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Abstract. We propose a general algorithm for computer assisted verification

of uniform hyperbolicity for maps which exhibit a robust attractor.

The method has been successfully applied to a Poincaré map for a system
of coupled non-autonomous van der Pol oscillators. The model equation has

been proposed by Kuznetsov [K] and the attractor seems to be of the Smale-

Williams type.

1. Introduction.

Hyperbolic systems of dissipative type, contracting the phase space volume, ma-
nifest robust attractors. That means that the dynamics does not change qualita-
tively when the parameters of the system vary in some range.

There are several models of maps which produce hyperbolic nontrivial attractor
– like the Plykin attractor [P] or the Smale solenoid [KH]. But for long time there
were no examples of continuous systems that apparently have hyperbolic strange
attractors.

Recently, Kuznetsov [K] proposed a continuous model that exhibits an uniformly
hyperbolic attractor of the Smale-Williams type in the Poincaré map. This is a non-
autonomous system in R4 and it is constructed on a basis of two coupled van der
Pol oscillators:

(1)


ẋ = ω0u,

u̇ = −ω0x+
(
A cos(2πt/T )− x2

)
u+ (ε/ω0)y cos(ω0t),

ẏ = 2ω0v,

v̇ = −2ω0y +
(
−A cos(2πt/T )− y2

)
v + (ε/2ω0)x2.

Let P denote the Poincaré map of the above system defined naturally as the shift
along the trajectories over the period of the vector field

(2) P (x, u, y, v) = (x(T ), u(T ), y(T ), v(T )) .

Kuznetsov and Sataev [KS] gave a deep numerical study of this system and observed
that for some range of parameter values there is an absorbing domain for P of the
toroidal shape as presented in Figure 1, left panel. This domain is a product of a
3D ball and a circle.
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Figure 1. Left: an absorbing domain projected onto three coor-
dinates after a linear change of coordinates. Right: local unstable
and stable foliations. It is a numerical indication that they are not
tangent over the absorbing domain. These figures are [KS, Figures
1 and 7] – used here with the permission of prof. Kuznetsov.

The observed attractor is of the Smale-Williams type. Numerical studies [K,
KS, KSe] gave a strong numerical evidence of the existence of uniformly hyperbolic
attractor for some range of parameter values around

(3) ω0 = 2π, A = 5, T = 6, ε = 0.5

– see Figure 1 right panel, where the unstable and stable foliations are presented.
In this paper we propose a method for computer assisted verification that a map

possesses an uniformly hyperbolic attractor. As a test case we apply the method
to the model map proposed by Smale [KH]. This is a map defined on the two-
dimensional solid torus and it is analytically proved to be uniformly hyperbolic.

Although the method is general, the main motivation for us to undertake this
study was to prove Kuznetsov’s conjecture about the hyperbolicity of the system
(1). The following theorem is the main result of this paper.

Theorem 1. Consider the system (1) with the parameter values (3). Let P de-
note the Poincaré map for this system as defined in (2). There exists a compact,
connected and explicitly given set B such that

(1) B is positive invariant with respect to P , i.e. P (B) ⊂ B,
(2) P is uniformly hyperbolic on the maximal invariant set A =

⋂
i>0 P

i(B)
with one positive and three negative Lyapunov exponents.

After a linear change of coordinates the set B is a union of 7 970 392 four-
dimensional explicitly given cubes. The set B is a very narrow enclosure of A as
presented in Figure 3. Note, the coordinates (x0, x1, x2, x3) are related to (x, u, y, v)
by a linear change of coordinates.

The above theorem implies that the set A =
⋂
i>0 P

i(B) is compact and con-
nected. The following theorem implies that it is a non-trivial continuum.

Theorem 2. The set A contains at least one fixed point and one period-two orbit
for P .
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In the literature there are already algorithms for computer assisted verification
of uniform hyperbolicity and enclosure of attractors. The very pioneer and famous
work has been done by Warwick Tucker [T]. He proved that the Lorenz system
for classical parameter values satisfies the geometric model by Guckenheimer and
Holmes [GH]. Moreover, he gave the proof of the existence of the SRB measure
supported on the attractor.

Recently, Hruska [Hr1, Hr2] proposed a method for computer assisted verifica-
tion of uniform hyperbolicity. She successfully applied the method to the complex
Hénon map. The method proposed by Hruska uses the notion of box-hyperbolicity.
This method reduces the verification of the hyperbolicity of an invariant set to the
verification if some quadratic forms are positive definite. The box-hyperbolicity
requires some conditions for the derivative of a map under consideration and its
inverse. This is not a limitation in the case of the Hénon map but makes the
algorithm difficult to apply for ODE’s. To compute the derivative of the inverse
of a Poincaré map we can either invert an interval matrix that is an enclosure of
the derivatives of the Poincaré map or integrate the ODE backwards together with
the variational equations. In the first case the derivatives of Poincaré maps are
often non-invertible as interval matrices because of unavoidable over-estimations
when integrating the variational equations. Backward integration does not help
in many cases. After changing the time t → −t in the equation the system often
becomes stiff and again computationally difficult. In particular, this happens when
the invariant set is an attractor with strong dissipation.

Later, Arai [A] proposed a method for verification that a chain recurrent set
for a map is uniformly hyperbolic. He applied the method to the Hénon map [H]
and verified that it is hyperbolic on the non-wandering set for a wide range of
parameter values. This method, however, requires huge memory to work and it is
computationally expensive by its very construction. Therefore, there is a little hope
to apply it successfully in the high dimensional space and for nontrivial ODE’s.

Similar results were obtained by Mazur, Tabor and Kościelniak [MTK] and by
Mazur and Tabor [MT]. The authors introduced a notion of semi-hyperbolicity and
applied the method to the real Hénon map.

