
ar
X

iv
:2

21
1.

04
64

3v
1

 [
cs

.D
S]

 9
 N

ov
 2

02
2

Faster Walsh-Hadamard Transform and Matrix Multiplication over

Finite Fields using Lookup Tables

Josh Alman*

November 10, 2022

Abstract

We use lookup tables to design faster algorithms for important algebraic problems over finite fields.

These faster algorithms, which only use arithmetic operations and lookup table operations, may help to

explain the difficulty of determining the complexities of these important problems. Our results over a

constant-sized finite field are as follows.

The Walsh-Hadamard transform of a vector of lengthN can be computed usingO(N logN/ log logN)
bit operations. This generalizes to any transform defined as a Kronecker power of a fixed matrix. By

comparison, the Fast Walsh-Hadamard transform (similar to the Fast Fourier transform) uses O(N logN)
arithmetic operations, which is believed to be optimal up to constant factors.

Any algebraic algorithm for multiplying two N ×N matrices using O(Nω) operations can be con-

verted into an algorithm using O(Nω/(logN)ω/2−1) bit operations. For example, Strassen’s algorithm

can be converted into an algorithm using O(N2.81/(logN)0.4) bit operations. It remains an open prob-

lem with practical implications to determine the smallest constant c such that Strassen’s algorithm can

be implemented to use c · N2.81 + o(N2.81) arithmetic operations; using a lookup table allows one to

save a super-constant factor in bit operations.

*Columbia University. josh@cs.columbia.edu.

http://arxiv.org/abs/2211.04643v1

1 Introduction

When N is a power of 2, the Walsh-Hadamard transform is defined recursively by H2 =

[

1 1
1 −1

]

, and

HN =

[

HN/2 HN/2

HN/2 −HN/2

]

.

A common task in many areas of computation is to compute the length-N Walsh-Hadamard transform,

i.e., given as input a length-N vector v ∈ F
N , compute the vector HNv. The most straightforward al-

gorithm would compute this using O(N2) arithmetic operations, but the fast Walsh-Hadamard transform

(FWHT) algorithm can compute this using only O(N logN) arithmetic operations. It is widely believed

that Ω(N logN) arithmetic operations are necessary, and a substantial amount of work has gone into prov-

ing this in restricted arithmetic models1, and studying conjectures which would imply this2; see, for instance,

the survey [Lok09].

A natural question arises: why restrict ourselves to arithmetic models of computation? The Walsh-

Hadamard transform is commonly used in practice, and speedups using non-arithmetic operations could

be impactful. Nonetheless, there has not been much work on non-arithmetic algorithms for the Walsh-

Hadamard transform.

A related problem is matrix multiplication: given as input two n × n matrices, compute their product.

The asymptotically fastest known algorithm is algebraic, and uses O(n2.373) arithmetic operations. That

said, non-algebraic algorithmic techniques, especially lookup tables, have been used to design more practi-

cal, ‘combinatorial’ algorithms for a variant on this problem called Boolean matrix multiplication3 since the

work of [ADKF70]. These techniques save logarithmic factors over the straightforward O(n3) time algo-

rithm – the best algorithm along these lines runs in n3 · (log logn)O(1)

(log n)3
time [Yu18] in the standard word RAM

model – but they are considered more practical than the algebraic algorithms (which save polynomial factors

in n). Lookup tables have also been used in practice to approximately multiply matrices [JPK+20, BG21].

In this paper, we show that lookup tables can be used to speed up the asymptotically fastest known algo-

rithms for both the Walsh-Hadamard transform and (exact) matrix multiplication over finite fields. We will

show, for instance, that only o(N logN) bit operations suffice to compute the length-N Walsh-Hadamard

transform over finite fields when we augment the arithmetic model to allow for lookup tables. This may

help to explain the difficulty of proving lower bounds for this problem, and help to guide future work on

arithmetic circuit lower bounds (since any lower bounds technique would need to fail when lookup tables

are allowed).

