
ar
X

iv
:1

00
6.

30
53

v2
 [

m
at

h.
N

A
]

 1
8

Ju
l 2

01
4

FACTORIZING THE STOCHASTIC GALERKIN SYSTEM ∗

PAUL G. CONSTANTINE† , DAVID F. GLEICH‡ , AND GIANLUCA IACCARINO§

Abstract. Recent work has explored solver strategies for the linear system of equations arising
from a spectral Galerkin approximation of the solution of PDEs with parameterized (or stochastic)
inputs. We consider the related problem of a matrix equation whose matrix and right hand side
depend on a set of parameters (e.g. a PDE with stochastic inputs semidiscretized in space) and
examine the linear system arising from a similar Galerkin approximation of the solution. We derive
a useful factorization of this system of equations, which yields bounds on the eigenvalues, clues to
preconditioning, and a flexible implementation method for a wide array of problems. We complement
this analysis with (i) a numerical study of preconditioners on a standard elliptic PDE test problem
and (ii) a fluids application using existing CFD codes; the MATLAB codes used in the numerical
studies are available online.

Key words. parameterized systems, spectral methods, stochastic Galerkin

1. Introduction. Complex engineering models are often described by systems of
equations, where the model outputs depend on a set of input parameters. Given values
for the input parameters, the model output may be computed by solving a discretized
differential equation, which typically involves the solution (or series of solutions) of a
system of linear equations for the unknowns. Each of these computations may be very
expensive depending on factors such as grid resolution or physics components in the
model. As the role of simulation gains prominence in areas such as decision support,
design optimization, and predictive science, understanding the effects of variability
in the input parameters on variability in the model output becomes more important.
Exhaustive parameter studies (e.g. uncertainty quantification, sensitivity analysis,
model calibration) can be prohibitively expensive – particularly for a large number of
input parameters – and therefore accurate interpolation and robust surrogate models
are essential.

We consider the model problem of a matrix equation whose matrix and right hand
side depend on a set of parameters. Let s ∈ S be a set of input parameters from a
d-dimensional tensor product parameter space S = S1 ⊗ · · · ⊗ Sd; the range of each
Si may be bounded or unbounded. We equip the parameter space with a bounded,
separable, positive weight function ω : S 7→ R+, where ω(s) = ω1(s1) · · ·ωd(sd). (In
a probabilistic context, this weight function represents a probability measure on the
input parameter space.) Let A(s) be an N × N matrix-valued function where we
assume that A(s) is invertible for all s ∈ S, and let b(s) be the vector-valued function
with N components, where each component is square integrable with respect to ω.
We seek the vector valued function x(s) that satisfies

A(s)x(s) = b(s), s ∈ S. (1.1)

Such parameterized matrix problems often arise as an intermediate step when com-
puting an approximate solution of a complex model with multiple input parameters.

∗This paper appeared in SIAM Journal of Scientific Computing in 2010 under the title A fac-
torization of the spectral Galerkin system for parameterized matrix equations: derivation and ap-
plications [6]. We have changed the title of the paper here on arXiv.org to increase its prominence
in relevant internet search results. Beyond the title and this footnote, this paper is identical to the
published manuscript.

†Sandia National Labs, Albuquerque, New Mexico. (pconsta@sandia.gov).
‡Sandia National Labs, Livermore, California. (dfgleic@sandia.gov).
§Stanford University, Stanford, California (jops@stanford.edu).

1

http://arxiv.org/abs/1006.3053v2
arXiv.org

2 P. G. CONSTANTINE, D. F. GLEICH, AND G. IACCARINO

They appear in such diverse fields as differential equations with random (or parame-
terized) inputs [1, 34], electronic circuit design [26], image deblurring models [5], and
ranking methods for nodes in a graph [28, 8]. Given a parameterized matrix equation,
one may wish to approximate the vector valued function that satisfies the equation
or estimate its statistics. Once an approximation is constructed that is cheaper to
evaluate than the true solution, statistics – such as mean and variance – of the ap-
proximation represent estimates of statistics of the true solution.

The approximation model is a vector of multivariate polynomials represented as
a series of orthonormal polynomial basis functions where each basis function is a
product of univariate orthonormal polynomials. We employ the standard multi-index
notation; let α = (α1, . . . , αd) ∈ N

d be a multi-index, and define the basis polynomial

πα(s) = πα1
(s1) · · ·παd

(sd). (1.2)

The polynomial παi
(si) is the orthonormal polynomial of degree αi, where the or-

thogonality is defined with respect to the weight function ωi(si). Then for α, β ∈ N
d,

∫

S

πα(s)πβ(s)ω(s) ds =

{

1, α = β
0, otherwise

(1.3)

where equality between multi-indicies means component-wise equality. For a given
index set I ⊂ N

d with size |I| <∞, the polynomial approximation can be written

x(s) ≈
∑

α∈I

xαπα(s) = Xπ(s). (1.4)

The N -vector xα is the coefficient of the series corresponding to πα(s). The N × |I|
matrix X has columns xα, and the parameterized vector π(s) contains the basis
polynomials. The goal of the approximation method is to compute the unknown
coefficients X.