Our method is similar in the spirit to that proposed by Hruska. We use a notion
of strong hyperbolicity proposed in [KWZ, Z] as a theoretical tool for verifying
uniform hyperbolicity. The main difference of the method proposed here is that it
does not involve conditions for the inverse of the map under consideration.

We believe that a successful application of our algorithms to a four dimensional
Poincaré map is a serious test for the method as well as the implementation and it
proves their applicability. We would like to mention here that verification of uniform
hyperbolicity for explicit given maps is significantly easier than for the continuous
systems. It is clear that in a numerical approach to hyperbolic dynamics one needs
to enclose both values and derivatives of the map under consideration. This is an
easy task when the map is given explicitly, while for Poincaré maps one needs to
integrate the system with its variational equations.

For rigorous integration of the system and its partial derivatives we used C0

and C1 solvers from the CAPD library [CAPD] that the author is one of the main
developers.

The paper is organized as follows. In Section 2 we give the notion of strong
hyperbolicity and the theoretical background on how to verify uniform hyperbolicity
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using this tool. In Section 3 we present algorithms used to define stable and unstable
cones over the attractor. In Section 4 we give an application of the proposed method
to the Smale map. We also present proofs of Theorem 1 and Theorem 2.

2. Theoretical background.

Let f : Rn → Rn be a diffeomorphism and let M ⊂ Rn be a compact invariant
set for f . We denote by TM the restriction of the tangent bundle TRn to M .

Definition 1. f is uniformly hyperbolic on M if TM splits into a direct sum
TM = Eu⊕Es of two Tf -invariant sub-bundles and there are constants c > 0 and
0 < λ < 1 such that

‖Dfn|Esv‖ < cλn‖v‖ and ‖Df−n|Euv‖ < cλn‖v‖

hold for n ≥ 0.

We will recall and reformulate the definition of strong hyperbolicity introduced
in [KWZ] and later extended in [Z].

Let M =
⋃N
i=1Mi where Mi are compact sets having pairwise disjoint interiors.

In our algorithms these sets will be boxes in some coordinate systems. Let us fix
nonegative integers u, s such that u+ s = n. Assume that at each set Mi we have
fixed a linear coordinate system Ci. We define a quadratic form

(4) Q(x, y) = ‖x‖2 − ‖y‖2, x ∈ Ru, y ∈ Rs.

For i = 1, . . . , N we define positive and negative cones by

Q+
i = {u ∈ Rn : Q(Ciu) > 0} ,
Q−i = {s ∈ Rn : Q(Cis) < 0} .

We will denote this family by M =
(
Q, {(Mi, Ci)}Ni=1

)
and call cubical set with

cones.
LetM =

(
Q, {(Mi, Ci)}Ni=1

)
be a cubical set with cones and put M =

⋃N
i=1Mi.

For i, j = 1 . . . , N we put fij = CjfC
−1
i .

Definition 2. f is strongly hyperbolic on M =
(
Q, {(Mi, Ci)}Ni=1

)
if for z ∈ Mi

and j = 1, . . . , N such that f(Mi) ∩Mj 6= ∅ the matrix

[CjDf(z)C−1i ]TQ[CjDf(z)C−1i ]−Q

is positive definite.

By Inv(f,M) we will denote the maximal invariant set for f in M , i.e.

Inv(f,M) =
{
x ∈M : fn(x) ∈M,f−n(x) ∈M, for n ≥ 0

}
.

Theorem 3. If f is strongly hyperbolic on M =
(
Q, {(Mi, Ci)}Ni=1

)
then f is

uniformly hyperbolic on H = Inv(f,M).

The proof of the above theorem consists of several lemmas.

Lemma 4. Assume f is strongly hyperbolic on M =
(
Q, {(Mi, Ci)}Ni=1

)
.

(1) If f(Mi) ∩Mj 6= ∅ then for z ∈Mi we have Df(z)Q+
i ⊂ Q

+
j .

(2) For z ∈ f(Mi) ∩Mj we have (Df(z))−1Q−j ⊂ Q
−
i .
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Proof. We will prove the first assertion. Since u ∈ Q+
i we have Q(Ciu) > 0. Fix j

such that f(Mi) ∩Mj 6= ∅. Put ū = Ciu and z̄ = Ciz. Since Ci and Cj are linear
and f is strongly hyperbolic on M we have

Q(CjDf(z)u) = Q (Dfij(z̄)ū) > Q(ū) = Q(Ciu) > 0.

Thus, by definition Df(z)u ∈ Q+
j .

We will now prove the second assertion. Fix z ∈ f(Mi) ∩ Mj and put z̄ =
f−1(z) ∈ Mi. Assume that (Df(z))−1Q−j 6⊂ Q−i , hence there is s ∈ Q−j such that

s̄ := (Df(z))−1s /∈ Q−i . Reasoning as in the proof of the first assertion we conclude
that

Q(CjDf(z̄)s̄) > Q(Cis̄) ≥ 0.

Hence, s = Df(z̄)s̄ ∈ Q+
j which contradicts the choice of s. �

Lemma 5. Assume f is strongly hyperbolic on M =
(
Q, {(Mi, Ci)}Ni=1

)
. There is

ε > 0 such that for λ ∈ (1− ε, 1 + ε), i, j = 1, . . . , N such that f(Mi)∩Mj 6= ∅ and
z ∈Mi we have

(5) [CjDf(z)C−1i ]TQ[CjDf(z)C−1i ]− λQ.