We focus here on constant-sized finite fields, though our algorithms generalize to larger finite fields as

well. Our algorithms are simple modifications of the usual recursive algorithms for solving these problems,

and we describe below how they compare favorably to algorithms which are used in practice.

1.1 Model of computation

As discussed, these problems are typically studied in the arithmetic circuit model, wherein an algorithm

may only perform arithmetic operations (+,−,×,÷) over the field F applied to inputs and fixed constants,

and the arithmetic complexity of the algorithm is the number of such operations. The asymptotically fastest

known algorithms for the problems we study here all fit within this model. However, we would also like the

ability to use lookup tables, so we consider a more general model: the bit operations model.

1For instance, this is known to hold for arithmetic circuits with ‘bounded coefficients’; see e.g., [Lok09, Section 3.3].
2For instance, the now-refuted conjecture that the Walsh-Hadamard transform is rigid [AW17].
3In Boolean matrix multiplication, given two matrices whose entries are from {0, 1}, our goal is to multiply them over the AND-

OR semiring, or equivalently, to determine which entries of their product over R are nonzero (but not necessarily what nonzero

values they take on).

1

The bit complexity of a RAM algorithm is the number of operations on bits performed by the algorithm.

This is the natural model with the most direct comparison to the arithmetic model, since an algorithm with

arithmetic complexity T over a constant-sized finite field naturally has bit complexity O(T). This model is

often used as a more realistic version of the arithmetic model (see e.g., [Pan81, Lin91, VDHL13, EDS18]).

One can see (via a simple tree data structure, for instance) that a lookup table with b-bit keys and values

can be implemented so that values can be looked up and changed using O(b) bit operations.

We note before moving on that all the algorithms in this paper will only perform arithmetic operations

and lookup table operations; one could also define a nonstandard model of computation which allows for

just these two types of operations, and get the same results.

1.2 Results: Walsh-Hadamard Transform

Our first result is a faster algorithm for the Walsh-Hadamard transform.

Theorem 1.1. Let Fq be a finite field of size q = O(1), let n be a positive integer, and let N = 2n. There

is an algorithm for computing the length-N Walsh-Hadamard transform over Fq that uses O
(

N logN
log logN

)

bit

operations.

By comparison, the fast Walsh-Hadamard transform algorithm, which uses Θ(N logN) arithmetic op-

erations, would take Θ(N logN) bit operations. Θ(N logN) arithmetic operations is widely believed to be

optimal over any field (whose characteristic is not 2; the problem is trivial in that case), but our algorithm

improves on this using lookup tables.

Our algorithm uses the same recursive approach as the fast Walsh-Hadamard transform; our main idea

is to use results from a lookup table to quickly jump forward many recursive layers at a time.

Although the Walsh-Hadamard transform is most often applied over the real or complex numbers, such

as in signal processing and data compression, it has been applied over finite fields in areas including coding

theory [RL01, XQ19], cryptographic protocols [HK10, MQ19], and learning algorithms [LC20].

Our algorithm also generalizes directly to any transform defined by Kronecker powers of a fixed matrix

over a finite field. For instance, given as input the 2n coefficients of a multilinear polynomial in n variables

over F2, we can compute its evaluation on all 2n inputs from F
n
2 in O(2n ·n/ log n) bit operations (improving

over the usual recursive algorithm by a factor of log n)4.

1.3 Results: Matrix Multiplication

Our result for matrix multiplication shows how to convert any algebraic algorithm into one which uses a

lookup table to save a superconstant factor.

Theorem 1.2. For any finite field Fq of size q = O(1), suppose there is an algebraic algorithm for multiply-

ing n× n matrices over Fq in O(nτ) arithmetic operations for some constant τ > 2. Then, there is another

algorithm for multiplying n× n matrices over Fq which uses O(nτ/(log n)τ/2−1) bit operations.