Such polynomial models have become popular for approximating the solution of
PDEs with random inputs [24, 39]; they appear under names such as polynomial chaos
methods [41], stochastic finite element methods [19], stochastic Galerkin methods [3],
and stochastic collocation methods [40, 2]. The Galerkin methods compute the series
coefficients such that the equation residual is orthogonal to the approximation space
defined by the index set I; they typically employ a full polynomial basis of order n
given by

I = In = {α ∈ N
d : α1 + · · ·+ αd ≤ n}, (1.5)

although such a basis set is not strictly necessary. The number of terms in this
basis set is |In| =

(

n+d
n

)

, which grows rapidly for d > 1. The process of computing
the coefficients involves solving a linear system of size N |I| × N |I|, which can be
prohibitively large for even a moderate number of input parameters (6 to 10) and low
order polynomials (degree < 5). For this reason, there has been a flurry of recent work
on solver strategies for the matrix equations arising from the Galerkin methods [30,
35, 23, 12, 11, 14, 36], including papers on preconditioning [33, 13, 32, 37]. Such work
has relied on knowing the matrix valued coefficients Aα of a series expansion of the
parameterized matrix A(s),

A(s) =
∑

α

Aαπα(s), (1.6)

STOCHASTIC GALERKIN FACTORIZATION 3

which typically come from a specific form of the coefficients of the elliptic operator in
the PDE models. Another drawback of the Galerkin method is its limited ability to
take advantage of existing solvers for the problem A(λ)x(λ) = b(λ) given a parameter
point λ ∈ S. In contrast, the pseudospectral and collocation methods can compute
coefficients of the model (1.4) using only evaluations of the solution vector x(λ). The
chosen points typically correspond to a multivariate quadrature rule, and computing
the coefficients of the polynomial model (1.4) becomes equivalent to approximating
its Fourier coefficients with the quadrature rule [2, 9]. Thus, from the point of view of
code reuse and rapid implementation, the pseudospectral/collocation methods have a
distinct advantage.

We propose a variant of the Galerkin method that alleviates the drawbacks of
limited code reuse and memory limitations. By formally replacing the integration in
the Galerkin method by a multivariate quadrature rule – a step that is more often
than not performed in practice – we derive a decomposition of the linear system
of equations used to compute the Galerkin coefficients of (1.4); such a method has
been called Galerkin with numerical integration in the context of numerical methods
for PDEs [4]. This decomposition allows us to compute the Galerkin coefficients
using only evaluations of the parameterized matrix A(λ) and parameterized vector
b(λ) for points λ ∈ S corresponding to a quadrature rule. In fact, if one requires
only matrix-vector multiplies as in Krylov-based iterative methods (e.g. cg [22] or
minres [29] solvers) for the Galerkin system of equations, this restriction can be
relaxed to matrix-vector products A(λ)v for a given N -vector v; there is no need
for the coefficients of an expansion of A(s) as in (1.6). Therefore the method takes
full advantage of sparsity of the parameterized system resulting in reduced memory
requirements. The decomposition also yields insights for preconditioning the Galerkin
system that generalize existing work. Additionally, the decomposition immediately
reveals bounds on the eigenvalues of the Galerkin system for the case of symmetric
A(s).

The remainder of the paper is structured as follows. In Section 2, we derive the
Galerkin method for a given problem and basis set. We then derive the decomposition
of the matrix used to compute the Galerkin coefficients and examine its consequences
including bounds on the eigenvalues of the matrix, strategies for simple implementa-
tion and code reuse, and insights into preconditioning. We then provide a numerical
study of various preconditioners suggested by the decomposition using the common
test case of an elliptic PDE with parameterized coefficients in Section 3; the codes for
the numerical study are available in a Matlab suite of tools accessible online [20].
To emphasize the advantages of code reuse, we apply the method to an engineering
test problem using existing codes in Section 4. Finally, we conclude in Section 5 with
summarizing remarks.

1.1. Notation. For the remainder of the paper, we will use the bracket notation
〈·〉 to denote a discrete approximation to the integral with respect to the weight
function ω. In other words, for functions f : S −→ R,

∫

S

f(s)ω(s) ds ≈
∑

β∈J

f(λβ)νβ ≡ 〈f〉 , (1.7)

where the points λβ = (λβ1
, . . . , λβd

) ∈ S and weights νβ ∈ R+ define a multivariate
quadrature rule1 for multi-indicies in the set J ⊂ N

d. We will abuse this notation by

1We have restricted our attention to quadrature rules with positive weights.

4 P. G. CONSTANTINE, D. F. GLEICH, AND G. IACCARINO

putting matrix and vector valued functions inside the brackets, as well. For example,
〈A〉 denotes the mean of A(s) computed with a quadrature rule.

2. A Spectral Galerkin Method. We first review the Galerkin method [9] for
computing the coefficients of the polynomial model (1.4). Define the residual

r(y, s) = A(s)y(s) − b(s), (2.1)

and let xg(s) be the Galerkin approximation. Denote the ith component of the residual
by ri(xg , s). We require that each component of the residual be orthogonal to the
approximation space defined by the span of πα with α ∈ I,

〈ri(xg)πα〉 = 0, i = 1, . . . , N, α ∈ I. (2.2)

We can combine the equations in (2.2) using the matrix notation

〈

r(xg)π
T
〉

=
〈

(Axg − b)πT
〉

= 0, (2.3)

or equivalently, upon substituting the model xg(s) = Xπ(s),

〈

AXππ
T
〉

=
〈

bπT
〉

. (2.4)

Using the vec notation [21, Section 4.5], we can rewrite (2.4) as

〈

ππ
T ⊗A

〉

x = 〈π ⊗ b〉 . (2.5)

where x = vec(X) is an N |I| × 1 constant vector equal to the columns of X stacked
on top of each other. The constant matrix

〈

ππ
T ⊗A

〉

has size N |I| × N |I| and a
distinct block structure; the α, β block of size N ×N is equal to 〈παπβA〉 for multi-
indicies α, β ∈ I. Similarly, the α block of the N |I| × 1 vector 〈π ⊗ b〉 is equal to
〈bπα〉, i.e. the Fourier coefficient of b associated with πα(s) approximated with the
quadrature rule.

