǫ-perturbation of its corresponding point in Xb.

• Let β∗ = argminβ F (β,X) to be the optimal solution at X.

• For any ǫ-perturbation Xa of X, define β∗
a = argminβ F (β,Xa) to be the optimal solution at

Xa.

• For a given hypothesis β, we call a point x with label y close if there is some ǫ-perturbation
x′ of x such that 1− yβx′ < 0; otherwise it is called far. In other words, a point x with label
y is close if 1− yβ · x < ǫ |β| · |x|

Theorem 5. Assume our projected pseudo-gradient descent algorithm ran for T − 1 descent steps.
Then for all hypotheses β ∈ R

d there exist ǫ-perturbations Xa and Xb of X such that

F (β̂,Xa) ≤ (1 + ǫ)F (β,Xb) +
32d3/2

λ
√
T

To prove Theorem 5, our main tool is a result from the online convex optimization literature [15,
24].

Theorem 6. [15, 24] Let g1, g2, ..., gT : Rn → R be G-Lipschitz functions over a convex region K,
i.e., ||∇gt(β)|| ≤ G for all β ∈ K and all t. Then, starting at point β(0) ∈ R

n and using the update
rule of β(t) ← ΠK

(
β(t−1) − ηt∇gt−1(β

(t−1))
)
, with η = D

G
√
t
for T − 1 steps, we have

1

T

T−1∑

t=0

gt(β
(t)) ≤ 1

T

T−1∑

t=0

gt(β
∗) +

2DG√
T

(7)

for all β∗ with ||β(0) − β∗|| ≤ D.

To apply this Theorem 6, we set gt = F (β(t),X(t), Y ), where X(t) is an ǫ-perturbation of X,
such that the pseudo-gradient at X is equal to the true gradient at X(t). We establish the existence
of X(t) in Lemma 7. Thus our projected pseudo-gradient descent algorithm updates the hypothesis
exactly the same as stated in Theorem 5 (assuming that we use the same upper bounds on D and
G). Then in definition 8 we identify the ǫ-permutation Z that minimizes F (β,Z), and then in
Lemma 9 bound the relative error between F̂ (β,X) and F (β,Z). Finally this will allow use in
Lemma 10 and Lemma 11 we show the existence of Xb and Xa, respectively, that will allow us to
conclude the proof of Theorem 5.
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Lemma 7. In every descent step t, the computed pseudo-gradient Ĝ is the exact gradient of
F (β(t),X(t)) for some point set X(t) that is an ǫ-perturbation of X.

Proof. To prove the claim, we show how to find a desired X(t) – this is only for the sake of the
proof and the algorithm doesn’t need to know X(t). We call any point x with label y “far” if it
satisfies the inequality

1− yβ(t) · x ≥ ǫ
∣∣∣β(t)

∣∣∣ · |x| (8)

, otherwise we call the point “close”. Note that for a far point there is no ǫ-perturbation to make the
derivative of the loss function 0. That is, for any point x with label y, if 1−yβ ·x ≥ ǫ

∑
j∈[d] |βj | |xj|,

then we have 1 − yβx′ ≥ 0 for any x′ that is ǫ-perturbation of x. To see this, note that we have
1−yβx′ = 1−∑d

k=1 βkx
′
k ≥ 1−∑d

k=1 (βkxk + |βk| |xk|) ≥ 0 because of x′ being ǫ-perturbation of x.
On the other hand, for all the close points there exists a perturbation x′ such that 1− yβ(t) ·x′ < 0.
We first perturb all of the close points such that they don’t have any effect on the gradient.