This speeds up the standard implementation of the algebraic algorithm by a factor of Θ((log n)τ/2−1).
For instance, Strassen’s algorithm [Str69] gives τ = 2.81, resulting in an algorithm using O(n2.81/(log n)0.4)
bit operations by Theorem 4.2, and the asymptotically fastest known algorithm [CW90, AW21] gives

τ = 2.373, resulting in an algorithm using O(n2.373/(log n)0.186) bit operations by Theorem 4.2.

Notably, much work has gone into improving the leading constant in the running time of Strassen’s algo-

rithm. Strassen’s original algorithm [Str69] has leading constant 7 (meaning, it uses 7nlog2(7) + o(nlog2(7))
operations), and Winograd [Win71] improved this to 6. This was believed to be optimal due to lower bounds

by Probert [Pro76] and Bshouty [Bsh95]. However, in a recent breakthrough, Karstadt and Schwartz [KS20]

4This problem corresponds to computing the linear transform defined by Kronecker powers of the matrix

[

1 1

1 0

]

.

2

gave a new ‘change of basis’ approach, and used it to improve the leading constant to 5. They showed that

5 is optimal for their new approach, and later work showed it is also optimal for the more general ‘sparse

decomposition’ approach [BS19]. The fact that we achieve an asymptotic speedup in this paper (which one

can view as achieving leading constant ε for any ε > 0 in bit complexity) may help to explain the difficulty

of extending these lower bounds on the constant beyond restricted classes of algorithmic approaches.

Our approach for matrix multiplication is one that is commonly used in practice: use iterations of a

recursive algebraic algorithm until the matrices one would like to multiply are sufficiently small, and then

use a different algorithm optimized for small matrices. When this is used in practice, an optimized version of

the straightforward (cubic-time) algorithm is used for small matrices, giving a constant factor improvement

to the running time; see e.g., [HSHVDG16]. We implement this approach by instead using lookup tables to

multiply superconstant-sized matrices very quickly, and thus get an asymptotic improvement.

Matrix multiplication over finite fields has many applications. One prominent example is Boolean matrix

multiplication, which has a simple randomized reduction to matrix multiplication over any field5. Hence our

algorithm gives an asymptotic speedup for applications of Boolean matrix multiplication such as detecting

triangles in graphs.

2 Preliminaries

2.1 Notation

Throughout this paper, we write log to denote the base 2 logarithm. For a positive integer n, we use the

notation [n] := {1, 2, 3, . . . , n}.

2.2 Kronecker Products

If F is a field, and A ∈ F
N×N and B ∈ F

M×M are matrices, their Kronecker product A⊗B ∈ F
(NM)×(NM)

is a matrix given by

A⊗B =

B[1, 1] · A B[1, 2] ·A · · · B[1,M] · A
B[2, 1] · A B[2, 2] ·A · · · B[2,M] · A

...
...

. . .
...

B[M, 1] ·A B[M, 2] ·A · · · B[M,M] · A

.

For a positive integer n, we write A⊗n ∈ F
Nn

×Nn

for the nth Kronecker power of A, which is the Kronecker

product of n copies of A.

2.3 Matrices of interest

For positive integer N , we write IN to denote the N × N identity matrix. If N is a power of 2, we write

HN to denote the N ×N Walsh-Hadamard transform, given by HN = H⊗ logN
2 , where

H2 =

[

1 1
1 −1

]

.

3 Walsh-Hadamard Transform

Let Fq be the finite field of size q, and let N be a power of 2. In this section, we give an algorithm for com-

puting the length-N Walsh-Hadamard transform, HN , over Fq. The key idea behind our new algorithm is to

pick a K = O(logq N) such that qK ≪ N , and first create a lookup table of the length-K Walsh-Hadamard

transforms of all vectors v ∈ F
K
q . We will then use this lookup table in conjunction with the following

standard recursive approach for computing Kronecker powers (sometimes called Yates’ algorithm), which

we will apply with M = HK :

5Set each entry of one of the matrices to 0 independently with probability 1/2, then multiply the two matrices and check which

entries are nonzero.