Much of the literature on PDEs with random inputs [30, 33] points out an inter-
esting block sparsity pattern that arises in the matrix

〈

ππ
T ⊗A

〉

when the param-
eterized matrix A(s) depends at most linearly on any components of s and integrals
are computed exactly; this is a result the orthogonality of the bases π(s). For gen-
eral analytic dependence on the parameters, such sparsity patterns do not appear [15].
However, one can always mimick the sparsity pattern of A(s) with a simple reordering
of the variables. By taking the transpose of (2.4) and using the same vec operations,
if we define x̃ = vec(XT) (i.e. the same unknowns reordered), then

〈

A⊗ ππ
T
〉

x̃ = 〈b⊗ π〉 . (2.6)

Notice that the matrix in (2.6) retains the sparsity of A(s) in its blocks, since each
i, j block of size |I| × |I| is equal to

〈

Aijππ
T
〉

, where Aij(s) is the i, j element of
A(s). For the remainder of the paper, however, we will work with the form (2.5).

By writing out the numerical integration rule for the integrals used to form
〈

ππ
T ⊗A

〉

, we uncover an interesting decomposition, which we state as a theorem.
Theorem 2.1. Let {(λβ , νβ)} with β ∈ J be a multivariate quadrature rule. The

matrix
〈

ππ
T ⊗A

〉

can be decomposed as

〈

ππ
T ⊗A

〉

= (Q⊗ I)A(λ)(Q⊗ I)T , (2.7)

STOCHASTIC GALERKIN FACTORIZATION 5

where I is the N ×N identity matrix, and Q is a matrix of size |I| × |J | – one row

for each basis polynomial and one column for each point in the quadrature rule. The

matrix A(λ) is a block diagonal matrix of size N |J |×N |J | where each nonzero block

is A(λβ) for β ∈ J .

Proof. Writing out the quadrature rules,

〈

ππ
T ⊗A

〉

=
∑

β∈J

[

π(λβ)π(λβ)
T ⊗A(λβ)

]

νβ . (2.8)

Notice that the elements of the vector π(λβ) are the polynomials πα(s) evaluated at
the quadrature point λβ . If we define the vectors

qβ =
√
νβπ(λβ), (2.9)

then we have
〈

ππ
T ⊗A

〉

=
∑

β∈J

qβq
T
β ⊗A(λβ). (2.10)

Let Q be the matrix whose columns are qβ , and define the block diagonal matrix
A(λ) with diagonal blocks equal to A(λβ). Then for an N ×N identity matrix I, we
can rewrite (2.10) as (2.7), as required.

As an aside, we note that if A(s) depends polynomially on the parameters s,
then each integrand in the matrix

〈

ππ
T ⊗A

〉

is a polynomial in s. Therefore by the
polynomial exactness, there is a Gaussian quadrature rule such that the numerical
integration approach exactly recovers the true Galerkin matrix.

The elements of Q are the orthogonal polynomials evaluated at the quadrature
points and multiplied by the square root of the quadrature weights. They are in-
timately related to the normalized eigenvectors of the symmetric, tridiagonal Jacobi
matrices of the three-term recurrence coefficients of the orthogonal polynomials, which
can be computed efficiently by methods for computing eigenvectors; see [18, 9] and
Appendix A for more details. For two polynomials πα(s) and πβ(s) with α, β ∈ I,
define rα and rβ to be the corresponding rows of Q; then

rαr
T
β =

∑

γ∈J

πα(λγ)πβ(λγ)νγ . (2.11)

If the quadrature rule is a tensor product Gaussian quadrature rule of sufficiently
high order to exactly compute the polynomial integrand, then this implies QQT = I,
where I is the |I| × |I| identity matrix; we will assume from here on that the chosen
quadrature rule yields this property. We will also assume that the number of basis
polynomials is less than the number of points used in the quadrature rule, i.e. |I| ≤
|J |; otherwise the Galerkin matrix

〈

ππ
T ⊗A

〉

will be rank deficient.

Theorem 2.1 reveals bounds on the eigenvalues of the matrix
〈

ππ
T ⊗A

〉

for the
case when A(s) is symmetric; we state this as a corollary.

Corollary 2.2. Suppose A(s) is symmetric for all s ∈ Sd. The eigenvalues of
〈

ππ
T ⊗A

〉

satisfy the bounds

min
β∈J

[

θmin

(

A(λβ)
)]

≤ θ
(

〈

ππ
T ⊗A

〉

)

≤ max
β∈J

[

θmax

(

A(λβ)
)]

, (2.12)

where θ(X) denotes the eigenvalues of a matrix X, and θmin(X) and θmax(X) denote
the smallest and largest eigenvalues of X, respectively.

6 P. G. CONSTANTINE, D. F. GLEICH, AND G. IACCARINO

The proof of Corollary 2.2 involves a detailed discussion of the properties of
orthogonal polynomials and the tridiagonal matrices of their three-term recurrence
coefficients. To keep this section focused, we have placed the proof in an appendix
along with a note on the sharpness of the bounds. To conclude this section, we
note that if A(s) is positive definite for all s ∈ S, then Corollary 2.2 implies that
〈

ππ
T ⊗A

〉

will be positive definite, as well.

2.1. Iterative Solvers. Due to their size and sparsity, the preferred way of
solving (2.5) is with Krylov based iterative solvers [30] that rely on matrix-vector
products with the matrix

〈

ππ
T ⊗A

〉

. By employing the decomposition in Theorem
2.1, we can compute these using only multiplication of the parameterized matrix
evaluated at the quadrature point by a given vector. More precisely, given a vector
u = vec(U), suppose we wish to compute

v = vec(V) = (Q⊗ I)A(λ)(Q⊗ I)Tu. (2.13)

We accomplish this in three steps using the properties of the Kronecker product:

1. W = UQ. Let wβ be a column of W with β ∈ J .
2. For each β, yβ = A(λβ)wβ . Define Y to be the matrix with columns yβ .
3. V = YQT .