Next, we need to show a perturbation of the far points for which the Ĝ is the gradient of the
loss function. Let X+

f and X−
f be the set of far points with positive and negative labels. Let

Xf = X+
f ∪X−

f . We show the perturbation for each dimension k separately. Based on definition

of Ĝ+
k and Ĝ−

k we have:

Ĝ+
k + Ĝ−

k =
∑

v∈D(k)

v Ĉ−
k,v −

∑

v∈D(k)

v Ĉ+
k,v

=
∑

v∈D(k)

v (1± ǫ)C−
k,v −

∑

v∈D(k)

v (1± ǫ)C+
k,v

Note that C+
k,v is the number of points in X+

f with value v in dimension k. Therefore,

Ĝ+
k + Ĝ−

k =
∑

v∈D(k)

v (1± ǫ)C−
k,v −

∑

v∈D(k)

v (1± ǫ)C+
k,v

=
∑

xi∈X−
f

(1± ǫ)xi,k −
∑

xi∈X+
f

(1± ǫ)xi,k

= −
∑

xi∈Xf

(1± ǫ)yixi,k

where the last term is N ∂L(β(t),X(t))

∂β
(t)
k

where X(t) an ǫ-perturbation of X.

Definition 8. Let Z(t) be an ǫ-perturbation of X such that for all zi ∈ Z(t) and for all dimensions
k

zi,k =

{
(1− ǫ)xi,k yiβ

(t)
k ≥ 0

(1 + ǫ)xi,k yiβ
(t)
k < 0

Note that this ǫ-perturbation minimizes F (β(t), Z(t)).

Lemma 9. 1
1+ǫF (β(t), Z(t)) ≤ F̂ (β(t),X) ≤ F (β(t), Z(t)).
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Proof. Consider a value t and let N+(τ) =
∣∣{xi | yi = +1 and 1− β(t) · xi − ǫ

∣∣β(t)
∣∣ · |xi| ≥ τ}

∣∣, and
N−(τ) =

∣∣{xi | yi = −1 and 1 + β(t) · xi − ǫ
∣∣β(t)

∣∣ · |xi| ≥ τ}
∣∣.

Before proving the lemma we prove the following claim: F (β(t), Z(t)) = 1
N

∫∞
τ=0N

+(τ)dτ +
1
N

∫∞
τ=0 N

−(τ)dτ + λ
∥∥β(t)

∥∥2.
Note that based on the definition of Z(t) it is the case that 1 − yiβ

(t) · zi = 1 − yiβ
(t) ·

xi − ǫ
∣∣β(t)

∣∣ · |xi|; therefore, N+(τ) =
∣∣{yi = +1 ∈ Z(t) and 1− yiβ

(t) · zi ≥ τ}
∣∣ and N−(τ) =∣∣{yi = −1 ∈ Z(t) and 1− yiβ

(t) · zi ≥ τ}
∣∣. Hence,

L(β(t), Z(t)) =
1

N

∑

i

max(0, 1 − yiβ · zi) =
1

N

∑

i:1−yiβ·zi≥0

1− yiβ · zi

=
1

N

∑

i:1−yiβ·zi≥0

∫ 1−yiβ·zi

τ=0
dτ =

1

N

∫ ∞

τ=0

∑

i:1−yiβ·zi≥τ

dτ

=
1

N

∫ ∞

τ=0
(N+(τ) +N−(τ))dτ

Therefore,

F (β(t), Z(t)) =
1

N

∫ ∞

τ=0
N+(τ)dτ +

1

N

∫ ∞

τ=0
N−(τ)dτ + λ

∥∥∥β(t)
∥∥∥
2

(9)

The number of points with label ℓ satisfying 1− ℓβ(t) ·xi− ǫ
∣∣β(t)

∣∣ · |xi| ≥ τ for any τ ∈ [Hℓ
k,H

ℓ
k+1) is

in the range [⌊(1+ǫ)k⌋, ⌊(1+ǫ)(k+1)⌋). Therefore, the claim follows by replacing N+(τ) in Equation
(9) with (1 + ǫ)k for all the values of τ ∈ [H+

k ,H+
k+1) and replacing N−(τ) in (9) with (1 + ǫ)k for

all the values of τ ∈ [H−
k ,H−

k+1).