3

Lemma 3.1. Let Fq be any constant-sized finite field, let m,d be positive integers, and let M ∈ F
d×d be

any matrix. Suppose we are given an algorithm which, on input v ∈ F
d, outputs Mv in time T . Then, there

is an algorithm which, on input z ∈ F
dm , outputs M⊗mw in time O(T ·m · dm−1).

Proof. By definition of the Kronecker product, we can write M⊗m as a d × d block matrix (where each

block is a dm−1 × dm−1 matrix) as

M⊗m

=

M [1, 1] ·M⊗(m−1) M [1, 2] ·M⊗(m−1) · · · M [1, d] ·M⊗(m−1)

M [2, 1] ·M⊗(m−1) M [2, 2] ·M⊗(m−1) · · · M [2, d] ·M⊗(m−1)

...
...

. . .
...

M [d, 1] ·M⊗(m−1) M [d, 2] ·M⊗(m−1) · · · M [d, d] ·M⊗(m−1)

=

M [1, 1] · Idm−1 M [1, 2] · Idm−1 · · · M [1, d] · Idm−1

M [2, 1] · Idm−1 M [2, 2] · Idm−1 · · · M [2, d] · Idm−1

...
...

. . .
...

M [d, 1] · Idm−1 M [d, 2] · Idm−1 · · · M [d, d] · Idm−1

×

M⊗(m−1)

M⊗(m−1)

. . .

M⊗(m−1)

Thus, we can multiply M⊗m times z ∈ F
dm with a two-step process (corresponding to multiplying the

matrix on the right times z, then the matrix on the left times the result):

1. Partition z ∈ F
dm into d vectors z1, . . . , zd ∈ F

dm−1
. Recursively compute ui = M⊗(m−1)zi ∈

F
dm−1

for each i ∈ {1, . . . , d}.

2. For each j ∈ {1, . . . , dm−1}, let xj ∈ F
d be the vector consisting of, for each i ∈ {1, . . . , d}, entry j

of vector ui. Use the given algorithm to compute yj = Mxj .

Finally, we output the appropriate concatenation of the yj vectors (where the first dm−1 entries are the first

entries of all the yj vectors, the second dm−1 entries are the second entries of all the yj vectors, and so on).

Our algorithm makes d recursive calls in the first step, and calls the given algorithm dm−1 times in the

second step. Hence, the total running time, E(dm), has the recurrence

E(dm) = d · E(dm−1) + dm−1 · T.

This solves, as desired, to E(dm) = O(T ·m · dm−1).

We can now give our main algorithm for the Walsh-Hadamard transform:

Theorem 3.2. Let Fq be a finite field of size q = O(1), let n be a positive integer, and let N = 2n. There

is an algorithm for computing the length-N Walsh-Hadamard transform over Fq that uses O
(

N logN
log logN

)

bit

operations.

Proof. Let k =
⌊

log
(

n
2 log q

)⌋

, and let K = 2k ≤ n
2 log q . We begin by iterating over all vectors v ∈ F

K
q ,

computing HKv, and storing it in a lookup table. We can do this in a straightforward way: there are qK

such vectors, and each can be computed using O(K2) additions and subtractions over Fq, so the total time

to create this lookup table is at most

O(qK ·K2) ≤ O(qn/(2 log q) · (logN)2) ≤ O(
√
N · (logN)2) ≤ O(N0.6).

(This simple time bound could be improved, but we won’t bother here since it won’t substantially contribute

to the final running time.)