Step 1 can be thought of as pre-processing, and step 3 as post-processing. In practice,
each row of Q may have a Kronecker structure corresponding to the tensor product
quadrature rule. In this case, steps 1 and 3 can be computed accurately and efficiently
using multiplication methods such as [16]. The second step requires only constant
matrix-vector products where the matrix is A(s) evaluated at the quadrature points.
Therefore we can take advantage of a memory-efficient, reusable interface for the
matrix-vector multiplies that will exploit any sparsity in the matrix. We reiterate
that this can be accomplished without any knowledge of the specific type of parameter
dependence in A(s).

Each of the three steps individually admits embarrassing parallelization; steps 1
and 3 are matrix-vector multiplies with independent right hand sides, and each yβ in
step 2 can be computed independently. However, there is substantial communication
necessary between the steps, and this will be the primary barrier to parallel scalability.

The cost of this method depends on the number of basis polynomials in the
approximation and number of points in the quadrature rule. Steps 1 and 3 each require
N |I||J | multiplies. If a matrix-vector product with A(s) takes O(N) operations due
to its sparsity pattern, then step 2 takes O(|J |N) operations. Methods based on
the series expansion (1.6) of A(s) can be significantly cheaper – depending on the
number of terms in (1.6), and assuming the so-called triple products are precomputed
before the iterative solver is applied. The trade-off between cost and flexibility must
be assessed per application.

2.2. Preconditioning Strategies. The number of iterations required to achieve
a given convergence criterion (e.g. a sufficiently small residual) can be greatly reduced
for Krylov-based iterative methods with a proper preconditioner. In general, precon-
ditioning a system is highly problem dependent and begs for the artful intuition of
the scientist. However, the structure revealed by the decomposition from Theorem
2.1 offers a number of useful clues.

Suppose we have an N ×N matrix P that is easily invertible. We can construct a
block-diagonal preconditioner I⊗P−1, where I is the identity matrix of size |I|× |I|.

STOCHASTIC GALERKIN FACTORIZATION 7

If we premultiply the preconditioner against the factored form of
〈

ππ
T ⊗A

〉

, we get

(I⊗P−1)(Q⊗ I)A(λ)(Q⊗ I)T = (Q⊗ I)(I⊗P−1)A(λ)(Q⊗ I)T . (2.14)

By the mixed product property and commutativity of the identity matrix, the block-
diagonal preconditioner slips past Q⊗ I to act directly on the parameterized matrix
evaluated at the quadrature points. The blocks on the diagonal of the inner matrix
product are P−1A(λβ) for β ∈ J . In other words, we can choose one constant matrix
P to affect the parameterized system at all quadrature points.

A reasonable and popular choice is the mean P = 〈A〉; see [32, 30] for a detailed
analysis of this preconditioner for stochastic finite element systems. Notice that this
is also the first N × N block of the Galerkin matrix. However, if A(s) is very large
or has some complicated parametric dependence, then forming the mean system and
inverting it (or computing partial factors) for the preconditioner may be prohibitively
expensive. If the dependence of A(s) on s is close to linear, then P = A (〈s〉) may be
much easier to evaluate and just as effective.

One goal of the preconditioner is reduce the condition number of the matrix, and
one way of achieving this is to reduce the spread of the eigenvalues. If we knew a

priori which region of the parameter space produced the extrema of the parameter-
ized eigenvalues of A(s) (e.g. the boundaries), then we could choose an appropriate
parameter value to construct an effective preconditioner. Unfortunately, we only get
to use one such evaluation. Therefore, if the largest possible value of the parameter-
ized eigenvalues is very large, we may choose this parameter value. Alternatively, if
the smallest eigenvalue over the parameter space is close to zero (for positive definite
systems), then this may be better reduce the condition number of the Galerkin system
than the parameter that produces largest eigenvalue. In the next section, we explore
a few choices for the preconditioner P on a standard test problem.

Notice that (2.14) suggests two possible routes for implementing the precondi-
tioner. If only an interface for a preconditioned matrix-vector multiply is available for
the parameterized matrix, then the implementation corresponding to the right hand
side of (2.14) is appropriate. However, this requires |J | applications of the precon-
ditioner, and in all cases we expect that |I| ≤ |J |. Therefore, our implementation
employs the form on the left hand side of (2.14), which requires |I| applications of the
preconditioner and can be computed efficiently due to its block diagonal structure.

3. Preconditioning Study. Consider the following parameterized elliptic par-
tial differential equation with homogeneous Dirichlet boundary conditions; variations
of this problem can be found in [1, 3, 17], amongst others. We seek a solution u(x, s)
that satisfies

∇ · (a(x, s)∇u(x, s)) = 1, x ∈ [0, 1]2, (3.1)

where u = 0 on the boundary of the square domain [0, 1]2, and the parameter space
is the hypercube s ∈ [−1, 1]4 equipped with a uniform measure. The logarithm of
the elliptic coefficient is given by a truncated Karhunen-Loeve like expansion [27] of
a zero-mean random field with covariance

C(x1, x2) = 2 exp(−‖x1 − x2‖2/2), (3.2)

so that

log(a(x, s)) = 2
4

∑

k=1

σkψk(x)sk, (3.3)

8 P. G. CONSTANTINE, D. F. GLEICH, AND G. IACCARINO

Fig. 3.1. Eigenvalues of the KL expansion. The numbers indicate the percentage of field energy
captured when using that many terms in the expansion.