Lemma 10. For all hypothesis β, there exists an ǫ-perturbation Xb of X such that

min
s

F (β(s), Z(s)) ≤ F (β,Xb) +
2DG√

T

Proof. By Theorem 6

1

T

T−1∑

t=0

F (β(t),X(t)) ≤ 1

T

T−1∑

t=0

F (β,X(t)) +
2DG√

T
(10)

Then

min
s

F (β(s), Z(s)) ≤ 1

T

T−1∑

t=0

F (β(t), Z(t)) ≤ 1

T

T−1∑

t=0

F (β(t),X(t)). (11)

The first inequality follows since the minimum is less than the average, and the second inequality
follows from the definition of Z(t). Let u = argmaxt F (β,X(t)), and Xb = X(u). Then

1

T

T−1∑

t=0

F (β,X(t)) ≤ max
t

F (β,X(t)) = F (β,Xb) (12)

Thus, combining lines (10), (11) and (12) we can conclude that:

min
s

F (β(s), Z(s)) ≤ F (β,Xb) +
2DG√

T
(13)

11



Lemma 11. There exists an ǫ-perturbation Xa of X such that

F (β̂,Xa) ≤ (1 + ǫ)min
s

F (β(s), Z(s))

Proof. Let Xa = Z(t̂) where

F (β̂,Xa) ≤ (1 + ǫ)F̂ (β̂,X) By Lemma 9

= (1 + ǫ)min
s

F̂ (β(s),X) By definition of β̂

≤ (1 + ǫ)min
s

F (β(s), Z(s)) By Lemma 9

4.2 Stability Analysis

Our formal definition of stability, which we give in Definition 12 while not unnatural, is surely not
the first natural formalization that one would think of. Our formal definition is more or less forced
on us, which leads to the type of non-traditional approximation achieved in Theorem 5.

Definition 12. An SVM instance X is (α, δ, γ)-stable for δ ≤ 1 if for all Xa and Xb that are
α-perturbations of X it is the case that:

• β∗
a is a (1 + δ) approximation to the optimal objective value at Xb, that is, F (β∗

a,Xb) ≤
(1 + δ)minβ F (β,Xb).

• If βa is (1 + 2δ) approximation to the optimal SVM objective value at Xa then βa is a (1 +
γ) approximation to the optimal SVM objective value at Xb. That is if F (βa,Xa) ≤ (1 +
2δ)minβ F (β,Xa) then F (βa,Xb) ≤ (1 + γ)minβ F (β,Xb)

Proof of Theorem 2. Let ǫ ≤ min(δ/8, α).

F (β̂,Xa) ≤ (1 + ǫ)F (β∗
a ,Xb) +

32d3/2

λ
√
T

Xa and Xb come from Theorem 5

= (1 + ǫ)(1 + δ)F (β∗
a ,Xa) +

32d3/2

λ
√
T

By definition of stability

= (1 + ǫ)(1 + δ)F (β∗
a ,Xa) +

δ

8
F (β̂,Xa) By definition of T

≤ (1 + δ)(1 + ǫ)

1− δ/8
F (β∗

a,Xa) By algebra

≤ (1 + 2δ)F (β∗
a ,Xa) by definition of ǫ

Finally since β̂ is (1 + 2δ) approximate solution at Xa, by the definition of stability, β̂ is a (1 + γ)
approximate solution at X.
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A Analysis of Gradient Descent for SVM

Theorem 13 and Corollary 14 give bounds on the number of iterations on projected gradient descent
to reach solutions with bounded absolute error and bounded relative error, respectively.