Proof. The set of positive definite matrices is open. Thus for fixed i, j and z ∈Mi

we can find a neighborhood Vi,j,z ⊂ Rn×R of (z, 1) such that for (z̄, λ) ∈ Vi,j,z the
matrix

[CjDf(z̄)C−1i ]TQ[CjDf(z̄)C−1i ]− λQ
is positive definite. Then the assertion follows from the compactness of M . �

Before we state the next lemmas let us define some constants. Put

D1(M) = max{‖Ci‖ : i = 1, . . . , N},(6)

D2(M) = max{‖C−1i ‖ : i = 1, . . . , N}.(7)

Lemma 6. Let M =
(
Q, {(Mi, Ci)}Ni=1

)
. There is a constant R > 0 such that for

u ∈ Rn and i = 1, . . . , N we have ‖u‖2 ≥ R|Q(Ciu)|.

Proof. We have

‖u‖2 = ‖C−1i Ciu‖2 ≥ ‖Ci‖−2‖Ciu‖2 ≥
‖Ci‖−2‖πxCiu‖2 ≥ ‖Ci‖−2Q(Ciu) ≥ D1(M)−2Q(Ciu).

Similarly

‖u‖2 ≥ ‖Ci‖−2‖πyCiu‖2 ≥ −D1(M)−2Q(Ciu).

Hence, the assertion follows with R = D1(M)−2. �

Lemma 7. Assume f is strongly hyperbolic on M =
(
Q, {(Mi, Ci)}Ni=1

)
. There

are constants λ > 1, c > 0 such that for all i = 1, . . . , N , z ∈ Mi ∩ Inv(f,M),
u ∈ Q+

i and k > 0 we have ‖Dfk(z)u‖ ≥ cλk‖u‖.

Proof. From Lemma 5 there is a constant λ̄ > 1 such that the matrices

(8) Vi,j,z = [CjDf(z)C−1i ]TQ[CjDf(z)C−1i ]− λ̄Q
are positive definite for i, j = 1, . . . , N such that f(Mi)∩Mj 6= ∅ and z ∈Mi. Since
M is compact there is L > 0 such that

(9) Vi,j,z(u) ≥ L‖u‖2, u ∈ Rn
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for i, j = 1, . . . , N such that f(Mi) ∩Mj 6= ∅ and z ∈Mi.
Fix z = Inv(f,M). Put zk = fk(z) and Ak = Df(zk) for k ≥ 0. Let us fix a

sequence {ik}k≥0 such that zk ∈ Mik . Note, this sequence might be not unique.

Put Ãk = Cik+1
AkC

−1
ik

, k ≥ 0. From (8) for u 6= 0 and k > 1 we have

(10) Q(CikDf
k(z0)u) = Q(Ãk−1 · · · Ã0Ci0u) >

λ̄Q(Ãk−2 · · · Ã0Ci0u) > · · · > λ̄k−1Q(Ã0Ci0u).

From Lemma 6 we get that there is a constant R > 0 depending on M only,
such that for u ∈ Rn holds

(11) ‖Dfk(z0)u‖2 ≥ R|Q(CikDf
k(z0)u)|.

From (8–9) for u ∈ Q+
i0

we have

(12) Q(Ã0Ci0u) ≥ Q(Ci0u) + L‖Ci0u‖2 > L‖Ci0u‖2 ≥
L‖C−1i0 ‖

−2‖u‖2 ≥ LD2(M)−2‖u‖2,

where D2(M) was defined in (7). Combining (10–12) we obtain that for u ∈ Q+
i0

and k > 1 holds
‖Dfk(z0)u‖ ≥ cλk‖u‖

with λ = λ̄1/2 and c = (RL)1/2 (λD2(M))
−1

. Clearly, adjusting the constant c we
can obtain required inequality for k > 0. �

There remains for us to show backward expansion in the negative cones.

Lemma 8. Assume f is strongly hyperbolic on M =
(
Q, {(Mi, Ci)}Ni=1

)
. There

are constants λ > 1, c > 0 such that for i = 1, . . . , N , z ∈ Inv(f,M) ∩Mi, s ∈ Q−i
and k > 0 we have ‖Df−k(z)s‖ ≥ cλk‖s‖.

Proof. From Lemma 5 there is λ̄ ∈ (0, 1) such that the matrices

(13) Vi,j,z = [CjDf(z)C−1i ]TQ[CjDf(z)C−1i ]− λ̄Q
are positive definite for i, j = 1, . . . , N such that f(Mi)∩Mj 6= ∅ and z ∈Mi. Since
M is compact there is L > 0 such that

(14) Vi,j,z(s) ≥ L‖s‖2, s ∈ Rn

for i, j = 1, . . . , N such that f(Mi) ∩Mj 6= ∅ and z ∈Mi.
Let us fix z ∈ Inv(f,M). Choose a sequence {ik}k≥0 such that zk = f−k(z) ∈

Mik for k ≥ 0. For k > 0 put Ak = Df(zk), Ãk = Cik−1
AkC

−1
ik

and sk =

Df−k(z0)s. From (13) for k > 0 and s 6= 0 we obtain

Q(Ci1Df
k−1(zk)sk) = Q(Ã2 · · · ÃkCiksk) > λ̄k−1Q(Ciksk),

that after substituting sk and zk becomes

(15) −Q(CikDf
−k(z0)s) > −λ̄−k+1Q(Ci1s1).

From Lemma 6 there is a constant R > 0 depending on M only, such that for
s ∈ Rn holds

(16) ‖Df−k(z0)s‖2 ≥ −RQ(CikDf
−k(z0)s).

From (13–14) we have

Q(Ci0s) = Q(Ci1Df(z1)s1) = Q(Ã1Ci1s1) ≥ Q(Ci1s1) + L‖Ci1s1‖2.
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Hence, for s ∈ Q−i0 holds

(17) −Q(Ci1s1) ≥ L‖Ci0s‖2 −Q(Ci0s) > L‖Ci0s‖2 ≥ LD2(M)−2‖s‖2.