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

 55.5%

 71.1% 86.7%

 91.1%
 94.0% 96.9%

 97.7% 98.5% 99.0% 99.4%

Eigenvalue Index

S
qr

t(
E

ig
en

va
lu

e)

where {σ2
k, ψk} are the eigenpairs of the covariance function. We discretize (3.1)

using the finite element method implemented in Matlab’s pde toolbox on an
irregular mesh of N = 1,921 triangles. We solve the eigenvalue problem with the
discrete covariance matrix to compute the values of the eigenfunctions ψk(x) on the
given mesh. The square roots of first ten eigenvalues σk are plotted in Figure 3.1;
we truncate the expansion at d = 4 to retain roughly 90% of the energy of the field.
Given a point in the parameter space, the PDE Toolbox allows us to access the stiffness
matrix. Therefore we can apply Matlab’s minres solver using only matrix-vector
multiplies against the stiffness matrix evaluated at the quadrature points. For the
polynomial basis, we use the normalized multivariate product Legendre polynomials
of order 5, which includes |I| =

(

4+5

5

)

= 126 basis functions. Therefore the number
of unknowns is N |I| = 242,046. We use a tensor product Gauss-Legendre quadrature
rule of order 12 in each parameter (20,736 points) to implicitly form the Galerkin
matrix; this is more than sufficient to maintain the orthogonality in the basis functions.

To test the preconditioning ideas suggested by the decomposition from Theorem
2.1 and equation (2.14), we try five different choices of P. For each P, we precompute
the Cholesky factors to apply (2.14) efficiently. Figure 3.2 and Table 3.1 summarize
the results, which we now explain in detail. In the first type of preconditioning, we
set P = A(sr) for a random point sr in [−1, 1]4. To sample the likely effectiveness
of any random point, we select 25 random points and evaluate each choice of sr.
Second, we set P = A(smax) where A(smax) is the matrix with the largest eigenvalue
in [−1, 1]4. To compute smax, we use up to 100 iterations of the power method to
estimate the largest eigenvalue at each point in the quadrature rule, that is for each
λβ for β ∈ J ; we also evaluate A(s) for the tensor product of the endpoints as well.
Third, we set P = A(smin) where A(smin) is the matrix with the smallest eigenvalue in
[−1, 1]4. For this computation, we use Matlab’s optimization routine fmincon and
use eigs/arpack to evaluate the smallest eigenvalue [25]. Fourth, we setP = A(smid)
where smid is the midpoint of the domain, which is the origin for our experiments.
Fifth, and finally, we set P = 〈A〉, the mean preconditioner. To evaluate the mean, we

STOCHASTIC GALERKIN FACTORIZATION 9

0 50 100 150 200 250 300 350
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Iteration

R
es

id
ua

l

Converged at
iteration 7075

Converged at
iteration 413

no preconditioning

largest eigenvalue

smallest eigenvalue

random

midpoint

mean

Fig. 3.2. Convergence of the 2-norm of the residual for a variety of preconditioners.

use a 2nd order quadrature rule for a fast approximation and a 5th order quadrature
rule for a more exact approximation.

In Figure 3.2, we show the convergence of the 2-norm of the residual for each of
the preconditioning strategies, as well as no preconditioning. We only show the result
from the 5th order mean based preconditioner as there was no appreciable difference
in convergence. This plot clearly shows that the mean and midpoint preconditioners
are excellent choices. Further note that any random point is more than two orders
of magnitude better than no preconditioning at all. In fact, using a random point is
better than using the point with largest eigenvalue and may compare with using the
point with the smallest eigenvalue.

Next, Table 3.1 shows a few timing results from these experiments. We present the
time taken to compute/setup the preconditioner, the average time between iterations,
and the total time taken by the minres method (excluding preconditioner setup). The
times are from Matlab 2010a on an Intel Core i7-960 processor (3.2 GHz, 4 cores)
with 24GB of RAM. Matlab used four cores for its own multithreading and we used
the Parallel Computing toolbox’s parfor construction to parallelize the matrix-vector
product over 4 cores as well. By watching a processor performance meter, we observed
high utilization of all four cores. However, the system’s memory was nearly exhausted
by the experiment. At irregular intervals, the system would begin swapping memory
to disk heavily. This behavior caused erratic timing results, especially for the two
random point evaluations. On repeated runs of the experiments, we observed wall-
clock time differences of up to 100 seconds for any individual result. Thus differences
below this threshold are not meaningful. From these timing results, we conclude that
preconditioning changes the iteration time only slightly – if at all. Furthermore, the
setup times are often small when compared with the savings in runtime.

The Matlab codes for this study include a utility for generating realizations of

10 P. G. CONSTANTINE, D. F. GLEICH, AND G. IACCARINO

Table 3.1

Timing results for preconditioning showing only two of the random points.

Method Setup (s) Iterations Avg. Iter. (s) Total (s)

no preconditioning 0.0 7075 6.5 46251.1
largest eigenvalue 176.0 413 6.6 2810.7
smallest eigenvalue 16.0 216 6.5 1469.4
random 0.1 238 6.7 1661.8
random 0.9 216 8.4 2030.2
mean (5th order) 4.7 111 6.7 807.2
mean (2nd order) 0.7 110 6.8 820.4
midpoint 0.1 110 7.0 843.2

random fields [10] and a suite of tools called PMPack (Parameterized Matrix Pack-
age) for using spectral methods to approximate the solution of parameterized matrix
equations. The codes for generating the results of the study can be found at [20].