Theorem 13. [15, 24] Let K be a convex body and F be a function such that ‖∇F (β)‖2 ≤ G
for β ∈ K. Let β∗ = argminβ∈K F (β) be the optimal solution. Let D be an upper bound on∥∥β(0) − β∗∥∥

2
, the 2-norm distance from the initial candidate solution to the optimal solution. Let

β̂s =
1
s

∑s−1
t=0 β

(t). Let ηt =
D

G
√
t
. Then after T − 1 iterations of projected gradient descent, it must

be the case that

F (β̂T )− F (β∗) ≤ 2DG√
T

Corollary 14. Adopting the assumptions from Theorem 13, if T ≥
(

4DG

ǫF (β̂T )

)2
then

F (β̂T ) ≤ (1 + ǫ)F (β∗)

That is, projected gradient descent achieves relative error ǫ.

The gradient of SVM objective F is

∇F = 2λβ − 1

N
yi
∑

i∈L
xi

where L is the collection {i | βxi ≤ 1} of indices i where xi is currently contributing to the objective.
Note that in this hinge loss function, the gradient for the points on the hyperplane 1−βx = 0 does
not exist, since the gradient is not continuous at this point. In our formulation we have used the
sub-gradient for the points on 1− βx = 0, meaning for a β on the hyperplane 1− βx = 0, we have
used the limit of the gradient of the points that 1− β′x > 0 when β′ goes to β. For all the points
that 1− β′x > 0, the gradient is x; therefore, the limit is also x.

Assume β(0) is the origin and adopt the assumptions of Theorem 13. Then ∇F (β∗) = 0 implies
for any dimension j

∣∣β∗
j

∣∣ =
∣∣∣∣∣

1

2Nλ

∑

i∈L
xij

∣∣∣∣∣ ≤
1

2λ

where the additional subscript of j refers to dimension j. And thus

∥∥∥β(0) − β∗
∥∥∥
2
≤ ‖β∗‖2 ≤

√
dmax

j∈[d]

∣∣β∗
j

∣∣ ≤
√
d

2λ

Thus let us define our convex body K to be the hypersphere with radius
√
d

2λ centered at the origin.
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Thus for β ∈ K,

‖∇F (β)‖2 =

√√√√√
∑

j∈[d]

(
2λβj −

1

N

∑

i∈L
xij

)2

≤

√√√√√
∑

j∈[d]
4(λβj)2 + 2

(
1

N

∑

i∈L
xij

)2

Since (a− b)2 ≤ 2a2 + 2b2

≤ 2λ

√∑

j∈[d]
β2
j +
√
2
1

N

∑

j∈[d]

∑

i∈L
|xij| Since

√∑

i

a2i ≤
∑

i

|ai|

≤
√
d+
√
2d

≤ 4d

Theorem 15. Let the convex body K be the hypersphere with radius
√
d

2λ centered at the origin.
Let F (β) be the SVM objective function. Let β∗ = argminβ F (β) be the optimal solution. Let

β̂s =
1
s

∑s−1
t=0 β

(t). Let ηt =
1

8λ
√
dt
. Then after T −1 iterations of projected gradient descent, it must

be the case that

F (β̂T )− F (β∗) ≤ 4d3/2

λ
√
T

Theorem 1 then follows by a straightforward application of Theorem 15.

B Background

B.1 Fractional edge cover number and output size bounds

In what follows, we consider a conjunctive query Q over a relational database instance I. We use
n to denote the size of the largest input relation in Q. We also use Q(I) to denote the output and
|Q(I)| to denote its size. We use the query Q and its hypergraph H interchangeably.

Definition 1 (Fractional edge cover number ρ∗). Let H = (V, E) be a hypergraph (of some query
Q). Let B ⊆ V be any subset of vertices. A fractional edge cover of B using edges in H is a feasible
solution ~λ = (λS)S∈E to the following linear program:

min
∑

S∈E
λS

s.t.
∑

S:v∈S
λS ≥ 1, ∀v ∈ B

λS ≥ 0, ∀S ∈ E .

The optimal objective value of the above linear program is called the fractional edge cover number
of B in H and is denoted by ρ∗H(B). When H is clear from the context, we drop the subscript H
and use ρ∗(B).