Combining (15–17) we obtain that for k > 1 and s ∈ Q−i0 holds

‖Df−k(z0)s‖ ≥ cλk‖s‖,

with λ = λ̄−1/2 > 1 and c = (LR)1/2 (λD2(M))
−1

. Adjusting the constant c if
necessary we can obtain the same inequality for k > 0. �

Proof of Theorem 3. Let us associate to each z ∈ Inv(f,M) an index iz such that
z ∈ Miz . This index might be not unique but for each z we can fix one of them.
For simplicity we will write Mz, Cz, Q

±
z instead of Miz , Ciz , Q

±
iz

.
From Lemma 4, Lemma 7 and Lemma 8 there are constants c > 0 and λ > 1

such that for z ∈ Inv(f,M) we have

Df(z)Q+
z ⊂ Q+

f(z),

Df(z)−1Q−z ⊂ Q−f−1(z),

‖Dfk(z)u‖ ≥ cλk‖u‖, for u ∈ Q+
z ,

‖Df−k(z)s‖ ≥ cλk‖s‖, for s ∈ Q−z .

Note, the cones Q+
z and Q−z are disjoint and the sum of them spans Rn. Hence,

the assertion follows from [KH, Corollary 6.4.8]. �

3. Algorithms.

3.1. Graph representations of maps. Let X be a topological space and let
N ⊂ X. For a family of subsets U ∈ 2X by supp (U) we will denote its geometrical
representation supp (U) =

⋃
U∈U U .

Definition 3. We will say that U ∈ 2X is a cover of N if U is a finite set and
N ⊂ supp (U).

Definition 4. Let U ,V be a finite sets. A multivalued function f : U ( V is called
a combinatorial map.

Covers of compact sets as well as combinatorial maps appear naturally in the
computer assisted proofs in dynamical systems. We usually cannot compute the
range of a map f : X → Y over a domain U ⊂ X. Instead, one can fix covers X ,Y
of X and Y , respectively, and then compute combinatorial representation of the
map in the covers X ,Y. This is usually realized in the following steps.

• For U ⊂ X compute a minimal cover

U =
⋂
{V ⊂ X : U ⊂ supp (V)}

• For Vi ∈ U compute a cover Vi ⊂ Y of f(Vi). This step is often realized by
means of the interval arithmetic [M]. In most cases it is very difficult to
compute Vi as a minimal cover of f(Vi).

• Define a cover of f(U) by
⋃
Vi.

The above considerations lead to a very natural definition of the combinatorial
representation of a map.
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Definition 5. Let f : X → Y be a map and let us fix covers X ,Y of X and Y ,
respectively.

We will say that a combinatorial map F : X ( Y is a combinatorial representa-
tion of f if for x ∈ X and for all U ∈ X such that x ∈ U holds f(x) ∈ supp (F(U)).

For a map f : X → X and a cover X of X it is natural to encode a combinatorial
representation of f as a directed graph. A finite directed graph is a pair G = (V, E),
where V is a finite set whose elements are called vertexes, and E ⊂ V × V is a set
of selected (ordered) pairs of vertexes. The elements of E are called edges.

Definition 6. We say that a graph G = (V, E) is a representation of a combinatorial
map F : U ( U if V = U and

E = {(U, V ) ∈ U × U : V ∈ F(U)}.

We will need a notion of the transposed graph and outgoing edges. For a graph
G = (V, E) by GT = (V ′, E ′) we will denote a graph in which V ′ = V and

E ′ = {(U,W ) : (W,U) ∈ E}.
For a vertex V in a graph G = (V, E) by out(V,G) we will denote the set of

vertexes

out(V,G) = {P ∈ V : (V, P ) ∈ E}.

3.2. Enclosure of an attractor. In this section we will describe an algorithm that
we used to enclose an attractor. There are already existing packages for rigorous
enclosures of invariant objects, see for example [GAIO]. We used, however, our
own implementation dedicated for this purpose which seems to be easier and makes
the software independent on the other libraries. We will use the fact that what we
want to enclose is an attractor.

The idea is very simple. First, we fix a cover X of the observed attracting
domain. Then we choose a box V from observed attracting region, and we enclose
its forward trajectory using the sets from the cover X as long as the trajectory
does not leave supp (X ). Since the cover X is finite by its definition, after a finite
number of steps there are no new sets in the cover of the trajectory of V and we
can stop the procedure. This approach generates an enclosure of some invariant
set, that is expected to be an attractor.

The Algorithm 1 summarizes the above considerations.

Lemma 9. Fix a cover X of X. Assume Algorithm 1 is called with its arguments
V , G = (V, E) and f . If the algorithms stops without the Failure result then

(i) the combinatorial map F : V ( V encoded by the graph G = (V, E) is com-
binatorial representation of f |supp(V), with the natural cover V of supp (V),

(ii) supp (V) is a positive invariant set for f , i.e. f(supp (V)) ⊂ supp (V),
(iii)

⋃∞
i=0 f

i(V ) ⊂ supp (V).

Proof. First observe that the algorithm always stops. By contradiction, assume it
does not stop. This means that in each iteration of the main repeat-until loop (lines
4-15) the set U is not empty. This implies, that the number of elements in the set
V, which is updated in line 14, is strictly increasing. But this is a contradiction
with V ⊂ X , which is a finite set by the definition of cover.