4

Our goal now is, given v ∈ F
N
q , to compute HNv. Assume for now that k divides n. We will apply

Lemma 3.1 with M = HK (and hence d = K) and m = n/k, which will multiply the matrix (HK)⊗n/k =
HN times the vector v, as desired. Each time that algorithm needs to multiply HK times a vector of length

K , we do so by looking up the answer from the lookup table. Hence, T in Lemma 3.1 will be the time to do

one lookup from this table whose keys and values have length O(log(qK)) = O(K), so T = O(K).
The total number of bit operations of our algorithm is thus, as desired,

O
(

N0.6 + T · n
k
·Kn/k−1

)

= O
(

N0.6 + T · n

k ·K ·N
)

= O
(

N0.6 +
n

k
·N
)

= O

(

N logN

log logN

)

.

Finally, consider when k does not divide n. Let n′ be the largest multiple of k that is smaller than n,

so n − k < n′ < n. By the usual recursive approach (e.g., one recursive step of the algorithm presented

in Lemma 3.1), it suffices to first perform 2n−n′

instances of a length-2n
′

Walsh-Hadamard transform, and

then perform 2n
′

instances of a length-2n−n′

Walsh-Hadamard transform. We now count the number of bit

operations for these two steps.

Using the same algorithm as above, since k divides n′, a length-2n
′

Walsh-Hadamard transform can

be performed using O(n
′·2n

′

logn′) bit operations. Hence, the total bit operations for the first step is O(2n−n′ ·
n′·2n

′

logn′) ≤ O(n·2
n

logn) = O(N logN/ log logN).

Using the usual fast Walsh-Hadamard transform, a length-2n−n′

Walsh-Hadamard transform can be

performed using O(2n−n′ · (n − n′)) bit operations. Hence, the total bit operations for the second step is

O(2n
′ · 2n−n′ · (n− n′)) ≤ O(2n · k) = O(N log logN). We thus get the desired total running time.

4 Matrix Multiplication

Fast algebraic algorithms for matrix multiplication over a field F critically rely on algebraic identities which

take the following form, for positive integers q, r, formal variables Xi,j , Yj,k, Zi,k for i, j, k ∈ [t], and field

coefficients αi,j,ℓ, βj,k,ℓ, γi,k,ℓ ∈ F for i, j, k ∈ [t] and ℓ ∈ [r]:

t
∑

i=1

t
∑

j=1

t
∑

k=1

Xi,jYj,kZi,k =
r
∑

ℓ=1

t
∑

i=1

t
∑

j=1

αi,j,ℓXi,j

t
∑

j=1

t
∑

k=1

βj,k,ℓYj,k

(

t
∑

i=1

t
∑

k=1

γi,k,ℓZi,k

)

. (1)

As we will see next, an identity (1) can be used to design a matrix multiplication algorithm which runs

using only O(nlogt(r)) field operations. For instance, Strassen’s algorithm [Str69] gives an identity (1) with

t = 2 and r = 7, yielding exponent log2(7) < 2.81. The matrix multiplication exponent ω is defined as

the infimum of all numbers such that, for every ε > 0, there is a sufficiently large t for which one gets an

identity (1) with r ≤ tω+ε. Indeed, it is known [Str73] that any algebraic algorithm for matrix multiplication

can be converted into an identity (1) yielding the same running time in this way, up to a constant factor, so ω
captures the best exponent from any possible algebraic algorithm. The fastest known matrix multiplication

algorithm [CW90, AW21] shows that ω < 2.37286.

The standard recursive algorithm for multiplying matrices using identity (1) works as described in Al-

gorithm 1 below. It recurses until it gets to a base case of multiplying n× n matrices when n ≤ S for some

parameter S. In the usual algorithm, one picks S to be a constant, so that such matrices can be multiplied

in a constant number of operations; in our improvement, we will pick a larger S and multiply such matrices

using a lookup table.

5

Algorithm 1 Recursive matrix multiplication algorithm, using identity (1), with base case size S

1: procedure MM(X,Y ∈ F
n×n)

2: if n ≤ S then

3: Use base case procedure to multiply X × Y and output the result.