Given a conjunctive query Q, the fractional edge cover number of Q is ρ∗H(V) where H = (V, E)
is the hypergraph of Q.
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Theorem 16 (AGM-bound [11, 23]). Given a full conjunctive query Q over a relational database
instance I, the output size is bounded by

|Q(I)| ≤ nρ∗,

where ρ∗ is the fractional edge cover number of Q.

Theorem 17 (AGM-bound is tight [11, 23]). Given a full conjunctive query Q and a non-negative
number n, there exists a database instance I whose relation sizes are upper-bounded by n and
satisfies

|Q(I)| = Θ(nρ∗).

Worst-case optimal join algorithms [40, 34, 35] can be used to answer any full conjunctive query
Q in time

O(|V| · |E| · nρ∗ · log n). (14)

B.2 Tree decompositions, acyclicity, and width parameters

Definition 2 (Tree decomposition). Let H = (V, E) be a hypergraph. A tree decomposition of H is
a pair (T, χ) where T = (V (T ), E(T )) is a tree and χ : V (T )→ 2V assigns to each node of the tree
T a subset of vertices of H. The sets χ(t), t ∈ V (T ), are called the bags of the tree decomposition.
There are two properties the bags must satisfy

(a) For any hyperedge F ∈ E , there is a bag χ(t), t ∈ V (T ), such that F ⊆ χ(t).

(b) For any vertex v ∈ V, the set {t | t ∈ V (T ), v ∈ χ(t)} is not empty and forms a connected
subtree of T .

Definition 3 (acyclicity). A hypergraph H = (V, E) is acyclic iff there exists a tree decomposition
(T, χ) in which every bag χ(t) is a hyperedge of H.

When H represents a join query, the tree T in the above definition is also called the join tree
of the query. A query is acyclic if and only if its hypergraph is acyclic.

For non-acyclic queries, we often need a measure of how “close” a query is to being acyclic. To
that end, we use width notions of a query.

Definition 4 (g-width of a hypergraph: a generic width notion [8]). Let H = (V, E) be a hyper-
graph, and g : 2V → R

+ be a function that assigns a non-negative real number to each subset of
V. The g-width of a tree decomposition (T, χ) of H is maxt∈V (T ) g(χ(t)). The g-width of H is the
minimum g-width over all tree decompositions of H. (Note that the g-width of a hypergraph is a
Minimax function.)

Definition 5 (Treewidth and fractional hypertree width are special cases of g-width). Let s be the
following function: s(B) = |B| − 1, ∀V ⊆ V. Then the treewidth of a hypergraph H, denoted by
tw(H), is exactly its s-width, and the fractional hypertree width of a hypergraph H, denoted by
fhtw(H), is the ρ∗-width of H.

From the above definitions, fhtw(H) ≥ 1 for any hypergraph H. Moreover, fhtw(H) = 1 if and
only if H is acyclic.
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B.3 Algebraic Structures

In this section, we define some of the algebraic structures used in the paper. First, we discuss the
definition of a monoid. A monoid is a semi-group with an identity element. Formally, it is the
following.

Definition 18. Fix a set S and let ⊕ be a binary operator S × S → S. The set S with ⊕ is a
monoid if (1) the operator satisfies associativity; that is, (a⊕ b)⊕ c = a⊕ (b⊕ c) for all a, b, c ∈ S
and (2) there is identity element e ∈ S such that for all a ∈ S, it is the case that e⊕ a = a⊕ e = e.

A commutative monoid is a moniod where the operator ⊕ is commutative. That is a⊕ b = b⊕a
for all a, b ∈ S.

Next, we define a semiring.

Definition 19. A semiring is a set R with two operators ⊕ and ⊗. The ⊕ operator is referred to
as addition and the ⊗ is referred to as multiplication. This is a semiring if,

1. it is the case that R and ⊕ are a commutative monoid with 0 as the identity.