4. Application – Heat Transfer with Uncertain Material Properties.

As a proof of concept, we examine an application from computational fluid dynamics
with uncertain model inputs. The flow solver used to compute the deterministic
version of this problem – i.e. for a single realization of the model inputs – was
developed at Stanford’s Center for Turbulence Research as part of the Department of
Energy’s Predictive Science Academic Alliance Program; the numerical method used
is described in [31] and is based on an implicit, second order spatial discretization. For
this example, we slightly modified the codes to extract of the non-zero elements of the
matrix and right hand side used in the computation of the temperature distribution.
With access to the matrix-vector multiply, we were able to apply the Galerkin method
to the stochastic version of the problem to approximate the statistics of solution.

4.1. Problem Set-up. The governing equation is the integral version of a two-
dimensional steady advection-diffusion equation. We seek a scalar field φ = φ(x, y)
representing the temperature defined on the domain Ω that satisfies

∫

∂Ω

ρφ
(

~v(s) · ~dS
)

=

∫

∂Ω

(Γ(s) + Γt)
(

∇φ · ~dS
)

. (4.1)

The density ρ is assumed constant. The velocity ~v is precomputed by solving the
incompressible Reynolds averaged Navier-Stokes equations and randomly perturbed
by three spatially varying oscillatory functions with different frequencies such that
the divergence free constraint is satisfied; the magnitudes of the perturbations are pa-
rameterized by s1, s2, and s3, respectively. We interpret the magnitudes as uniform
random perturbations of the velocity field, which is simply an input to this model. The
diffusion coefficient Γ = Γ(s4, s5, s6) is similarly altered by a strictly positive, param-
eterized, spatially varying function that models random perturbation. Collectively,
the parameters s1, . . . , s6 are independent and distributed uniformly over [−1, 1]; the
parameter space becomes the hypercube [−1, 1]6. The turbulent diffusion coefficient
Γt is evaluated according to the Spalart-Allmarass model [31]. The domain Ω is a
channel with a series of cylinders; the computational mesh on the domain Ω contains
roughly 10,000 nodes and is shown in Figure 4.1. Inflow and outflow boundary con-
ditions are prescribed in the streamwise direction, and periodic boundary conditions

STOCHASTIC GALERKIN FACTORIZATION 11

Fig. 4.1. Mesh used to discretize the domain Ω and compute temperature distribution.

s1 s2 s3 s4 s5 s6
3 1 1 8 5 5

Table 4.1

The order of univariate polynomial for each variable used in the basis set.

are set along the y coordinate. Specified heat flux boundary conditions are applied
on the boundaries of the cylinders to model a cooling system.

The goal is to compute the expectation and variance of the scalar field φ =
φ(x, y, s) over the domain Ω with respect to the variability introduced by the param-
eters. We use the Galerkin method to construct a polynomial approximation of φ
along the coordinates induced by the parameters s using product Legendre polynomi-
als. To show that this method applies for an arbitrary basis set, we choose the basis
polynomials to reflect the solution’s anisotropic dependence on the parameters; it is
neither the standard full polynomial or tensor product polynomial basis. The order
of univariate polynomial associated with each parameter is given in Table 4.1, and
multivariate bases are included to fall within a convex index set. The basis contains
142 multivariate polynomials; for a detailed description of the choice of bases, see [7].
To solve the Galerkin system, we use Matlab’s BiCGstab [38] method (since the
matrix is not symmetric). For a preconditioner, we could only access the diagonal
elements of the matrix from the solver. The results of the preconditioning study in
Section 3 encouraged us to choose the midpoint of the hypercube parameter space to
construct the preconditioner.

We plot the expectation and variance of φ over the domain Ω in Figure 4.2,
which are computed in the standard way as functions of the Galerkin coefficients.
The variance in φ occurs in the downstream portion of the domain as a result of the
variability in the diffusion coefficient.

5. Summary. We have examined the system of equations arising from a spectral
Galerkin approximation of the vector valued solution x(s) to the parameterized matrix
equation A(s)x(s) = b(s). Such problems appear when PDE models with parameter-
ized (or random) inputs are discretized in space, and a Galerkin projection with an
orthogonal polynomial basis is used for approximation in the parameter space. We
showed how the system of equations used to compute the coefficients of the Galerkin
approximation admits a factorization once the integration is formally replaced by a
numerical quadrature rule – a common step in practice. The factorization involves (i)
a matrix with orthogonal rows related to the chosen polynomial basis and numerical
quadrature rule and (ii) a block diagonal matrix with nonzero blocks equal to A(s)
evaluated at the quadrature points. Then matrix-vector products with the Galerkin

12 P. G. CONSTANTINE, D. F. GLEICH, AND G. IACCARINO

Fig. 4.2. The expectation (above) and variance (below) of the temperature field φ over the
domain. Red corresponds to larger values and blue corresponds to smaller values.

system can be computed with only the action of A(s) on a vector at a point in the pa-
rameter space; this yields a reusable interface for implementing the Galerkin method.
The factorization also reveals bounds on the spectrum of the Galerkin matrix, and the
Kronecker structure of the factorization gives clues to successful preconditioners. We
tested some ideas from these preconditioner clues on the standard test problem of an
elliptic PDE with parameterized coefficients, and we saw that using A(s) evaluated
at the midpoint of the parameter space was as effective as the popular mean-based
preconditioner; the midpoint preconditioner is much easier to compute, in general. As
a proof of concept, we applied the method to an engineering flow problem by slightly
modifying an existing CFD code to retreive the matrix elements.

6. Acknowledgments. This material is based upon work supported by the De-
partment of Energy [National Nuclear Security Administration] under Award Number
NA28614. Sandia National Laboratories is a multi-program laboratory operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the
U.S. Department of Energys National Nuclear Security Administration under contract
DE-AC04-94AL85000.

Appendix A: Proof of Corollary 2.2. To prove Corollary 2.2, we proceed
somewhat circuitously as follows. Much of the notation for the orthogonal polynomials
in this proof is taken from [18]. Throughout the proof, we will use the index i to refer
to a specific parameter, so that i = 1, . . . , d.