Let G be the result returned by the algorithm and let F : V ( V be the combi-
natorial map represented by the graph G.
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Algorithm 1: enclose forward trajectory

Input: V : element of X ,
G = (V, E) : graph,
f : a map

Result: G - graph
Data: U ,F : subsets of X ,

G′ = (V ′, E ′) : graph
begin1

(V, E)← (∅, ∅);2

U ← {V };3

repeat4

(V ′, E ′)← (∅, ∅);5

foreach U ∈ U do6

if f(U) 6⊂ supp (X ) then7

return Failure;8

F ← [f(U)]X ; // computed cover of f(U);9

V ′ ← V ′ ∪ {U} ∪ F ;10

foreach F ∈ F do11

E ′ ← E ′ ∪ {(U,F )};12

U ← V ′ \ (V ∪ U);13

(V, E)← (V, E) ∪ (V ′, E ′);14

until U = ∅ ;15

return G;16

end17

We are proving the assertion (i). Let x ∈ supp (V) and let V ∈ V be such
that x ∈ V . Observe, that if F(V ) is not empty then f(V ) ⊂ supp (F(V )) - as
guaranteed in lines 9, 11, 12 and 14 of the algorithm. Hence, in this case the
assertion follows. To finish this step we observe, that the main repeat-until loop
stops when the set U is empty. But this set contains of exactly these sets U ∈ V
(lines 10 and 13) for which the value F(U) is not computed yet. Hence, after the
algorithm stops, for each V ∈ V, supp (out(V,G)) contains a computed enclosure of
f(V ).

Assertions (ii) follows from (i) and the definition of combinatorial representation.
To prove (iii) it is enough to observe that V ⊂ supp (V) as guaranteed in line 3,

10 and 14 of the algorithm. Then the assertion follows from (ii). �

Using Algorithm 1 one can compute combinatorial representation of a map re-
stricted to some positive invariant set, which is expected to be an attractor. For
further applications this graph should be as small as possible and it should still
contain enclosure of the invariant set of f restricted to supp (V). Therefore it is
important to choose the starting box V such that it contains points from the attrac-
tor. An easy way to do that is to take a point from the observed basin of attraction
and compute non-rigorously its forward trajectory for some long time. Then we
can choose a set V from the cover that contains the last computed point.
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3.3. Computing of coordinate systems. In this section we assume that the
graph G = (V, E) is a combinatorial representation of f resulting from Algorithm 1.
We present a heuristic method for computing of coordinate systems CV at the
vertex V , for V ∈ V. We assume that at the beginning the coordinate systems are
not set, which we will denote by CV =NULL.

The method consists of the following steps.

Step 1. Finding cycles in the graph. First we try to find (non-rigorously) as
much as possible of periodic points of f in supp (V). This is important, because
given a period p point, say x, a very natural choice of a coordinate system in a vertex
containing this point is the Jordan basis of Dfp(x). Of course it may happen that
several periodic points belong to the same vertex. In this case we are choosing one
from these points of the lowest principal period.

More formally; let us fix a positive integer N . This is an upper bound for the
highest period of orbits we will search for. Since G is a combinatorial representation
of f , all periodic points of f must belong to some cycles in the graph G. Let Pi,
i = 1, . . . N be a set of vertexes V such that there exists an i-periodic cycle in the
graph G through V and no lower period cycle containing V exists. The sets Pi can
be computed by means of standard graph algorithms and we omit details here.

Step 2. Refining cycles to periodic points. In this step we compute the sets
of points Pi, i = 1, . . . , N that are good approximations of periodic points. For
V ∈ Pi we proceed as follows. Let x be an approximate center of V . The point x is
a seed point for the standard Newton method for zero finding problem applied to
the map g(x) = f i(x)−x. If the Newton method converges to a point y ∈ supp (V)
which is of principal period i then we insert the point y to the set Pi.

We would like to comment here, that we do not try to find all periodic orbits of
low periods for the map f . Using our approach one can detect most of them if the
set V consists of small enough sets. Clearly, a larger number of detected periodic
points is better for setting the coordinate systems but the task of finding all low
period orbits is not a goal for us.

Step 3. Setting coordinate systems in a neighborhood of periodic points.
The goal of this step is to assign a coordinate system to vertexes that contain
computed approximate periodic point. For y ∈ Pi we proceed as follows. Let
V ∈ V be a vertex such that y ∈ V . Such a vertex exists since we know that
y ∈ supp (V) – as guaranteed by the previous step.

• If the vertex V has already assigned a coordinate system then we proceed
with the next point from Pi.
• We compute an approximate derivative Df i(y) and an approximate matrix
My of normalized eigenvectors. The columns of My are sorted by decreasing
absolute value of the associated eigenvalue.
• We assign to the vertex V a coordinate system VC = My.

We would like to comment here that the sets Pi are proceeded by increasing index
i. This guarantees that a vertex V will have assigned coordinate system from some
periodic point of the lowest principal period. Note, the resulting coordinates depend
on the order chosen in the set Pi.
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Step 4. Spreading coordinates from periodic points. The main idea is
to propagate the coordinate systems from periodic points by the action of the
derivative. It is well known that the direct propagation of coordinates by Df
in floating point arithmetic usually results in collapsing of these coordinates to a
singular matrix. Therefore we will involve some orthonormalization process.

The Algorithm 2 describes the procedure.