4: else

5: Partition X into a t× t block matrix, with blocks Xi,j ∈ F
(n/t)×(n/t) for i, j ∈ [t].

6: Similarly partition Y into a t× t block matrix, with blocks Yj,k ∈ F
(n/t)×(n/t) for j, k ∈ [t].

7: For k, i ∈ [t], set the matrices Zk,i ∈ F
(n/t)×(n/t) to initially be all 0.

8: for ℓ ∈ [r] do

9: Compute Aℓ :=
∑

i,j∈[t] αi,j,ℓXi,j .

10: Compute Bℓ :=
∑

j,k∈[t] βj,k,ℓYj,k.

11: Compute Cℓ = MM(Aℓ, Bℓ) ⊲ Recursively multiply (n/t)× (n/t) matrices Aℓ ×Bℓ.

12: for i, k ∈ [t] do

13: Add γi,k,ℓCℓ to Zi,k.

14: end for

15: end for

16: Output Z ∈ F
n×n given by the blocks Zi,k.

17: end if

18: end procedure

Lemma 4.1. Algorithm 1 correctly outputs the product X × Y .

Proof. For a fixed i, k ∈ [t], we can see that lines 8-15 of the algorithm will set Zi,k to be the following

matrix:
r
∑

ℓ=1

γi,k,ℓ · Cℓ =
r
∑

ℓ=1

γi,k,ℓ ·

t
∑

i=1

t
∑

j=1

αi,j,ℓXi,j

t
∑

j=1

t
∑

k=1

βj,k,ℓYj,k

 .

Notice in particular that this is the coefficient of the formal variable Zi,k in the right-hand side of the iden-

tity (1). Hence, it is also the coefficient of that variable in the left-hand side, namely,

t
∑

j=1

Xi,jYj,k.

This is the desired output (i, k) block when multiplying matrices X,Y .

Normally one would analyze the recursion for the number of operations performed by this algorithm

when S is a constant, and conclude a total operation count of O(nlogt(r)). Here we will improve on this over

finite fields using a lookup table:

Theorem 4.2. Fix an identity (1) and let τ = logt(r). For any finite field Fq of size q = O(1), and any posi-

tive integer n, there is an algorithm for multiplying n×n matrices over Fq which uses O(nτ/(log n)τ/2−1)
bit operations.

Proof. Let s =
⌊
√

1
4 log n/ log q

⌋

. We begin by iterating over all positive integers s′ ≤ s and all pairs

of s′ × s′ matrices A,B ∈ F
s′×s′
q , computing their product A × B, and storing it in another lookup table.

Similar to before, the running time for this step won’t substantially contribute to the final running time, so

we give a straightforward upper bound on the time it takes. The number of pairs of matrices we need to

6

multiply is at most s · (qs2)2, and the time to multiply each pair is at most O(s3) by the straightforward

algorithm. The total time to create the lookup table is hence at most

O(s4 · (qs2)2) ≤ O(q
1
2
logn/ log q · (log n)2) ≤ O(n0.5 · (log n)2).

Note that this table’s keys and values are strings of length O(log(qs
2
)2) ≤ O(log n), so lookup table opera-

tions can be performed using O(log n) bit operations.

We now use Algorithm 1, with base case size S = s. The base case procedure is that, whenever we need

to multiply two s′ × s′ matrices for s′ ≤ S, we find the result in the lookup table.

Let E(m) denote the running time of this algorithm to multiply two m×m matrices. We get E(m) =
O(log n) if m ≤ s, and if m > s, the recurrence

E(m) ≤ r ·E(m/t) +O(m2), (2)

recalling that r, t are constants given in the identity (1). The O(m2) term in the right-hand side of Equa-

tion (2) counts the bit operations to do a constant number of additions and scalar multiplications of m/t ×
m/t matrices. Solving this recurrence yields

E(n) = O

(

(n

s

)logt(r) · log n
)

= O

(

nτ

(log n)τ/2−1

)

,

as desired.