Let Ji be the ni×ni symmetric, tridiagonal Jacobi matrix of three-term recurrence
coefficients for the univariate polynomials πi(si) which are orthogonal with respect
to the weight function ωi(si); the vector πi(si) contains the polynomials up to order
ni − 1 arranged in ascending degree from top to bottom. The three-term recurrence

STOCHASTIC GALERKIN FACTORIZATION 13

relation for the polynomials can be written in matrix form as

siπi(si) = Jiπi(si) + βπni
(si)e, (6.1)

where πni
(si) is the univariate orthogonal polynomial of order ni, β is a constant that

completes the three-term recurrence relationship, and e is an ni-vector of zeros with
a one in the last entry. Let λ be a zero of πni

(si), so that

λπi(λ) = Jiπi(λ). (6.2)

This immediately yields an eigenpair {λ,πi(λ)} for Ji. Since there are ni zeros of the
univariate polynomial πni

(si), we have a complete set of eigenpairs for Ji, and note
that the eigenvalues of Ji are the points of the ni-point Gaussian quadrature rule for
the measure ωi(si). The weights of the rule are given by the square roots of the first
elements of the normalized eigenvector, which is 1/‖πi(λk)‖ for k = 1, . . . , ni. Let Zi

be the matrix whose kth column is given (in MATLAB notation) by

Zi(:, k) =
1

‖πi(λk)‖
πi(λk), (6.3)

so that Zi contains the normalized eigenvectors of Ji, i.e. Z
T
i = Z−1

i . Next define

Z = Z1 ⊗ · · · ⊗ Zd, (6.4)

where ⊗ denotes the Kronecker product of matrices. By the mixed product property,
ZT = Z−1. Notice that the elements of Z can be referenced by a multi-index, i.e.

Zαβ =
√
νβπα1

(λβ) · · ·παd
(λβ), 0 ≤ αi ≤ ni − 1, i = 1, . . . , d, (6.5)

and {(λβ , νβ)} with β ∈ J are the point/weight pairs of a tensor product Gaussian
quadrature rule of order ni in variable i. Let π̃(s) be the multivariate product orthog-
onal polynomials corresponding with the rows of Z. In other words, π̃(s) contains the
multivariate orthogonal polynomials corresponding to the index set

Ĩ = {α | max
i
αi < ni, i = 1, . . . , d}. (6.6)

Assume without loss of generality that the polynomials π(s) used in the spectral
Galerkin method are a subset of π̃(s) so that I ⊆ Ĩ. Then also

Q = ΠZ, (6.7)

where Π is a |I| × |J | selector matrix of zeros and ones. Using Theorem 2.1,

〈

ππ
T ⊗A

〉

= (Q⊗ I)A(λ)(Q⊗ I)T

= (Π⊗ I)(Z⊗ I)A(λ)(Z⊗ I)T (Π⊗ I)T .

Therefore,
〈

ππ
T ⊗A

〉

is a principal minor of the matrix (Z⊗ I)A(λ)(Z⊗ I)T , which
is a similarity transformation of A(λ). Since A(s) is symmetric, an interlacing the-
orem [21, Theorem 8.1.7] tells us that the eigenvalues of

〈

ππ
T ⊗A

〉

are bounded
by the extreme eigenvalues of A(λ). Finally note that these bounds are sharp when
I = Ĩ, i.e. when the basis polynomials in the Galerkin approximation are equal to the
tensor product polynomials corresponding to the tensor product Gaussian quadrature
rule.

14 P. G. CONSTANTINE, D. F. GLEICH, AND G. IACCARINO

REFERENCES

[1] I. Babus̆ka, M. K. Deb, and J. T. Oden, Solution of stochastic partial differential equations
using Galerkin finite element techniques, Computer Methods in Applied Mechanics and
Engineering, 190 (2001), pp. 6359–6372.

[2] I. Babus̆ka, F. Nobile, and R. Tempone, A stochastic collocation method for elliptic partial
differential equations with random input data, SIAM Journal of Numerical Analysis, 45
(2007), pp. 1005 – 1034.

[3] Ivo Babus̆ka, Raul Tempone, and George E. Zouraris, Galerkin finite element approx-
imations of stochastic elliptic partial differential equations, SIAM Journal of Numerical
Analysis, 42 (2004), pp. 800 – 825.

[4] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods: Funda-
mentals in Single Domains, Springer, 2006.

[5] J. Chung and J. G. Nagy, Nonlinear least squares and super resolution, Journal of Physics:
Conference Series, 124 (2008), p. 012019 (10pp).

[6] P.G. Constantine, D.F. Gleich, and G. Iaccarino, A factorization of the spectral galerkin
system for parameterized matrix equations: Derivation and applications, SIAM Journal
on Scientific Computing, 33 (2011), pp. 2995–3009.

[7] P. G. Constantine, Spectral Methods for Parameterized Matrix Equations, PhD thesis, Stan-
ford University, 2009.

[8] P. G. Constantine and D. F. Gleich, Random alpha PageRank, Internet Mathematics,
(2010).

[9] P. G. Constantine, D. F. Gleich, and G. Iaccarino, Spectral methods for parameterized
matrix equations, SIAM J. Matrix Anal. & Appl., 31 (2010), pp. 2681 – 2699.

[10] P. G. Constantine and Q. Wang, Random field simulation.
(http://www.mathworks.com/matlabcentral/fileexchange/27613-random-field-simulation)
MATLAB Central File Exchange. Retrieved June, 2010.