Algorithm 2: spread coordinates from periodic points

Input: G = (V, E) : graph,
S : subset of V,
k > 1 : integer

Result: {CV }V ∈V - coordinate systems at each vertex in the graph G
Data: u : vector;

M : stack of float matrices;
C : matrix;
P : subset of V;
i : integer

begin1

repeat2

P ← ∅;3

foreach V ∈ S do4

u← centre(V );5

// we will save on the stack derivatives along the trajectory;6

C ← CV ;7

for i = 1 to k do8

push(Df(u),M);9

C ← Df(u) · C;10

u← f(u);11

// then we compute coordinate system at the image;12

C ← GrammSchmidtOrthonormalization(C);13

for i = 1 to k − 1 do14

C ← (top(M))
−1 · C;15

pop(M);16

pop(M); // to free the memory;17

C ← normalizeColumns(C);18

foreach W ∈ out(V,G) do19

if CW 6=NULL then20

CW ← C−1;21

P ← P ∪ {W};22

S ← P;23

until S = ∅ ;24

end25



12 DANIEL WILCZAK

Lemma 10. Assume the Algorithm 2 is called with its arguments G = (V, E), S 6= ∅
and k > 1. Assume CV 6= NULL for V ∈ S. If G consists of only one strongly
connected component then the algorithm stops and CV 6= NULL for all V ∈ V.

Proof. We will prove that the algorithm always stops. Assume it is not the case.
Then in each iteration of the main loop the set P is non-empty. But this set contains
(lines 3 and 19-22) exactly these vertexes for which the coordinate system is assigned
in the current iteration of the loop. Hence, the set of vertexes at which we have
assigned the coordinate system will increase in each iteration. This contradicts the
fact, that V is a finite set.

We will prove that the algorithm sets coordinates in each vertex. Assume it is
not the case. Take GT = (V ′, E ′). Let V be a vertex such that CV =NULL. Then
for U ∈ out(V,V ′) holds CU = NULL. Otherwise, U will belong to the set S in
some iteration and then the coordinates will be set in V . Denote V1 = out(V,GT ).

In a recurrent way we can define

Vk =
⋃{

out(U,GT ) : U ∈ Vk−1
}
.

The same reasoning proves that CU=NULL for U ∈ Vk.
Since G consists of only one strongly connected component, GT does too. Hence,

for some K > 0 we have VK = V which contradicts the assumption that CU 6=NULL
for U ∈ S and S 6= ∅. �

The input argument S is the set of vertexes that contain periodic points and for
which the coordinate systems were already computed in Step 3. As we have seen,
lines 5-18 are not important for the correctness of the Algorithm 2. In these lines a
heuristic method for computing of coordinate systems is proposed. We propagate
the actual coordinate system CV by the derivative along a short part (k iterations)
of the trajectory of the center of V . Then we perform orthonormalization of columns
and propagate the obtained matrix backwards k−1 times. This heuristic can work
because for the inverse map the stable directions are attracting for Tf and after
few steps we get some approximation of stable directions at f(centre(V )).

In this step we also assumed that the graph G consists of only one strongly
connected component. It is not a restriction, since the method is dedicated for
attractors. In practice, Algorithm 1 always returns such a graph if the initial set
V is chosen carefully. Formally, it is easy to verify that a graph consists of one
strongly connected component using for example Tarjan’s algorithm [Ta].

Remark 11. The result of the algorithms described in steps 2,3,4 depend on the
order chosen to index the sets of vertexes and points (Pi, Pi and S). Moreover,
these algorithms are not deterministic, when implemented in parallel mode. The
coordinate system at each vertex is computed by the first thread that reaches this
vertex.

Anyway, the conclusion of Lemma 10 holds; we have computed some coordinate
system at each vertex and we can start verification of the cone conditions.

3.4. Verification of the cone conditions. This step is quite straightforward.
Let G = (V, E) be a graph which encodes a combinatorial representation of a map
f . Assume we have computed some coordinate systems {CV }V ∈V . The goal is to
check whether the assumptions of Theorem 3 hold true for f . This can be done by
simply verifying the positive definiteness of some interval matrices corresponding
to every edge in E .
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Algorithm 3: verify cone conditions

Input: G = (V, E) : graph;
Q : matrix;
f : map;

Result: U : subset of V;
Data: V,W : element of V;

D,M,A : interval matrix;

begin1

U ← ∅;2

foreach V ∈ V do3

D ← [Df(V )]; // computed interval enclosure of Df(V );4

foreach W ∈ out(V,G) do5

M ← [CWDC
−1
V ];6

A←MT ·Q ·M −Q;7

if cannot verify that A is positive definite then8

U = U ∪ {V };9

return U ;10

end11

We have the following obvious lemma.

Lemma 12. Assume the Algorithm 3 is called with its arguments G = (V, E), Q
and f . Assume that all the matrices {CV }V ∈V are invertible. The algorithm always
stops and returns a set U such that for V ∈ V \ U and W ∈ out(V,G) the interval
matrix

[CWDf(V )C−1V ]TQ[CWDf(V )C−1V ]−Q
is positive definite.

A direct consequence of the above Lemma and Theorem 3 is the following

Corollary 13. The same assumption as in Lemma 12. Assume G encodes a com-
binatorial representation of the map f and let Q be quadratic form as in (4). If the
Algorithm 3 called with its arguments G = (V, E), Q and f returns an empty set U
then f is uniformly hyperbolic on Inv(f, supp (V)).

4. Applications.

In this section we will show how the method introduced in the last section works
in a very easy example. Then we will give a proof of Theorem 1.

4.1. Toy example - Smale map. A natural choice to test the algorithms and
implementation is a very simple example. Here we have chosen the well known
Smale map s : R2 × [0, 1]→ R2 × [0, 1]

(18) s(x, y, t) = (0.1x+ 0.5 cos(2πt), 0.1y + 0.5 sin(2πt), 2t mod 1).

The map is proved to be uniformly hyperbolic just by simple hand-made calcula-
tions. It is easy to see that the set [−1, 1]× [−1, 1]× [0, 1] is positive invariant for
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s. Define a cover of this attracting domain of the form

Xk =

{
[a, a+ 1]× [b, b+ 1]× [c, c+ 1]

2k
: a, b, c = −2k, . . . , 2k − 1, c ≥ 0

}
.