2. R and ⊗ is a monoid with identity 1.

3. the multiplication distributes over addition. That is for all a, b, c ∈ R it is the case that
a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) and (b⊕ c)⊗ a = (b⊗ a)⊕ (c⊗ a).

4. the 0 element annihilates R. That is, a⊗ 0 = 0 and 0⊗ a = 0 for all a ∈ R.

A commutative semiring is a semiring where the multiplication is commutative. That is, a⊗b =
b⊗ a for all a, b ∈ S.

B.4 FAQ-AI Query

The input to FAQ-AI problem consists of three components:

• A collection of relational tables T1, . . . Tm with real-valued entries. Let J = T1 ⋊⋉ T2 ⋊⋉ · · · ⋊⋉
Tm be the design matrix that arises from the inner join of the tables. Let n be an upper
bound on the number of rows in any table Ti, let N be the number of rows in J , and let d be
the number of columns in J .

• An FAQ Q(J) that is either a SumProd query or a SumSum query. We define a SumSum
query to be a query of the form:

Q(J) =
⊕

x∈J

d⊕

i=1

Fi(xi)

where (R,⊕, I0) is a commutative monoid over the arbitrary set R with identity I0. We define
a SumProd query to be a query of the form:

Q(J) =
⊕

x∈J

d⊗

i=1

Fi(xi)

where (R,⊕,⊗, I0, I1) is a commutative semiring over the arbitrary set R with additive iden-
tity I0 and multiplicative identity I1. In each case, xi is the entry in column i of x, and Fi is
an arbitrary function with range R.
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• A collection L = {(G1, L1), . . . (Gb, Lb)} where Gi is a collection {gi,1, gi,2, . . . gi,d} of d func-
tions that map the column domains to the reals, and each Li is a scalar.

FAQ-AI(k) is a special case of FAQ-AI when the cardinality of L is at most k.
The output for the FAQ-AI problem is the result of the query on the subset of the design matrix

that satisfies the additive inequalities. That is, the output for the FAQ-AI instance with a SumSum
query is:

Q(L(J)) =
⊕

x∈L(J)

d⊕

i=1

Fi(xi) (15)

And the output for the FAQ-AI instance with a SumProd query is:

Q(L(J)) =
⊕

x∈L(J)

d⊗

i=1

Fi(xi) (16)

Here L(J) is the set of tuples x ∈ J that satisfy all the additive inequalities in L, that is for all
i ∈ [1, b],

∑d
j=1 gi,j(xj) ≤ Li, where xj is the value of coordinate j of x.

We now illustrate how some of the SVM related problems can be reduced to FAQ-AI(1). First
consider the problem of counting the number of negatively labeled points correctly classified by a
linear separator. Here each row x of the design matrix J conceptually consists of a point in R

d−1,
whose coordinates are specified by the first d − 1 columns in J , and a label in {1,−1} in column
d. Let the linear separator be defined by β ∈ R

d−1. A negatively labeled point x is correctly
classified if

∑d−1
i=1 βixi ≤ 0. The number of such points can be counted using SumProd query with

one additive inequality as follows: ⊕ is addition, ⊗ is multiplication, Fi(xi) = 1 for all i ∈ [d − 1],
Fd(xd) = 1 if xd = −1, and Fd(xd) = 0 otherwise, g1,j(xj) = βjxj for j ∈ [d − 1], g1,d(xd) = 0,
and L1 = 0. Next, consider the problem of finding the minimum distance to the linear separator
of a correctly classified negatively labeled point. This distance can be computed using a SumProd
query with one additive inequality as follows: ⊕ is the binary minimum operator, ⊗ is addition,
Fi(xi) = βixi for all i ∈ [d − 1], Fd(xd) = 1 if xd = −1, and Fd(xd) = 0 otherwise, g1,j(xj) = βjxj
for j ∈ [d− 1], g1,d(xd) = 0, and L1 = 0.
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