5 Conclusion

We showed that for two important open problems – determining the complexity of the Walsh-Hadamard

transform, and determining the leading constant of Strassen’s algorithm for matrix multiplication – asymp-

totic improvements over the conjectured optimal arithmetic bounds are possible if one is allowed to use bit

operations rather than just arithmetic operations.

Our algorithms only made use of arithmetic operations and lookup table operations, so they could extend

to other models of computation as well. One natural question is whether they extend to the standard word

RAM model with word size w = O(log n) for input size n. Indeed, operations for the lookup tables we use,

(with keys and values of O(log n) bits) require only O(1) word operations in this model.

It is not hard to see that our algorithm for matrix multiplication can be implemented to take advantage

of this model, improving Theorem 4.2 to running time O(nτ/(log n)τ/2) (improving by a factor of log n).

On the other hand, our algorithm for the Walsh-Hadamard transform seemingly cannot be implemented

in the word RAM model to get asymptotic savings. The main culprit is step 2 in the proof of Lemma 3.1: if

we want to efficiently use the lookup table to compute yj = Mxj , then we first have to permute the bits of

the ui vectors so that each xj fits in a single word. In other words, we are given the ui vectors in order, and

would like to permute their entries to get the xj vectors in order instead.

Let s = Θ(dm/w) be the number of words that our input fits into. In general it is known that performing

a fixed permutation of the bits of a string contained in s words, for s ≥ w, requires Θ(s log s) word opera-

tions [BMM97]. However, our particular permutation can be broken up into s/w different permutations on

w words (e.g., the first words in the descriptions of x1, . . . , xw are a permutation of the first words in the

descriptions of u1, . . . , uw). It can thus be performed in only O(s logw) word operations.

Since this must be done at all m levels of recursion, it incurs an additional Θ(m ·dm · logww) word opera-

tions. With the parameter setting we ultimately use in Theorem 3.2, this is Θ(N) word operations to perform

all these permutations. By comparison, it is not too difficult to implement the usual fast Walsh-Hadamard

transform to use a total of O(N) word operations as well. Hence, the time to perform permutations (which

doesn’t come into play in the arithmetic or bit operation models) swamps any other computational savings

in this model, and another approach is needed for a speedup.

7

Acknowledgements

I would like to thank Dylan McKay and Ryan Williams for invaluable discussions throughout this project,

and anonymous reviewers for helpful comments. This research was supported in part by a grant from the

Simons Foundation (Grant Number 825870 JA).

References

[ADKF70] Vladimir L’vovich Arlazarov, Yefim A Dinitz, MA Kronrod, and IgorAleksandrovich

Faradzhev. On economical construction of the transitive closure of an oriented graph. In

Doklady Akademii Nauk, volume 194, pages 487–488. Russian Academy of Sciences, 1970.

1

[AW17] Josh Alman and Ryan Williams. Probabilistic rank and matrix rigidity. In Proceedings of the

49th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 641–652,

2017. 1

[AW21] Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix

multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 522–539. SIAM, 2021. 2, 5

[BG21] Davis Blalock and John Guttag. Multiplying matrices without multiplying. In International

Conference on Machine Learning, pages 992–1004. PMLR, 2021. 1

[BMM97] Andrej Brodnik, Peter Bro Miltersen, and J Ian Munro. Trans-dichotomous algorithms with-

out multiplication - some upper and lower bounds. In Workshop on Algorithms and Data

Structures, pages 426–439. Springer, 1997. 7

[BS19] Gal Beniamini and Oded Schwartz. Faster matrix multiplication via sparse decomposition.

In The 31st ACM Symposium on Parallelism in Algorithms and Architectures, pages 11–22,

2019. 3

[Bsh95] Nader H Bshouty. On the additive complexity of 2× 2 matrix multiplication. Information

processing letters, 56(6):329–335, 1995. 2

[CW90] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions.