We will call the number k in Xk the resolution. After application of Algorithm 1 we
got an enclosure of the attractor consisting of 567 boxes for k = 4 and 3333 boxes
for k = 6. These enclosures are shown in Fig. 2.
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Figure 2. Enclosure of the Smale attractor for the resolutions
k = 4 and k = 6. Note, the planes t = 0 and t = 1 should be
identified.

We completed the proof of uniform hyperbolicity for the resolution k = 4. We
run the algorithm for finding cycles in the graph and refining them to periodic
points with the maximum period set to N = 3. They returned 1 candidate for fixed
point, a period 2 orbit and two period 3 orbits.

Then we applied the algorithm for spreading coordinate systems with k = 2
(this is the number of forward iterates when propagate the coordinate systems)
and verification of the cone conditions. We run Algorithm 3 with the quadratic
form

Q =

1 0 0
0 −1 0
0 0 −1


and it returned an empty set U of unverified vertexes. The program executes within
less than 1 second on a laptop-type computer.

4.2. Application to the system of coupled van der Pol oscillators – proof
of Theorem 1. Consider the system (1) with the parameter values (3). Let P be
the Poincaré map as defined in (2). Let us perform a linear change of coordinates

x0 = x/r0, x1 = (u−cux)/r1, x2 = y−cyxx−cyuu, x3 = v−cvxx−cvu−cvyy,
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algorithm wall time (h:mm) comments
enclosure of attractor,

Algorithm 1 2:16 on 224 CPUs 7 970 392 boxes
finding of cycles in graph,

max period 6 0:58 on 32 CPUs 2190 cycles found
finding of periodic points,

max period 6 0:06 on 32 CPUs 105 points found
computing of coordinate systems,

Step 4 and Algorithm 2 6:59 on 32 CPUs parameter k = 2
verification of cone condition, empty set

Algorithm 3 4:24 on 224 CPUs of unverified boxes

Table 1. Setting, results and time of computation of the algo-
rithms applied to the map P̃ .

where
cux = 0.438, cyx = −0.042,
cyu = 0.226, cvx = −0.218,
cvu = 0.029, cvy = −0.118,
r0 = 0.812, r1 = 0.721.

As it is observed in [KSe], in these coordinates the attractor is more aligned to the

coordinate axes. In the sequel we will consider the Poincaré map P̃ = L−1PL,
where L is the matrix of coordinate change.

Figure 3. Projection of the enclosure of the attractor for P̃ com-
puted with the resolutions k = 14.

After few attempts we found that the resolution k = 14 is enough for verification
of the hyperbolicity of the observed attractor for P̃ . This means that we have used
a uniform grid in some bounded domain of the form

X =

{
[a, a+ 1]× [b, b+ 1]× [c, c+ 1]× [d, d+ 1]

2k
: a, b, c, d = −2k+1, . . . , 2k+1 − 1

}
.

In Table 1 we give the results of applying of the algorithms for generating enclo-
sure, setting of coordinate systems and verification of strong hyperbolicity. We run
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Algorithm 3 with the quadratic form

Q =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


and it returned an empty set of unverified vertexes. Hence, the uniform hyperbol-
icity of the set Inv(P̃ , supp (V)) is verified. To complete the proof of Theorem 1
we used the CHOMP library [CHOMP] in order to compute homology groups of
the cubical set represented by V. The program verified that H0(V) = Z, hence
the set supp (V) is connected. The group H1(V) also was nonzero, hence the set is
non-contractible.

This finishes the proof of Theorem 1.

4.3. The existence of a fixed point and a period two orbit – proof of
Theorem 2. As a byproduct of the proof of Theorem 1 we got a good numer-
ical approximations of over one hundred periodic points. To prove that the set
Inv(P̃ , supp (V)) is nontrivial we used the interval Newton operator [M] as a tool
for verification of the existence and local uniqueness of zeros of maps. We have the
following lemma.

Lemma 14. Assume f is a smooth map in a neighborhood of an interval set X ⊂
Rn and fix x̄ ∈ intX. If the interval Newton operator

N(x̄, X, f) = x̄− [Df(X)]−1I (X − x̄) ⊂ int(X)

then the map f has unique zero in the set X. Moreover, if x∗ ∈ X is the unique
zero of f in X then x∗ ∈ N(x̄, X, f).

Proof of Theorem 2. A good numerical approximation of a fixed point for P̃ is

x̄ =


−0.2217320903523841312
0.97492087818262221051
0.018539814418960732759
−0.03127925657964333925


T

– this is a point returned from the step of finding periodic points in supp (V). Let
X be a ball of radius 10−10 in the maximum norm centered at x̄. We computed
the interval Newton operator N(x̄, X, P̃ − Id) and we got that

‖N(x̄, X, P̃ − Id)− x̄‖0 ≤ 2.5 · 10−12.

Hence, N(x̄, X, P̃ − Id) ⊂ int(X) and the map P̃ − Id has a unique zero in X.

Clearly this is a fixed point for P̃ . We also verified that N(x̄, X, P̃ − Id) ⊂ supp (V)

and this finishes the proof that P̃ has a fixed point supp (V).
In a similar way we verified that the attractor contains a period two orbit. It is

enough to show that the map F (x, y) = (P (x) − y, P (y) − x) has a zero for some
(x∗, y∗) and x∗ 6= y∗. We have a good candidate for periodic points

x̄ =


1.0708168699357167158

0.093670228872794565237
0.015571609254819055212
0.024616361886390349154


T

, ȳ =


−0.22099700889399603573
−0.706209321733317795
−0.044189820507618084004
−0.006451355101601539937


T

.
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Let Z ⊂ R8 be a ball of radius 10−10 in the maximum norm centered at z̄ = (x̄, ȳ).
We verified that

‖N(z̄, Z, F )− z̄‖0 ≤ 2 · 10−12.