[11] H. C. Elman, O. G. Ernst, D. P. O’Leary, and M. Stewart, Efficient iterative algorithms
for the stochastic finite element method with application to acoustic scattering, Computer
Methods in Applied Mechanics and Engineering, 194 (2005), pp. 1037 – 1055.

[12] H. C. Elman and D. G. Furnival, Solving the stochastic steady-state diffusion problem using
multigrid, IMA Journal of Numerical Analysis, 27 (2007), pp. 675–688.

[13] H. C. Elman, D. G. Furnival, and C. E. Powell, h(div) preconditioning for a mixed finite
element formulation of the diffusion problem with random data, Mathematics of Compu-
tation, 79 (2010), pp. 733–760.

[14] O. G. Ernst, C. E. Powell, D. J. Silvester, and E. Ullmann, Efficient solvers for a lin-
ear stochastic Galerkin mixed formulation of diffusion problems with random data, SIAM
Journal on Scientific Computing, 31 (2009), pp. 1424–1447.

[15] O. G. Ernst and E. Ullmann, Stochastic Galerkin matrices, SIAM Journal on Matrix Analysis
and Applications, 31 (2010), pp. 1848–1872.

[16] P. Fernandes, B. Plateau, and W. J. Stewart, Efficient descriptor-vector multiplications
in stochastic automata networks, J. ACM, 45 (1998), pp. 381–414.

[17] P. Frauenfelder, C. Schwab, and R. A. Todor, Finite elements for elliptic problems with
stochastic coefficients, Computer Methods in Applied Mechanics and Engineering, 194
(2005), pp. 205 – 228. Selected papers from the 11th Conference on The Mathematics of
Finite Elements and Applications.

[18] W. Gautschi, Orthogonal Polynomials: Computation and Approximation, Clarendon Press,
Oxford, 2004.

[19] R. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer-
Verlag, New York, 1991.

[20] D. F. Gleich and P. G. Constantine, Parameterized matrix package (pmpack).
http://www.stanford.edu/~dgleich/publications/2010/codes/pmpack-sisc/.

[21] G. H. Golub and C. F. VanLoan, Matrix Computations, The Johns Hopkins University Press,
Baltimore, MD, 3rd ed., 1996.

[22] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems,
Journal of Research of the National Bureau of Standards, 49 (1952), pp. 409–436.

[23] A. Keese and H. G. Matthies, Hierarchical parallelisation for the solution of stochastic finite
element equations, Computers and Structures, 83 (2005), pp. 1033–1047.

[24] O. P. Le Mâıetre and O. M. Knio, Spectral Methods for Uncertainty Quantification With
Applications to Computational Fluid Dynamics, Springer, 2010.

[25] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK User’s Guide: Solution of Large-
Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, 1998.

http://www.stanford.edu/~dgleich/publications/2010/codes/pmpack-sisc/

STOCHASTIC GALERKIN FACTORIZATION 15

[26] Y. T. Li, Z. Bai, and Y. Su, A two-directional Arnoldi process and its application to parametric
model order reduction, Journal of Computational and Applied Mathematics, 226 (2009),
pp. 10 – 21. Special Issue: The First International Conference on Numerical Algebra and
Scientific Computing (NASC06).

[27] M. Loève, Probability Theory II, Springer-Verlag, 1978.
[28] L. Page, S. Brin, R. Motwani, and T. Winograd, The pagerank citation ranking: Bringing

order to the web, Tech. Report 1999-66, Stanford University, 1999.
[29] C. C. Paige and M. A. Saunders, Solution of sparse indefinite systems of linear equations,

SIAM Journal of Numerical Analysis, 12 (1975), pp. 617 – 629.
[30] M.R. Pellissetti and R. Ghanem, Iterative solution of systems of linear equations arising

in the context of stochastic finite elements, Advances in Engineering Software, 31 (2000),
pp. 607 – 616.

[31] R. Pečnik, P. G. Constantine, F. Ham, and G. Iaccarino, A probabilistic framework for
high-speed flow simulations, Center for Turbulence Research – Annual Research Briefs,
(2008), pp. 3 – 17.

[32] C. E. Powell and H. C. Elman, Block-diagonal preconditioning for spectral stochastic finite-
element systems, IMA Journal of Numerical Analysis, Advance Access, (2008).

[33] C. E. Powell and E. Ullmann, Preconditioning stochastic Galerkin saddle point systems.
MIMS EPrint: 2009.88.

[34] C. Prud’homme, D. V. Rovas, K. Veroy, L. Machiels, Y. Maday, A. T. Patera, and

G. Turinici, Reliable real-time solution of parametrized partial differential equations:
Reduced-basis output bound methods, Journal of Fluids Engineering, 124 (2002), pp. 70–80.

[35] E. Rosseel, T. Boonen, and S. Vandewalle, Algebraic multigrid for stationary and time-
dependent partial differential equations with stochastic coefficients, Numerical Linear Al-
gebra and Applications, 15 (2008), pp. 141–163.

[36] E. Rosseel and S. Vandewalle, Iterative solvers for the stochastic finite element method,
SIAM J. Sci. Comput., 32 (2010), pp. 372–397.

[37] E. Ullmann, A kronecker product preconditioner for stochastic Galerkin Finite element dis-
cretizations, SIAM Journal on Scientific Computing, 32 (2010), pp. 923–946.

[38] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear systems, SIAM Journal on Scientific and Statistical
Computing, 13 (1992), pp. 631–644.

[39] D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach, Prince-
ton University Press, 2010.

[40] D. Xiu and J. S. Hesthaven, High order collocation methods for differential equations with
random inputs, SIAM Journal of Scientific Computing, 27 (2005), pp. 1118 – 1139.

[41] D. Xiu and G. E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential
equations, SIAM Journal of Scientific Computing, 24 (2002), pp. 619 – 644.