Journal of symbolic computation, 9(3):251–280, 1990. 2, 5

[EDS18] Mohab Safey El Din and Éric Schost. Bit complexity for multi-homogeneous polynomial

system solving—application to polynomial minimization. Journal of Symbolic Computa-

tion, 87:176–206, 2018. 2

[HK10] Tor Helleseth and Alexander Kholosha. New binomial bent functions over the finite fields

of odd characteristic. In 2010 IEEE International Symposium on Information Theory, pages

1277–1281. IEEE, 2010. 2

[HSHVDG16] Jianyu Huang, Tyler M Smith, Greg M Henry, and Robert A Van De Geijn. Strassen’s

algorithm reloaded. In SC’16: Proceedings of the International Conference for High Per-

formance Computing, Networking, Storage and Analysis, pages 690–701. IEEE, 2016. 3

[JPK+20] Yongkweon Jeon, Baeseong Park, Se Jung Kwon, Byeongwook Kim, Jeongin Yun, and

Dongsoo Lee. Biqgemm: matrix multiplication with lookup table for binary-coding-based

quantized dnns. In SC20: International Conference for High Performance Computing, Net-

working, Storage and Analysis, pages 1–14. IEEE, 2020. 1

8

[KS20] Elaye Karstadt and Oded Schwartz. Matrix multiplication, a little faster. Journal of the ACM

(JACM), 67(1):1–31, 2020. 2

[LC20] Ting Liu and Xuechen Chen. Deep learning-based belief propagation algorithm over non-

binary finite fields. In 2020 International conference on wireless communications and signal

processing (WCSP), pages 164–169. IEEE, 2020. 2

[Lin91] Andrzej Lingas. Bit complexity of matrix products. Information processing letters,

38(5):237–242, 1991. 2

[Lok09] Satyanarayana V Lokam. Complexity lower bounds using linear algebra. Foundations and

Trends® in Theoretical Computer Science, 4(1–2):1–155, 2009. 1

[MQ19] Sihem Mesnager and Longjiang Qu. On two-to-one mappings over finite fields. IEEE

Transactions on Information Theory, 65(12):7884–7895, 2019. 2

[Pan81] V Pan. The bit-complexity of arithmetic algorithms. Journal of Algorithms, 2(2):144–163,

1981. 2

[Pro76] Robert L Probert. On the additive complexity of matrix multiplication. SIAM Journal on

Computing, 5(2):187–203, 1976. 2

[RL01] B Sundar Rajan and Moon Ho Lee. Quasicyclic dyadic codes in walsh-hadamard domain.

In Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.

01CH37252), page 37. IEEE, 2001. 2

[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische mathematik, 13(4):354–

356, 1969. 2, 5

[Str73] Volker Strassen. Vermeidung von divisionen. Journal für die reine und angewandte Mathe-

matik, 264:184–202, 1973. 5

[VDHL13] Joris Van Der Hoeven and Grégoire Lecerf. On the bit-complexity of sparse polynomial and

series multiplication. Journal of Symbolic Computation, 50:227–254, 2013. 2

[Win71] Shmuel Winograd. On multiplication of 2× 2 matrices. Linear algebra and its applications,

4(4):381–388, 1971. 2

[XQ19] Guangkui Xu and Longjiang Qu. Three classes of minimal linear codes over the finite fields

of odd characteristic. IEEE Transactions on Information Theory, 65(11):7067–7078, 2019.

2

[Yu18] Huacheng Yu. An improved combinatorial algorithm for boolean matrix multiplication.

Information and Computation, 261:240–247, 2018. 1

9

	1 Introduction
	1.1 Model of computation
	1.2 Results: Walsh-Hadamard Transform
	1.3 Results: Matrix Multiplication

	2 Preliminaries
	2.1 Notation
	2.2 Kronecker Products
	2.3 Matrices of interest

	3 Walsh-Hadamard Transform
	4 Matrix Multiplication
	5 Conclusion