This proves that F has a unique zero (x∗, y∗) ∈ Z. Since ‖x̄ − ȳ‖0 ≥ 2 · 10−10

we have x∗ 6= y∗ and both x∗, y∗ are period two points for P̃ . We also verified
that (x∗, y∗) ∈ N(z̄, Z, F ) ⊂ supp (V) × supp (V) and this completes the proof of
Theorem 2. �

5. Conclusions.

In this paper we proposed a method for rigorous verification of uniform hyper-
bolicity for maps. The method has been successfully applied to a Poincaré map of
a non-autonomous ODE in four dimensions. We believe the method can be applied
to other systems.

Kuznetsov [K2] proposed also a non-autonomous system on the plane which ap-
parently possesses an attractor of Plykin type in the Poincaré map. The equations
are quite complicated and given by
(19)

ẋ = −2εy2Ω1(x, y, t)
(
cos
(
π
4 cos π2 t

)
− x sin

(
π
4 cos π2 t

))
+

KyΩ2(x, y, t)
(
cos
(
π
4 sin π

2 t
)
− x sin

(
π
4 sin π

2 t
))

sin π
2 t,

ẏ = εyΩ1(x, y, t)
(
2x cos

(
π
4 cos π2 t

)
+ (1− x2 + y2) sin

(
π
4 cos π2 t

))
−

KΩ2(x, y, t)
(
x cos

(
π
4 sin π

2 t
)

+ 1
2 (1− x2 + y2) sin

(
π
4 sin π

2 t
))

sin π
2 t,

where

Ω1(x, y, t) =
2x cos

(
π
4 cos π2 t

)
+ (1− x2 − y2) sin

(
π
4 cos π2 t

)
(1 + x2 + y2)

2 ,

Ω2(x, y, t) =
−2x sin

(
π
4 sin π

2 t
)

+ (1− x2 − y2) cos
(
π
4 sin π

2 t
)

(1 + x2 + y2)
2 +

1√
2
.

Kuznetsov [K2] did a numerical study of this system and observed that for a wide
range of parameter values around K = 1.9 and ε = 0.72 the Poincaré map has a
hyperbolic attractor. A rigorous enclosure of the attractor for K = 1.9, ε = 0.72
resulting from Algorithm 1 with the resolution k = 9 is shown in Fig. 4. The
resolution k = 9 was not enough to perform the step of verification of uniform
hyperbolicity of this map. We also enclosed this attractor with resolution k = 12
but again this was not enough to verify the hyperbolicity. Further subdivision was
not possible due to memory limitations in the computer that we used.

Computations for the system (19) are much harder than for (1). First - the
vector field is a quite large expression and even if the system is lower dimensional,
it is more complicated for rigorous integration. Second, and most important; as
easily seen in Fig. 4, the attractor is very thick and harder to cover than the almost
one dimensional Smale solenoid. An approximate Hausdorff dimension reported in
[K2] is ca 1.7. We reached the limit of available memory on our computer when
enclosing the attractor with a thinner cover. We believe, however, that some further
optimizations in data structures will help to prove hyperbolicity of this system. A
straightforward idea is to use non-uniform covers.
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Figure 4. Enclosure of the attractor of the Poincaré map for the
system (19) with parameter values K = 1.9, ε = 0.72 and with the
resolution k = 9.

5.1. General invariant sets. In this paper we verified hyperbolicity of attractors.
But the method can be easily extended to invariant sets. The only part which
requires some modification is the method for generating an enclosure of an invariant
set. If the invariant set is an attractor, the strategy of “inner” enclosure is better
- Algorithm 1. For a general invariant set an “outer” approximation is necessary.
We also implemented “outer” approximation for enclosing of general invariant sets
but we do not report details here, since it is rather standard procedure. As a test
case we proved that the well known Hénon map [H]

Ha,b(x, y) = (1 + y − ax2, bx)

is uniformly hyperbolic on the invariant set for the parameter values a = 5.4 and
b = −1.

As mentioned above, we used an “outer” strategy to enclose the invariant set
– the result is shown in Fig. 5 and it consists of 8832 boxes. Then we applied
algorithms for finding cycles and periodic points, computing of coordinate systems
and verification of the cone condition with the quadratic form

Q =

[
1 0
0 −1

]
.

The program executes within less than 1 second on a laptop-type computer with
the Intel Core 2 Duo 2GHz processor. A computer assisted proof for the same
parameter values is presented in [A, MT]. In [MT] the authors report the time of
computations less than 10 seconds on a comparable CPU.

5.2. Implementation. The C++ program for verifying the hyperbolicity has been
implemented by the author and the source code is available at [W]. The code is
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Figure 5. An enclosure of the invariant set for Ha,b map with the
parameter values a = 5.4, b = −1.

highly parallelized using the Open MP library supported by the compilers gcc-4.2
or newer. The code is written in a very generic way; it heavily uses template tech-
niques. In fact, an input to the algorithms is an abstract map (template parameter)
for which we assume that we know how to compute values and derivatives. In the
case of Poincaré maps we used for this purpose the C0 and C1 solvers from the
[CAPD] library – see also [Z1] for an efficient algorithm for integration of first order
variational equations.

All computations regarding Theorem 1 and Theorem 2 were performed on a clus-
ter with 7 computers, each having 8 Quad-Core AMD Opteron(tm) 8354, 2.2GHz
processors with 64GB of RAM. During the computations the maximal usage of the
memory was 32%.
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[Z1] P. Zgliczyński, C1-Lohner algorithm, Foundations of Computational Mathematics, 2
(2002), 429–465.
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